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Abstract. We study the tradeoffs involved in the energy-efficient local-
ization and tracking of mobile targets by a wireless sensor network. Our
work focuses on building a framework for evaluating the fundamental
performance of tracking strategies in which only a small portion of the
network is activated at any point in time. We first compare naive net-
work operation with random activation and selective activation. In these
strategies the gains in energy-savings come at the expense of increased
uncertainty in the location of the target, resulting in reduced quality of
tracking. We show that selective activation with a good prediction algo-
rithm is a dominating strategy that can yield orders-of-magnitude energy
savings with negligible difference in tracking quality. We then consider
duty-cycled activation and show that it offers a flexible and dynamic
tradeoff between energy expenditure and tracking error when used in
conjunction with selective activation.

1 Introduction

There is an emerging trend towards the use of sophisticated wireless networks
of unattended sensor devices for intelligence gathering and environmental mon-
itoring [1] -[6]. One canonical application of sensor networks that has received
considerable attention in the literature is the tracking of a mobile target (point
source) by the network.

In a tracking scenario, information obtained from nodes far away from the
region of activity is of little or no use. For a typical sensor network with a large
number of nodes, a major portion of these falls in the above category. In addition,
if the nodes are densely deployed, information obtained from some sensors close
to the region of activity might be redundant. An obvious way to save energy is
to switch on only a subset of the sensor nodes. We discuss in this paper various
possible activation strategies: (1) naive activation, (2) randomized activation (3)
selective activation based on trajectory prediction and (4) duty-cycled activation.

In these sensor activation strategies, energy savings come at the expense of a
reduction in the quality of tracking. In other words, relying on the information
provided by a small subset of the sensor nodes results in an increased uncertainty
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in the sensed location of the mobile. In this paper we study the energy-quality
tradeoffs involved by building a model to quantify both the energy expenditure
and the quality of tracking. Also for a particular strategy, we study the impact of
the following: a) deployed/activated density of sensors b) their sensing range c)
capabilities of activated and un-activated nodes d) the target’s mobility model.

Our efforts are not directed per se at proposing new techniques for mobile
tracking. Rather the focus is on the evaluation and analysis of general strategies
which may be incorporated into a real system. We start with a simple model
for tracking and substantiate the intuition that it is possible to obtain orders
of magnitude savings in energy while keeping the uncertainty within acceptable
limits. We also discuss the extensions of the model to relate closely with real life
scenarios. The results in this work are a first step in our attempt to understand
the fundamental bounds on the the tracking quality that can be obtained under
various energy constraints and sensor models.

The rest of the paper is organized as follows. In section 2, we discuss related
work from the existing literature, presenting the context for our work. We de-
scribe our basic model, assumptions and evaluation metrics for target tracking
in section 3. The general tracking strategies that we investigate are detailed in
section 4. Section 5 contains the description of our experiments to evaluate the
performance of these strategies, and an analysis of the results presented. Finally,
we present concluding comments in section 6.

2 Related Work

Target tracking is considered a canonical application for wireless sensor networks,
and work in this area has been motivated in large part by DARPA programs
such as SensIT [18].

Zhao et al. present the information driven sensor querying (IDSQ) mechanism
in [8], [7]. IDSQ is a sensor-to-sensor leader handoff based scheme in which at any
given time there is a leader sensor node which makes the decisions about which
sensors should be selectively turned on in order to obtain the best information
about the target. A combined cost function which gives weight to both energy
expenditure and information gain is considered. The generic selective activation
strategy which we describe in this paper is closest in spirit to IDSQ. As our focus
in this paper is to evaluate general strategies, our findings regarding selective
activation are applicable to the performance of intelligent tracking strategies such
as IDSQ. Liu et al. develop a dual-space approach to tracking targets which also
enables selective activation of sensors based on which nodes the target is likely
to approach next.

