
Fundamental Scaling Laws for Energy-Efficient Storage
and Querying in Wireless Sensor Networks

Joon Ahn and Bhaskar Krishnamachari
Department of Electrical Engineering

University of Southern California
Los Angeles, California, USA

joonahn@usc.edu, bkrishna@usc.edu

ABSTRACT
We use a constrained optimization framework to derive fundamen-
tal scaling laws for both unstructured sensor networks (which use
blind sequential search for querying) and structured sensor net-
works (which use efficient hash-based querying). We find that
the scalability of a sensor network’s performance depends upon
whether or not the increase in energy and storage resources with
more nodes is outweighed by the concomitant application-specific
increase in event and query loads. Letm be the number of events
sensed by a network over a finite period of deployment,q the num-
ber of queries for each event, andN the size of the network. Our
key finding is thatq1/2 ·m must beO(N1/4) for unstructured net-
works, andq2/3 · m must beO(N1/2) for structured networks, to
ensure scalable network performance. These conditions determine
(i) whether or not the energy requirement per node grows without
bound with the network size for a fixed-duration deployment,(ii)
whether or not there exists a maximum network size that can be
operated for a specified duration on a fixed energy budget, and(iii)
whether the network lifetime increases or decreases with the size
of the network for a fixed energy budget. We discuss the practical
implications of these results for the design of hierarchical two-tier
wireless sensor networks.

Categories and Subject Descriptors:C.2.2 Computer Communi-
cation Networks: Network Protocols

General Terms: Design, Performance, Theory

Keywords: Modeling, Wireless Sensor Networks, Energy Effi-
ciency, Theory, Performance Analysis, Querying, Scalability

1. INTRODUCTION
Wireless sensor networks are envisioned to consist of largenum-

bers of embedded devices that are each capable of sensing, com-
municating, and computing. While the network as a whole is re-
quired to provide fine resolution monitoring for an extendedperiod
of time, the individual embedded devices face some fundamental
constraints. They are typically deployed with limited battery sup-
plies and, because of their form factor and low cost, may alsohave
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limited data storage capability. The goal of this paper is tounder-
stand the conditions under which a query-based data-centric sensor
network [1] can be operated in a scalable manner despite these con-
straints on energy and storage.

We consider both unstructured and structured varieties of data-
centric querying along with replicated storage in this paper. In un-
structured querying schemes, the node issuing the query does not
know in advance where any copy of the requested event informa-
tion can be found. The query dissemination is therefore a form of
blind search (this can take the form of an expanding ring search or
a sequential trajectory search). In structured querying schemes, a
hash or index is used so that the querying node knows exactly where
the nearest copy of the requested event information can be found.
In such networks, there is a trade-off between the energy costs of
replicated storage and querying that is determined by the number
of replicas created for each event. A large number of replicas re-
sults in lowered query cost at the expense of greater storagecost,
and vice versa. We can formulate an optimization problem whose
aim is to select the optimum number of replicas that minimizes the
total energy cost of querying and storage, subject to constraints on
storage. We use this optimization problem as a tool to identify the
conditions, in terms of the numbers of events and queries, under
which query resolution can be performed in a scalable mannerde-
spite constraints on storage and energy.

We find that operating a network in a scalable fashion essentially
requires that the traffic load due to additional events and queries be
outweighed by the improvement in energy and storage resources
obtained as the network size increases. Note that the scaling of
event and query activity with network size is application specific
— e.g., in many applications there may be only a constant number
of queriers regardless of the network size, but the number ofevents
detected grows linearly with the covered area; in other applications,
the number of querying nodes may increase in some fashion with
the network size, while the events detected remain constant.

The following are the key contributions of this work:

• We present models for the search and replication costs for
structured and unstructured networks for two-dimensional
grid and random network deployments (see section 3); then
formulate and solve an optimization problem to determine
the optimal number of replicas in each scenario to minimize
the total energy cost subject to storage constraints (see sec-
tion 4).

• We derive the event-query scaling conditions to ensure that
the required storage per node does not grow without bound
as the network size increases (see section 5). LetN be the
size of the sensor network,m the total number of events that
are generated in the network during its fixed period of opera-



tion, andq the number of queries per event. We find that for
unstructured querying,q1/2 · m must beO(N3/4) to avoid
requiring unbounded storage per node for efficient operation,
while the equivalent condition for structured querying is that
q2/3 · m must beO(N).

• We derive the conditions under which the energy requirement
per node remains bounded as the network size increases (see
section 6). For bounded energy, we find thatq1/2 · m must
beO(N1/4) for unstructured querying andq2/3 · m must be
O(N1/2) for structured querying. Note that the conditions
for achieving the bounded energy are stricter than the condi-
tions for achieving bounded storage. With regard to scalabil-
ity, this suggests that energy constraints are fundamentally
more limiting than storage constraints. Further, the condi-
tions are so strict that even reasonable models for the scal-
ing of event generation (e.g., having the number of events
increase proportionally with the area covered) cannot be sus-
tained by arbitrarily large networks.

