
Analysis of Random Noise and Random Walk

Algorithms for Satisfiability Testing

Bhaskar Krishnamachari1, Xi Xie1, Bart Selman2, and Stephen Wicker1

1 School of Electrical Engineering
Cornell University, Ithaca, NY 14853

{bhaskar,xie,wicker}@ee.cornell.edu
2 Department of Computer Science
Cornell University, Ithaca, NY 14853

selman@cs.cornell.edu

Abstract. Random Noise and RandomWalk algorithms are local search
strategies that have been used for the problem of satisfiability testing
(SAT). We present a Markov-chain based analysis of the performance of
these algorithms. The performance measures we consider are the proba-
bility of finding a satisfying assignment and the distribution of the best
solution observed on a given SAT instance. The analysis provides exact
statistics, but is restricted to small problems as it requires the storage
and use of knowledge about the entire search space. We examine the
effect of p, the probability of making non-greedy moves, on these algo-
rithms and provide a justification for the practice of choosing this value
empirically.

1 Introduction

Local search algorithms such as GSAT, RandomWalk and Random Noise search
have been shown to be good at solving CNF satisfiability (SAT) problems [4,13].
Such methods perform better than systematic search algorithms on large satis-
fiability problems involving thousands of variables. They may be used for the
problem of maximum satisfiability (finding a truth assignment that satisfies as
many clauses as possible) as well as complete satisfiability (satisfying all clauses).

However, due to the complex interactions between the problem instance and
algorithm implementation details, it is hard to predict the performance of these
algorithms. Researchers have, therefore, mainly relied upon empirical studies for
this purpose [5,14]. Although this approach provides very useful results, it is still
desirable to have some theoretical understanding of algorithm performance.

A large portion of the literature on theoretical analysis of local search algo-
rithms for other problems has been devoted to determining the convergence of
search algorithms to the global optimum using Markov models [2,3,7,8,9,11]. The
rates of convergence to the optimum have also been discussed assuming various
properties of cost functions and search spaces [15,16]. Some work in the area of
complexity theory has been focused on studying PLS (polynomial local search)
problems regarding the time required to locate local optima [6,10].

R. Dechter (Ed.): CP 2000, LNCS 1894, pp. 278–290, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Analysis of Random Noise and Random Walk for SAT 279

In this paper, we show how the Random Walk and Random Noise algorithms
can be modeled using discrete Markov chains. We present a procedure to deter-
mine the probability of finding the global optimum as well as complete statistics
of the best solution observed in a given number of iterations. The former measure
of algorithm performance is most relevant to maximum satisfiability problems,
while the latter is the statistic of interest when considering complete satisfia-
bility. These measures are relevant because they tell us quantitatively how the
algorithm will perform on a given problem in limited computational time. This
in turn will help us to determine the best parameters for these search algorithms
to use.

The procedure presented requires the storage and use of complete knowl-
edge about the search space. Hence, it can only be carried out for small-scale
satisfiability problems. Still, this analysis provides some insights regarding the
performance of these algorithms on real world problems. Real world problems are
characterized by the existence of local minima which hinder the performance of
greedy local search. Both Random Noise and Random Walk algorithms provide
ways of escaping local minima, using the parameter p, the probability of mak-
ing random non-greedy moves. The value of p that provides optimum algorithm
performance is of great interest. We find theoretical support for the practice of
empirically choosing an optimal value for this parameter.

The rest of the paper is organized as follows: section 2 reviews the definitions
of the Random Noise and Random Walk algorithms. Section 3 shows how these
algorithms can be modeled as discrete Markov chains and presents a procedure
for determining the performance statistics for these algorithms. The method
of determining the one-step state transition matrix for these algorithms is de-
scribed in section 4. Section 5 presents and discusses results obtained using this
procedure. Concluding comments are presented in section 6.

