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Abstract— In this paper we present a novel sequence-based RF lo-
calization algorithm called Ecolocation. Our algorithm determines the
location of unknown nodes by examining the ordered sequence of received
signal strength (RSS) measurements taken at multiple reference nodes.
We employ a constraint-based approach that provides for robust location
decoding even in the presence of random RSS fluctuations due to multi-
path fading and shadowing. Through extensive systematic simulations,
and a representative set of real mote experiments, we show that over a
wide range of settings Ecolocation performs better than other state of
the art approaches in terms of localization accuracy and precision.

I. INTRODUCTION

Wireless sensor networks (WSN) are severely constrained for
energy and cost of deployment and operation. The unique selling
point of many WSN systems is that they are inexpensive, autonomous
systems capable of working unattended for many years. This can
be realized to some extent by multi-tasking the components on
sensor motes. Thus, the system radio which is used for inter-mote
communication can also be used for localization.

In this paper we present a novel RF based node localization
algorithm called Ecolocation that examines the ordered sequence of
nearby reference nodes (nodes with known locations) to determine
the location of the unknown node (node with unknown location).
The key idea of Ecolocation is that the distance-based rank order of
reference nodes constitutes a unique signature for different regions
in the localization space.

In Ecolocation, we obtain the ordered sequence of reference nodes
by ranking them on one-way RSS measurements between them and
the unknown node. This measured sequence is then compared with
the ideal distance-based sequence for each location to determine how
many order-constraints are satisfied. The location which maximizes
the number of satisfied constraints is then determined to be the best
estimate of the unknown node’s location.

Ideally, the ranks of the reference nodes based on RSS readings
should be monotonic with their ranks based on true Euclidean
distance. Of course, this is not true in the real world because of the
presence of multi-path fading and shadowing in the RF channel. Ref-
erence nodes farther from the unknown node might measure higher
RSS values than those which are closer and this introduces errors
in the constraints. However, we show that the inherent insensitivity
to absolute RSS amplitudes and the inherent redundancy present in
the set of constraints make this approach to localization very robust
in practice. Because of the close analogy to controlling errors by
redundancy in traditional error control coding, we name our algorithm
the “Error COntrolling LOCAlizaTION technique”, or Ecolocation
for short.

The rest of the paper is organized as follows: Section II describes
Ecolocation in detail and presents some illustrative examples. Sec-
tion III deals with related RF based localization techniques which

we use for comparison with Ecolocation. In section IV we evaluate
Ecolocation and present its comparative study with other localization
techniques. Section V discusses the results of real world systems
implementation and the conclusion and future work are presented in
section VI.

II. ECOLOCATION

In this section we describe Ecolocation and illustrate it for the ideal
and real world scenarios through examples.

The localization process is initiated by the unknown node by
broadcasting a localization packet. The reference nodes collect RSS
measurements of this packet and forward them to a single point1

where the location estimate is computed as follows:

1) Determine the ordered sequence of reference nodes by ranking
them on the collected RSS measurements.

2) For each possible location grid-point in the location space
determine the relative ordering of reference nodes and compare
it with the RSS ordering previously obtained, to determine how
many of the ordering constraints are satisfied.

3) Pick the location that maximizes the number of satisfied
constraints. If there is more than one such location, take their
centroid.

A. Ideal versus Real World Scenarios

Radio frequency (RF) based localization techniques are inherently
dependent on the RF channel whose multi-path fading and shadowing
effects have a fundamental bearing on the accuracy of location
estimate. Nevertheless, it helps to study the localization technique
in isolation of these effects. We introduce Ecolocation for the ideal
scenario of zero multi-path fading and shadowing effects and latter
explain why it provides robust and accurate location estimate even
in the presence of these effects.

1) Ideal Scenario: In the absence of multi-path fading and shad-
owing, RSS measurements between the reference nodes and the
unknown node accurately represent the distances between them. If
the reference nodes are ranked as a sequence in decreasing order of
these RSS values then this order represents the increasing order of
their separation from the unknown node. For a reference node ranked
at position i in the ordered sequence,

Ri > Rj ⇒ di < dj , ∀i < j

where, Ri and di are the RSS measurement and distance of the
ith ranked reference node from the unknown node, respectively.