Along these lines, Ramanathan, Brooks, et al. advocate a location-centric ap-
proach to performing collaborative sensing and target tracking in [13], [14]. The
idea is to develop programming abstractions that provide addressing and com-
munication between localized geographic regions within the network rather than
individual nodes. This makes localized selective-activation strategies simpler to
implement.



34 S. Pattem, S. Poduri, and B. Krishnamachari

Brooks et al. present self-organized distributed target tracking techniques
with prediction based on Pheromones, Bayesian, and Extended Kalman Filter
techniques [21], [22]. The implementation and testing of a real distributed sensor
network collaborative tracking algorithm in a military context is described in
[23].

A number of recent papers have focused on the question of deploying sen-
sors to ensure adequate coverage of moving targets. Megerian, Meguerdichian,
Potkonjak, et al. [20], [19], investigate the question of the minimum exposure
path that a target can take in a given sensor field - which is a worst-case metric
to evaluate the tracking quality that can be obtained for a given deployment.
Clouquer et al. [16] use a related metric to evaluate sensor deployment strategies
that enhance the worst-case probability of target detection, taking into account
factors such as equipment and deployment costs. Chakrabarty, Iyengar et al. dis-
cuss the problem of tolerating faults while ensuring sensor coverage of an area to
ensure that the target moving through the area can be tracked at all times [10].
Jung and Sukhatme examine target tracking by a mobile robotic sensor network
in [12].

The problem of multiple targets has also attracted some attention. Bejar, Kr-
ishnamachari, et al. formulate a sensor tracking problem as that of distributed
constraint satisfaction. They show that there is a critical combination of sens-
ing and communication needed to ensure that multiple targets can be tracked
satisfactorily by a sensor network. In [15], Li, Wong et al. tackle the problem
of distinguishing between multiple targets, describing and developing several
target classification mechanisms. Fang, Zhao and Guibas describe a distributed
mechanism for counting the number of targets in a given field in [9].

In the context of these related works, we should emphasize that our atten-
tion is primarily focused on single-target tracking. Our interest is in analyzing
and evaluating the fundamental energy-quality tradeoffs involved in tracking
with different generic tracking strategies, rather than designing/advocating yet
another tracking protocol.

3 Model and Metrics

We now describe the models, assumptions and metrics used in our work.

3.1 Basic Model

We consider a sensor network consisting of N nodes deployed in some operational
area, operating for a total time duration T . There is a single target moving
through the area. We assume that all sensors in the network are binary detectors
with a fixed sensing range S. In other words, at each instant, each sensor returns a
’1’ if the target is present within a distance S of that sensor, and a ’0’ otherwise.
Given this simple sensor model, we take the centroid of the locations of all
detecting sensors as an estimate of the target’s location at any given time t. Say
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there are k sensors at locations Xi = (xi, yi), i = 1 . . . k, detecting the target at
time t. Then the estimated location of target Xs(t) = (xs(t), ys(t)), where

xs(t) =
Σkxi

k
(1)

ys(t) =
Σkyi

k
(2)

We assume two different modes of operation for each node:
1) A high power tracking mode : Nodes in this mode use a higher power H,

which depends on their sensing capabilities. A node in this mode is capable of
both sensing a target and also communicating with neighbor nodes.

2) A low power communication mode : Nodes in this mode use a lower power
L, which is an indicator of the farthest distance they can communicate. A node
in this mode can only communicate with neighbor nodes.