2 Random Noise and Random Walk Algorithms for
Satisfiability

The Random Noise and Random Walk algorithms are both based on GSAT, a
greedy local search procedure for satisfiability which works as follows [12]:
Procedure GSAT
for i:= 1 to MAX-TRIES

T:= a randomly generated truth assignment
for j := 1 to MAX-FLIPS

if T satisfies expression then return T
Flip any variable in T that results in greatest decrease

(could even be 0) in the number of unsatisfied clauses
end for

end for
return "No satisfying assignment found"

280 Bhaskar Krishnamachari et al.

The success of GSAT depends on its ability to make either strictly improving
or “sideways” moves (moves to assignments with an equal number of unsatisfied
clauses). When the algorithm finds itself at a non-optimal point in the search
space where no further improvements are possible, it is essentially trapped in a
region which is a local minimum and needs to be restarted with a random new
assignment. Another mechanism for escaping such local minima that is widely
used is to permit the search to make uphill moves occasionally. Random Noise
and Random Walk algorithm are both closely related in the way they allow for
the possibility of uphill moves [13]:

Random Noise

With probability p, pick any variable at random
and flip its truth assignment.

With probability 1-p, follow the standard GSAT scheme,
i.e., make the best possible local move

Random Walk

With probability p, pick a variable occurring in some
unsatisfied clause and flip its truth assignment.

With probability 1-p, follow the standard GSAT scheme,
i.e., make the best possible local move

Experimental results comparing the basic GSAT algorithm, Simulated An-
nealing, Random Walk and Random Noise strategies on a test suite including
randomly-generated CNF problems and Boolean encodings of circuit synthesis,
planning and circuit diagnosis problems can be found in [13]. The authors of
this paper found that the Random Walk strategy significantly out-performed
the other algorithms on these problems.

3 Modeling and Analysis

If we look at the search process as a sequence of decisions for moving from
point to point in the search space, most local search algorithms can be called
“memoryless” in the sense that the process of selecting the next point depends
iteratively only on the current point. Therefore, the search process is a Markov
process with finite states (e.g. the points in the search space). Furthermore, the
search algorithms are performed at discrete steps/iterations and this allows us
to model them as Markov chains. Such models for two widely used local search
algorithms – Simulated Annealing and Genetic Algorithms, can be found in [1]
and [9] respectively. In the context of satisfiability problems, each point in the
search space corresponds to a unique truth assignment.

Theorem 1: The sequence of points visited by the Random Noise (also Random
Walk) algorithm forms a Homogeneous Markov Chain.

Analysis of Random Noise and Random Walk for SAT 281

Proof: To prove that this sequence forms a Markov chain, it suffices to show
that the point visited at the (k + 1)st iteration depends only upon which point
was visited at the kth iteration. This can be seen as follows: by the definition
of both these algorithms, the truth assignment at the (k + 1)st iteration differs
from the truth assignment at the kth iteration at exactly one variable. The set
of variables that may be flipped at the kth iteration depends only upon whether
we are considering the Random Noise or Random Walk algorithm and not the
points visited at any previous iteration. Finally, the probability of flipping each
variable in this set also depends only on the value of p and not the points visited
in the first (k − 1) iterations. The Markov chain will be homogeneous because
the state transition probabilities will only be a function of p which is assumed
to be constant for the duration of the search. Q.E.D.

In a SAT problem, ifN is the number of variables, the search spaceX consists
of a total of |X | = 2N possible truth assignments. Let x[j], 1 ≤ j ≤ |X | be a
point in the search space. The cost f(x[j]) is the number of unsatisfied clauses in
the corresponding truth assignment. For simplicity of analysis and description,
we assume that the points in the search space are sorted in non-decreasing order
of costs, i.e. j < k ⇒ f(x[j]) ≤ f(x[k]). The search space may contain two points
with the exact same cost function value. We represent the sorted list of costs
using a row vector −→f of size |X | such that the jth element −→f [j] = f(x[j]).