• We investigate the scaling of network size when we have a
fixed per-node energy budget (see section 7). We find that
when the event-query rates scale faster than the above-stated
conditions for bounded energy, there exists a maximum net-
work size beyond which not all queries for events can be re-
solved within the period of deployment before the available
energy is depleted. A finer-grained analysis reveals when the
maximum network size increases as a concave function of
the average per-node energy, and when it increases as a con-
vex function. This is useful from a design perspective as it
indicates whether investing in an increased per-node energy
allocation results in super-linear or diminishing returnswith
respect to network size.

• We consider variable-time deployments on a fixed energy
budget and examine how the network lifetime varies with
network size (see section 8). We find that depending on the
query-event scaling behavior, the lifetime can increase, re-
main constant or decrease with the addition of nodes to the
network.

• We argue that limiting the network size to a maximum value
can be interpreted as decomposing a larger network hierar-
chically into many multi-hop clusters of size smaller than
this maximum value, such that queries are limited to events
sensed and stored within the cluster. If the application should
require that queries from farther off be resolved, then it is
essential to create a wired second-tier which can transport
queries across clusters with minimal energy overhead.

1.1 Related work
Our focus on scalability issues studied using order notation is

certainly inspired by the well-known work on transport capacity of
wireless networks by Gupta and Kumar [7], though we do not focus
on wireless bandwidth limitations. There has also been somework
on the asymptotic energy-constrained capacity of wirelesssensor
networks [8]. And some prior studies have looked at maximizing
the lifetime of continuous data-gathering [9, 10, 11]. However,
these studies are different in scope from our work which is focused
on the scalability of wireless sensor networks that employ data-
centric storage and querying.

There have been several interesting prior studies on analytical
modeling of query strategies [12, 13, 14, 15]. The energy costs of
data centric storage are compared with the two extremes of external

storage and local storage in [12]. A hybrid push-pull query process-
ing strategy is proposed and analyzed in [13]. Shakkotai [14] has
presented a comparison of the asymptotic performance of three ran-
dom walk-based query strategies, showing that a rendezvous-based
sticky search has the best success probability over time. The op-
timal parameter setting for the comb-needles approach is analyzed
in [15]. An analytical comparison of the comb-needles approach
and data centric storage is provided in [16]. These studies have not
developed fundamental scaling laws for data-centric querying with
replicated storage with respect to the scaling of event and query
loads — to our knowledge this is the first work on the topic.

2. ASSUMPTIONS
The following are the key assumptions in our work:

• N nodes are deployed with constant density in a two- dimen-
sional square area. The constant density implies that if the
network size is increased, the deployment area grows pro-
portionally.

• Our results are applicable to both square grid and random
deployments of nodes, because we show that they both have
the same scaling of querying and storage costs except for
different constants.

• The radio radius of a node is R for all nodes.

• The sensor network is deployed for a fixed application-specific
time durationT .

• During this time duration, there arem atomic events that are
sensed in the environment. The distribution of events is as-
sumed to be uniform in the deployment area.

• A total of ri copies of each event are maintained with a uni-
form distribution in the network by creatingri−1 additional
replicas when the event is first sensed.

• For each eventi, there are a total ofqi queries that are gener-
ated uniformly by the nodes in the network. Each query is a
one-shot query (i.e. requires a single response, not a contin-
uous stream), and is satisfied by locating a single copy of the
corresponding event.

• We assume that the links over which transmissions take place
are lossless (e.g., using blacklisting) and present no interfer-
ence due to concurrent transmissions (e.g., due to low traffic
conditions or due to the use of a scheduled MAC protocol).

• The total energy cost for storage and querying is assumed to
be proportional to the total number of transmissions. This
is reasonable particularly for sleep-cycled sensor networks
where radio idle times are kept to a minimum.

• We assume that the storage at each node is a constant amount
s, so that the total storageS = s ·N , where each event copy
requires a unit of storage.

3. MODELING QUERYING AND
REPLICATION COSTS

We now turn to developing mathematical models to quantify the
cost of replication and search. We consider two types of data-
centric querying techniques: structured and unstructured. In struc-
tured environments, the data is stored in the network and retrieved



from it using a hash. This approach is exemplified by the geo-
graphic hash-table technique [2]. Thus in structured querying, the
querying node is aware of the location of the nearest copy of the
replicated event information and sends the query directly to this
point to get a response. In unstructured environments, by contrast,
there is no predetermined location where the querying node can
send a query. Hence the query must be disseminated through a form
of blind search. If latency is not a concern, efficient unstructured
querying strategies involve expanding ring searches or sequential
trajectories [3, 4].

It turns out that whether the network is deployed in an area uni-
formly with a random distribution of nodes or as a regular grid, the
expressions resulting energy costs for storage and querying are the
same, except for differences in coefficients. We present these co-
efficients for the two deployments in Table 1. Detailed derivations
are presented in our technical report [6]. We present below instead
some approximate first-order modeling with intuitive explanations
for how these costs vary as a function of the network sizeN and
the number of copiesr, for a given event.

