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Abstract—The design of a cortical neuron with carbon nan-
otube circuit elements that performs nonlinear dendritic compu-
tations with excitatory and inhibitory post-synaptic potentials is
presented. The inhibitory synapse with controllable parameters
that implement plasticity is described in detail. The circuit design
was simulated using carbon nanotube spice models. Simulations
show that the neuron fires as long as the inhibitory post-synaptic
potential is weak or absent. Strong inhibitory post-synaptic
potentials prevent the neuron from firing.

I. INTRODUCTION

The cortex is a complex system, and each cortical neuron
is itself complex. The scale of the cortex is immense, with
an estimated 100 billion neurons interconnected by trillions
of synapses. In addition, each neuron performs nonlinear,
location-specific dendritic computations on the potentials gen-
erated at each synapse. Much of the complexity of the neural
behavior is due to the computations involving the post-synaptic
potentials (PSPs) arising from the stimulation of excitatory and
inhibitory synapses [1]. These potentials combine on the den-
dritic arbor in complex ways. Dendritic computations include
linear, sublinear and superlinear additions and subtractions
of postsynaptic potentials depending on the relative locations
and nature of the synapses, affecting the probability and the
frequency of neural firing.

The complexity of these neural computations presents en-
gineering challenges to the construction of a future synthetic
cortex. Of course, a future intelligent synthetic cortex built
with neuronal circuits that captured every detail of a biolog-
ical neuron’s physiology would be impractical. Nevertheless,
certain aspects of synaptic and dendritic behavior contribute
in an important way to learning via short and long-term
mechanisms. Capturing those aspects might make it possible
to construct a future intelligent synthetic cortex.

A nanotechnological solution could allow the construction
of a synthetic cortex containing trillions of synapses. Carbon
nanotubes that can behave as metallic wires as well as FETs
are a promising technological option. Carbon nanotubes may
support the scale of a synthetic cortex, being extremely small
(a few nm. in diameter). Current flow is largely ballistic (com-
parable to the flow of electrons in free space), capacitances are
in attofarads, and rise and fall times in picoseconds. Channel
resistance is primarily due to the quantum resistance at the
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junction between the nanotubes and metallic connections, re-
lated to the differences in electron energy levels. This creates a
challenge for biomimetic neural circuit design since resistance
cannot be adjusted easily. Current flow between drain and
source is typically increased by using parallel nanotubes,
although small adjustments can be made by varying nanotube
length. Appropriate interfaces could be used to convert to/from
biological signal levels and delays. Finally, nanotubes have
been shown to induce minimum immune system reactions
in living tissue, making carbon nanotube prosthetic devices
desirable [2].

A central goal of the BioRC project is to construct neural
circuits that are biomimetic, that capture variations in neural
behavior as a result of learning, and that could lead to a
synthetic cortex in the future. We design CMOS circuits to
be fabricated, as well as circuits using nanotechnologies like
carbon nanotubes for which SPICE models exist, and for
which transistor behavior and the operation of simple circuits
has been previously demonstrated.

This paper presents The BioRC project’s archtypical car-
bon nanotube neuron design with inhibitory and excitatory
dendritic computations. We use carbon nanotubes as circuit
elements, and demonstrate the operation of this neuron with
SPICE simulations. Carbon nanotube excitatory synapse cir-
cuits and their effects on dendritic computations have been
a subject of previous publications [3], [4]. The focus of this
paper is on the inhibitory synapse and its effect on neural
firing, along with the dendritic computations that can be
implemented in our neuron. The inhibitory synapse circuit
described here mimics the modulation of neurotransmitter
quantity and reuptake rate, while exhibiting the variations in
hyperpolarizing potential that occur. Shunting inhibition has
been implemented as a simplification of the hyperpolarizing
inhibition shown here, and will be described in a later publi-
cation.