Let xi be the random variable describing which point the search is at during
iteration i. The probability mass function (pmf) of xi is represented by a row
vector −→π i of size |X | such that the mth element −→π i,[m] = P{xi = x[m]} . A
homogeneous Markov chain based local search algorithm can then be described
by a one-step state transition matrix P such that:

−→π i = −→π i−1P (1)

The performance statistics of interest (probability of finding the global opti-
mum within a given number of iterations, best solution observed to date) require
us to incorporate the search history as well. For this purpose, it is necessary to
fully describe the state that the search algorithm is in at a given iteration. This
description should include a) the pmf describing the probability that the search
algorithm is at any given point in the search space, and b) the conditional pmf’s
of the best (lowest) cost seen up to the current iteration given that the search is
currently at a certain point in the search space. Both these pmf’s can be itera-
tively calculated at each step as they depend on only the pmf’s of the previous
iteration and on the search algorithm being analyzed.

Let x∗
i denote the point with the lowest cost function seen up to iteration i.

We can use a matrixD∗
i to represent the conditional probability of the lowest cost

seen to date given the current search point, i.e. D∗
i,[jk] = P{x∗

i = j|xi = k}. Note
that D∗

0 = I. For entries representing equal value points, it does not matter how
the weight is distributed among them as long as the total probability remains
the same.

282 Bhaskar Krishnamachari et al.

For the ith iteration, the distribution −→π i can be calculated from −→π i−1 using
equation (1). The following formulae1 can be used in sequence to calculate D∗

i

from −→π i−1 and D∗
i−1 :

B∗
i = D∗

i−1diag(−→π i−1)P (2)

C∗
i,[jk] =




B∗
i,[jk] j < k

|X|∑
l=j

B∗
i,[lk] j = k

0 j > k

(3)

B∗
i and C∗

i are temporary matrices. The best-to-date point cannot be worse
than the current point at any time. An entry B∗

i,[jk] in B∗
i represents the prob-

ability of having j as the best observed point and k as the current search point
without this consideration. C∗

i contains the corresponding probabilities after
considering this fact. Equation (4) normalizes C∗

i to the desired conditional pmf
matrix 2:

D∗
i = C∗

i (diag(−→π i))−1 (4)

Thus, given the initial state distribution −→π 0 and the state transition ma-
trix P, we can derive D∗

n – the conditional pmf’s of the lowest cost function
value seen to date, and −→π n – the distribution of costs at the nth iteration. It
is typically assumed that each point in the search space is equally likely to be
picked as the starting point (uniform initial distribution). Once D∗

n and −→π n are
known, the expectation and variance of the best-to-date cost can then be readily
calculated by definition:

E[f(x∗
n)] =

−→
f D∗

n
−→π T

n (5)

V AR[f(x∗
n)] =

−→
f diag(−→f)D∗

n
−→π T

n − (−→f D∗
n
−→π T

n)
2 (6)

The expectation and variance of best-to-date cost are useful measures if we
are interested in the problem of maximum satisfiability. For complete satisfiabil-
ity, we would like to know the probability P [f(x∗

n) = f∗] of achieving the global
optimum f∗ within n iterations. This can be calculated as follows:

P [f(x∗
n) = f∗] = −→e D∗

n
−→π T

n (7)

where −→e = [1 0 0 0 . . . 0], consisting of a 1 followed by (|X | − 1) zeros.
We note here that the above procedure for calculating these statistics up

to iteration n, as outlined in equations (1) through (7), has a computational
1 In these formulae, diag(−→v) represents the diagonal matrix derived from a vector −→v ;

B∗
i and C∗

i are temporary matrices used during this updating process.
2 Rigorously, the inverse of diag(−→π i)) does not exist if any of the elements of −→π i are 0
– although this only happens when using purely greedy search. However the notation
used in equation 4 is convenient and the difficulty can be overcome by treating these
0 elements as arbitrarily small values ε.

Analysis of Random Noise and Random Walk for SAT 283

complexity of O(|X |3n), where |X | = 2N is the size of the search space. The
exponential dependence on the number of variables renders this exact analysis
infeasible for larger problems.