First consider the replication costs. In both the structured and
unstructured case these are same. The average number of hops
from random event locations in the network to random locations
is proportional to

√
N (since theN nodes are placed in a square

area). Thus the cost of creating and placingr−1 replicas at random
locations in the network from random event locations is:

Creplication = c1 ·
√

N · (r − 1) (1)

Let us then consider the search cost for a structured environment.
If the number of copies is kept fixed, since the replicas are placed
uniformly in the network, the distance (in hops) between thequery-
ing node to the nearest replica increases with the network size as
proportional to

√
N . If, on the other hand, the network size is kept

fixed, then as the number of replicas increases and continuesto
be placed in the two-dimensional area with a uniform distribution
among theN nodes, the expected one-dimensional distance to the
nearest replica decreases inversely proportional to

√
r. Thus we

have the following:

Csearch,structured = c2 ·
√

N√
r

(2)

Finally, let us consider the search cost for an unstructuredenvi-
ronment. The search is analogous to looking sequentially for the
first of r specific objects of a desired type from a randomly ordered
set ofN total objects. It can be shown that the expected number of
steps till the first object of the desired type is observed is given as :

Csearch,unstructured = c3 ·
N

r + 1
(3)

We have derived the above expression in previous work, for both
random and grid settings [5, 16].

We note that in calculating the search costs we have not explicitly
taken into account the cost to return the response back to thequery-
ing node. For the structured scheme, this is easy to incorporate as
the response is returned along the reverse path as the directed query,
and hence incorporating this cost is equivalent to simply doubling
the cost (which can be absorbed into the constant term). For the
unstructured scheme, the cost of a directed response will beof the
orderO(

√
N√
r

) and hence, for the large networks that are the focus

of this study, negligible compared to theO
�

N
r+1

�
cost of the blind

search.
Looking at equations (1), (2), and (3), we find that, as expected,

the replication costs increase with the number of replicas,while the

c1 c2 c3

Grid
2

3
1 1

Rand.
0.52

R
√

ρ

c

R
√

ρ
2.15

Table 1: The constants for the cost expressions (1), (2), and(3)
for both regular grid and uniform random deployments, where
R is the radio radius defined in section 2,c is a constant in
(0.66, 1.71), and ρ is the density of nodes.

search costs decrease with the number of replicas. We can resolve
this tradeoff by considering the aggregate total expected cost of
search and querying and optimizing for it.

The following is the common form of the total cost:

Ct =
mX

i=1

qiCs(ri) +
mX

i=1

Cr(ri) (4)

whereCs(ri) is the expected search cost ofith event andCr(ri) is
its expected replication cost.

From the above, we get the following expressions for the ex-
pected total energy cost for all events which consists of search costs
weighed by the number of queries as well as the replication costs:

1. Under the unstructured replication scheme, the total energy
cost is

Ctot,u =

mX
i=1

c2
Nqi

ri + 1
+

mX
i=1

c1

√
N(ri − 1) (5)

2. Under the structured replication scheme

Ctot,s =

mX
i=1

c3

√
Nqi√
ri

+

mX
i=1

c1

√
N(ri − 1) (6)

To simplify our expressions, with a slight abuse of notation, we
shall make the following substitutions: in equation (7), after divid-
ing both sides byc1, we letCtot,u/c1 → Ctot,u and c2

c1
qi → qi;

in equation (8), after dividing both sides byc1, we letCtot,s/c1

→ Ctot,s and c3
c1

qi → qi. And the following expressions are the
simplified versions;

Ctot,u =
mX

i=1

Nqi

ri + 1
+

mX
i=1

√
N(ri − 1) (7)

Ctot,s =

mX
i=1

√
Nqi√
ri

+

mX
i=1

√
N(ri − 1) (8)

4. OPTIMIZATION FORMULATION
Now we can formulate the problem of optimizing the total cost

as follows;

Minimize Ct =
Pm

i=1 qiCs(ri) +
Pm

i=1 Cr(ri)

s.t
Pm

i=1 ri ≤ S
(9)

The optimization formulation does require global knowledge of
query rates for each event and hence the optimum may not be nec-
essarily achieved by distributed heuristics in practice, but this is



still a useful tool for our investigations of performance scalability
as it provides the best-case scenario. We solve this problemusing
the method of Lagrange multipliers. The Lagrangian function for
this inequality-constrained optimization problem can be expressed
using a Lagrange multiplierλ and a slack variablex as follows;

L(r̄, λ, x) = Ct + λ(
mX

i=1

ri − S + x2) (10)

It can be shown that the objective functions for both the unstruc-
tured and structured scheme are all convex. Thus, first-order con-
ditions are sufficient for global optimization. Solving these condi-
tions, we find that

i) When the constraint is inactive (i.e.λ = 0), we have that

r∗i,inact =

8<: q
1/2
i N1/4 − 1, (unstructured)

βs · q2/3
i , (structured)

(11)

where

βs = 2−2/3 (12)

ii) When the constraint is active (i.e.x = 0, λ ≥ 0), we get

r∗i,act =

8>><>>: S+mP
m
j=1

√
qj

√
qi − 1, (unstructured)

SPm
j=1

q
2/3

j

q
2/3
i , (structured)

(13)