1This could be either a cluster-head or the unknown node itself, depending
on the application and computational capabilities of nodes.



The above relationship between two reference nodes is a constraint
on the location of the unknown node and is dependent on it. An
ith ranked reference node forms (i − 1) constraints with lesser
ranked ones and for a total of α reference nodes there are (α(α−1)

2
)

constraints on the unknown node.
For fixed reference node locations, the sequence order and the

constraints are completely determined by the unknown node location.
Figure 1 illustrates this idea for a simple case of five reference nodes
and one unknown node.
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Fig. 1. The order of reference nodes (B, C, D, E, F ) depends on the location
of the unknown node (A).

Table I shows the constraints on the unknown node for the example
in 1(a).

B:1 C:2 D:3 E:4 F:5
R1 R2 < R1 R3 < R1 R4 < R1 R5 < R1

R3 < R2 R4 < R2 R5 < R2

R4 < R3 R5 < R3

R5 < R4

TABLE I
CONSTRAINTS ON THE UNKNOWN NODE FOR THE EXAMPLE IN

FIGURE 1(A).

Each location grid-point2 in the location space has its own set of
constraints based on its Euclidean distances to the reference nodes.
The unknown node location estimate can be obtained by comparing
the constraints obtained from RSS measurements to the constraint sets
of each location grid-point and picking the location which satisfies
the maximum number of constraints. If there are more than one such
locations then their centroid is the location estimate.

2) Real World Scenario: In contrast to the ideal scenario, the
real world is characterized by the presence of multi-path fading
and shadowing in the RF channel. Ideally, reference nodes that are
far from the unknown node should measure lower RSS values than
reference nodes that are nearer, but due to multi-path effects this is
not true in the real world.

Figure 2 shows the experimental RSS measurements at five MICA
2 receivers placed at different distances from a MICA 2 transmitter. It
shows that the receiver at 5.69 meters measured a higher RSS value
than the receiver at 5.37 meters. Evidently, RSS measurements do
not represent distances accurately in the real world.

Therefore, if the reference nodes are ranked on their respective
RSS measurements, the constraints on the unknown node location

2Location space scanning can be made more efficient by using greedy
search/multiresolution algorithms instead of exhaustively looking at all lo-
cations, but we do not discuss this optimization in this paper as it doesn’t
affect localization performance.
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Fig. 2. Real world experimental results: Reference nodes far from the
unknown node may measure higher RSS values than closer reference nodes.
Note that y-axis is reverse ordered.

formed by these ranks will be erroneous. For example, if the ranks
of fourth and fifth ranked reference nodes are interchanged due to
multi-path effects in the RF channel, as in the experiment of figure 2,
for the example in figure 1(a), then the new constraints are as shown
in table II. As it can be seen, 10% of the constraints are erroneous
in this case.

B:1 C:2 D:3 E:5 F:4
R1 R2 < R1 R3 < R1 R5 < R1 R4 < R1

R3 < R2 R5 < R2 R4 < R2

R5 < R3 R4 < R3

R4 < R5

TABLE II
CONSTRAINTS FOR THE EXAMPLE OF TABLE I WHEN THE RANKS OF

FOURTH AND FIFTH RANKED REFERENCE NODES ARE INTERCHANGED

DUE OF MULTI-PATH EFFECTS.

The percentage of erroneous constraints depends on the RF channel
condition, the topology of the reference nodes and the number of
reference nodes. The unknown node location estimate accuracy in
turn depends on the percentage of erroneous constraints. This is
illustrated through a few examples.

Figure 3 shows a sample layout of nine reference nodes placed
in a grid and a single unknown node. Figure 3(a) plots the location
estimate for the ideal case when there are no erroneous constraints
on the unknown node. Figures 3(b), 3(c) and 3(d) show the location
estimates for varying percentages of erroneous constraints. It is evi-
dent that location estimate error increases with increasing percentage
of erroneous constraints.