II. BACKGROUND

The most notable research in neuromorphic engineering
includes Meads artificial retina [5]. This significant work
originated with Mahowald and Mead [6], followed by Boahen
[7], Zaghloul and Boahen [8] and more recently Farquhar and
Hasler [9]. Hynna and Boahen report on a circuit that generates
a calcium spike with attention paid to exact replication of
waveforms, and describe incorporation of the calcium spike
circuit in an entire neuron circuit [10]. Some mixed-signal
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Fig. 1. A system block diagram of the cortical neuron model with a pyramidal
neuron cartoon

electronic models close to biological neurons include Liu and
Frenzel’s spike train neuron, with a 10-transistor mixed-signal
synapse [11], and Pans bipolar neuron [12]. An 8-transistor
excitatory CMOS synapse [13] is close in scale and nature
to our synapses, although they plan to use the synapse for
summation of inputs from many pre-synaptic sites.

Electronic inhibitory synapse circuits have been traditionally
modeled in combination with excitatory synapses, and have
primarily been shunting synapses. Elias was one of the first
researchers to propose electronic models for dendritic com-
putations resulting from the interactions between excitatory
and inhibitory synapses [14]. Grattarolla et al. simulate a
neuron with inhibitory synapses constructed using integrators
and comparators [15]. An electronic neuron design with both
inhibition and excitation models a bursting oscillator with a de-
pressed synapse constructed of a current mirror and amplifier,
with the circuit modulating the output current of the synapse,
and the lowest potential being ground [16]. Although they
describe an inhibitory synapse it is not clear if that synapse
exhibits plasticity. Lee models a central pattern generator
that employs an inhibitory synapse [17]. This synapse uses
operational amplifiers and multipliers to emulate predefined
equations and is extensive in terms of transistors used. Shi and
Horiuchi model both shunting and hyperpolarizing inhibitory
synapses [18].

III. THE CARBON NANOTUBE NEURON CIRCUIT

Our basic model for a cortical neuron, shown in Figure 1,
consists of three types of sub-modules: the excitatory ( [3], [4])
and inhibitory synapses, the dendritic arbor [4] and the axon
hillock. Circuit models for the dendrites and axon themselves
are not shown in this basic model.
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Fig. 2. Biological inhibitory postsynaptic potentials

A. The Inhibitory Synapse Circuit

The biological inhibitory synapse itself has a complex struc-
ture [19] [20]. Inhibitory synapses can be shunting, effectively
vetoing depolarization caused by excitatory postsynaptic po-
tentials, or hyperpolarizing, subtracting potential from the den-
drite. The modulation of quantity of neurotransmitters released
at the presynaptic terminal affects the actions of the receptors
on the postsynaptic side that control ligand-gated ion channels,
resulting in a variation in hyperpolarizing potentials across the
cell membrane. The rate that neurotransmitters are reuptaken
into the presynaptic terminal also affects synaptic behavior by
delaying the fall in postsynaptic potential. Example biological
IPSP measurements are shown in Figure 2 [20].

The work presented here is based on the biomimetic behav-
ior of a hyperpolarizing inhibitory synapse circuit designed to
be compact, with correspondence between biological mech-
anisms and circuit structures. This synapse circuit evolved
from an earlier excitatory synapse [4]. Synapse behavior is
controlled by voltages on the gates of the transistors, acting
as control knobs. The neurotransmitter concentration and the
spread of the IPSP (delay of return to resting potential)
can be varied by controlling the neurotransmitter release and
reuptake rates. The synapse also exhibits temporal summa-
tion of the IPSPs when action potentials impinge on the
synapse at close intervals. This circuit models cell potentials
and neurotransmitter concentrations with voltages, along with
the correspondence between circuit elements and biological
mechanisms.

Figure 3 presents the inhibitory synapse circuit that displays
plasticity. The design is segmented into parts that facilitate
biomimetic behavior corresponding to biological mechanisms.
The action potential impinges on two sections of the synapse
as shown, namely the neurotransmitter section and a delay
mechanism (delay I) that delays the reuptake of neurotrans-
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Fig. 3. The Carbon Nanotube Inhibitory Synapse