3.2 Quality Metric: Tracking Error

The two performance measures of interest to us in evaluating different tracking
strategies are the average total energy expenditure P (averaged over a period
of time T ), and some measure of the tracking quality, which reflects the un-
certainty in the target’s location. We use the Euclidean distance between the
estimated and actual locations of the target to measure the tracking error. If
Xa(t) = (xa(t), ya(t)) is the actual position of the target at time t, we denote
the instantaneous tracking error metric as q(t):

q(t) = d(Xs(t), Xa(t)) =
√

(xs(t) − xa(t))2 + (ys(t) − ya(t))2 (3)

For the time T spent by a target in the area of interest, the time average
error, which we denote as Q is given as

Q =
1
T

T∫

0

q(t)dt (4)

We note that one drawback of the tracking error metric Q is that it is de-
pendent on the target’s specific trajectory1 Xa(t), t = 0 : T . An alternative
trajectory-independent metric can be obtained by assuming that the target’s
movement is an Ergodic random process, and that its location probability distri-
bution is independent of time. (A random process is ergodic if the time average
of any instantiation of the process converges to the mathematical expectation.)
Then we can use an alternative tracking error metric Q′, the expected distance
between the estimated and actual positions of the target:

Q′ = E[q(t)] = E[
√

(xs(t) − xa(t))2 + (ys(t) − ya(t))2] (5)
1 Note that in our model, once the location of all N nodes in the network is fixed, and

assuming the nodes that are sensing at each time is known, the estimated trajectory
Xs(t) can be determined from the actual trajectory Xa(t).
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Note that this tracking error metric Q′ depends not on a time-dependent tra-
jectory, but rather the probability distribution of the target’s location in the
operational area.

3.3 Energy Metric: Tracking Energy

For a given tracking strategy, let ns denote the number of nodes that are in
tracking/sensing mode and nc = N − ns the number of nodes that are in com-
munication mode. The average energy expenditure for a network of N nodes is
then

P = (nsH + ncL) = P = (nsH + (N − ns)L) (6)

To simplify our analysis, we assume that the cost of communication is com-
parable across the different tracking strategies2. We therefore compare strategies
primarily on the basis of their respective energy expenditure for tracking. To the
first order, one can consider the sensing power expenditure as being a power law
function of the sensing range S of the nodes: H(S) = H0S

α, where α could be
considered the decay exponent for the sensed signal and would depend upon the
sensor modality and deployment factors such as terrain characteristics. Normal-
izing H0 = 1, we get the following energy metric useful for evaluating a tracking
strategy:

Pt = nsH = nsS
α (7)

4 Tracking Strategies

We now describe some general tracking strategies:

– Naive activation (NA): In naive activation, all nodes in the network are
in tracking mode all the time. While clearly this strategy offers the worst
energy efficiency, it is a useful baseline for comparison because it provides
the best possible quality of tracking. For this strategy, we have that

ns,NA = N (8)
Pt,NA = NSα (9)

– Randomized activation (RA): In this strategy, each node is on with a
probability p. On average a fraction p of all the nodes will be on and in
tracking mode. In this case,

ns,RA = pN (10)
Pt,RA = pNSα (11)

2 This is a reasonably valid assumption particularly when one takes into account recent
studies suggesting that reception power for wireless sensor nodes can be comparable
to the transmission power.
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Fig. 1. Tracking Error versus Sensing Range for Naive Activation

– Selective activation based on prediction (SA): In this strategy, only a
small subset of all the nodes are in tracking mode at any given point of time.
They also predict the “next” position of the target and hand over tracking
to nodes best placed to track the target in the “next” position. The rest of
the nodes are in communication mode and can switch to tracking mode on
being alerted by signals from tracking nodes.
Let Xa be the actual position of the target, and Xb = Xs the belief position
of target as before; define Xp as the predicted target position. The idea of
selective activation is to use prior history of Xb to determine Xp for the
next step. (For example, if we discretize time, knowing sensors could use a
simple linear predictor to predict the next location of the target Xp(t + 1),
using the two latest previous belief positions to estimate the target velocity
and assuming that it will continue to move in a straight line). All the sensors
within a circle of radius Sp around Xp(t + 1) are then alerted to start sensing.
Only the sensors within the sensing range S of the actual position Xa(t + 1)
can possibly sense the target. Hence, the sensors lying in the overlap of the
two circles sense the target and the new belief location Xb(t + 1) is obtained
by finding the centroid of the positions of these sensors. This is illustrated
in figure 3. With selective activation based on prediction, only the sensors
within a radius Sp around Xp are in tracking mode at any point of time. If
ρ is the density of deployment, we get

ns,SA = πS2
pρ (12)
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Fig. 2. Tracking Error versus Sensing Range for Random Activation

