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FOREWARD TO DISC REPORT NO. 81-2

This report presents a new routing algorithm for electric
output carriers, such as printed circuit boards and LSI chips.
Previous routing techniques typically fall into one of three cate-
gories, namely maze, line or channel routers. In this work a new
representation of the routing problem is found — namely a graph
model. The results derived from this model are extremely power-
ful, since they allow for the following operations to be easily

performed:

1. minimization of length, wire congestion or
perturbation (re-assignment of wires to new

tracks).
2. routing with or without fixed track capability.

3. re-assignment of wires to new tracks.

The major new concept developed and employed is an access
graph. Though the complexity of the routing technique presented
here is similar to that of the Lee algorithm, its ability to re-

route wires significantly enhances its capability.

Melvin A. Breuer
Professor

University of Southern California
19 June 1981
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ABSTRACT

| This dissertation presents and analyzes graphical

: methods for routing printéd circuit board configurations
'é which consist of points which lie on a straight line.
Three types of routing configurations are investigated:

unconstrained configurations which contain no tracks;

fixed-track configurations in which existing routed wires

|

are fixed permanently to the tracks in which they have been

assigned; and floating configurations in which existing

routed wires are reassigned to free tracks to accommodate

; the routing of new wires.

Five independent objectives in routing a new wire be-
tween two points in a configuration are explored. The ob-
jectives which apply to unconstrained configurations are
minimum wire length, minimum number of switches in a wire
path between the upper and lower areas, and wire routing

such that no switches exist in the path for that wire and

| the number of wires in the upper and lower areas is approx-,
' imately equal. The objectives which apply to fixed-track

configurations are minimum wire length and minimum wire

congestion. The objectives considered for floating-track

| configurations are the same as for fixed-track configura-
i tions plus the routing of each wire such that the minimum

iy
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- mum-cost path algorithm to find the path in the graph. The

number of existing routed wires is moved (perturbed) to ac-
commodate the new wire.

The major graphical method presented is to generate a
graph representing the structure of the configuration under
consideration, determine a path in the graph which repre-
sents the path in the configuration to be followed m% a Smsm
wire, assign the wire to tracks, and update either the oosJ
figuration or graph which omsﬁmwzm the newly routed wire
such that the next new wire may be routed. All routing ob-
Jectives with the exception of the no-switch routing objec-

tive are obtained by using variations of Dijkstra's mini-

no-switch routing objective is obtained by appropriately
bicoloring the graph and adding a new node in the graph
which represents the location of the new wire in the con-
figuration.

Detailed procedures are given for implementing the
methods described above for all configuration n%@mw and
routing objectives. Theoretical analysis shows that the
algorithmic complexity of most of the procedures is
O(nlogn) in both execution time znd memory space. The re-
sults of two comprehensive experiments using a computer
program implementing most of the procedures presented in

the dissertation demonstrates that both the procedures and

the theoretical complexity analysis are valid.

’_.l
1<



A unique application of the cellular approach to

‘minimum-wire length routing in a configuration is also pre-‘

- sented.

Using differing-sized rectangular cells, a Lee-

ftype routing algorithm is given which has similar theor-

etical performance as the graphical approach described

above.

bed
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CHAPTER 1

INTRODUCTION

1.0 Overview

|
|
|
1
|
Computers are often used in the layout of electronic
assemblies. As printed circuit boards and integrated cir- i
cuits have become ‘increasingly complex, the use of design
automation programs to partition networks, place components
and route interconnections have become indispensible. |
Printed circuit board layout is a particularly complex

problem and has absorbed the attention of researchers for

the past several decades. Several comprehensive bibliog-

raphies and tutorials on the subject of design automation,
|
which includes automated methods for routing, have been l
|
compiled by Breuer [1,2] and Hightower [8]. ‘
|
|
|

The layout of printed circuilt (PC) boards is accom-

fplished in several distinct steps. First, the components

required to realize the given network design are allocated

L

ne

to one or more PC boards. If more than one PC board is

N

03

needed, the network is partitioned, often using desi

automation programs [3], such that the components implement-

'
|

ing each network partition are properly allocated to their

1

respective PC-boards. Constraints such as board size and

.'_‘



- the number of edge-pins are usually major faetors in the

|
|

i
| . |

' partitioning process.
Next, the components are assigned to specific locations
on the board. It is desired to place the components such

ithat a high completion rate results when routing the inﬁer—

connections between the component pins on the board. Again,
sutomated methods [4,5] exist for placing components on PC
boards. Unfortunately, the correlation of placement with

routing completion rate is not predictive 1in general.

The last phase of layout 1is to actually route the paths
for the interconnections.(etch) on the PC board. This func—t
tion may be performed manually, automatically using a com-
puter,; or interactively.

The primary.goal in routing is to maximize the number

of nets routed at the least cost. A secondary goal is to

perform the routing function completely by automated means

(i.e., achieve 100% completion rate with no human interven-

tion in the process). The algorithms implementing these

automated methods are called routers, and they tend to be

iheuristic in nature. Completicn rates in practice are high|

1

. (>95%) although as a board becomes more densely packed with,

! components completion rates decrease.

1.1 Automated Methcds of Routing |
{ |

 L.31.1 The jnterconnection problem

|

The interconnection problem can be subdivided into four

' ordered subproblems [2]: wirelist determination, layering

1
'

HASRY
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?ordering, and wire layout. . irelist determination, layer-
;ing, and ordering will not be discussed here although their?
%solution is necessary before wire layout can be performed.
i A survey of these problems and their known solutions is

given in Akers [9].

,1.1.2 Wire layout methods

There exist three basic classes of wire layout algor-

ithms — all characterized by the method or model employed

1to find minimum-cost paths. These three classes are:
{ 1. cellular

i " 2. channel, and

3.. line probe.

| |

§1.1.2.l Cellular layout methods

E The cellular approach is best illustrated by the well-
.known Lee algorithm [6] which is based upon some results

by Moore [7]. The Lee algorithm lays out a grid of squares
on the board surface, encodes each cell with an appropriate
intéger representing its minimum Manhattan distance from a
{given source cell, and then retraces from a terminal cell

i to the source cell using the cell coding to find a minimum-
élength path. Numerous modifications have been made to the
%Lee algoritims to reduce computation time [10], computer
%storage requirements [11], and to extend its application to
‘such problems as multi-layer routing [12] and variable-

| weight minimum-cost paths [9].




Icircuits. Kuh [14] suggests a graph-theoretical approach

T
|

Routing methods using graphs in the solution of wire :

|

layout problems are related to cellular methods. As an ex~'
ample, Van Cleemput [13] describes a graph-theoretic model

and procedure for routing single-sided boardsandintegrated'

to the interconnection of points lying in a line.

1.1.2.2 Channel layout methods

The channel class of wire layout algorithms is best
characterized by Foster. [15] for the fixed via model and
by Stevens [16] for the floating via model. Foster's model
requires that the pins and vias on the board be in fixed
locations and apranged in a matrix of rows and columns. In
addition, path $egmenfs only connect two points in the same
row or column. Vertical and horizontal segments are placed
on separate planes. Finally, path segments may occupy
either side, but not both sides (by switching between
points) of the line of point to which the segment is at-
tached.i |

The routing process is accomplished in three steps:

1. break multipoint nets intc two-point nets,

5.  find vias to break two-point connections into

horizontal and vertical segments, and

]
|
3. place segments in a channel and assign them
|
to tracks. :

|

Foster claime'a 100-fold improvement 1n CPU time over the

SR e - B . === = <= v 4



Lee algorithm.
i A channel routing method similar to that of Foster is
' described by So [22] and Ting et al. [23]. The board model

| 1s constrained to have fixed points arranged in a matrix,

- streets rather than channels, and segments may switch be-
:tween the two streets adjacent to the point line containing
the points to which the segments are attached. Heuristic
algorithms are presented which determine the appropriate
path for a two-point seément using a description of both

the space available in the streets adjacent to each point

!

and the number of segments attached to each point. The al-

g "
lgorithm does not route optimally, and it is incomplete for

{certain configurations [14]. A new solution to the problem
ipresented by Ting is alluded to in [14] but no efficient
procedure yet exists to implément thelr ideas. .

Stevens' approach is similar to Foster's except that
' vias are not constrained to be fixed. The approach is to

‘assign segments to channels using heuristic procedures to

resolve sagment-end conflicts and locate the vias. The

segments are then allocated to tracks in the channels such
| that the number of tracks used is minimal.
Channel routing has been of interest to researchers

primarily because of its inherent speed and its ability to

" cost paths as does the Lee algorithm. Several other

the areas between rows and columns of points are called .. |

. route efficiently. However, it does not guarantee minimum-:

i
!
i
i

i
!
i

|

|
|

i
|
|
|

B
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channel routing approaches maybte found in Mah [17] and Lass:
[18]. |
A routing approach which uses a combination of both

graphical and channel techniques is given by Hitchcock [21]j
:

The algorithm divides the board into octagons such that |

pins are located at the corners. More than one wire may i/
traverse an octagon. A Lee-type expansion 1s performed on
the octagons to find paths. After all paths are assigned /

to octagons, track assignment within octagons is performed

in a manner similar to the methods used in channel routers.

;
This routing approach saves computer memory space over that!

of the Lee algorithm and has the benefit of providing bet-
|
ter board utilization since the final position of each wire
!

is not fixed until all paths within an octagon have been

found.

1.1.2.3 Line-probe layout methods

The last of the three classes of layout methods is the
line-probe method. A classical paper by Hightower [19] il-
lustrates this method. The line-probe method essentially

considers the board to be a continuum (rather than divided

into cells or channels as for the graphical and channel
methods). It constructs a sequence of line segments eman-

ating from two points to be connected. When line segments

from the two intersect a path has been found. A retrace

procedure is then invoked to find the shortest path back
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]

zthrough the sequence of line segments. The line-probe al- ;

|
gorithm is claimed to perform as well as the Lee algorithm g
 with up to a 100-fold decrease in execution time [8]. Ex- !
tensions to the basic Hightower algorithm Have been made by}
Mattison [20] who maximizes utilization of the board by
assigning different units to different boundary types, and
by Mikami [9] who performs an exhaustive search for all

paths using the line-probe algorithm thereby guaranteeing

a path will be found if one exists.