Now we can derive the optimal expected total energy costs sub-
stituting equation (11) and (13) into equation (7) and (8) respec-
tively as follows;

i) For the unstructured network

C∗
t,u =

8>>>>>><>>>>>>: Pm
i=1

√
N
�
N1/4√qi − 2

�
+
Pm

i=1 N3/4√qi , (Inactive)Pm
i=1

√
N
�

(m+S)Pm
j=1

√
qj

√
qi − 2

�
+
Pm

i=1

Pm
j=1

√
qj

m+S

√
qi N, (Active)

(14)

ii) For the structured network

C∗
t,s =

8>>>>>>>>><>>>>>>>>>:
Pm

i=1
1√
βs

√
Nq

2/3
i

+
Pm

i=1

√
N
�
βs q

2/3
i − 1

�
, (Inactive)Pm

i=1

√
N

�
SPm

j=1
q
2/3

j

q
2/3
i − 1

�
+
Pm

i=1

rPm
j=1

q
2/3

j
√

S
q
2/3
i

√
N, (Active)

(15)
In order to have better understanding in the behavior of the op-

timal total cost, we look into optimal total costs assuming that the
query rate for each item is same one another, that isqi = q, ∀ i.
Figure 1 shows the optimal per-node total cost (which equalsthe
optimal total cost divided by the number of nodesN ) vs. the num-
ber of events(m) as X axis and the query rate(q) as Y axis when
N = 104. The curved thick line represents the boundary of enough
storage for unconstraint optimal point. Beyond that boundary, the
surface increases sharply and it is more sensitive to the increase in
the number of events than that of query rate. Note that the struc-
tured replication scheme has a gentler incline and larger uncon-
strained region than the unstructured replication scheme.

5. SCALING CONDITIONS FOR
BOUNDED STORAGE

As we have seen above, when the available storage in the net-
work exceeds the sum of the unconstrained optimum number of
copies for all events, we have an efficient region where the network
can achieve the smallest total energy cost of querying (and replica-
tion). From a scalability perspective, it is desirable to ensure that
the per-node storage requirements remain bounded irrespective of
the network size. This is equivalent to requiring that therebe a
constant storages per node such that the total storageS = s · N .

DEFINITION 1. We say that a networkscales efficiently with
bounded storageif

∃N0 s.t. ∀N > N0,

mX
i=1

r∗i,inact < S = s · N (16)

To obtain useful insights regarding scalability, we simplify our
expressions from this point on by assuming that the query rate for
all events is uniform, i.e.,qi = q,∀i. We now give scaling results
that quantify the above condition for structured and unstructured
networks.

THEOREM 1. Conditions for Efficient Operation of Unstruc-
tured Networks with Bounded Storage:For unstructured networks,

if condition (16) holds, thenm · q1/2 must beO
�
N3/4

�
. Further,

if m · q1/2 is o
�
N3/4

�
, then condition (16) holds.

Proof: If condition (16) holds, then the following holds for all
N > N0:

mX
i=1

r∗i,inact = m q1/2N1/4 − m ≤ sN

⇒ m (q1/2 − N−1/4) ≤ s N3/4 (17)

⇒ m q1/2 ≤ s N3/4 (18)

Sinces is constant,mq1/2 is O
�
N3/4

�
. Note that inequality (18)

holds for the sufficiently largeN > N0 sinceN−1/4 goes to zero,
asN goes to infinity.

On the other hand, ifmq1/2 is o
�
N3/4

�
, then forN > N0 and

any arbitrary small positive constantǫ,

m q1/2 < ǫN3/4 ≤ sN3/4

⇒ m q1/2 − m N−1/4 < m q1/2 < sN3/4

⇒ m
�
q1/2N1/4 − m

�
=

mX
i=1

r∗i,inact < sN = S

2

THEOREM 2. Conditions for Efficient Operation of Structured
Networks with Bounded Storage:For structured networks, if con-
dition (16) holds, thenq2/3 ·m must beO(N). Further, ifq2/3 ·m
is o(N), then condition (16) holds.

Proof: It can be proved in the same way as proof of Theorem 1
using the structured case of equation (11).

2

Theorem 1 and Theorem 2 are not symmetric. It is important to
note that it is possible that the network is operating inefficiently in

the constrained region when theq1/2 · m is Θ
�
N3/4

�
(in case of
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Figure 1: (a) The per-node total cost of the unstructured network of N = 10000 (b) that of the structured

unstructured networks), andq2/3 ·m is Θ(N) (in case of structured
networks).

To understand the implications of these theorems, it is helpful to
consider some extreme cases of the scaling behavior of the number
of events (m) and the query rate (q). We consider allowing each
of these parameters to scale asΘ(1) or Θ(N), giving us four pos-
sible combinations. In practice the scaling behavior of theevents
and queries with network size is determined by the application sce-
nario. For instance, an application which requires the network (re-
gardless of its size) to have only a single sink injecting queries for
events would have thatq is Θ(1), while a richer application involv-
ing increasing numbers of users with the network size could have
thatΘ(N). For many event monitoring applications, it is likely to
be reasonable to assume that the number of observed events scales
proportionally with the deployment area which for a constant den-
sity deployment would mean thatm is Θ(N); however in other
applications the scaling ofm may be weaker, all the way down to
the extreme ofΘ(1) (which would imply that there only a finite
number of events that can be detected regardless of the network
size).

