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le‘“lﬂ IGB Challenges for a Synthetic Cortex

«  Complexity:
® Synaptic mechanisms - excitatory and inhibitory synapses
® Dendritic computations and dendritic spikes
« Scale:
®* 100 x 10° neurons
* 104 to 10° synapses/neuron
® ~100 transistors/synapse including dendritic computations
® CMOS neurons for a cortex, absent interconnection area, could
occupy an entire room, even in 2021
«  Connectivity:
®* Fan-in/neuron 10% to 10°distinct connections
®* Fan-out 104
® Address space 37 bits (assuming synaptic inputs are distinct)
« Plasticity:
®* New neural connections form within hours
®* Presynaptic depression/facilitation occur
® Postsynaptic depression and potentiation occur
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Bi““ﬂ_\ Meeting the Challenges e TlEERsTs
) for a Synthetic Cortex

«  Complexity:
- Exploit the analog computational power of
transistor circuits

« Scale:

« Consider nanotechnological solutions - nanotubes,
nanowires, graphene, quantum dots

We are very far from a synthetic human
cortex, but it may be possible in the
coming decades
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Bli‘“l“l 1@' Results to Date School of Engineering

« Carbon nanotube fabrication (Chongwu Zhou)
¢ Aligned nanotubes, logic gates
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Biomimetic
Neural
Circuits

Figure from Principles of Neural Science [2] p.22
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The whole neuron can be divided into these sub-circuits:
® Synapse
» Excitatory/Inhibitory synapse circuit (Action Potential as inputs and EPSP/IPSP as
outputs)
® Dendritic Tree
* A pool of voltage adders (which can add two input stimuli in both linear or non-linear
ways)
® Axon Hillock
« Amplifier (in order to reach the threshold of carbon nanotube FET)
e Spike-initiator (Action Potentials are all-or-none)
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A Carbon Nanotube Synapse
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Bm“lnl lc", 3-D Carbon Nanotube Synapse
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B!L“JB 1@' Carbon Nanotube Synapse Waveforms School of Engineering
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Dendritic Computations

Linear or Non-linear summation

Mel, Schiller et al. compared the measured and arithmetic results of EPSP
summation at soma of layer-5 pyramidal neuron with respect to within-branch and

between-branch stimulations Within-branch Between-branch
It appears that between-branch EPSP summation is linear for weak and medium A and B are 20um  “u.”

stimuli and slightly superlinear for strong stimuli. &7 separated X ._:,au

On the other hand, within-branch EPSP summation shows both linearity and non- \’}"'Q‘% V\\”
linearity depending on the strength of EPSP. It was linear — weak EPSP (~<1mV), Arit .

superlinear — medium EPSP (1~3mV), sublinear — strong EPSP (3~10mV) rithmetic

—— Measured at soma
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Bi‘“'ﬂ jﬂ—\ Linear Summation of 4 PSP’s ol TEaI
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Voltages (lin)
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Simplified Central Neuron Circuit
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Red: Action Potential
(artificial input to the pre-
synaptic terminal)

Green: EPSP from the
dendrites (post-synaptic
sites) of the neuron

Blue: Action Potential spike
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Conclusions School of Engineering

« Dendritic computations have been implemented
* A biomimetic neuron has been designed

« Carbon nanotubes pose unique challenges for
analog/pulse and timing circuits

® Adjusting R for biasing and timing is tricky due to ballistic
current flow and quantum resistance

® Nanotube circuit fabrication is in its infancy
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