Pt,SA = πSp
2ρSα (13)

– Duty-cycled Activation (DA): In duty-cycled activation, the entire sen-
sor network periodically turns off and on with a regular duty cycle. One key
feature of duty-cycled activation is that it can actually be used in conjunc-
tion with any other activation strategy for target tracking (including NA,
RA and SA). Let TD be the period of the cycle, tON the on-time, and ns,U be
the average number of tracking sensors in the underlying activation strategy
U. Then

ns,DA =
ns,U tON

TD
(14)

Pt,DA =
Pt,U tON

TD
=

ns,USαtON

TD
(15)

5 Experiments and Results

In the previous two sections we have developed useful common metrics for energy
and tracking quality based on our sensor network model, described the tracking
strategies we will consider, and their energy expenditure model. In order to
compare these strategies, we now turn to simulation experiments.
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Fig. 3. Illustration of Selective Activation (note: Xb = Xs, the believed position)

We simulated a virtual large scale sensor network on a 200 unit x 200 unit area
with random placement of sensors and density of deployment ρ= 1 sensor/unit
area (i.e. a total of 40000 nodes). Linear, sinusoidal and other reasonable trajec-
tories for the target motion were considered. To avoid edge effects in estimating
uncertainty, our calculations are for trajectories in which the target stays away
from the boundaries of the region. In the results presented, the target is assumed
to follow a representative trajectory of the form y(t) = AxB(t)+CsinDx(t)+E.

5.1 Performance of Naive Activation, Random Activation, and
Selective Activation

Since we are using the centroid of the sensors tracking at any point of time
as the sensed position, this estimate can be improved by considering a larger
number of sensors. One way of achieving this is to increase the sensing range
S. Figure 1 shows how tracking error decreases with S for naive activation.
Similarly, figure 2 shows the performance of randomized activation for different
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Fig. 4. Tracking Error versus Sensing Range for Selective Activation

values of p. It can be seen that the tracking quality of network-wide randomized
activation deteriorates significantly as p is decreased. We also observe that while
increasing S does result in a decrease in the tracking error, the decrease is not
very substantial and diminishes with increasing S. This evidence of diminishing
returns on quality leads us to conclude that it is best not to set the sensing range
within the network too high.

Figure 4 compares the performance of selective activation with different set-
tings of Sp. Naive activation is also plotted in the same figure as a baseline.
It can be seen that the tracking error is quite high when Sp = S. In predictive
selective-activation, as the intersection area of the two circles (the circle of radius
S around the actual position and the circle of radius Sp around the belief posi-
tion) becomes larger, sensors closer to the target’s actual position are activated.
This can be achieved by increasing Sp. For the particular trajectory considered,
we find that selective activation with Sp = 1.5S performs nearly as well as a
naive network.

Figure 5 shows the energy-quality tradeoff between the NA, RA and SA
strategies. It is a plot of the tracking error vs log(Pt) for these strategies, with
respect to the energy metric in log scale (as defined in section 3). In this figure,
data points to the bottom left represent dominating, Pareto-optimal strategies,
since they represent low tracking error (hence high tracking quality) as well as
low energy expenditure. It is clear from the figure that selective activation with
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Fig. 5. Energy-Quality Tradeoff for Basic Activation Strategies: NA, RA, SA

reasonably high Sp is a dominating strategy. It provides overall significantly
reduced traffic error for low energy expenditure.