Consider each combination first for the case of unstructurednet-
works. Whenq andm are bothΘ(1), then by Theorem 1, in this
case the networks always scale with bounded storage; whenq and

m are bothΘ(N), thenq1/2 · m becomesΘ
�
N3/2

�
and hence

(since this is notO
�
N3/4

�
), by Theorem 1, the network never

scales with bounded storage. The following table summarizes the
scalability for each case with unstructured networks:

H
H

H
HH

q
m

Θ(1) Θ(N)

Θ(1) Always Never
Θ(N) Always Never

Table 2: Illustration of scenarios under which unstructured
networks scale efficiently with bounded storage.

Similarly, we can apply Theorem 2 to analyze the scalabilityfor
structured networks for these illustrative scenarios. This is summa-
rized in the following table. Here, one interesting case is that when

q is Θ(1) andm is Θ(N), the network can potentially operate in
either the active storage constraint or the inactive storage constraint
region as it scales. This is because in this caseq2/3 ·m is Θ(N), so
that the second (efficiency-guaranteeing) clause of Theorem 2 does
not apply.

H
H

H
HH

q
m

Θ(1) Θ(N)

Θ(1) Always Possibly
Θ(N) Always Never

Table 3: Illustration of scenarios under which structured
networks scale efficiently with bounded storage.

6. THE SCALING BEHAVIOR OF ENERGY
COSTS

We now examine the scaling behavior of the total energy costs
for both unstructured and structured networks.

THEOREM 3. The total energy costs for unstructured networks
grow with network sizeN as follows:

C∗
t,u =

8>><>>: Θ
�
m · q1/2 · N3/4

�
, (inactive)

Θ
�
N3/2 + m2 · q

�
, (active)

(19)

Proof: In the inactive constraint region, the total energy cost is
given from equation (14) by,

mX
i=1

√
N
�
N1/4√qi − 2

�
+

mX
i=1

N3/4√qi

= 2mq1/2N3/4 − 2mN1/2

= Θ
�
mq1/2N3/4

�
In the active constraint region, the total energy cost is given from



equation (14) by,

mX
i=1

√
N

 
(m + S)Pm

j=1

√
qj

√
qi − 2

!
+

mX
i=1

Pm
j=1

√
qj

m + S

√
qi N

= sN3/2 − N1/2m +
m2qN

m + sN

= Θ
�
N3/2 + m2q

�
(20)

Since it is reasonable to consider that the number of eventsm is
at most proportional toN , sN is dominant compared tom. Thus,
m2qN
m+sN

is Θ
�
m2q

�
, and so equation (20) holds.

2

THEOREM 4. The total energy costs for structured networks
grow with network sizeN as follows:

C∗
t,s =

8>><>>: Θ
�
m · q2/3 · N1/2

�
, (inactive)

Θ
�
N3/2 + m3/2 · q

�
, (active)

(21)

Proof: It can be proved in the same way as the proof of Theo-
rem 3 using the equation (15)

2

To illustrate the scaling of these costs, we again consider the four
scenarios pertaining toq andm. As we observed in Table 2, for the
unstructured networks, scaling with unbounded storage is observed
only whenm is Θ(1) (regardless ofq); when m is Θ(N), then
the network operates in the active constraint region as it scales.
Substituting into the relevant cases of Theorem 3, therefore, we get
the following table for the four cases.

H
H

H
HH

q
m

Θ(1) Θ(N)

Θ(1) Θ(N3/4) Θ(N2)

Θ(N) Θ(N5/4) Θ(N3)

Table 4: Illustration of the scaling of total energy costs for
unstructured networks.

We generate a similar table below using Theorem 4 to illustrate
the scenarios for structured networks. As mentioned above,when
m is Θ(N) andq is Θ(1), both active and inactive constraint re-
gions are possible. However, it turns out that in both cases the

scaling shows the same order (Θ
�
N3/2

�
).

H
H

H
HH

q
m

Θ(1) Θ(N)

Θ(1) Θ(N1/2) Θ(N3/2)

Θ(N) Θ(N7/6) Θ(N5/2)

Table 5: Illustration of the scaling of total energy costs for
structured networks.

We observe something striking about Tables 4 and 5. In both ta-
bles, among the four cases, only when bothq andm areΘ(1) do we
observe that the total costs for the whole network scale asO(N). In
other words, only in this example case do we haveO(1) scaling of
the per-node cost, i.e. bounded energy consumption per node. This
motivates us to inquire about the general conditions under which a
network can scale while ensuring that the energy requirement per
node is kept bounded — a very important requirement from a prac-
tical perspective.

THEOREM 5. For unstructured networks, the energy require-
ment per node is bounded if and only if

q1/2 · m is O
�
N1/4

�
Proof: the total optimal energy cost per node is the total cost di-

vided by the number of nodesN . If the energy requirement per
node is bounded, the per-node total energy cost must beO(1).
From Theorem 3, the per-node total cost cannot be bounded re-
gardless ofm and/orq in the active constraint region since it is at
leastΘ(N1/2). In the inactive constraint region, however, the per-
node total cost is given from equation (14) divided byN (assuming
qi = q, ∀i) as follows:

C∗
t,u/N = 2mq1/2N−1/4 − 2mN−1/2 ≤ C0

whereC0 is a sufficiently large constant.