These examples suggest that Ecolocation is robust to multi-path
effects of the RF channel up to some level. The inherent redundancy
in the constraint set ensures that the non-erroneous constraints help in
estimating the unknown node location accurately. Also, the constraint
construction inherently holds true for random variations in RSS
measurements up to a tolerance level of (|Ri −Rj |).

For ease of implementation, the constraint set is represented by a
constraint matrix Mα×α, where

Mα×α(i, j) =
1 if Ri < Rj

0 if Ri = Rj

−1 if Ri > Rj
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Fig. 3. Ecolocation location estimate (E) for the unknown node (P) at (1, 3) for a grid layout of 9 reference nodes (A). The reference nodes are numbered
according to their rank in the ordered sequence. (a) Sequence: 123456789 (no erroneous constraints) [Estimate: (0.5, 3)] (b) Sequence: 123745968 (13.9%
erroneous constraints) [Estimate: (0.5, 3)] (c) Sequence: 124739586 (22.2% erroneous constraints) [Estimate: (0.5, 1.5)] (d) Sequence: 913276584 (47.2%
erroneous constraints) [Estimate: (5, 7)].

It is easy to see that Mα×α is a symmetric matrix and each element
of the matrix represents a constraint in the constraint set. The pseudo
code for the Ecolocation algorithm is presented below.

ECOLOCATION Input: The number of reference nodes within
the range of the unknown node (α), their locations (pix, piy)(i =
1 . . . α), the RSS values of RF signals from the unknown node at
each one of them Ri(i = 1 . . . α), the localization area size (λ × λ
sq. length units), and the area scanning resolution (γ). Output: The
location estimate of the unknown node. The reference nodes are
sorted into an ordered sequence based on R′

is and a constraint matrix
Mα×α is derived from this sequence.

� Calculate the number of matched constraints at each grid point
(i, j) and identify the maximum number of constraints matched
over all the grid points.
0 maxConstrMatch← 0;
1 for each grid point (i, j) in the localization area
2 for each reference node k(→ 1 . . . α)

3 dij
k ← ((pkx − i)2 + (pky − j)2)

1
2 ;

4 generate constraint matrix Cij
α×α based on dij .

5 for each element (m, n)(n > m) in Cij
α×α

6 if Cij
α×α(m, n) = Mα×α(m, n)

7 constrMatchij ← constrMatchij + 1;
8 else
9 constrMatchij ← constrMatchij − 1;
10 if constrMatchij > maxConstrMatch
11 maxConstrMatch← constrMatchij ;
� Search for grid points where the maximum number of constraints
are matched and return the centroid of those grid points as the
location estimate.
12 (x, y)← (0, 0);
13 count← 0;
14 for each grid point (i, j)
15 if constrMatchij = maxConstrMatch
16 (x, y)← (x + i, y + j);
17 count← count + 1;
18 return ( x

count
, y

count
) �Location Estimate.

Complexity Analysis: We should say first of all that this imple-
mentation of Ecolocation is meant only to be functional, it is not
at all optimized for space or time complexity. Still, the following
analysis provides an upper bound on the computational costs for
implementing this technique. The initial sorting of reference nodes

based on R′
is costs Θ(α log(α)) time and O(α) space respectively.

The corresponding constraint matrix generation costs O(α2) time
and O(α2) space respectively. Calculating the number of constraints
matched at each grid point and identifying the maximum number of
constraints matched over all grid points (lines 1-11) costs O(λ2α2

γ2 )

time and O(λ2

γ2 + α2) space respectively. Searching for grid points
where maximum number of constraints are matched (lines 12 -
17) costs O(λ2

γ2 ) time and O(1) extra space. Finally calculating
the centroid of those grid points (line 18) costs O(1) time and
space. In total, the time and space complexities of Ecolocation are at
most O(λ2α2

γ2 ) and O(λ2

γ2 + α2) respectively3. Prior to presenting a
complete performance evaluation of Ecolocation, we discuss related
localization techniques proposed by others.