4 Determining the State Transition Matrix

Table 1. Sample 3-SAT instance with 3 variables, 15 clauses

{ 3, 1,−2} {−1, 2,−3} {−3, 2, 1} { 2, 1,−3} { 1, 2, 3}
{ 3,−2,−1} {−2, 1,−3} { 1,−3,−2} { 3, 1, 2} { 1, 3, 2}
{−3, 2,−1} { 1, 3, 2} { 3, 1, 2} { 1, 3,−2} { 1,−2, 3}

000

001

010

011

100

101

110

111
0

1

2

3

4

5

COST

Fig. 1. Neighborhood definition and cost values for a randomly generated 3SAT
instance with 3 variables and 15 clauses; 111 and 100 are satisfying assignments

We have shown how the performance statistics of interest may be obtained
once the state transition matrix P is known. This matrix depends upon both
the specific problem instance, as well as the algorithm used. We discuss here via
an example how the matrix can be obtained for Random Noise algorithms if the
satisfiability instance is known.

Table 1 shows a randomly generated 3-SAT instance with 3 variables and
15 clauses3. The cost for each truth assignment, i.e. the number of unsatisfied
clauses as well as the neighboring truth assignments are shown in figure 1. From
the figure, it is easy to see that the assignment 001 is a local minimum and that
the global minima 111 and 100 are satisfying assignments.

Given a problem instance, the one-step transition matrix P can be deter-
mined for the Random Noise algorithm as follows:
3 It may be seen that a number of these clauses are identical in this example, but this
is to due to the small number of variables used for illustration.

284 Bhaskar Krishnamachari et al.

– Determine the transition matrix Pgreedy for the GSAT algorithm (p = 0).
– Determine the transition matrix Prandom for the random noise algorithm
with p = 1.

– P = (1− p) Pgreedy + p Prandom

For the SAT instance presented in figure 1, the corresponding transition
matrices for the Random Noise algorithm: Pgreedy and Prandom are shown in
figure 2. The Prandom matrix is constructed by assigning equal transition prob-
abilities to each neighbor of a given truth assignment (elements corresponding
to non-Neighboring points are 0). The Pgreedy is constructed by assigning equal
transition probabilities from any given truth assignment to the neighbor(s) which
have the greatest decrease in cost (0 or more). The procedure is nearly identical
for obtaining the P for the Random Walk algorithm, with the only difference
being in the construction of Prandom. To construct Prandom for the Random
Walk algorithm, assign equal state transition probabilities to each neighbor of a
given truth assignment that can be obtained by flipping a variable involved in
unsatisfied clauses.

0 0 0 1 0 0 1 1
0 0 0 1 1 0 1 0
0 0 0 0 1 0 1 1
1 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0
0 0 0 1 1 0 0 1
1 1 1 0 0 0 0 0
1 0 1 0 0 1 0 0

P
random

= 1
 3
___ 1

 2
___P

greedy
=

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0
1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0

Fig. 2. Constructing State Transition Probability Matrices

5 Results

Using the method of analysis presented in this paper, it is possible to investigate
the effect of p, the non-greedy move probability, on the performance of random
noise algorithms. One significant result is the following:
Theorem 2: E[f(x∗

n)], the expected best cost seen by a random noise or random
walk algorithm after n iterations, is a polynomial in p of order at most n.
Proof: See appendix A.
Corollary 1: The variance of the best cost V AR[f(x∗

n)] is a polynomial in p of
order at most 2n.
Corollary 2: P [f(x∗

n) = f∗], the probability of having found the global best
assignment after n iterations, is a polynomial in p of order at most n.

Analysis of Random Noise and Random Walk for SAT 285

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

P

E
[f(

x* n)]
(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

P

P
[f(

x* n)=
f*]

(b)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

P

E
[f(

x* n)]

(c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

P

P
[f(

x* n)=
f*]

(d)

Fig. 3. Performance for Random Noise and Random Walk algorithms with re-
spect to p for a randomly generated 3-SAT instance with 7 variables. Figures
(a) and (c) show the curves for expectation of best-to-date costs for Random
Noise and Random Walk algorithms respectively. Figures (b) and (d) show the
curves for the probability of finding a satisfiable solution for Random Noise and
Random Walk algorithms respectively. In (b) and (d), the locus connecting the
peaks of the curves of the various iterations indicate the value of p for which this
probability is maximized. For the expectation figures (a) and (c), each succes-
sively lower curve represents an increasing iteration number, while the opposite
is true for the probability figures (b) and (d)

