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Abstract—The design of a cortical neuron with carbon nan-
otube circuit elements that performs nonlinear dendritic com-
putations is presented. The circuit design incorporates CNFETs,
and was simulated using carbon nanotube spice models.

I. INTRODUCTION

Neurons in the cortex are themselves complex systems,
performing nonlinear dendritic computations. Furthermore, the
scale of the cortex, with about 100 billion neurons, each
with an average of 104 synapses [1] presents significant
technological challenges. Nanotechnological solutions could
allow the construction of a synthetic cortex containing trillions
of synapses. One possible nanotechnology is carbon nanotubes
that can behave as metallic wires as well as FETs. Our
approach is to construct neural circuits that are biomimetic,
that capture variations in neural behavior. We design such
circuits in CMOS that can be fabricated, as well as in nan-
otechnologies for which SPICE models exist, and for which
transistor behavior and the operation of simple circuits has
been previously demonstrated.

We present the design of an electronic neuron with carbon
nanotubes as circuit elements, and demonstrate the operation
of this neuron with SPICE simulations. The synapse circuit
has some capabilities to vary its behavior. The complexity
of this particular neuron also lies in the variety of dendritic
computations that can be implemented.

The biological synapse is itself complex, with controllable
transmitters that can decrease or increase the excitability of the
postsynaptic receptors. The activation probability of a given
synaptic junction is regulated by the amount and timing of
presynaptic and postsynaptic activity. Neurotransmitters must
be present in sufficient amounts to develop post-synaptic po-
tentials (PSPs), and the concentration of transmitters released
can affect the height and duration of the PSP [1]. Action
potentials impinging on the synapses could result in temporal
summation of the resulting PSPs, increasing the likelihood of
the post-synaptic neuron eventually firing.

Post-synaptic potentials on the dendritic arbor combine
in complex ways [2]. These computations include linear,
sublinear and superlinear additions of excitatory postsynaptic
potentials (EPSPs), depending on the relative locations of the
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synapses. These dendritic computations affect the probability
and frequency of neural firing.

Carbon nanotubes may support the scale of a synthetic
cortex, being extremely small (a few nm. in diameter). Current
flow is largely ballistic (comparable to the flow of electrons
in free space), capacitances are in attofarads, and rise and fall
times in picoseconds. Channel resistance is primarily due to
the quantum resistance at the junction between the nanotubes
and metallic connections, related to the differences in electron
energy levels. This creates a challenge for neural circuit
design since resistance cannot be adjusted easily. Current
flow between drain and source is typically increased by using
parallel nanotubes, although small adjustments can be made
by varying nanotube diameter. Appropriate interfaces could be
used to convert to biological signal levels and delays. Finally,
nanotubes have been shown to induce minimum immune
system reactions in living tissue, making carbon nanotube
prosthetic devices desirable [3].

SPICE simulations have shown lower gate delay and energy
per cycle for a carbon nanotube inverter over a 32nm CMOS
inverter [4]. Furthermore, Paul et al. [5] demonstrated that
carbon nanotube field-effect transistors (CNFETs) are less
sensitive to the geometry-related process variations that are
the major limitation on the performance of silicon MOSFETs.
While it is difficult to precisely position CNTs on the substrate,
Patil et al. have recently proposed a technique to design
misaligned and mispositioned CNT immune circuits that can
guarantee the correct function being implemented [6].

Single-walled carbon nanotubes avoid most of the funda-
mental scaling limitations of silicon [7]. Liu, Han and Zhou
have demonstrated directional growth of high-density single-
walled carbon nanotubes on a- and r-plane sapphire substrates
[8]. This technique may enable registration-free fabrication of
nanotube devices and lead to integrable and scalable systems,
including synthetic cortex circuits. They have developed a
novel nanotube-on-insulator (NOI) approach, and a way to
transfer these nanotube arrays to flexible substrates.