1.2 The Unidirectional Routing Problem

A very interesting and practical routing problem is the
unidirectional routing problem, so called because the basic
routing configuration is a single line of points lying on a
single board layer. Practiéal printed circuit boards can
be characterized by an orderly arrangement of unidirectional
point lines as illustrated in Figure 1.1. A point repre-
sents either a pin or a via. If we restrict a path between
any two points in this configuration to consist of subpaths;

each of which connects two colinear points, then a possible

|
imethod for routing this path is to (1) determine the set i
of colinear points which define the subpath end points, and |

i(2> route each subpath. For example in Figure 1.1 a path !
9 i
ibetween points A and B is shown which consists of three l

. : l
}subpaths (A-a,a-b,b-B). One of the subpaths is routed such;
|

r that 1t "switches" between the point line. |
|
|
|
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Figure 1.1. A single-layer printed circuit config-

uration.

The gnidirectional configuration model 1is very general
in that it can support the routing of multipoint nets.
Multipoint nets are decomposed into the two-point nets
which are then divided into subpath segments. Our primary

. interest in_this dissertation is to optimally and effi-

' ciently route the subpath segments on unidirectional lines !

| of points. The details of the general unidirectional rout -|
Z ing problem and possible solutions are presented in So [22])

| . |
" and Kuh [14] and briefly discussed in Chapter 2 of this E
|
|
g

.81



here is based on finding minimum-cost paths in a graphical

1.3 Overview of this Dissertation

zparticular local objective function of each path for the

work.

In contrast to the rather heuristic solution ap-

proach adopted by these researchers, the approach taken

model of the unidirectional configuration.

The techniques described'in this dissertation optimally
and efficiently implement solutions to the unidirectional
routing problem. In general, it is.assumed that the con-
figuration consists of a line or points on a single layer
with possibly some nets already routed.

Every technique given in this study assumes an ordered
net list defined on the line of points is available. Each
net in the list is described by a paired value (a,b) which
represents the end points of that net. We call these nets
two-point nets. Within this context, a multipoint net de-
fined on more than two points in the point line is made up
of two or more two-point nets. Given this ordered set of

nets, each net is routed, one after another, such that a

net is met. The objective functions considered in this

: |
study are: minimum path length, minimum routing congestiog
minimum routes perturbed (to free tracks for new routes),

and minimum switching paths. Also, three different board

constraints are considered as described below.




-

Chapter 2 presents the major definitions and notation '
|

|

used throughout the rest of this dissertation as well as }
|

;previous results on this problem. In addition, a graphical§
i . I

i

model of the unidirectional configuration is introduced.
Finally, a least-cost path algorithm is presented.

Chapters 3, 4 and 5 deal with the unidirectional.rout—
ing problem under three different sets of constraints, and
give procedures for routing in each case. In Chapter 35
the unconstrained case is considered where tracks are ig-
nored and the areas which may contain routes are consid-
ered unbounded. Paths are routed such that their lengths
are minimized. Chapter 4 deals with the case, called fixed-
track unidirectional routing, where the areas which may
contain routes are limited in size, and paths once assigned
to tracks cannot be moved. Paths are routed such that
either path length or street congestion is minimized. The
final case, called floating-track unidirectional routing,
is presented in Chapter 5. Although the areas which may

contain routes are limited in size as for the case consid-

. ered in Chapter L, existing routed paths may be feassigned

; to other tracks to accommodate new paths as necessary. i

| Paths are routed such that either path length, street con—!

| gestion, or the number of routed paths perturbed is mini- i
|
!
|
|
i

mized.

Chapters 6 and 7 consider two specific routing cases.

In Chapter 6, the unidirectional configuration is uncon- |
- i
! !

! 10



i routed in one or the other of the two sides of the line of

=3

*
strained as in Chapter 3, but the cost function employed in'

finding a path is to minimize the number of switches be- |
tween the line of points. The model used in this case is
a derivative of the graph model used in Chapter 3. Chapter.

7 considers the case where no switches are permitted in ‘the

unconstrained model. Thus, each two-point net is entirely

points. A mwmvswomw method for optimally assigning a path
to an area using bicolored nodes is described.

Chapter 8 nwmmmmnm the application of the Lee cell-
ular algorithm in solving the same problem considered in
Chapter w.. The Lee algorithm performs as well as our
graphical method for the unconstrained case. However, it
appears to be limited in its applicability to the other

routing cases as presented in Chapters 4, 5, and 6.

Chapter 9 in this dissertation presents experimental

results for several of the major algorithms given in Chap-
ters 3 and 4. Basic conclusions and' recommendations for

further research are presented in Chapter 10.

.



iefforts and results are also presented. The basic model

CHAPTER 2 |

GENERAL DEFINITIONS

2.0 Introduction

The general notation and definitions relevant to‘uni—
directional routing are presented in this chapter. These
definitions generally apply to the entire thesis, but are
particularly pertinent to Chapters 3, 4, and 5. Specific
definition, as they apply to particular algorithms or con-

cepts, are given in later chapters as needed. Previous

used in Chapters 3-5, namely the access graph, is described.
Finally, the minimum-cost path algorithm due to Dijkstra is

presented.

2.1 Points

Let al,az,...,am be an ordered set A of m points (m>1)
lying on a horizontal straight line with end points 2, and

a - This line is called the point line.

|
FEach point ai represents a pin or via on a printed cir-

cuit board and is called an original point. Unless otherwise

stated, let the distance between adjacent points be of unit

|
length, and let the location of point ay be to the left of

|
oi (o ?
point aj41 |

We further define an ordered set Q of pseudo-points, !

12!
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iql,qz,...,qr, r=0, that exist on the point line such that

leach point a4 represents the intersection of a routed path
| .

iand the point line. Any two pseudo-points a and a.

|
i

4 are |
ordered in Q such that the location of ay is to the left of!
Ay 47- The two point sets Q and A are mutually exclusive
since ai#qj for any 1§iém and 1= jsr.

Finally, we define an ordered set C of n=m+r points,
PysPys---sP, (called a wnidirectional point set) where C=ANQ,
and the order of each point Py is established by the left-
to-right location sequence of pins, vias, and pseudo-points
on the printed circuit board. Point p is located at~ai.

Figure 2.1 shows an example unidirectional configura-
tion illustrating the point sets described above as well as|

their ordering.

|
| lal @2 %3 x11 Ia“ la5 92 @%6
! D

N N
|55 P2 P3 sy} D5 P§ D7 08

Set A={a ,a,,...,a¢} ={p;,0,,P3,P5:P4,0g}

j Set @={ay,a,) ={py,p,]
Set C=AU Q={p1,p2>' "V3p8] = {al,az)a3>qlaau335>q2’a6}

Figure 2.1. Ar example configuration showing point

|
i
|
!
sets A, Q, and C. Pseudo-points are ‘
. . [
shown as "x" on the point line. i

i

i 13
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gbeen assigned to tracks. A routed path is a path which lies

[ +
34 Street S
@ ® ¢ X : ®
pl p2' p3 pb' ps'ps p7 p8
4 Street S~
¥ k\
horizontal) Q\vertical segment
track track

Figure 2.2. An example configuration illustrating
the concepts of paths, streets, and
tracks. A path containing one pseudo-
point (ps) and end points Py and Py
is shown.

A path contains zero or more -pseudo-points and two

original points as its end pocints, and does not intersect

any other path. A feasible path is a path which has not yet!

‘entirely within tracks.

A segment (pi,pj) is a subpath which contains no points:

other than its end points Py and pj. If the segment is

feasible its end points may be located within intervals

(i.e., not necessarily attached to a point pi). A segment

|

|

15!
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. |
''is located entirely in one of the two streets. For in-

stance, in Figure 2.2, the subpath between points P and pSf

|

is the segment (p2,p5). A segment is a routed segment if it
is part of a routed path. Otherwise, it is a feasible seg-
. ment.

The horizontal part of a segment is called a section

|
|
|
|

whereas the vertical part of a path connecting two sectlons

(and, for routed paths, defines a pseudo-point) is called a;
|
|

switeh. Thus, a path consists of one or more sections con-

nected by zero or more switches, and contains two short |
| |
points to sections. The path shown in Figure 2.3 has links

vertical links at either end of the path connecting the two

at points Py and p7, and sections and switches as shown.

Similarly, segments, sections, switches, and links are con-|

sidered to be either routed or feasible.

link section 1link secti;i)

switch

e. O o ¥

10

switch—///’- C;:ction
i Figure 2.3. An example configuration illustrating
! 3
' the definition of sections, switches,

! and links.



The point at which a section and switch meet is called

i

a connection. I1f only one section meets at a switch or 1link,

then the connection is a chain connection.

meet at a switch or link, then the connection is called a

tree connection (see Figure 2.4).

sidered only in Chapter 7.

PR I

Tree connections are con-

If two sections

)

1

. !

tree connection

Figure 2.4. A configuration illustrating both tree

fa

chain connection

connections and chain connections.

If a configuration contains a feasible path, it is a
féasible configuration. Otherwise, it is a routed configuration.

There must be no more than one path between any two points

in a configuration.

If a point pi in a configuration D is the end point of

there are two segments attached to P then Py is double-

covered. Otherwise, point Dy is wrcovered.

pseudo-point is double-covered.

only one segment, then Py is said to be single-covered. If

By definition,

a

17



2.4 Interval Accessibility

We define an interval ui in a configuration D to be ac-

val Uy to interval u‘j in a given street. For example, assum-

ing there exists an ample number of free tracks, interval

' cessible to interval uj (i#j) if a path exists from inter-

vy is accessible to interval U, in street S~ of the config-

uration shown in Figure 2.5. Interval u:L is likewise ac-

cessible to interval Ug in street Sf; however, point pl is

not accessible to interval Ug in street S+ since only one

net can cover a point in a given street.

"~ path 1
path 3
/‘\\
¥ \

5 ’ ' .
P1 o, Fo3 TRy P ‘[ 6 7
\ \ |

\\\ path 2 /I
Y
SNe . o Z reasible path
Figure 2.5. An example configuration illustrating

accessible intervals. Feasible paths
are shown as dotted lines in this and

subsequent figures.
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2.5 Channels

. Then the length of the section channel 1is ai-aj and the

i
|
A channel is a rectangular area of the unidirectional |

configuration which contains no routed wires and is boundedj

: |
by routed sections, the point line, or the edge of the con-'
figuration. There are two types of channels — section

channels and switching channels (see Figure 2.6).

section channel

) —
% | t* o5 F%

P& Ps .p3 P _ /‘599 €
switching channel switching channel

Figure 2.6. An example illustrating section and

N

N\

switching channels.