III. RELATED WORK

Over the past few years many solutions have been proposed for
RF-only localization in wireless ad-hoc and sensor networks which
can be broadly classified into two main categories – range based and
range free. Range based techniques estimate distances (range) from
RSS measurements between the unknown node and the reference
nodes and use them to triangulate the location of the unknown node
[4], [7], [8], [9], [10], [11], [13], [14], [15], [16]. On the other hand
range free techniques estimate the location of the unknown node
without determining the range [5], [18].

To compare with Ecolocation, we selected four localization tech-
niques – proximity localization, centroid [18], approximate point in
triangle [5] and maximum likelihood estimation [8] – based on the
criterion that they should use RSS of RF signals to calculate the
location estimate over a single hop.

Proximity localization: It is a simple localization scheme in which the
location of the closest reference node, based on RSS measurements,
is the unknown node location estimate. It can be considered as an
extreme special case of Ecolocation where only the first ranking
reference node is considered.

Centroid : In [18] the authors propose a range free, proximity based
solution for localization where the location estimate is the centroid
of all the reference nodes which are in the proximity of the unknown
node. In [17] the authors suggest an enhancement to this technique
by adaptively placing reference nodes to minimize location error. We

3We believe the complexities can be significantly reduced by using greedy
descent or more efficient scanning versions of the algorithm; this is the subject
of ongoing work.



do not consider this enhancement as this requires extra information
gathering and processing.

Approximate point in triangle: T. He et al in [5] propose a range free
localization technique called approximate point in triangle (APIT) in
which the RSS value at the unknown node is compared with RSS
values at its neighbors and based on this comparison a decision is
made whether the unknown node location is inside various triangles
formed by the reference nodes. This comparison test is done for all
the locations in the location space and for all the triangles that can be
formed by the reference nodes. The location estimate is the centroid
of the locations which are in a maximum number of triangles. The
accuracy of the location estimate also depends on the non reference
node neighbor density of the unknown node.

Maximum Likelihood Estimation: Out of the many maximum likeli-
hood location estimation (MLE) techniques proposed, [4], [14], [8]
etc., we consider a simple, representative MLE technique proposed
in [8]. In this, the authors calculate the location which maximizes
a likelihood function, which is based on the distance estimate and
its standard deviation, using the gradient climbing method. All RF
based MLE methods need good ranging techniques that use radio
frequencies to estimate distances. This either requires expensive
ranging equipment and/or time consuming pre-configuration surveys
of the location space.

The readers should refer to [1] for a detailed description, including
the pseudo code and scalability analysis, for the above four localiza-
tion techniques.

In [3] the authors present a comparative study of many RSS based
localization techniques using commodity 802.11 cards. According to
the authors none of the localization techniques have a significant
advantage over others over a range of environments. We conjecture
that this could be an artifact of fixing the number of nodes and
the node density. Our work differs from this in evaluating the
performance of five different RSS based localization techniques over
different node deployments in different RF channel conditions.

IV. EVALUATION

In this section we present a complete performance evaluation of
Ecolocation using simulations.

A. Simulation Model

The most widely used simulation model to generate RSS samples
as a function of distance in RF channels is the log-normal shadowing
model [19]:

RSS(d) = PT − PL(d0)− 10η log10

d

d0
+ Xσ (1)

where, PT is the transmit power and PL(d0) is path loss for a
reference distance of d0. η is the path loss exponent and the random
variation in RSS is expressed as a gaussian random variable of zero
mean and σ2 variance, Xσ = N(0, σ2). All powers are in dBm
and all distances are in meters. In this model we do not provision
separately for any obstructions like walls. If obstructions are to be
considered an extra constant needs to be subtracted from equation
(1) to account for the attenuation in them (the constant depends on
the type and number of obstructions).

B. Simulation Parameters

The location estimate of any RF-based localization technique
depends on a fundamental set of parameters which can be broadly
categorized into RF channel characteristics and node deployment
parameters.