We applied the procedure described in equations (1) through (7) on randomly
generated 3-SAT instances to determine the performance of Random Walk and
Random Noise algorithms. Table 2, in appendix B, shows a typical instance
with 7 variables and 30 clauses. Figure 3 shows the effect of p on Random Noise
(3a,3b) and Random Walk (3c,3d) algorithms for this instance.

The data in figure 3 is for 21 values of p ranging from 0 to 1, with 0.05
increment, for the first 20 iterations of the algorithms. Figures 3a and 3c show
the expected best cost. The first line on top corresponds to iteration 0, the
starting point of the search. As the iteration number increases, the expected

286 Bhaskar Krishnamachari et al.

cost goes down at each step and is indicated by the successively lower curves.
Figure 3b and 3d show the probability of having found the global optimum (in
this case, a satisfying assignment with 0 cost). This probability increases with
iteration and is hence represented by successively higher curves. In all these
graphs, for any given iteration, there is some p = pbest for which the algorithm
achieves the best value. In figures 3b and 3d, the pbestpoints for each iteration
(subject to the resolution of the p values tested) are connected, forming a locus.

The performance statistics for the two algorithms are different, and this can
be seen more clearly in figure 4, where the probability of having found the global
minimum for both algorithms is compared for p = 0, 0.5, and 1. When p = 0, as
noted earlier, both algorithms are identical to the GSAT algorithm and hence
their performance is the same. For the other two values of p, it is seen that
Random Walk algorithm out-performs the Random Noise algorithm. We have
noticed this on other instances as well. This has also been observed empirically
on large-scale problems [13,14].

From figure 3, especially from the loci in figure 3b and 3d, we can see that pbest

can be different for each iteration. In practice, this implies that different p value
might be needed depending on how many iterations the search algorithm is to
run. However, as the iteration number increases, the change in pbest gets smaller.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

iteration

P
[f(

x* n)=
f*]

Random Walk
Random Noise

p=0

p=0.5

p=1.0

Fig. 4. Comparison of Random Noise and Random Walk algorithms

6 Conclusion

Local search algorithms can be modeled as Markov chains. We have shown how
the Random Noise and Random Walk algorithms for satisfiability testing can

Analysis of Random Noise and Random Walk for SAT 287

also be described using such a model. Based on this modeling, we are able to
derive the probability of finding a satisfying assignment, and the statistics of the
best solution observed within a given number of iterations. The former measure
of algorithm performance is useful when considering problems of complete satisfi-
ability, while the latter is more relevant to the problem of maximum satisfiability
and related optimization problems.

For real world problems, it is almost always the case that a value of p =
pbest ∈ (0, 1) offers the best performance on a given problem. The results ob-
tained for randomly generated 3-SAT instances using our analysis also show this
behavior. The value of pbest depends upon the specific problem instance, as well
as the iteration number. We observed that the performance measures vary slowly
with respect to p. Further, we have proved that these performance measures are
polynomial (hence continuous) functions of p, the probability of making non-
greedy moves. Therefore, for real world problems, if the value of p chosen via
experiments is close to pbest, it will result in near-optimal performance. In nearly
all the 3-SAT instances we tested, the Random Walk algorithm out-performed
the Random Noise algorithm. This merits further study.

The characteristics of a search space have a big impact on the algorithm
performance. Only a limited number of SAT problem instances are tested in
the experiments. Future research may include the study of effects of changes in
parameters such as the ratio of constraints to variables. This may reveal more
insights on how the structure of a problem and the search algorithms interact.