mitters. The pull up transistor in the Neurotransmitter sec-
tion controls the actual neurotransmitter concentration in the
synaptic cleft, modeled by the voltage at the synaptic cleft
node, whereas the pull down transistor models the reuptake
mechanism that controls the drop in neurotransmitter concen-
tration in the cleft. The chronological occurrence of reuptake is
controlled by the rise time of the delay circuit, by varying the
length of its PMOS transistor to indirectly control the falling
RC time constant of the neurotransmitter concentration. The
neurotransmitter release cause one or more ion channels to
open; hyperpolarization is modeled by the pull down transistor
in the ion channel section tied to negative potential (Vss).
The ion flow responsible for the rise of the IPSP to the
resting potential is modeled by the pull up to ground in the
same section. The time delay between the negative peak of
the IPSP and its rise up to ground potential is modeled by
a second delay circuit (delay 2) that is tunable to vary the
synapse properties. Variation in neurotransmitter concentration
in the synaptic cleft causes a change in the IPSP negative peak
amplitude thus directly altering the synapse strength [20]. Also
the reuptake mechanism R and spread input control the spread
of the IPSP, which modulates the temporal summation of the
synapse output when action potentials impinge on the synapse
or multiple synapses are stimulated at close intervals. The
voltage across the gate labeled neurotransmitter_conc controls
the current that models the neurotransmitter release while the
voltage across the gate R controls the reuptake. Varying these
two voltages controls the IPSP amplitude and the spread of
the IPSP respectively.

B. The Dendritic Arbor

The adder circuit [21] is shown in an earlier publication
[4]. A block diagram of the dendritic arbor portion is shown
in Figure 4.

There are four synapses (three excitatory and one inhibitory)
in the arbor, each on a separate dendritic branch. Our axon
hillock circuit is shown in Figure 5. In a biological neuron, the
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Fig. 5. Circuit diagram of the axon hillock module

axon hillock has the highest density of sodium channels, re-
sulting in the lowest threshold (-55mV compared to elsewhere
in the neuron) to initiate an action potential. If the summation
of post-synaptic potentials (PSPs) reaches a threshold value,
the axon hillock circuit will generate a spike. This circuit
behaves in a similar fashion to a self-resetting CMOS circuit,
receiving a rising edge and producing a pulse whose width is
controlled by the gate delay of the inverter shown in Figure 5.
To mimic a fast rising phase (due to the rapid increase of the
sodium channel conductance) and a slower falling phase (due
to the slower increase of the potassium channels conductances)
of an action potential, we adjusted the pull-up and pull-down
strength of transistors X8 and X7. All the other transistors
were tuned to model the time courses (time constants) in the
dynamic mechanisms of the voltage gated ion channels.

In our archetypical biological neuron, potentials range from
around -75mV to +40mV with action potentials peaking
around +40mV. Since the carbon nanotube neuron is designed
to operate with Vdd around 0.9V as the peak action potential
voltage, and with 0.0V (Ground) as the resting potential, the
post-synaptic potentials were scaled accordingly, with 0.0V
circuit potential corresponding to -75mV biological potential
and 0.9V circuit potential corresponding to 40mV biological
potential. Likewise, we scaled the delays with about 1 ms in
the biological neuron scaling to about 10 ps in the nanotube
neuron [22]. The postsynaptic potential appearing at the den-
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Fig. 6. Firing of the neuron with inhibitory synapse inactive

dritic trunk is approximately 14% of the action potential and
the duration is about 6 times as long as the action potential,
similar to EPSPs described in the literature. It should be noted
that the massive fanin and fanout of cortical neurons are
sufficient to significantly slow operation of artificial cortical
neurons in practice.

IV. EXPERIMENTS WITH THE CORTICAL NEURON

We performed several experiments. The neuron was tested
with action potentials input to each synapse, and the output of
the neuron measured. The input action potential (the red trace)
is applied to each synapse module and the generated action
potential (the blue trace) is captured at the axon-hillock node.
First we tested the neuron with an inactive inhibitory synapse
(Figure 6). Second, we show that when the inhibitory synapse
is strengthened, it prevents the neuron from firing since the
summation of PSPs is below the threshold to initiate a spike
at the axon hillock (Figure 7). Third, again shown in Figure 7,
we repeated the previous experiment with the strength of the
Inhibitory synapse set to a low value using the neurotransmitter
concentration knob, showing the neuron firing in spite of the
small IPSP generated.

Many other experiments have been performed with varia-
tions in neurotransmitter concentration, receptor variations and
non-linear dendritic computations. These experiments demon-
strate the behavior of our excitatory and inhibitory synapses,
and are a subject of future work.
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