⇒ m ·
�
q1/2 − N−1/4

�
≤ C0

2
N1/4

⇒ mq1/2 ≤ C0

2
N1/4, ∀N > N0 (22)

Note that inequality (22) holds sinceN−1/4 goes zero asN goes

to infinity. Therefore,mq1/2 is O
�
N1/4

�
.

On the other hand, ifmq1/2 is O
�
N1/4

�
,

mq1/2 ≤ C0N
1/4

⇒ m ·
�
q1/2 − N−1/4

�
≤ C0 N1/4

⇒ 2mq1/2N−1/4 − 2mN−1/2 ≤ C0/2 (23)

Note that the left side of inequality (23) is equal to the optimized
per-node total energy cost in the inactive constraint region. As for
the total cost in the active constraint region, however, since the as-

sumption that ismq1/2 isO
�
N1/4

�
already satisfies the condition

of theorem 1, it is sufficient to consider the total cost in theinactive
constraint region only. Therefore, the per-node total energy cost is
bounded asN goes to infinity.
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THEOREM 6. For structured networks, the energy requirement
per node is bounded if and only if

q2/3 · m is O
�
N1/2

�
Proof: It can be proved in the same way as the proof of theorem 5

using the equation (15).
2

COROLLARY 1. For both structured and unstructured networks,
if the energy requirement per node is bounded, the networks also
scale with bounded storage. i.e., the bounded energy requirement
is a stricter condition than scaling with bounded storage.

7. NETWORK SCALING ON FIXED
ENERGY BUDGET

So far, we have seen the conditions for bounded storage and en-
ergy and the scaling of energy costs as a function of event andac-
tivity rates. We now consider having a fixed energy budget, and
look into what conditions the network size must satisfy to ensure
that events and queries within the finite deployment time duration
can be resolved before energy depletion. Specifically, we will as-
sume that there is an average energy budgete for each node, so that
the total energy isE = e · N .



DEFINITION 2. We say a networkoperates successfullyif it
can satisfy all queries for all events in a given deployment period
before energy depletion. This requires thatCt ≤ e · N .

THEOREM 7. For unstructured networks, given fixed average
per-node energye (i.e., the total energy allocated optimally among
the nodes in the network grows linearly with the network sizeas
E = e · N ), the following statements describe the conditions on
the network sizeN , the number of eventsm and the number of
queries per eventq that ensure that the network can be operated
successfully.

1. If m · q1/2 is o(N1/4), then there exists a minimum network
sizeNmin(e) beyond which it can always be operated suc-
cessfully.

2. If m · q1/2 is Θ(N1/4), then there exists an average per-
node energye∗ such that for alle < e∗, it is not possible to
operate a network of any size successfully, while for alle ≥
e∗ it is possible to operate a network of any size successfully.

3. If m · q1/2 is ω(N1/4), but o(N), then there exists a maxi-
mum network sizeNmax(e) beyond which the network can-
not be operated successfully. FurtherNmax is a convex func-
tion of e.

4. If m · q1/2 is Θ(N), then there exists a maximum network
sizeNmax(e) beyond which the network cannot be operated
successfully. FurtherNmax increases linearly withe.

5. If m · q1/2 is ω(N), then there exists a maximum network
sizeNmax(e) beyond which the network cannot be operated
successfully. FurtherNmax increases as a concave function
of e.

Proof:

1. m ·q1/2 = Θ(N1/4−ǫ) whereǫ > 0. Then, the optimal total
cost is given from Theorem 3 by,

C∗
t,u,inactive = Θ(m · q1/2N3/4) = Θ(N1−ǫ)

= αN1−ǫ + o(N1−ǫ)

Since the total cost expenditure should be less than the given
energye · N ,

αN1−ǫ + o(N1−ǫ) ≤ eN

Note that there existsN ≥ N0 such that this inequality
holds, whereN0 is a fixed constant and can be considered
as the minimum network size to make the network operate
successfully. Note that this condition satisfies the theorem 1
and so the network is in the inactive constraint region.

2. We can prove this case in the same way as the case 1.fm ·
q1/2 = Θ(N1/4). Then, the total cost is given by,

C∗
t,u,inactive = Θ(m · q1/2N3/4) = Θ(N)

= αN + o(N)

From the total cost expenditure constraints,

αN + o(N) ≤ eN

Note that there existse ≥ e∗ > α such that this inequality
holds for allN .

3. In this case, we have two sub-cases. Ifm · q1/2 = O(N3/4),
we should use the corresponding inactive cost by Theorem 1.
Otherwise, we should use the active cost. First of all, let’s
consider the first sub-case.m · q1/2 = Θ(N1/4+ǫ) where
0 < ǫ ≤ 1/2. Then the optimum total cost is given by,

C∗
t,u,inactive = Θ(m · q1/2N3/4) = Θ(N1+ǫ)

= αN1+ǫ + o(N1+ǫ)

From the the total cost expenditure constraints,

αN1+ǫ + o(N1+ǫ) ≤ eN

Note that there existsNmax such that it achieves the equality.
Fore >> α, Nmax can be approximated as follows:

Nmax = (1/α)1/ǫ · e1/ǫ

, where1/ǫ ≥ 2. Therefore, thisNmax is a convex function
of e.