References

1. E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Boltzmann Machines,
Wiley, 1989. 280

2. J. R. Cruz and C. C. Y. Dorea, “Simple conditions for the convergence of simulated
annealing type algorithms,” Journal of Applied Probability, vol. 35, no. 4, p. 885-92,
December 1998. 278

3. A. E. Eiben, E. H. L. Aarts, and K. M. Van Hee, “Global convergence of genetic
algorithms: a markov chain analysis,” Parallel Problem Solving from Nature, PPSN
1, p. 4-12, October 1990. 278

4. J. Gu, “Efficient Local Search for Very Large Scale Satisfiability Problems,” Sigart
Bulletin, vol. 3, no. 1, p. 8-12, 1992. 278

5. J. Hansen and B. Jaumard, “Algorithms for the maximum satisfiability problem,”
Computing, vol. 44, pp. 279-303, 1990. 278

6. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How easy is local
search?,” Journal of Computer and System Sciences, vol. 37, no. 1, p. 79-100,
August 1998. 278

7. C. Y. Mao and Y. H. Hu, “Analysis of Convergence Properties of a Stochastic
Evolution Algorithm,” IEEE Transactions on Computer-Aided Design of integrated
circuits and systems, vol. 15, no. 7, July 1996. 278

8. D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and finite-
time behavior of simulated annealing,” Proceedings of the 24th IEEE Conference
on Decision and Control, vol. 2, p. 761-7, December 1985. 278

288 Bhaskar Krishnamachari et al.

9. A. E. Nix and M. D. Vose, “Modeling genetic algorithms with Markov Chains,”
Annals of Mathematics and Artificial Intelligence, vol. 5, no. 1, p. 79-88. 278, 280

10. C. H. Papadimitriou, A. A. Schaffer, M. Yannakis, “On the complexity of local
search,” Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, p. 438-45, May 1990. 278

11. G. Rudolph, ”Convergence Analysis of Canonical Genetic Algorithms,” IEEE
Transactions on Neural Networks, vol. 5, no. 1, January 1994. 278

12. B. Selman, H. J. Levesque and D. G. Mitchell, “A new Method for Solving Hard
Satisfiability Problems, Proceedings AAAI-92, San Jose, CA, pp. 440-446, 1992.
279

13. B. Selman, H. A. Kautz, and B. Cohen, “Local Search Strategies for Satisfiabil-
ity Testing,” Second DIMACS Challenge on Cliques, Coloring, and Satisfiability,
October 1993. 278, 280, 286

14. B. Selman, H. A. Kautz, and B. Cohen, “Noise Strategies for Improving Local
Search,” Proceedings of Twelfth National Conference on Artificial Intelligence,
AAAI-94, vol.1, pp. 337-43, July 1994. 278, 286

15. G. B. Sorkin, “Efficient simulated annealing on fractal energy landscapes,” Algo-
rithmica, vol. 6, no. 3, p. 367-418, 1991. 278

16. J. C. Spall, S. D. Hill, D. R. Stark, “Theoretical Comparisons of Evolutionary Com-
putation and Other Optimization Approaches,” Congress on Evolutionary Com-
putation, vol. 2, p. 1398-405, July 1999. 278

Appendix A

Remark – Properties of the Transition Matrix: Since the sum of any row
of the transition matrix P is 1, P−→1 T = −→1 T , where −→1 is a 1× 2N vector of 1’s.
The elements of P are polynomials in p of degree either 0 or 1.
Definition: If a matrix A has elements that are polynomials in p, O(A) is
defined as the highest possible degree of these polynomials.
Theorem 2: For a given neighborhood, E[f(x∗

n)], the expected best cost seen
by a random noise algorithm after n iterations, is a polynomial in p of order at
most n.
Proof: By substituting equation (4) into (5), we have:

E[f(x∗
i)] =

−→
f C∗

i (diag(−→π i))−1−→π T

i =
−→
f C∗

i
−→1 T (8)

If the elements of C∗
i be polynomials in p, then E[f(x∗

i)] is also a polynomial
in p, and

O(E[f(x∗
i)]) = O(C∗

i
−→1 T) (9)

Hence it suffices to show that the elements of C∗
i are polynomials in p, and that