A section channel is bounded above by a routed section

(called the outer section) or the edge of the configurationi
|

‘ |

bounded below by one or more routed sections (called the '
;

inner section(s)) or the point line, and bounded at elther
|
end by a link switch, or edge of configuration. Let a sec4
|

tion channel extend between interval ui and interval uj.



width of the channel is the number of horizontal tracks it

. contains. Obviously, interval us is accessible to interval

- u., if the channel width is greater than zero.

' nel is the width of an interval and is bounded above and

' channels and feasible switches are routed in switching

. Thus, as will be seen later, a path in a configuration

J

As shown in Figure 2.6, the width of a switching chan-

below by either a routed section or the configuration edge.
The length of a switching channel is arbitrarily defined to
be 1 throughouﬁ this work since our primary interest is in
routine sections. The width of a switching channel is the
number of switching tracks it contains.

Obviously, feasible sections are routed in section

channels.

The concept af channels is central to this work since
it is configuration channels which are modeled by arcs in
the access graph. Furthermore, the label of each arc con-
tains all the desired characteristics about the channel it

represents such as the length and width of the channel.

is defined as a path in the access graph for that config-
uration. The objective function for determining the path
is defined on the channel characteristics as reflected in

the access graph.

20 |
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. street S in the configuration shown in Figure 2.5 is

——————— e - - ———— -y

The definition of channels is further refined in Chap-

|

ter U4, ?

To calculate path lengths, we consider a feasible switchf

to be arbitrarily close to the point in thé interval con- E

taining the switch. The length of a path is defined to be é

the total length of each section in the path plus the num- {
ber of switches in the path. The length of a section

(pi’pj)’ i<j, is %j_ai where ay and aj are the location of)

points 1< and pj. For instance, 1f each interval in the

configuration in Figure 2.5 is one unit except for inter-

vals Us and u, which are each of length 1/2, then path 2

3
is of length

(a —az)-+(a5—a3)-+1 = 1/2+1-1/2+1 = 3 units .

3
The length of the feasible path shown in Figure 2.5 is

(as—al)-+l-+(a5—au) +1 = 3+41+1+1 = 6 units .

2.6 Canonical Subpaths

The concept of canonical segments and sections is inte-,
gral to the formation and use of the graphical models de-

veloped later. A canontical segment (abbreviated c-segment) is
|

a feasible segment (pi,pj) such that there exists no inter-

k k

|
|
val u, accessible to intervals ui or uj where ai <a <aj, i
(i<j). For example, the feasible segnent (pu,pS) in

e



canonical whereas feasible segment <pl’p5) in street S~ is

not .

A canonical section (abbreviated c-section) is the horizon-

' tal part of a c-segment. The concept of c-section sequen-

ces is key to the routing methods developed later. Every
section is composed of a sequence of c-sections. For ex—
ample, the feasible section (pl,pB) in the configuration
shown in Figure 2.5 is composed of the sequence of c-

sections (pl,p2) and (pz,p5).

A similar concept of canonical section channels is also

|
!
|
|

|

|

apparent. A canonical section channel intersects switching:

channels only at its ends. For instance, in Figure 2.6

section channel (pl,pg) is not a canonical section channel,

but section channel (pu,pg) is.

2.7 The Unidirectional Routing Problem

The unidirectional routing problem is one of determin-

ing a path between two given points N==(pi,pj) in a routed

configuration D which satisfies some cost function, and

then assigning that path to appropriate tracks in D thus

! forming a routed path.

2.8 Previous Work

All previously reported methods for the solution of
the unidirectional routing problem center around the heur-

istic method described in Ting [23]. A later report by

22



i Kuh [14] presents a different but related approach without

giving an algorithm for solution. Ting's method is des-

|
3cribed here.

Let set N be a set of nets to be routed in a unidirec-
Itional configuration and which have been assigned to streets
| Let N be the remaining nets to be routed in the configura-

| tion but which are not assigned to streets. The assignment:

of segments to tracks is not performed. The assignment
procedure given by Ting generates set N such that regions

of high wire congestion in the board are reduced in both

streets. The fact that a net is assigned to a street im-

plies only.that the end links are routed in the assigned
street. The acﬁual path for the net as found by a separ-
ate procedure méy actually switch bétween streets. The
results of the assignment procedure are not optimal al-
though a claim is made that a path for a net will always
be found if there exists a path. However, Kuh has re-

' tracted this claim [14] since counter examples have been
| shown to exist.

| The street assignment procedure defines a theorctical
f'rninimum measure of routing congestion. Attempts are then

i made to allocate nets to streets to meet this measure.

i Should the theoretical minimum not be obtained, the measureg

| is increased by one to aid the allocation. This process 1is

irepeated until no more nets can be allocated.

———




s — - = S

T
The path-finding procedure is simple and effective. i

Let Lbe the ordered list of nets.n, to be routed (L=NU N).i
Double-covered points are not permitted in Ting's model E
(i.e;, only two-point nets are routed). The procedure 1is j
| to take each net in turn from L and route it such that the i
end points are covered in the assigned street, and the path!
segments traverse each point in the street opposite to thatg
in which the point is covered. For_points that are un- ;

covered, the path segment traverses the upper street. For

instanée, net y is routed as shown in Figure 2.7.

Figure 2.7. Example of routing using Ting's method.

!
|
|

The constraints and results given in this thesis diffeﬁ

' from those given by all previous reported results,



2.9

including Ting's, in the following ways.

All results given in this thesis are optimum

with respect to the stated cost goals. No pre-

viously reported results are optimal in any sense.

The unidirectional model considered by other
researchers only accommodates two-point nets.
The model considered in this thesis accommodates

multipoint nets defined on the point line.

Routability is not guaranteed by other re-
searchers. All methods considered in this thesis
guérantee that a path will be found if a path

exists.

Street capacities are forced to be the same be-
tween the upper and lower streets in the models
considered by other researchers. No such re-

striction is imposed here.

Finally, a complexity of 0(n2) is quoted for Ting's
method while exponential complexity is required for Kuh's

method [14].

. Graohical Aporoach

The method of solution presented in this thesis re-
quries that a graph G (called an access graph) be generated

from D. G reflects all switching channels and canonical

l section channeéls in D. The solution steps for routing a

1
|
!

|
|



net N in D are:
1. given D, generate G.

5. obtain a path in G meeting the desired cost func-—-
tion. This path represents a feasible path for N

in D.

3. assign the feasible path to tracks thus obtaining

a routed path for N in D.

Based upon track constraints in D, the unidirectional
routing problem can be %iewed in three possible ways.
First, the number of tracks is unlimited. For this case
we ignore the existence of tracks when finding paths. This
problem 1is called unconstrained routing, and is-considered in
detail in Chapter 3.

In the second problem type, called fized track routing,
the number of available tracks 1is fixed with total capacity
T. ©Once a feasible path 1is assigned to tracks, it remains
fixed to these tracks as additional paths are routed. This
routing problem is considered in detail in Chapter 4,

Finally, we can consider the case where the number of
tracks is limited to some capacity T, as for the fixed-
track case, but routed paths may be reassigned to alternate
tracks, if necessary, to free a track for routing a new
feasible path. This routing problem is called floating-track

routing, and 1is considered in detail in Chapter 5 e

26




2.10 The Access Graph

ation D which is useful iﬁ the solution of the problem of
unidirectional routing. Essentially, the nodes of the
graph represent intervals, and the arcs represent section
and switching channels in D. The detailed algorithms that
generate appropriate access graphs for each of the unidi-
rectional routing problems are presented in the next three
chapters.

Let D be a routed configuration with n points. Let G
be an access graph G = (V,E) associated with D, where V is a
set of 2n nodes and E is a set of undirected arcs defined

. + - . .
exclusive subsets V and V each consisting of n nodes. A

u; while a node v; in V~ represents the S  street side of
interval u;. A node v; (v;) in G is sa2id to be covered if
point Dy in D is covered in street st (S7). Thus a node

in G is either covered or uncovered.

The set E consisté of two types of arcs, namely sectioh
arcs and switching arcs. Let x be one of the two symbols
{-,+}. A sect&nlan:(vi,vﬁ) exists between two nodes v?

X

X be
and v, (i#j) where v, and vV,
nd v (i#J) 5 ;

accessible to interval uk between. points pi and pj such

Ve now consider a graphical model of a routed configur-;

on the nodes in V. The node set V consists of two mutually,

+
node 2 in V+ represents the S+ street side of the interval|

. X s s .
are in V© if interval ui is !

that interval uk is accessible to intervals ui or uj in l

27
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X

L A X % . o
street S”. Thus arc (vi,vj) represents a canonical sec-

tion channel between intervals ui and uj in D. Each sec-
tion arc in G is labeled as (x,B), where sgt B is a set of
values reflecting characteristics of the assoclated channel
in D such as the 1ength of the channel, the maximum rouﬁed—

path congestion over the length of the channel, etc.

. " x X .
A switching arc(vi,vi) exists between every two nodes v§

<l

and v? where v?é&VX and ve € V® (X is the complement of x)

I.J

if a new switch can be routed between points uy and Us g1 in
D. v§ and v? represent the same interval U - An exception
occurs for interval Uy, since point Pht1 does not exist,
and by definition, no paths may be routed to the right of
point P, Thus? no switching arc exists between nodes vﬁ
and vi. A switching arc (vi,vi) represents a switching
channel in interval uy - A switching arc is labeled ("w",B)
where B is a set of values similar to those for section
ares.

To clarify the definition of the'access graph, consider
the configuration D shown in Figure 2.8. Assume there are
sufficient unassigned tracks where necessary. The length
' of each interval is assumed to be 1 unit with the exception

of intervals 5 and 6 which are each 1/2 units long. Point

Pg is a pseudo-point.

28




Lo, l
P1 P2 D2 Su IPS 95 Do ?98

Figure 2.8. An example configuration D illustrat-
ting the definition of the access graph
G.

- Assume we are only interested in the 1enéths of paths.
Then the label on each arc is the pair (x,8) if the arc is
a section arc, or (w,l1) if the arc is a switching arc,
vhere x is "4" or "-", § is the length of the section chan-
nel, énd the length of each switch has been arbitrarily
defined to be 1 unit. All of the section channels in con-
figuration D are 1isted_in Table 2.1. The channels iden-
tified by an asterisk are not canonical and.thus do not
appear as arcs in Figure 2.9. We use the left point pi of
an interval Uy to represent that interval in the table.