Clearly, selective activation can provide a dominating design in terms of the
energy-quality tradeoffs considered. Figure 5 shows that selective activation with
optimal settings can offer 4 orders of magnitude savings in energy (corresponding
to the size of the network) compared to NA or RA, for essentially the same
tracking quality. Also, the sensing range should be chosen carefully and kept to
a minimum based on the desired quality in order to effect the best tradeoff. For
selective activation, the results suggest using the lowest feasible value of S and
corresponding Sp. In general, the feasible values of S and Sp would depend on
the mobility model of the target. The average speed of the target can provide a
good indicator for determining these parameters. We found that the results do
not vary much with trajectory for comparable values of target speed.

5.2 Performance of Duty-Cycled Activation

Let us now turn to the final strategy: duty-cycled activation. Let us understand
the functioning of this scheme. If we consider a particular time period TD, the
instantaneous tracking error during time tON would be the same as for the
network without duty-cycling (let’s call this qU (t)). However, once the network
is shut down, the tracking error increase with time until the next time period
starts - this is due to the drift between the estimated target location and the
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Fig. 6. Instantaneous Tracking Error versus Time for Selective Activation with Duty
Cycling

actual target movement during the off-time. For the time period TD, if v is the
mean target speed, the tracking error at time t is

q(t) �
{

qU (t) , 0 < t < tON
qU (t) + v(t − tON ) , tON < t < TD

(16)

Hence the average tracking error for duty-cycled activation QDA can be ap-
proximated as

QDA � QU + 0.5v(1 − tON

TD
)2TD (17)

As we noted before, DA can be used in conjunction with other underlying
strategies. Since our previous results have shown that selective activation is a
dominating strategy, we focus on this combination: duty-cycled selective activa-
tion. Figure 6 shows a sample run illustrating how instantaneous tracking error
varies with time for selective activation with duty-cycling. Figure 7 shows (as
suggested by equation (17)) that for the same ratio tON/TD, the average tracking
error Q increases with the period TD. Given an acceptable value for the tracking
error and the mobility model of the target (v), the above approximation can
help us arrive at the feasible values of TD (tON should be kept to the minimum
possible value, which might depend on the time-constants associated with device
start-up and shut-down).
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Fig. 7. Tracking Error versus Cycle Time for Selective Activation with Duty Cycling

Figure 8 shows the tracking error varies with energy usage when choosing
different values of TD and tON . The figure shows that duty-cycled activation
is a flexible and efficient mechanism for tuning the energy-quality tradeoff of
tracking.

6 Conclusions

The following is a summary of the main contributions of this paper:

– We identified four generic sensor activation strategies for target tracking
that can be used to provide different energy-quality tradeoffs: naive activa-
tion, random activation, selective activation with prediction and duty-cycled
activation.

– We developed simple metrics to evaluate the performance of these strategies
with respect to energy usage and tracking quality.

– We examined how tracking performance for the basic strategies (NA, RA,
SA) varies with sensor range, showing that there are diminishing returns in
terms of tracking quality. This suggests that sensor range settings should be
carefully chosen and kept to a minimum with these strategies.

– We showed that with the right parameters selective activation can provide
orders of magnitude improvements in energy usage with near-optimal track-
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Fig. 8. Energy-Quality Tradeoff for Selective Activation with Duty Cycling

ing quality. With respect to random and naive activation, SA is a dominating
strategy with Pareto-optimal points on an energy-quality plot.

– We then examined duty-cycled activation. Our analysis showed that for best
energy performance the ratio tON/TD should be kept as small as possible,
while minimizing TD improves the tracking quality. This allows us to use
tON and TD as tuning knobs to effect a flexible tradeoff between energy and
tracking quality in conjunction with other base strategies such as selective
activation.

Although we have taken a significant step in this direction, as future work, we
would like to extend the mathematical treatment of the energy-quality tradeoffs
involved in tracking. This will require the use of more tractable assumptions
about the target mobility model. We would also like to consider richer sensor
models and energy cost models to validate the generality of our findings.
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