Now, let’s consider the second sub-case, wherem · q1/2 =
Θ(N3/4+ǫ), 0 ≤ ǫ < 1/4 and we should use the active total
cost. Through the similar reasoning, we can easily achieve
the following equality with approximation fore >> α.

Nmax = (
1

α
)

2
4ǫ+1 · e

2
4ǫ+1

where1 < 2
4ǫ+1

≤ 2. Therefore, thisNmax is a convex
function ofe.

As for cases 4 and 5, they can be proved in the same way as case 3
using the active total cost equation.
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THEOREM 8. For structured networks, given fixed average per-
node energye (i.e., the total energy allocated optimally among
the nodes in the network grows linearly with the network sizeas
E = e · N ), the following statements describe the conditions on
the network sizeN , the number of eventsm and the number of
queries per eventq that ensure that the network can be operated
successfully.

1. If m · q2/3 is o(N1/2), then there exists a minimum network
sizeNmin(e) beyond which it can always be operated suc-
cessfully.

2. If m · q2/3 is Θ(N1/2), then there exists an average per-
node energye∗ such that for alle < e∗, it is not possible to
operate a network of any size successfully, while for alle ≥
e∗ it is possible to operate a network of any size successfully.

3. If m · q2/3 is ω(N1/2), but o(N4/3), then there exists a
maximum network sizeNmax(e) beyond which the network
cannot be operated successfully. FurtherNmax is a convex
function ofe.

4. If m ·q2/3 is Θ(N4/3), then there exists a maximum network
sizeNmax(e) beyond which the network cannot be operated
successfully. FurtherNmax increases linearly withe.

5. If m · q2/3 is ω(N4/3), then there exists a maximum network
sizeNmax(e) beyond which the network cannot be operated
successfully. FurtherNmax increases as a concave function
of e.
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Figure 2: Network size conditions for successful operationwith respect to per-node energy budget for different event-rate and query-
rate scaling behaviors, for an unstructured network; S denotes the successful region while U denotes the unsuccessful region.

Proof: This is similar to the proof for Theorem 7
2

Figure 2 illustrates the network size versus energy budget curves
for the five different cases in Theorem 7. It is obtained numerically
by equating the expressions for total cost with the energy budget
E = e · N , and solving forN as a function ofe, under particu-
lar m andq scaling settings that satisfy each of the corresponding
cases. (A very similar figure can be obtained for structured net-
works and is omitted due to lack of space). The regions markedS
and U are where the network operates successfully and unsuccess-
fully, respectively.

We see that under case 1, there is a minimum network size that is
needed to ensure successful operation, and this minimum network
size decreases rapidly with increasing energy availability. In this
case, the event and query activity remains low enough that adding
nodes to the network is beneficial (as it increases the available total
energy). Under the event-query activity case 2, there exists an per-
node energy threshold such that below this threshold, no network
can operate successfully, but beyond this threshold, networks of any
size can be operated. Under cases 3, 4, and 5, we see that for a given
energy budget there exist maximum network sizes beyond which
successful operation is impossible. In these cases, addingnodes to
the network is harmful as each additional node introduces more
consumption than resources. The key distinction between these
cases is that under case 3, there is a convex growth that implies
that adding energy resources to each node provides a super-linear
improvement in the maximum network size that can be sustained;
under case 4, the maximum network size grows linearly with the
per-node energy budget; and under case 5, the concave growthof
the curve implies that adding energy resources provide diminishing
returns in maximum network size.

8. NETWORK LIFETIME SCALING
We now consider a relaxation of one of our key assumptions —

that the network is being operated for a fixed duration. This al-
lows us to examine how the lifetime of the network (the period
over which all queries for all events can be resolved successfully)
scales with the network size. In this connection we will assume

that the total number of events since network initiation andthe to-
tal number of queries per event (m(t), q(t)) are such that they are
both non-decreasing functions of time, and at least one is a strictly
increasing function of time.

THEOREM 9. For unstructured networks, with a fixed average
per-node energy budget ofe, so long as the number of events and
queries scale temporally so thatm · q1/2 is an increasing function
of time, the lifetime of deploymentT over which the network can
operate successfully scales with the network size as per thefollow-
ing conditions:

1. if m · q1/2 is o(N1/4) thenT increases withN .

2. if m · q1/2 is Θ(N1/4) thenT is constant with respect toN .

3. if m · q1/2 is ω(N1/4) thenT decreases withN .