• RF Channel Characteristics: [20], [19]

– Path loss exponent (η): Measures the power attenuation of
RF signals relative to distance.

– Standard deviation (σ): Measures the standard deviation in
RSS measurements due to log-normal shadowing.

The values of η and σ change with the frequency of operation
and the clutter and disturbance in the environment.

• Node Deployment Parameters:

– Number of reference nodes (α) and unknown nodes (ρ).
– Density of reference nodes (β) and unknown nodes. Node

density is defined as the number of nodes per square meter.
– Location space size: A square area of (λ×λ) sq. meters is

considered.
– Resolution or granularity (γ): The unit distance between

two grid points in the location space.
– Node distribution in the location space: Random, grid

topology or grid-random topology.

The effect of each of the above parameters on any localization
technique depends on the actual technique itself. For example, some
localization techniques depend more on the number of reference
nodes than resolution, while for some other techniques reference node
density may be more important than the number of reference nodes.

Table III lists the typical values and ranges for different param-
eters used in our simulations. Each simulation scenario consists of
randomly placing α reference nodes and one unknown node in a
square of (λ× λ) square meters and generating RSS values between
them using equation 1. A 48 bit arithmetic, linear congruential pseudo
random number generator was used and results were averaged over
100 random trials using 10 different random seeds.

Parameter Typical Value Typical Range

PT 4dBm (max.) NA
PL(d0) 55dB (d0 = 1m) [2] NA

η 4 (indoors) 1 – 7 [20]
4 (outdoors)

σ 7 (indoors) 2 – 14 [20]
5 (outdoors)

α 25 3 – 25
λ 15 {50, 25, 15, 5}

β(= α
λ2 ) 0.11 {0.01, 0.04, 0.11, 1}

(1 ref. node in
9 sq.meters)

γ 0.1 NA
ρ (for APIT) 8 NA

Node Random (Grid, Random,
Placement Grid-random)

TABLE III
TYPICAL VALUES AND RANGES FOR DIFFERENT SIMULATION

PARAMETERS

C. Simulation Results

The performance of Ecolocation is measured on two metrics - (i)
location error and (ii) location precision - for a wide range of RF
channel conditions and node deployment parameters. A comparative
study of Ecolocation with the four localization techniques described
in section III is also presented.

Location error is defined as the Euclidean distance between the
location estimate and the actual location of the unknown node and
location precision is defined as the standard deviation in the location
error. Location precision is a measure of the robustness of the
localization technique as it reveals the variation in its performance
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Fig. 4. Comparison: (a) Average location error as a function of path loss exponent (σ = 7, α = 25, β = 0.11, γ = 0.1) (b) Average location error as a
function of standard deviation (η = 4, α = 25, β = 0.11, γ = 0.1) (c) Average location error as a function of number of reference nodes (η = 4, σ = 7,
β = 0.11, γ = 0.1) (d) Average location error as a function of reference node density (η = 4, σ = 7, α = 25, γ = 0.1).
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Fig. 5. Comparison: (a) Average location precision as a function of path loss exponent (σ = 7, α = 25, β = 0.11, γ = 0.1) (b) Average location precision
as a function of reference node density (η = 4, σ = 7, α = 25, γ = 0.1).

over many trials. The two metrics are averaged over 100 random
trials and presented as a percentage of the average inter reference
node distance (Da). The distance Da is calculated as the average of
the distances between all possible reference node pairs. (Da ≈ λ

2
).

Figures 4(a) and 4(b) show the average location error for Ecolo-
cation and the four localization techniques as a function of path loss
exponent (η) and standard deviation of log-normal shadowing (σ)
respectively. The results suggest that Ecolocation performs better for

RF channels that have higher η and lower σ values.
Among all five localization techniques Ecolocation provides the

least location error over a range of η and σ values. MLE performs
equally well for some values. APIT is the least accurate and Centroid
is not influenced by radio channel conditions because all reference
nodes fall in the radio range of the unknown node.