Efforts have been made in recent years on modeling CN-
FETs (e.g. [9]) and CNT interconnects [10]. To evaluate
CNFET circuit performance, a CNFET device model with a
more complete circuit-compatible structure and including the
typical device non-idealities was constructed [4]. That research
presented a novel circuit-compatible compact SPICE model for
short channel length (5nm 100nm), quasi-ballistic single wall



carbon nanotube field-effect transistors (CNFETs).
We have designed and simulated a carbon nanotube neuron

circuit that demonstrates dendritic computations. This neuron
circuit contains synapses that capture the actions of neurotrans-
mitters, ion channel mechanisms, and temporal summation of
PSPs. We have focused on excitatory PSPs (EPSPs), and have
chosen economy of size over exact waveforms, to facilitate
scaling to cortical-sized biomimetic structures.

We have simulated a voltage adder with carbon nanotube
circuit elements [11] to implement dendritic computations.
This adder is tunable to support nonlinear summations of
PSPs. We have designed a small dendritic arbor circuit, and
shown how action potentials impinging on the presynaptic
terminals of the arbor produce dendritic potentials that are
a function of the EPSPs invoked at each synapse. We show
that the electronic neuron fires when the cellular potential at
the soma reaches a threshold value. We used the SPICE model
in [4] to conduct all CNTFET simulations.

II. BACKGROUND

Many electronic neurons have biomimetic features (e.g.
[12]). The most notable research includes Mead’s artificial
retina [13], [14], followed by Boahen (e.g. [15] [16]) and
more recently Hasler [17]. Hynna and Boahen report on a
calcium spike circuit with replication of biological waveforms,
and describe incorporation of the calcium spike circuit in an
entire neuron circuit [18]. Liu and Frenzel’s spike train neuron
is a mixed-signal electronic model close to biological neurons,
with a 10-transistor mixed-signal synapse [19]. An 8-transistor
CMOS synapse [20] is close in scale and nature to our synapse,
although they use the synapse for summation of inputs from
many pre-synaptic sites. Analog synapses have been reported
[21]. [22] and a phase-lock loop synapse has been reported
[23]. Elias modeled dendritic computations as early as 1992
[24]. Hasler and Farquhar also model dendritic transmission
[17], [12], as do others (e.g. Arthur [25] and Rasche [26]).
Existing cable models could be integrated with our dendritic
computations for a complete dendritic model. The strength of
our model and similar models is the correspondence between
individual circuit elements and specific physiological mecha-
nisms in the biological neuron that allows us to vary neural
behavior easily with control inputs. This, and our choice of
carbon nanotube technology, differentiates our work.

III. THE CARBON NANOTUBE NEURON CIRCUIT

Our basic model for a cortical neuron, shown in Figure
1, consists of three types of sub-modules: the synapse [27],
the dendritic arbor [27] and the axon hillock. The carbon
nanotube synapse circuit, Figure 2, operates as follows: The
simple action potential used here is an approximation of a
typical biological action potential [28]. An incoming action
potential will cause the potential in the synaptic cleft to rise,
modeling the biological concentration of neurotransmitters
released from the presynaptic neuron into the cleft, where
they bind to receptor proteins on the recipient (postsynaptic)

Fig. 1. A system block diagram of the cortical neuron model with a pyramidal
neuron cartoon

Fig. 2. The Carbon Nanotube Synaptic Circuit

neuron, causing the potential across the postsynaptic neural
membrane to change.

Once the neurotransmitters have been released from the
presynaptic terminal and bound in the postsynaptic terminal,
they will be cleared for reuse by reuptake mechanisms mod-
eled via the pull-down network attached to the synaptic cleft
[1]. The re-uptake control voltage, R can be tuned.

The increase in potential in the synaptic cleft will tem-
porarily cause the potential at Synaptic Interior to rise. This
models the increased conductance of neurotransmitter-gated
ion channels and the subsequent influx of charge carrying ions
(e.g. sodium). A tunable pull-down network controls the cell
interior’s return to resting potential (steady state).

The synaptic interior potential is transferred through a
resistive connection to the dendritic trunk, which carries the
postsynaptic potential to the dendritic arbor.