Interval ug consists of only point Pg-

29
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Table 2.1. All Section Channels in the Configuration

shown in Figure 2.8.

Street st Street S~

(py5p3) (py5P5)

#(py5Pg) *(pl,DS)

(p3,p6) *(pl,pg)

(p7,p8) (p2:D5)
(py»Pg) *(p,,pg) .

*(p5,p8)

(p3,py)

(96,97)

The access graph G for the configuration shown in Figé
ure 2.8 is shown in Figure 2.9. Each canonical channel
listed in. Table 2.1 is reflected as an arc in G as are the
seven switching arcs possible for this example (there is
no switching arc for interval p8). The length of each sec-
tion arc (pi,pj) is [aj—ail, and it is assumed all channels
have width greater than zero.

The utility of the access graph is evident Dby picking
| any two nodes, say nodes 1 and 5+, and determining a path
netween them in G. Suppose we choose path (l—,2_,5_,5+) in
Figure 2.8. This corresponds to a feasible section in con-
figuration D from point pi to interval.us in the lower

street and a switch in interval u5. The feasible path 1s

30
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T

There is another path between nodes 1~ and 5+, namely

T T ‘
(17,17,37,37,47,47,5"). The length of this path is 7 units.

!
|
i
|
|

'If we want to route shortest paths in D, then the path of

length 5 units is chosen as the desired one.

2.11 Adjacent Point Configurations

i It is interesﬁing to note that there are a total of
nine adjacent point configurations possible on two points
as observed from a given street. These configurations are
shown in Table 2.2. It is from the relational properties of
adjacent point configurations that the access graph algor-

ithms in Chapters 3, 4, and 5 are derived.

Table 2.2 Table of All Adjacent Point Configura-

tions on Two Adjacent Points

Configuration

LNIRIRE

Pi+1
&
&
3, >
| b ‘} }
E 5. T Y ® |
| 6 e e |
| i & ® |
8, @ &
|




2.12 A Least-Cost Path Algdrithm

The routing methods presented in this work are based

upon determining a least-cost path between two nodes in an

undirected weighted graph. The least-cost path algorithm
i

presented here is due to Dijkstra [24]. This algorithmlwasf
selected for use since 1t operates in time @(elogn) for a
graph with e edges and n nodes. Most other least-cost path
algorithms operate in time O (n) (see.Rubin [25], Bondy
[26]). Since for most graphs considered in this work

e << 31, and - 3n-1, Dijkstra's algorithm shows a dis-

ax

tinct advantage over other least-cost path algorithms.

|
i
|
E
|

The algorithm outlined here determines the shortest

i
distance from a given source node Uy to all other nodes of

|
G. Let Si be a proper subset of V, the node set of G, such,

that uOEESi, and let §i be the subset of V which consists

of all nodes not in Si‘ Let V contain 1 nodes. The basic

|
|

o . . . |
idea is to construct an increasing sequence SO’Sl""’Sn—l’

of subsets of V in such a way that, at the end of stage i,

shortestrpaths from u, to all nodes in Si are known. We

0
further define a label z(uj) for each node u, - ﬂ(uj) will

i
|
|
i
i
i
i
|

. : |
be the cost (i.e., the "length") of a least-cost path from

|
|
u, to uj when the algorithm has processed set Si where !

0

jzi. w(u,v) denotes the weight on arc (u,v). i

Dijkstra's Algorithm |

1. Set 4(uy) =0, £(v) == for v#u,, S4= 1uol' and i=0.;



‘ 2. For each veigi, replace 4 (v) by min{z(v),z(ui)+

W(ui,v)}e Compute min {£(v)} and let u, denote
v E S, 1+]
i

‘g node for which this minimum is attained. Set

Si+l==SiLJ{ui+l}.

3. If i=n-1, stop. Otherwise, replace i by i+l and

go to step 2. a
The timing of Dijkstra's algorithm is determined pri-
marily by the two operations in step 2:
(1) ... replace £(v) by min{z(v),z(ui)+w(ui,v)}.

(2) Compute min {2(v)]}
\rESi

Operation (1) must be executed for each node V€E§i adjacent
to node Uy - Thus, if d(u) is the degree of node Us s then

operation (1) is executed

n =

d(ui) (1)

i=0

times after k=n-1 iterations of the algorithm have oc-

curred. Since the number of edges e in a graph G is equal

to 1/2 the total degree of G, then operation (1) is exe- :

cuted a maximum of 2e times if Dijkstra's algorithm is run

to completion (i.e., k=n-1).

|

The number of times operation (2) is executed is a

i - i

| 1ittle more complicated to determine. Note that the size

| |

‘ |
!

. 34
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|

| of §i is n-~i-1; 1=0,1,2,...,n-1. If a linear search is

.performed to find the minimum £ (v) then operation (2) is

k
executed a total of 2 (n-i-1) times after k=n-1 itera-
i=0

tions of step 2 in the algorithm. A more efficient method
of determining the minimum element in set §i is to sort §i
every time operation (2) is executed. If only a few ele-

ments in §i differ from those in §i— then some efficiency

15
can be gained if the nodes in §i are structered as a bal-
anced heap. Initially (n-1)log(n-1l) operations are re-
gquired to creafe a heap'of n-1 nodes. Every subsequent it-
eration only requires log(n-i-1) operations to restructure
the heap. Thus, no more -than
‘ k
(n-1)log(n-1) + 2 d(ui)log(n—i—l) (2)
i=0

operations are required for operation (2).

From both expressions (1) and (2) and noting that n+2

and 2(n-1) operations are required for steps 1 and 3 of

Dijkstra's algorithm, we see that the total number of op-

erations Opsk for the algorithm up to iteration k is

k

i=0

assuming theré are n unidirectional points in D, then

Ops, =31+ (n-1)log(n-1) + I [d(u;)(1+log(n-i-1)].(3)

. :
Since d(v) =3 for any node v in an access graph G, and

|

T
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n=2n. Thus, any least-cost path of length k in G repre-
i senting D may be found with no more than
le rk -
()psk=6n+3k+3+(2n—1)log(2n-l)+3 2 log(2n-1-1i) (4)
i=0 :
operations. If the least-cost path in G contains every node

in G, then

Opsn==12n+(2n-1)log(2n—l)432§5110g(n+i) (5)
i=0
operations are required.

The access graph which maximizes the node degree of the
graph 1s the one for an empty.configuration. All nodes ex-
cept thoseArepresenting points Py and Py in D have degree 3.
The maximum path length in such a graph is k=n and occurs
for a path in a street in D from points Pq to D, For this:
| case the first node in the path has degree 2, the last node
has degree 1, and the other n-2 nodes have degree 3. Thus,

n-1

Opsmax==6n+(2n+l)log(2n—1)+log(n)+3 > log(2n-i-1) .
i=0

|

1

|

| |
i In contrast to this maximum case, the minimum number of

: |

i operations required by Dijkstra's algorithm occurs when the

| |
| |
}path in D is desired between two adjacent points and one ofl
_ l
| the points is P, For this case k=2, the minimum degree |
i |
of node Vg is 2, and the degree of node v is 1, Then,\j



Opsmin = 6n+(2n+2)log(2n-1)+3log(2n-2)

~ 6bn+(2n+5)log(2n-1).

In all cases, the complexity of Dijkstra's algorithms
as applied to the problems contained in this thesis is

J(nlogn).
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CHAPTER 3

UNCONSTRAINED UNIDIRECTIONAL ROUTING

3.0 Introduction
E The simplest unidirectional routing problem to solve

is routing a two-point net N between two points in a con-

in finding a feasible path for N in D where the cost func-
tion we choose to minimize is path length. First, an al-

| gorithm is presented which generates the unconstrained ac-
cess graph G for a configuration D. Néxt, an analysis of

both the algorithm and the graph produced b& the algorithm
is given. Then a brief discussion on finding the minimum-
length path in G is given. Finally, this path is directly

mapped into a feasible path in D.

3.1 The Access Graph for the Unconstrained Routing

Problem

Algorithm 3.1 generates an access graph G for a con-
figuration D where tracks are ignored. Each point Py is=
'1,2,...,n, is examined in turn, first from the viewpoint
of street S+ and then from street S . At each point p.,

 »

the algorithm pops the top value (say, uj) from a stack S

if interval uy is accessible to interval uj, and uj is to

the left of ui. Likewise, i is pushed onto stack S if in-

figuration D ignoring track assignments. We are interested




“terval ui is accessible to some interval u. where uj is the

. first accessible interval to the ' right of uy - Whenever S

is popped an arc 1s constructed between nodes u? and u*

‘ J
1
iidentifies the street being processed). The jump table in

(x

'step 4 is derived from the adjacent point configurationé

shown in Figure 2.8.

Algorithm 3.1. Construction of the unconstrained access
graph

Purpose: This procedure generates the access graph of a

given (routed) configuration D where street capacities and

track assignments are ignored.

%Method: The line of configuration points is scanned twice,
ifrom left to right, once for street S+ and a second time
ifor street S~ . During each scan, successive adjacent

|

Ecoverings and the directions of the paths covering them.
!Appropriate action is taken (via the table in step 4) based
%upon which of the nine adjacent point configuratiéns shown
'in Figure 2.9 is applicable. Algorithm steps 5to 8 perform

! B
'stack and graph operations such that at the conclusion of
i

1 . ’ ;

ithe second point scan, the entire -access graph is con-

|
|

' structed. The procedure operates on one stack, S, which
|
!contains items j, where pj is a point in D. We define
%point pﬁ+l fo be an uncovered imaginary point lying just to
%the right of point p, on the point line in D.

I

W)
N

i points Py and Pj4p are examined with respect to routed pathi

|
|
‘
|
l
|
|
|

|
|
|
|

|

I
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llngut: Routed configuration D including the location @y of

i each point Py -

' Qutput: The unconstrained access graph G for D.
|
' Procedure:

. |
} Step 1. (initialization) Set x="+", and clear stack !

+ +

| S. Construct the 2n nodes l+,2 se oo sl

L ;2 4eswmenn 1in G.

Step 2. (switching arcs) For each i=1,2,...,n-1,

. " _
construct an arc between nodes i and i1 , and

label it ("w",1).

|

Step 3. Set i=0. Push i on stack S. (Even though E
there is no poilnt Py in D, we need this l

dummy item in S to ensure correct processing

of the end points in D.)