Figures 4(c) and 4(d) compare the average location error for all five
localization techniques as a function of the number of reference nodes



(α) and the reference node densities (β) respectively. As the results
show, Ecolocation performance improves with increasing reference
nodes numbers and density. It should be noted that the average inter
reference node distance (Da) changes with reference node density.
Although, figure 4(d) shows that the error due to Ecolocation is
constant over all densities, it is constant as a percentage of Da

implying that the absolute location error increases with reducing
density of reference nodes.

Ecolocation provides the most accurate location estimate compared
to other techniques over a range of reference node numbers and
their densities. Proximity localization performs surprisingly well
compared to APIT and Centroid. As expected, the performance of
Ecolocation, MLE and Proximity localization improves with number
of reference nodes, whereas, it degrades for Centroid and APIT. The
results showed that the average location error due to APIT does not
decrease with increasing number of reference nodes as suggested in
the original paper [5]. We believe this is because the results presented
in [5] are based on a simpler model where RSS values decrease
monotonically with distance.

Figures 5(a) and 5(b) compare the average location precision for
Ecolocation and the four localization techniques as a function of path
loss exponent (η) and reference node density (β) respectively. These
figures show that Ecolocation is more robust than other localization
techniques over a range of RF channel characteristics and node
deployment parameters.

Figure 6 plots the average location error due to Ecolocation for
different reference node distributions and it shows that grid placement
of reference nodes provides the best location estimates and random
placement provides the worst. This is expected because, reference
nodes are spread more widely in grid placement than in random
placement resulting in a more robust constraint set.
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Simulation results suggest that Ecolocation and MLE perform
equally well for some radio channel and node deployment parameters
even though they follow entirely different approaches. But in the
real world, MLE may not perform so well as it needs good η and
σ estimates for the deployment environment and it is very difficult
to obtain accurate estimates for these parameters in the presence of
obstructions like walls and furniture.

V. SYSTEMS IMPLEMENTATION AND EVALUATION

The performance of Ecolocation in real systems is studied through
two experiments, representing different RF channel and node de-
ployment parameters, conducted using MICA 2 motes. The first
experiment was conducted in a parking lot which represents a
relatively obstruction free RF channel and the second experiment
was conducted in an office building with many rooms and furniture
that represents a typical indoor environment.

The locations of the unknown nodes were estimated using three
different localization techniques - Ecolocation, MLE and Proximity.
APIT and Centroid methods were not considered as the simulation
studies showed that their performance is significantly worse than the
three chosen localization techniques.

A. Experiment I: Parking lot

The RF channel in an outdoor parking lot represents a class of
relatively obstruction free channels. Eleven MICA 2 motes were
placed randomly on the ground as shown in figure 7. All motes were
in line of sight of each other and all of them were programmed to
broadcast twenty packets without interfering with each other. The
motes recorded the RSS values of the received packets and stored
them in their EEPROMs. The averages of these RSS values were
calculated off-line and used for location estimation.

The locations of all the motes were estimated and compared with
their true locations. Since all motes were in radio range of each
other each mote had ten reference nodes. For the MLE method, to
estimate the distances between the motes, the RSS model described
by equation 1 in section IV was used as there were no obstructions
between motes in this experiment. The performance of the MLE
technique heavily depends on accurate η and σ estimates for the
area in which the experiment was conducted. For this experiment we
used values estimated for an identical setup, from the literature, as
listed in table III.

Figure 7 compares the true mote locations with Ecolocation
location estimates for all the motes. Figure 8 plots the error at each
mote location as a percentage of the average inter-reference nodes
distance (Da), due to all the three techniques. Evidently, Ecolocation
performs better than MLE and Proximity in most of the cases.
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Fig. 7. Outdoor experiment: Comparison between true locations and
Ecolocation location estimates. 11 MICA 2 motes, placed randomly in a 144
sq.meters area, were used as reference nodes as well as unknown nodes.
Consequently, each unknown node had 10 reference nodes.
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Fig. 8. Location error due to Ecolocation, MLE and Proximity for the outdoor
experiment.