Proof:

1. m · q1/2 = Θ(N1/4−ǫ ·T β), whereǫ > 0, β > 0. Then, the
optimal total cost is given from Theorem 1 by,

C∗
t,u,inact = Θ(m · q1/2 · N3/4) = Θ(N1−ǫ · T β)

= αN1−ǫT β + o(N1−ǫT β)

From the total cost expenditure constraints,

αN1−ǫT β + o(N1−ǫT β) ≤ eN

Note that there existsTmax such that it satisfies the above
equality;T < Tmax satisfies the inequality. Fore >> α,
Tmax can be approximated as follows:

Tmax =
� e

α

�1/β

· Nǫ/β

where ǫ
β

> 0.
Therefore, thisTmax increases withN .

2. We can prove this in the similar way as the case 1.m·q1/2 =
Θ(N1/4T β), whereβ > 0. Then, the optimal total cost is
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Figure 3: The network lifetime (T ) vs. the number of nodes (N ) of the (a) unstructured network and (b) the structured networks
when bothm and q are proportional to T

given by,

C∗
t,u,inact = Θ(m · q1/2 · N3/4) = Θ(N · T β)

= αNT β + o(NT β)

From the total cost expenditure constraints,

αNT β + o(NT β) ≤ eN

Note that there existsTmax such that it satisfies the above
equality. Further, fore >> α, Tmax can be approximated as
follows:

Tmax =
� e

α

�1/β

Therefore, thisTmax is constant with respect toN .

3. As the case 3 of Theorem 7, we also have two sub-cases here.
First of all, considerm · q1/2 = Θ(N1/4+ǫT β) , where
0 < ǫ ≤ 1/2, β > 0. Then, the optimal total cost is given
by,

C∗
t,u,inact = Θ(m · q1/2 · N3/4)

= Θ(N1+ǫ · T β)

= αN1+ǫT β + o(N1+ǫT β)

From the total cost expenditure constraints,

αN1+ǫT β + o(N1+ǫT β) ≤ eN

Note that there existsTmax such that it satisfies the above
equality. Further, fore >> α, Tmax can be approximated as
follows:

Tmax =
� e

α

�1/β

N−ǫ/β

where−ǫ/β < 0. Therefore, thisTmax decreases withN .

Now, let’s consider the second sub-case, wherem · q1/2 =
Θ(N3/4+ǫT β) with ǫ > 1/2, β > 0 and we should use
the active total cost. Through the similar reasoning, we can
easily achieve the following equality fore >> α:

Tmax =
� e

α

� 1
2β

N− 1
4β

− ǫ
β

where− 1
4β

− ǫ
β

< 0. Therefore, thisTmax decreases with
N .
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THEOREM 10. For structured networks, with a fixed average
per-node energy budget ofe, so long as the number of events and
queries scale temporally so thatm · q2/3 is an increasing function
of time, the lifetime of deploymentT over which the network can
operate successfully scales with the network size as per thefollow-
ing conditions:

1. if m · q2/3 is o(N1/2) thenT increases withN .

2. if m · q2/3 is Θ(N1/2) thenT is constant with respect toN .

3. if m · q2/3 is ω(N1/2) thenT decreases withN .

Proof: This is similar to the proof for Theorem 9.
2

These theorems are illustrated in Figure 3 through a numerical
plot based on exact expressions. We can see that event-queryscal-
ing conditions determine whether the lifetime of the deployed net-
work increases, decreases, or remains constant with respect to net-
work size.

9. CONCLUSIONS AND FUTURE WORK
We have investigated the fundamental scaling behavior of stor-

age and querying in wireless sensor networks. The main take away
from this study is that the event and query rates must scale suffi-
ciently slowly with the network size if scalable performance is de-
sired. In particular, an important scaling condition is ensuring that
q1/2 · m beO(N1/4) for unstructured networks, and thatq2/3 · m
beO(N1/2) for structured networks. Satisfying this condition en-
sures that adding nodes to the network is beneficial in that the en-
ergy and storage resources they bring outweigh the additional event
and query activity they induce. This can be seen from many per-
spectives: satisfying this condition implies that (i) sensor networks
require bounded energy and storage per node, (ii) arbitrarily large
networks can be operated successfully with a limited energybud-
get, and (iii) that the network lifetime increases with network size
for a given energy budget.

In our study we have not explicitly considered bandwidth capac-
ity; we have implicitly assumed that the energy constraintswill be
more severe than bandwidth constraints in the system. However, if
energy constraints are not significant (consider as an extreme case
if all nodes could be wired for power), bandwidth issues could be
the dominant consideration. This is a topic for future work.

We have made the strong assumption that queries are uniformly
distributed. However, our results showing the existence ofa max-
imum network size for a given energy budget can be potentially
interpreted as an argument that queries need to be kept localized to



within a fixed distance of corresponding events. In a practical large-
scale system where queries are uniformly generated and the rate
of events and queries large enough that the scalability thresholds
are exceeded, these results motivate the decomposition of large-
scalable sensor networks into a two-tier architecture. In this case,
the lower-tier would consist of the wireless nodes within each limited-
size cluster, while the upper-tier would provide a wired connection
between cluster-heads that can be used to inject queries from any
point in the network into any cluster with minimal energy expense.

In the future, we would like to explicitly consider scalability un-
der localized queries. We would also like to undertake realistic
simulations and large-scale experiments to validate the analytical
results presented in this work.
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