Step 4. (main loop) Let the top item in stack S be j.
Set 1i=1i+4+1. Consider points Py and Pit+1 in D.
Select the applicable case from Table 3.1 and

branch to the particular step as directed.

Step 5. Pop stack S to get j. If j#0 then construct

‘ . . X X
ari arc in G between nodes i” and j& and label
it (x,ai—aj). Push i cn stack S and go to

step 8.

Step 6. Push i on stack S and go to step 8.




Step 7. Pop stack S to get j. Construct an arc in G

between nodes i* and jx, and label it (x,ai—aj).

Go to step 8.

Step 8. (end of main loop) If i#n then go to step 4.

Step 9. If x="+" then set x="-", set stack S empty,

|
and go to step 3. Otherwise, exit procedure.Oj

3.1.1 Example of operation of Algorithm 3.1

It is instructive to consider an example of the use of
Algorithm 3.1. Consider the configuration shown in Figure
3.1 and let each interval be of unit length except for in-

| tervals Uq thorugh Uy 5 which are each of length 1/2.

- @

® ??u*?5'96 7 @p @
p3

o
rno

[

Figure 3.1. Routed configuration illustrating the

use of Algorithm 3.1.




Table 3.1. The Adjacent Point Configuration Jump Table

Adjacent Point Py 18 Pyyg 18 Py 15 Ieft- Pj4y 18 Left
Configuration Covered Covered Point of Point of
(Table 2.2) in s* in s* " Segment Segment Go to Step
1 no no — S 5
2 yes no no - . = 5
3 no yes e yes 5
no yes L — no 7
5 yes yes no no 7
6 yes ’ yes no | yes 5
7 yes no yes e 6
8 yes yes yes yes 6
9 yes yes yes no 8

I
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T
The algorithm begins with x="+4", i=1, and 0 on top ofq
%stack S. The access graph initially consists of 2n isolated?
gnodes.'The'table in step 4 directs control to step 5 since :
ipoint 1l is isolated, point 2 is covered in street S+, and ;
ipoint 2 1s the left-most point of segment (2,5). Since the:
Etop item in stack S is 0, we pop S and push i=1 on S in
gstep 5. In step 8, i<n so we update i=2 in step 4 and
jump to step 6 éince point 2 is covered, point 3 is iso-
lated, and point 2 is the left-most point of segment (2,5).
We push 1=2 on stack S in step 6 and jump back to step 8.
At this point, i=3. We then enter step 5 since both
points 3 and 4 are isolated. In this case, the top of
stack S 1is 2 and thus we construct an afc bgﬁween nodes 3+
and 2+ in the graph with label (+,1) since the length of
interval 2 is 1 unit. The reader is encouraged to continue
applying Algorithm 3.1 to this example until confident of
its pperation. Table 3.2 shows the sequence of steps taken
by Algorithm 3.1 while processing the street S+ side of the
routed configuration shown in Figure 3.1. The stack fig-

ures in Table 3.2 refer to Figure 3.3. Figure 3.2 shows

the complete access graph for this example.

13.1.2 Execution time of Algorithm 3.1

Consider unit operations to be:
1. construct an arc or node.

2. pop, push or clear stack S.
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Table 3.2. The steps followed by Algorithm 2.1 in generating the access graph
for the configuration in Fig.3.1l. Only street S+ processing 1s shown.

i Piﬁiﬁfs Stack Action Fig?%%%3) Arc Created Label of Arc
1 5 Pop 0,Push 1 (a)

2 6 Push 2

3 5 Pop 2,Push 3 (b) (2*,3%) (+,1)

1 7 Pop 3 (3*,4™%) (+,1)

5 5 Pop 1,Push 5 (1*,5") (+,4)

6 6 Push 6

7 6 Push 7

8 8 none (c)

9 7 Pop 7 (7*,9) (+,2)

10 T Pop 5 (6%,10™) (+,3.5)
11 5 Pop 5,Push 11 (a) (57,117 (+,5)

12 6 Push 12 '

13 Pop 12 (127,13 (+,.5)

14 5 Pop 11,Push 14 (e) (11+,1H+) (+,2)




!

Figure 3.2. The access graph for the routing configurgtion shown in Fig.3.1. ]




}
!

| of the algorithm, j does not equal zero.

1

3
1 1
(a) (b)

11
(a)

Figure 3.3. Stack contents for
of Algorithm 3.1.

3. add or subtract two values.

4, test.

14

(e)

example of. operation

(c)

Each step in Algorithm 3.1 requires the number of op- |

erations shown in Table 3.3. Except for the initial steps

configuration dependent. To find the number of.times each

|

The maximum and ]

minimum number of times steps 5, 6, and 7 are executed is |

|
é
46 |
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Table 3.3. Number of operations per step in Algorithm
3.1 as a function of the number of unidi-
rectional points n.

Step . No. of Operations No. of Times Step is Entered

1 2n+2

2 2n-2

3 2

b 2 2n

5 b see discussion
6 1 see discussion
7 3 see discussion
8 1 2n

9 2 2

step 1s executed, consider the precedence graph Gp shown in.
Figure 3.4. This graph is bbtained by letting each node
represent one of nine routing configurations on two adja-
cent points in a configuration as shown in Figure 2.9, and
constructing a directed arc from node i to node j if ad-
jacent point configuration i can immediately precede adja-
cent point configuration j in some unidirectional config-
uration. Each npde in Gp is labeled with an s or a t if |
that node represents an adjacent point configuration that
could potentially be the first (s) or last (t) interval in
a unidirectional configuration. Also, each node is labeled:
with an "f-value" of +1 if the left point of the adjacent

point configuration represented by the node is the left end




[ et o e —mmt e e e b e S+ Aas i —
‘ = e smews mimth & wsrasie

i F
,point of a segment, an f-value of -1 if the right point of

|
1}

!the adjacent point configuration represented by the node is’
' the right point of a segmenﬁ, or an f-value of 0 if neitherl

. of the above cases hold, or if both cases Hold (e.g., ad-

jacent point configuration 9).

1
I
|
i
i

|
!

[&=q ¢

i |

Figure 3.4. The precedence graph for the nine pos-
sible adjacent point configurations on
two points.



The underlined numbers adjacent to each node in Figure
§3.u are the number of operations required by steps 5, 6, orf

57 of Algorithm 3.1 to process the adjacent point configura—;
%tion reﬁresented by each node. ;
E The utility of graph Gp is readily seen by considering E
 the example unidirectional configuration shown in Figure f
i3.5. As the configuration 1s scanned from left to right, a i

path is traced out in the precedence graph Gp

@& l> & *‘ Z’ l' ® €
| node
entered 3 7 3 9 5 2 L

running sum
of f-wvalues 0 1 1 1 0 0 0

| running sum
of Algorithm
| 2.1 opera- U 5 9 9 1.2 16 20
! tions (steps
i 5, 6, and 7 . e
only) ’

Figure 3.5. An example unidirectional configuration
illustrating the use of the precedence
graph Gp to evaluate the number of oper-
ations required in steps 5,6, and 7 of
Algorithm 3.1 when constructing an access
graph from this configuration.




As can be seen in Figure 3.5, the number of operations '
|

required by steps 5, 6, and 7 of Algorithm 3.1 to constructl

;an access graph from the configuration shown is 20. The
| number of operations per point is 20/8. Also note that the?
final sum of f-values over all nodes entered in Gp is 0. By

observing these facts, we arrive at the following con-

straint rules for using the precedence graph Gp to create

valid unidirectional configurations.

1. The sum of all f-values in the node sequence rep-
resenting‘a valid unidirectional configuration
must be zero. This occurs because the f-values
actually keep track of the beginning and ends of

segments.

2. The cumulative sum of all f-values up to any
intermediate point in the sequence of nodes rep-
resenting a valid unidirectional configuration

must be greater than or equal to zero.

3. The first node in the sequence of nodes represent-
l ing a valid unidirectional configuration must be

an s node and the last node must be a t node.

} For example, the node sequence 8 9 5 represents a valid
i

Iconfiguration (Fig. 3.6 a ) since the above three rules are
followed, whereas the node sequence 8 9 5 5 does not rep-

resent a valid configuration (Fig. 3.6 b) since both rules

1 and 2 are violated even though a path exists in Gp with




the node sequence 8 9 5 5,

=
8 9 5

(a) The valid unidirectional configuration
for the node sequence 8 9 5.

(b) The invalid unidirectional configuration
for the node sequence 8 9 5 5,

tional configurations as characterized
by graph Gp.

sole exception of ncde 9. Thus, we create a new graph,
with four nodes {A,B,C,D} where A={1,2,3,6}, B={7,8},
C={4,5}, and D={9}. By collapsing nedes in Gp as just

defined and inserting a directed arc in Gé between two

Figure 3.6. Examples of valid and invalid unidirec-

It is possible to simplify graph Gp by combining nodes
with the same f-value together into common-nodes with the

G/

2L

3




"nodes X and Y if at least one arc of the same direction

|
| exists in Gp between two nodes x, y, where x€X and y€Y,

!the graph Gé as shown in Figure 3.7 is constructed.

/

Figure 3.7. The simplified precedence graph Gp

!Obviously, a path P in Gp maps into a path P’ in Gé. If P.
|

i contains n nodes, and satisfies the three constraint rules
for valid unidirectional configurations, then P’ also con-
tains n nodes and likewise satisfies those same rules.

Also, the sum. of the number of operations in Algorithm 3.1

| o ' 52



- in producing path P is the same as that to produce path P’.

EThus, for our purposes, graph Gé'may be used to ascertain

‘the minimum and maximum number of operations required by

;configurations requiring those times is also inferred by

’G’

steps 5, 6, and 7 of Algorithm 3.1. The unidirectional

P ,
First, consider the maximum number of operations. Ob-

serving graph Gé, it is obvious that the path consisting
only of a sequence of nodes AAA... gives a maximum number
of operations of Um, where m is the number of intervals in
the unidirectional configuration producing this max value. g
If n is the number'of unidirectional points, then n=m+l
and there are %(n—l) operatiohs required for one scan of
the configuration. Determining the minimum number of op-
erations is only slightly more difficult. Consider node D
with an operation count of 0. Note that for a configura-
tion of more than two points, node D may occur no more than
1/2 times the total number of nodesnin any path. Also,
nodes B and C must always occur the same number of times

in any path satisfying the constraint rules. If we use the
notation Ak to mean a node sequence of k A's where AO
means node A is not in the sequence, then, by observation,

we see that the sequence giving the smallest number of op-

erations is .of the form

s¥(amyMck  or . BX(DM)TC®, k=zo0, m=zo0.
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' The number of operations for either of these sequences is

3k+ 4m+0m+k = 4(m+k) .