The adder circuit [11] is shown in Figure 3. A block diagram
of the dendritic arbor portion is shown in Figure 4. There are
four synapses in the arbor, each on a separate dendritic branch.
Our axon hillock circuit is shown in Figure 5. In a biological
neuron,the axon hillock has the highest density of sodium
channels, resulting in the lowest threshold (-55mV compared
to elsewhere in the neuron) to initiate an action potential. If
the summation of post-synaptic potentials (PSPs) reaches the



Fig. 3. The Voltage Adder

Fig. 4. The Dendritic Arbor Portion

threshold value, the axon hillock circuit will generate a spike.
This circuit behaves in a similar fashion to a self-resetting
CMOS circuit, receiving a rising edge and producing a pulse
whose width is controlled by the gate delay of the inverter
shown in Figure 5. To mimic a fast rising phase (due to
the rapid increase of the sodium channel conductance) and a
slower falling phase (due to the slow increase of the potassium
channels’ conductances) of an action potential, we adjusted
the pull-up and pull-down strength of transistors X8 and X7.
All the other transistors were tuned to model the time courses
(time constants) in the dynamic machanisms of the voltage-
gated ion channels.

In our archetypical biological neuron, potentials range from
around -75mV to +40mV with action potentials peaking
around +40mV. Since the carbon nanotube neuron is designed
to operate with Vdd around 0.9V and with 0.0V (Ground) as
the resting potential, the potentials were scaled accordingly,
with 0V circuit potential corresponding to -75mV biological
potential and 0.9V circuit potential corresponding to 40mV
biological potential. Likewise, we scaled the delays with about
1 ms in the biological neuron scaling to about 10 ps in the
nanotube neuron [28]. It should be noted that the fanin and
fanout of cortical neurons are sufficient to significantly slow
operation of artificial cortical neurons in practice.

IV. EXPERIMENTS WITH THE DENDRITIC ARBOR CIRCUIT

The postsynaptic potential appearing at the dendritic trunk
is approximately 14% of the action potential and the duration
is about 6 times as long as the action potential, similar
to EPSPs described in the literature. We performed several
experiments. We were able to tune the adders for linear

Fig. 5. Circuit diagram of the axon hillock module
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Fig. 6. EPSPs Summed Linearly, Sublinearly, and Superlinearly

summation. In a second experiment, we simulated two action
potentials (APs) arriving at staggered times so that the two
EPSPs peaked at different times, demonstrating temporal and
spatial summation.

A third experiment shows the nonlinear PSP computations
possible using our circuitry, in Figure 6. A final experiment
illustrated the summation of weak and strong EPSPs.

V. EXPERIMENTS WITH THE COMPLETE CORTICAL
NEURON MODEL

The neuron was tested with action potentials input to each
synapse, and the output of the neuron measured. The input
action potential (the red trace) is applied to each synapse
module and the generated action potential (the blue trace) is
captured at the axon-hillock node in Figure 7. The dendritic
arbor module was built with linear-summation mode adders.
The sum of EPSPs (the dark grey trace) exceeded the threshold
of the axon hillock therefore the neuron fired. When we input
no action potential (eg. 0V) to some synapses, the summation
of EPSPs is below the threshold to initiate a spike at the



Fig. 7. Simulation result of the spiking neuron circuit with load synapse

Fig. 8. Result of the spiking neuron circuit with insufficient dendritic
potential

axon hillock. The blue trace in Figure 8 represents the non-
spiking output of the axon hillock. The particular neuron we
modeled in this paper fired only when a majority of EPSPs
were presented. This reflected the circumstances where not
enough PSPs have accumulated in the dendritic arbor of a
biological neuron to cause it to fire.

Power consumption was compared to a similar CMOS neu-
ron. The circuit consumed about 93% less power compared to
CMOS (180nm technology.) According to International Tech-
nology Roadmap for Semiconductors (ITRS), while CMOS
scaling will significantly reduce feature sizes by 2022, the
power supply voltages will only decrease modestly, making
carbon nanotube circuits a low-power alternative.
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