O(C∗
i) = i. This can be done inductively:

Base Case (n = 1)
From the fact thatD∗

0 = I and equation (2), we get B∗
1 = diag(−→π 0)P. Hence

the elements of B∗
1 are polynomials in p and O(B∗

1) = 1. All the rows of B
∗
1 add

up to one:

O(B∗
1
−→1 T) = O(diag(−→π 0)P

−→1 T) = O(diag(−→π 0)
−→1 T) = 0 (10)

Analysis of Random Noise and Random Walk for SAT 289

The operations in equation (3) consist of adding all elements of B∗
1 that are

below the diagonal to the diagonal element in each column and then setting
these below-diagonal elements to 0. Thus C∗

1 is an upper-triangular matrix such
that all its elements are also polynomials in p and O(C∗

1) = O(B∗
1) = 1. When

each row of C∗
1 is summed, the order 1 terms will not necessarily cancel out, and

hence O(C∗
1
−→1 T) = 1.

Inductive Hypothesis

For any k > 1, the elements of B∗
k−1 and C∗

k−1 are polynomials in p. Further,
O(C∗

k−1) = O(B∗
k−1) = k − 1, O(B∗

k−1
−→1 T) = k − 2, and O(C∗

k−1
−→1 T) = k − 1.

Inductive Step

This is similar to the verification of the base case. From equations (2) and
(4), we get:

B∗
i = C∗

i−1(diag(−→π i−1))−1diag(−→π i−1)P = C∗
i−1P (11)

By this equation, the elements of B∗
k are polynomial in p, and O(B∗

k) = O(C∗
k−1)

+ O(P) = k. The operations in equation (3) ensure that C∗
k is an upper-

triangular matrix and that all its elements are polynomials in p with O(C∗
k) =

O(B∗
k) = k. Also from equation (11),

O(B∗
k
−→1 T) = O(C∗

k−1P
−→1 T) = O(C∗

k−1
−→1 T) = k − 1 (12)

This means that when each row of B∗
k is summed, any terms of degree k all

cancel out. After the below-diagonal elements of B∗
k are moved to the diagonal

terms in equation 3, when the rows of C∗
k are summed, the terms of degree k

will not necessarily cancel. Hence O(C∗
k
−→1 T) = k.

Therefore by induction, we have that the elements of C∗
n are polynomials

in p and that O(C∗
n
−→1 T) = n, ∀n ≥ 1. Q. E. D.

Corollary 1: The variance of the best cost V AR[f(x∗
n)] is a polynomial in p of

order at most 2n.
This follows immediately from the result of Theorem 1 and equation 6.

Corollary 2: P [f(x∗
n) = f∗], the probability of having found the global best

assignment after n iterations, is a polynomial in p of order at most n.
To see this, compare equations (5) and (7). The properties of E[f(x∗

n)] with
respect to p hold for P [f(x∗

n) = f∗] as well.

290 Bhaskar Krishnamachari et al.

Appendix B

Table 2. sample 3-SAT instance with 7 variables, 30 clauses

{−4, 7, 2} {−3,−6,−4} {−6, 4,−2} {−4,−1, 7} { 5, 6,−7} {−6,−7, 4}
{−3, 7, 2} {−5, 2,−1} {−6,−5, 4} {−2,−1, 3} {−7, 1,−3} { 4, 6, 3}
{−7,−4, 5} {−7,−5,−3} {−1,−7,−5} {3, 5, 4} { 7,−6,−5} {−1, 4,−6}
{ 1, 3,−2} { 2,−4, 5} { 4,−5,−3} {−3,−2,−5} {−1, 5, 2} {−6,−1, 3}
{ 5,−2,−7} { 1,−5, 6} { 6,−1,−4} { 1, 6,−3} {−3,−6, 1} { 5, 6,−2}

	Analysis of Random Noise and Random Walk Algorithms for Satisfiability Testing
	Introduction
	Random Noise and Random Walk Algorithms for Satisfiability
	Modeling and Analysis
	Determining the State Transition Matrix
	Results
	Conclusion