The number of intervals in either of these.configurations
is

k+2m+k = 2(m+k) .

|
|
|
Thus, the minimum number of operations per interval 1s |
Y(m+k) _ : . i
TFky 2 and the total number of operations for n points i
is 2(n-1) for one scan of the point line by the algorithm. ‘
An example of the unidirectional configurations re-
quiring the minimum and maximum number of operations by

steps 5, 6, and 7 of Algorithm 3.1 is shown in Figure 3.8.

S 8 @ & o ® -

(a) The configuration requiring a maximum of
four operations per poilnt.

e 1

(b) A configuration requiring a minimum of
two operations per point.

Figure 3.8. Example of configurations requiring
minimum and maximum running times for
steps 5, 6, and 7 of Algorithm 3.1.
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Using the results just obtained, and Table 3.3, the

and the maximum number

minimum number of operations Opsmin

of operations Opsm

5% are given by the expressions

Ops_. = (2n+2) + (2n-2) + 4n + U(n-1) + 2n+4 = 1ln+l

min

and

Ops = 2n+2 + 2n-2 + Un + 8(n-1) + 2n+4 = 18n .

max

Hence, the unconstrained access graph can be processed in

linear time.

3.2 Bounds on the Size of the Unconstrained Access
| Graph |

The size of G is important since algorithms which pro-
cess G run in time proportional to the size of G. There-
fore, we wish to get good bounds on the size of G. By
definition, the number of nodes in G is fixed at 2n where
n is the number of points in the configuration D repre-

sented by G.

It is interesting to note that the maximum degree of

any node in G is three. This can be easily seen by observ-

ing that a feasible c-section may be drawn from the left

or the rignt of any interval in a configuration D, and a
switching path may be drawn in G between the two nodes rep-
resenting that interval. These three items are repre-

sented by three arcs in G attached to the same node. Fig-

, ure 3.9 illustrates this point.

| « 55
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can be

in G.

Ci— -section

=r

c-sec‘cionf
f
®|! o

11
switch*ngJ{
path

(a) Part of configuration D showing all pos-
sible paths in interval u.

switching
are

(b) Subgraph of G for interval u in D.

Figure 3.9. A configuration and a subgraph of the

access graph illustrating a node of
degree 3.

Since the number of arcs in a graph is equal to half

the total degree in a graph [27], the number of arcs in G

3
2

The theorem that follows gives a more exact bound

no greater than 2n where n is the number of nodes

56




ion the number of arcs in G. It shows that the number of

‘arcs in G is of complexity O(c,n) where c is the number of

i
\

segments in D.

éTheorem 3.1: Let n be the number of points in a configura-

i

Proof:

tion D, and ¢ the number of segments. - Then
the number of arcs k in the unconstrained

access graph G for D is

k = 3n-c-3.

Let u be the number of uncovered points in D, v be
the number of single-covered points, and w the num-
ber of double-covered points. Then n=u+v+w. Each
uncovered point Py implies two arcs in G, namely,
the arcs corresponding to feasible paths from in-
terval u; ; to u; in both streets s* and s” except
for point Py which has no interval to its left.
Thus, there are twice as many arcs contributed to

G as there are uncovered points in D minus two if

one of the uncovered points 1s point Pq-

If we define

0 if point Py is uncovered
A =41 if point pl 1s single-covered
2 if point Py is double-covered

then the uncovered points in D contribute

2u=(A=1)(A=2) arcs to G.

S

!

|
|
|
|




1

Each routed segment contributes one arc to G un-
less it is attached to point pl. Thus, there are cz
arcs contributed to'G by the segments minus one if
D4 is single-covered or two if p1 is double- i

covered.

Each single-covered point Py contributes one arc !
to G, namely, the arc representing the feasible c-
segment from interval us _q to us in the street op-
posite the one in which the routed segment attached
to Py resides. The one exception to this is when
the single-covered point is pl in which no arc is
contributed. Mathematically; single—covered'points
in D contribute v arcs minus one arc if point pl is!
single-covered, or v+i(A-2) arcs. In the example
of Figure 3.9, feasible c-segments b, ¢, d, and T

create arcs in G as contributed by single-covered

points Py p3, Pys and Pg respectively.

Finally, noting that double-covered points con-
tribute no arcs to G, and also noting that there

are n-1 switching arcs in G, we have

~
]

2u-(A=1) (A=2)+v+r(r=-2)+(c-A)+(n-1)

n+2u+tv+c-3 .

Since u=c-v-w, and since each segment has two

single-covered points unless two segments have the
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same end point, in which case the total number of
single-covered points contributed by the segments
is reduced by two, then v=2n-2w, and u=c-2n+2.
Substituting for u and v in the exﬁression for k

above, we obtain

k = 3n-c-3. a

Note that the number of arcs in G is a linear function of
the number of points n in D and the number of segments c
routed in D. By using Theorem 3.1, we can establish the

upper and lower bounds on k as shown in Corollary 3.1.

| Proof:

Corollary 3.1: "The bounds on the number of arcs in the

- unconstrained access graph G for a routing
configuration D, where D has n configura-
tion points and m original points (i.e.,

no pseudo-points), are

2(n—l)él<é2(n—é)+m.

The minimum number of segments c¢ for a given value
of n maximizes k. There are r =n-m pseudo-points,
each of which, by definition, are double-covered.
Thus, there must be at least 4-1 segments defined
on r pseudo-points.. The must also be at least two
additioual segments each with one end point defined

on an original point. Thus, ¢ Zr+l. Substituting

229
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this lower bound for ¢ in the expression in Theorem

‘ 3.1 results in
} ' k=2(n=-2)+m (nzm).

A maximum of n-1 segments can be defined on n

i points. Thus,

kz2(n-1) . o

3.3 Equivalence of a Configuration and its Access

Graph

Up to this poiht, we have discussed the generation of

the unconstrained access graph and its»size. We now give
some theoretical results which show the equivalence of a
configuration and its unconstrained access graph. In ad-
dition, the proof of the major theorem in this section also
provides a method by which a configuration can be generatedi
given an access graph. Even though this method is not fur-

there exploited in this study, results presented in later

chapters take advantage of the fact that a configuration

can be obtained from an access graph. The results in this

section are applicable (with appropriate extensions) to all
access graphs discussed in this dissertation.

To prove equivalence, it is first necessary to show
that every configuration has an access_graph, and, further-

more, that this graph is unique.

e e e ——————— i T e e s s e T P4 = - Siei it 4w e
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?Lemma 3L A configuration defines a unique access graph.!
e B
igggggz Existence is proven by définition of an access %
graph. There is only one access graph for a con-
figuration because (1) each channel in the con-
figuration is represented by a path containing at

; | least one arc in the access graph, (2) no more
than one path is defined by a channel, and (3)
each street arc in the access graph represents one
and only one distinct ceanonical channel in the con-

figuration. Thus, there is a 1-1 mapping of can-

onical channels in a configuration to arcs in the
access graph. Furthermore, the mapping from inter-
vals (which contain the configuration points) is
also a 1-1 mapping to the triplet (V—,V+,W) where
V™ is a node representing the lower street side of
an interval, V+ is a node representing the upper
street side of an interval,‘and W represents the
switching arc between V~ and v*. Note that al-

though W always exists in the unconstrained graph,

it may not exist in the constrained access graphs
presented in the next two chapters. Nodes V and
i V+ exist for every interval in the configuration

by definition. Therefore, the access graph for a

configuration always exists and is unique. |




; Before presenting the next theorem, we present the con-
%cept of a dual configuration and give a simple procedure
Tfor obtaining itAand the access graph (called a dual access;
Egraph) for the dual configuration.

A dual configuration is a configuration, as defined in

fChapter 2, with the additional characteristics:

1. tree connections, as well as chain connections,

are permitted

2. more than. one segment may be drawn between the

i same two points, and

i 3. the dual configuration has m = % +1 points where
the access graph from which the configuration is

obtained has no nodes.

Figure 3.10 shows an example of a dual configuration

éwhere1n= Hidlen

Figure 3.10. A dual configuration D*.
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i A dual configuration D* is obtained from an access

. graph G by the following simple procedure.

; 1. For every pair of nodes (i+,i—) in G, draw a
point i on the point line to the right of point
(1-1). | |

2. For every street arc (x+,y+) or (x ,y ) in G, :
draw a rectilinear path between points x and y |
such that it does not intersect any paths already

drawn. Note that tree connections may occur.

3. Add a point to the left of point 1 on the point

line. Label it 0.
L., Relabel all points such that i=i+1.

5. If point 1 is uncovered in street s* of D draw
a rectilinear path between points 1 and 2 in

*

street s¥ of D This completes the construction

of the dual configuration p*. o

; . . B %
The reason one can draw non-intersecting paths in D

in step 2 is because street arcs in G do not intersect.

}(In fact, G is planar since the configuration D from which

!
Wi o N 5 PR :
it is obtained ‘is planar, by definition, and the arcs in

G represent non-intersecting channels in D.) Furthermore,
the points in D" lie aleng a line in the same sequence as

|
|
|
the points in D. |
i

In the proof of the equivalence between D and G 1t willg

,, 83



' be necessary to construct a configuration D’ from D*. The
| ?
relabeling done in step U4 is performed so that the channels’

of D* will define the configuration D’ which possesses the
same segment end-point labels as D. Consider a segment E
(u,v) in street st of D as shown in Figure 3.l1lla. (This E
same argument also holds in street S7). The outer canoni-
' cal channel of this segment is between intervals (u-1) and
v. If the relabeling is not performed in constructing D*,

then the channel in D is represented by the segment (u-1,v)

in D¥ as shown by the heavy lines in Figure 3.11b. If we

 then construct the configuration D’ where the segments in
D’ represent the canonical channels in D*, we obtain the

configuration shown in Figure 3.1lc which contains only the

segment (u-1,v-1). However, by relabeling each point in

D* to be i=1i+l as in step 4 of the construction procedure,

we obtain the segment (u,v) in D’. We take advantage of

' this. feature to prove that D'’= D in Theorem 3.2.