B. Experiment II: Office building

Office buildings with features such as rooms, corridors, furniture
and other obstructions represent a distinct class of RF channels.
Twelve MICA 2 motes (reference nodes) were placed on the ground
randomly in a corner of the Electrical Engineering building at USC
spanning different rooms and corridors. Figure 9 shows a schematic
of the experimental setup. In this experiment, an unknown node was
placed at five different locations and these locations were estimated
using all the twelve motes as reference nodes. As in the outdoor
experiment, the unknown node was programmed to broadcast twenty
packets from each location and the reference nodes recorded the RSS
values of these packets in their respective EEPROMs. The average
of these RSS readings was used off-line for location estimation.

Unlike in the outdoor experiment not all motes were in line of sight
of each other even though they were in each other’s radio range. A
subset of the motes had obstructions in between them in the form
of office walls. Therefore, for the MLE method of localization, the
RSS model of equation 1 in section IV was modified to incorporate
the power attenuation due to these obstructions. According to [19],
dry office walls attenuate RF power by about 4dB. This value was
multiplied by the number of walls between the unknown node and
reference nodes and added to the received signal strength at the
reference nodes in order to compensate for the power loss. It should
be noted that in real world scenarios it is very difficult to estimate
the number of obstructions between two wireless devices. As in the
outdoor experiment, the values of η and σ were obtained from the
literature as listed in table III.

Figure 9 compares the Ecolocation location estimates of the five
unknown node locations with their true locations. It can be seen that
the path of the location estimates closely follows the true path of
the unknown node. Figure 10 plots the location estimate error due to
Ecolocation, MLE and Proximity techniques for each unknown node
location. It can be observed that the error due to Ecolocation is lower
than the errors due to MLE and proximity in three out of five cases.

C. Discussion

Experimental results show that localization techniques are more
accurate for relatively clutter free RF channel environments (outdoors
with line of sight) than RF channels with many obstructions (indoor
environment). Also, the performance of MLE in real world scenarios
is worse than in simulations, as was suggested in section IV. This
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estimated path. 12 MICA 2 motes, placed randomly in a 120 sq.meters
area, were used as reference nodes. The location of the unknown node was
estimated for 5 different locations using the 12 reference nodes.
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Fig. 10. Location error due to Ecolocation, MLE and Proximity for the
indoor experiment.

is mainly because the radio propagation model of equation 1 is
an approximate model and the location estimate accuracy for the
MLE technique depends heavily on the accuracy of η and σ values.
The RSS measurements in the experiments depend on antenna ori-
entations, antenna height and transmitter/receiver non-determinism.
For simulations, these issues can be captured within the log-normal
random term in equation 1 of section IV.

Simulation results in section IV show that the performance of
Ecolocation is better than that of Proximity by about 10% on an
average. But from figures 8 and 10 it is clear that for individual
cases the performance of Ecolocation could be much better than that
of Proximity.

From figures 8 and 10 it is clear that a single localization technique
may not provide the best accuracy for all unknown node locations
even though for a majority of the cases Ecolocation performs bet-
ter than other techniques. This suggests that a hybrid localization
technique which switches between different localization techniques,
depending on the RF channel characteristics and node deployment
parameters, may provide better accuracy than any single localization
technique.



VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel RF based localization technique
called Ecolocation which makes use of the inherent redundancy
present in the ordering of reference nodes with respect to the unknown
node to provide good location accuracy. The comparative study of
Ecolocation with four other RF based localization techniques, through
simulations and real world systems implementation, shows that
Ecolocation performs better than other localization techniques over a
range of RF channel conditions and node deployment strategies.

In the future we would like to explore area scanning algorithms
such as greedy search and multi-resolution search for making Ecolo-
cation more efficient. All localization techniques extract costs from
the system over which they operate. We plan to study the effect of
Ecolocation as well as other localization techniques over a variety of
realistic system designs and protocols. We would also like to explore
the different quantities which can be used for switching purposes in
a hybrid localization technique.
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