The reason a path between points 1 and 2 in D* is drawn

if point 1 is uncovered in D is to ensure that a channel

does not exist in D* with one end at interval 1. If such a
i channel were to exist in D¥ then D’ would contain a segment
!with point 1 as one of its end points. Since we desire D’
%to equal D, such a segment is undesired in D’ if in fact
ithere is no segment attached to point 1 in D.

|

i As an example of the generation of a dual configura-
%tion, considef the configuraticn D in Figure 3.12. The
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channel represented by the segment in
heavy lines in (b)\\\

-l

(a) Configuration D (u=3, v=5).

channel represented by segment in (C%)

1 6

(b) Configuration D* without point re-
labeling (u=3,v=5).

& l & l . o

1 2 3 4 5

(c) Configuration D’ resulting from D¥
shown in (b).

Figure 3.11. A sequence of configurations (upper

'street only) demonstrating the label-
ing of points.
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Figure 3.12.. A configuration D.

} The dual configuration D* for D as obtained from graph |

|

EG using the dual configuration construction procedure is |

shown in Figure 3.10. Note that path (17 ,27) is constructed%

as a result of step 5 in the construction procedure.
A comparison of the dual configuration in Figure 3.10 i

with the configuration in Figure 3.12 shows several infer-

: : e s ¥
esting features. First, the number of points in D" 1s one

more than the number of points in D. Second, D¥ 1is planar,

'has tree as well as chain connections (e.g., connections in!
| |
: N ; o |
' both streets at point 4), and has two segments attached to

the same points (e.g., the segments in opposite streets
|

| . e - . L2
iattached to points 8 and 9). Finally, with the exceptlon
of the channel between intervals 10 and 11 in the lower

® . % . .
street of D", every channel in D" corresponds to an arc in

i
|
!
i
{

D (hence the term "dual"). To further examine this point,

-
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1
|

. consider Figure 3.14 which is the dual access graph G" for

¥

'D". G¥ is defined in the same manner as an access graph

!

|

'with the exception that nodes (m+1)* and (m+1)” (as well as’

iadjacent arcs) are not created. Algorithm'3.l for generat—é

~ing an access graph can be used to generate the dual access

' graph if the configurations shown in Table 2.2 (and ref-

i
|
|
|
!

Connections

erenced by the jump table in Algorithm 3.1) are augmented

with tree connections as shown in Table 3.4.

Table 3.4. Adjacent Point Configurations with Tree

Contiguration in

| 4 P é

| 5 o e

7 & &

: I 5
T e

' 5 &S o

T 4
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If we now create a configuration (see Figure 3.15) froml

the configuration G* by drawing a point i to the right of I
' point (i-1) on the point line for every pair of nodes

E(i+,i_) in G*, and for every strict arc (x+,y+) (or (x_,y_»?

iin G* a rectilinear path between.points x and y is drawn i

such that no paths intersect, we obtain a configuration D’ |

|

which, as can be seen, is the same as D. Thus we see that :

one can obtain the configuration which generates an access

graph when given only the graph.

Figure 3.15. The configuration D’= D.

The foregoing discussion is the foundation for Theorem

—a
()
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. Theorem 3.2: An access graph defines a unique configuration

1

Proof:

D’. If D is the configuration from which the

access graph is obtained, then D’= D.

Let G be the access graph for a configuration D. f
|
|

Let D’ be the configuration resulting from the fol-!

lowing sequence of constructions as described

above:
G+D +G¥+>D’ ,

First, note that.D* is uniquely derived from G
since (1) each node pair in G maps onto a uhique |
point in D¥, and (2) each street arc in G maps
onto a unique path in D¥. Second, é* is uniquely
derived from D* by Lemma 3.1. Finally, D’ is
uniquely derived from ¢* by the same argument above
for the G-to-D¥ construction. Thus, D’ is uniquely
obtained from G.

To show that D’= D, let (u,v) be a segment routed

between points u and v in street st in D. (This |
- |

same argument holds for a segment in street S as

well.) Then the outer canonical channel of seg-

ment (u,v) is represented by an arc in G between

nodes (u—l)+ and v'. This arc is represented by

the segment (u,(v+l)) in D¥ as a result of the con-

l
l
struction presented earlier in this section. The |
|
l
|
|
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| Theorem

inner channel (which is canonical) of segment

(u,(v+1)) in D¥ is represented by an arc (u+,v+

)

. in G' which is represented by a segment (u,v) in

street 37 of D Thus, a segment (u,v) in D is
mapped into a segment (u,v) in D’. By extending
this argument to every segment and uncovered point
in D, and imposing the constraints on point m+l

in D¥ (and nodes (m+l)+ and (m+1)” in G¥) as de-
fined by the dual configuration and dual access
graph construction procedures stated previously in
this section, the equivalence of D’ in D is

shown. , o

equivalence between a configuration and its access

y now be proven.

3.3: A configuration and its access graph are

Proof:

equivalent, i.e., they map 1-1.

By Lemma 3.1, the access graph for a configuration
exists and is unique. Likewise, by Theorem 3.2,
the configuration cobtained from an access graph
exists and is unique. Furthermore; by the same
theorem, the configuration cttained from an access
graph is identical to the configuration which gen-
erates the access graph. Thus; equivalence between

a configuration and its access graph is shown. 0




——————e—— s

3.4 PFinding a Minimum-Length Path in a Unidirectional

% Configuration

With the unconstrained access graph G now defined, it
' is an easy matter to find a minimum length path for a net
\ ; |
i
|

|
|
%N= (s,t) between points s and t in a configuration. It is
!

s important to note that the steps outlined here for finding .
i
a minimum-length path for a net in an unconstrained config-

uration are identical to those required to find minimum-
length feasible paths in both fixed-track and floating-
track constrained confiéurations. The constrained cases
are explored in the next two chapters.

Consider a net N= (s,t) with end points s and t where

's and t are two points in a unidirectional configuration D.
Let G be the unconstrained access graph for D. Then, with
appropriate consideration of the first and last points, a

least-cost path is found in G between these two points. !
Since point s (or t) in D is represented by two nodes s+
and s~ (or t' and t7) in G, we must select the first and

last path points from s+, s, t+, and t~ such that the se-

!lected nodes are uncovered, and there are no shorter paths
|

\ + = + -

| between any nodes s , s~ and t or t . For example, con-
|

|

| sider the configuration shown in Figure 3.16. The uncon-

strained access graph for D is shown in Figure 3.17.

-~
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Figure 3.16.

Figure 3.17.

—®

N —
g

8]

'O
ki:]
o

®

A configuration D which illustrates
end-point selection for determining
minimum-length paths.

The unconstrained access graph G for
the configuration shown in Fig.3.16.
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‘ Assume we wish to route net N= (pl,pu). By noticing
%that point Py in D is covered in street S+, we note that
Tone end of the paﬁh to be found in G may not be node M+
ETherefore, it must be_node 47, Also, noticing that point :

tpl is completely uncovered in D, we are free to choose

'either node 17 or 1~ in G as the other end of the path to

. i
be found in G. However, if we choose node l+ to be the end|
node, any path we find between nodes 4~ and 17 will be

greater in length by 1 unit than any path between nodes 4~

and 1. Thus, we choose node 1~ to be the other end of the

‘path. The heavy arcs represent a minimum-length path be- |
| :

!tween.nodes 1~ and 4~

} The approach taken here to find the appropriate end
inodes is: if point s is uncovered in D then "collapse"
!nodes s+ and s to a single node s (similarly for nodes t+
¥and t”) by forcing switching arcs (s+,s_) ((t+,t_)) to a
llength of zero. After the least-cost algorithm is run be-
;tween s and t in G, we select the approprlate end nodes for

|

+.
} If s (or t) is covered in, say, street S , then choose
i |
- |
:nose s~ (or t ) as the end node. No node collapsing is ne-,

cessary in this case.

3.4.1 Algorithm 3.2. Minimum-length path routing in an

unconstrained configuration

Purpose: This algorithm determines a feasible path P for

|
|
|

'a net N in an unconstrained configuration D such that P
| . 7

)

[



. 1is of minimal length.

iMethod: This simple procedure operates such that the end-

!

:nodes in G are first determined, and then the least-cost

?algorithm as presented in Chapter 2 1is executed. The se-

rquence of nodes thus found exactly represents a minimal-

. length path for net N in D.

Input: A net N=(s,t) and an unconstrained access graph G

representing a unidirectional configuration D.
Output: A minimal-length path for N in D.

Procedure:
Step 1. Select the path end points in G as follows:
(a) if both sT and 57 are covered, no so-

lution exists.

them to a single node by forcing arc

(s+,s_) to have a length of zero.

choose s~ (s7) as the end point.

i Step 2. Find a least-cost path in G between the end

points found in step 1 using the least-cost

ment or switch represented by the arc.

7

+ - .
(b) if neither s nor s 1is covered, collapse.

(¢) if s+ (s”) is covered and s (s+) is not,

(d) perform steps a-c above replacing s by €.

C

|
|

i
|
|

|
|
|
[
|
i

algorithm presented in Chpater 2, Section 2.11,

|

The cost of each arc is the length of the seg-.

|
i
|
|

—



- e —————— i —— a— =

Step 3. If either (or both) of the end points were
obtained by collapsing nodes in step 1, then
| ) determine the appropriate end points as fol- ‘
lows. Let the path found in étep 2 be defined;
by node sequence s, Zl’z2""’zb-l’zb’t and E
let the label on Zq be x (i.e., x=+ or -).
Then s> is the appropriate end node adjacent !
to zZq - Similarly, £y is the appropriate end

node adjacent to Zy which has 1abé1 Vs a

In this procedure, the path found in G represents the

path in D for N.

3.4.2 Timing analysis of Algorithm 3.2

Steps 1 and 3 require essentially constant time. Thus,
step 2 defines the complexity for Algorithm 3.2. As shown
in Chapter 2, a least-cost path may be found in G with no
more than 6n+(5n+l)log2(2n—l)+log2(n) operations. Algor-

ithm 3.2 is therefore of complexity A (nlogn).

3.4.3 An example

i Consider the routed configuration D in Figure 3.12, and!

|
3 L3 3 . y
assume we wish to find the minimum length path for net N= !

(p3,p5). First, the access graph representing D is ob- i
tained using Algorithm 3.1. The resulting graph is shown
in Figure 3.13. Each point in D is asSumed to be separ-

ated by two units of length. The minimum-length path




e e — _

1procedure (Algorithm 3.2) is executed next. The heavy arcs

I
|
i

{ peflect the path that was found for this example.

|
|
i
|

pl p2 p3 pq ps p6 p9 plo

@ <l @ ® @ @ g} T%8 @ @

Figure 3.18. .A configuration illustrating the minimum-
length routing of net N= (pg,ps).

Figure 3.19. The access graph

f’
shown in Fig. 3.18.

or the configuration




i Finally, the configuration D is updated to a new con-
ifiguration which contains the path for N. This configura-
%

‘tion is shown in Figure 3.20. Note that a pseudo-point

Ewas added between points pl and PR

|
i

© l 0p3o§u.60 o Tpo €

8 by Pyg

Figure 3.20; The final configuration containing the
minimum-length routed path for net N.

3.5 Conclusions

Given that one is not concerned about the restrictions

imposed by tracks when attempting to route nets in a uni-
directional .environment, the minimum-length routing can be
iefficiently performed given the results presented in this
Ichapter'. The method for routing presented here can be |
used for practical problems. Using a simple track assign-

]ment algorithm, for instance, scan the points Py from left
!to right incrementing a counter CNTR+ (CNTR-) if point Py
|




[ e

%is covered in street S° (87) and p; is the left-most point
%of the attached segment. (CNTR+ (CNTR-) is-the track
Eassigned to the segment attached to Pj - Decrement CNTR+
(CNTR=-) if Py is the right-most point of the attached seg-
ment. No guarantee is given that routes will be within
street track capacities. However, if one or more pafhs
exist for a route, the results given here guarantee that a
path will be found.

If we assume that a large number of nets are to be

routed in an unconstrained configuration with n points,

then the total routing process requires 0(n2logn) opera-

| tions. Ting and So's method requires O(nz) operations.
iThus, the two methods are similar in efficiency. The re-
isults given in this chapter are noteworthy for their ca-

pability of finding the optimal solution.

80



|

' in a unidirectional configuration. Given the assertion that

CHAPTER U

FIXED-TRACK UNIDIRECTIONAL ROUTING

4,0 Introduction

In this chapter a somewhat more complicated unidirec-
tional structure is considered than that studied in the pre-
vious chapter. 'Fortunately, the basic model (i.e., the un-
constrained access graph) is easily extended to account for
the constraints introduced. We also introduce and study

the notion of congestion with respect to the density of routes

minimizing congestion leads to a more routable board, we
show how to use an appropriately labeled access graph to

route a net such that congestion is minimized.

,1 The Fixed-Track Unidirectional Configuration

Whereas in the previous chapter no constraints were

' we assume there is a limit to the number of both street

placed on tracks (in fact, we ignored them altogether), herﬁ
i
i
|

' and switching tracks. Also, we assume that once a feasible

. l
section has been assigned to a track for routing purposes,

it cannot be moved to a different track to accommodate

future paths — hence, the name "fixed track" routing.

Some definitions relating to fixed-track configurations are
|

: now presented. - |

81



;M.l.l Street capacity

Let D be a unidirectional configuration and consider x

to represent either + or -. The number of tracks in street

X

s* is defined to be the street capacity T: of street S*, and

the number of tracks in each interval ui in D is called the

|
|
i
|
|
i
i
|
|

interval capacity ]uil.

4,1.2 Section length

In Section 2.5 of Chapter 2, the notion of length was
presented as a general concept and the units of length were
not specified. With the fixed-track case (as well as the
floating-track case dealt with in Chapter 5) we are in a
position to specify the units of length.

The location @y of point Py in D is the total number
of vertical tracks (occupied or unoccupied) to the left of
and included in Dy - For example, the location of each

point is shown in the configuration in Figure 4.1.

ol o
»
L 3

i)
[
‘g
no
G VAN
(O8]
=
.
\J1
o]
(@)

R
I
=
w)
o=
Ul
-3
O

Figure 4.1. An illustration of the location of each

point in a configuration.

I
|
|
|

—

|
i




is laj-ai[ the length of a section is the total number of

It is obvious that since the length of a section (pi,pjj
i

switching tracks contained within the span of the section.

4,1.3 Inner and outer channels

As defined in Chapter'2, a channel is an area of the
unidirectional configuration through which a wire can be

routed (if the channel contains unused tracks).

A section channel is further defined to be an inner chan-|

nel with respect to a section y if it is to the inside of

v and an outer channel if it is to the outside of y. If y is
in track ti and the nearest adjacent inner section is in
track tj’ then the inner channel capacity p cf the channel

i
adjacent outer section to y is in track tk then the outer

bounded by tracks ti and'tj is ¢t -tj—l. If the nearest

channel capacity p is ¢t —ti—l. Figure 4,2 illustrates an

k

inner and outer channel.

outer
channel

|

i

@ & b e o ® & &
inner
channel

Figure 4.2. Configuration illustrating the concept

of inner and outer channels.
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;Algorithm 4.1: Construction of the fixed-track access

| Purpose: This algorithm generates a weighted unidirected
graph G, called an access graph for a given routed config-

uration D where street capacities are consldered, and track

assignments for routed paths remain unchanged.

Method: The point line is scanned twice from left to right,

once for street s* and a second time for street S~. During

each scan successive adjacent points Py and D4 are exam-
ined. Appropriate action is taken in steps 5-11 of the
procedure based upon which one of nine adjacent point con-
figurations (see Table 2.2, Chapter 2) is applicable.

Steps 5-10 are performed only if tracks are available for

the feasible segment being processed. Stack and graph op- |
erations are performed such that at the conclusion of the
second point scan, the entire graph is constructed. The

algorithm uses a stack S which contains elements of the

form (j,pj), where j represents a point, and pj is the in-

ner track adjacent to the section bounding the outer channel

1 |
iOf the feasible segment whose left point is pj. We define

point Pr+1 to be an uncovered imaginary point lying just to

the right of point P, on the point line in D. {

Input: Routed configuration D including the street tracks;

assigned to each segment, the number [uil of free switching

85!
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1

i tracks in each interval us o and the number ay of switching

tracks to the left of each point Py

Output: The fixed-track access graph for D.

Procedure:

Step 1.

Step 2.

Step

(W8]

Step 4.

Step 5.

(initialization) Set x="+" and set stack S

empty. Construct the 2n nodes l+,2+,...,n+,

1 42 guwsgh)

(switching arcs) For i=1,2,...,n-1, make an
arc between nodes i' and i~ if |u;[ >0. Label

each arc thus created as (w,l,[ui[,ai).
Set 1i=0. Push item (O,TX) on stack S.

(begin main loop) Set 1= i+1. Let the top
item of stack S be (j,pj). Consider points
pi and Ps41 in D. Select the applicable case
from Table 4.1 and branch to the step indi-
cated. ti is the track occupied by the seg-

ment attached to point Py in D. If there is

no such segment, then ti= 0

Pop stack S to get J and My If j#0 and
ti <uj, construct arc (ix,jx) and label it

= = t i S
(x,ai aj’“j ti,ui). Push (l,pj) cnto stack

regardless of the value of j or ti. Go to

step 11.

IR S e s v mmeciwesman e 3 mwema e @ e S om - A - e e e
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Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

This algorithm is similar to the access graph construc-
tion algorithm in Chapter 3 with the exceptions
1) that arcs are labeled with U-tuples rather than
2-tuples, and
2) arcs are not created if the channels represented

by the arcs contain no free tracks.

Push (i,ti—l) onto stack S. Go to step 11.

Pop stack S to get j and pj. If ujaﬁo, con-

struct arc (ix,jx) and label it (x,ai—aj,pj,O).

Go to step 11.
Pop stack S to get j and p,. If pjsfo and
j #0, construct arc (ix,jx) and label it

(x,ai—aj,uj,O). Push (i,uj) onto stack S re- |
gardless of the value of pj or j. Go to step

11.

Pop stack S to get j and “j' It ti_<“j’ con-
struct an arc (ix,jx) and label it (x,ai-aj,
pj+ti,ti). Go to step 11.

(end of main loop) If i#n, then go to step

L.

If x="+," then set x="-," set stack S empty,

and go to step 3. Otherwise, exit procedure.
m]




Table 4.1 Jump Table for Algorithm 4.1,

pdjacent Point By 13 Pj4y 18 By 18 left Pygy 19 1848
Configuration covered covered point of point of
(Table 2.2,Ch.2) in s in 8™ segment segment Go to Step
1 no no — = 5
2 yes no no e 5
no yes yes 8
ly no yes — . no 7
5 yes yes no no 9
6 yes yes no yes 5
T yes no yes —_— 6
8 yes yes yes yes 6 |
9 yes yes yés no 10 ;

1 €0




4.2.1 Example of operation of Algorithm b.1

4.1, consider the following example. A routed configura-

| tion consisting of four nets is routed as shown in Figure

b.3.

Track
it
Street| 3
st 2
point %
line 7| l‘l .3 ‘4 ‘5 ‘-5 /(7' o) ‘9 10
Street 5
S~ |
&= 3 5 7 9 11 12 13 15 17

Figure 4.3. Routed configuration used as an example

of the operation of Algorithm 4.1.

We first construct and label the twenty nodes of G.

- + - + - - -
! it and 1 except for nodes 6 , 6 ; 7 , 7 ; 10 &and 10

|
i
! Arcs are then inserted (and labeled) between all node pairs
i
|
l

|
|
|
i
|

To gain insight into the operation and'usé of Algorithmi

|

44444
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since there are no available vertical tracks in intervals

6, 7, and 10.

Starting with i=1 in step 4, and with stack S contain-

ing one element, (0,4), we branch to step 6. The track
assigned to section (1,6) is 3, so we push (1,2) onto stack
S (Figure 4.4a). Next time step 4 is processed, 1=2, and
control branches to step 10 where no action on stack S or
graph G is taken. When step 4 is again entered, i =3, and
control branches to step 5. The track assigned to section
(2,3) is 1 which is less than pj:=2. j#0, so arc (l+,3+)
is created and labeled (+,4,1,1). (3,2) is pushed onto
stack S since i1 =13, and control branches to step 10 (Figure!
4.4b). The next time thorugh step 4, control branches to
step 10 where no action on stack S or graph G 1is taken.
Step 4 is again entered with i =5 where, branching to step

9, we see t. =2 which is not less than “j =2. Thus, no

5
arc is created. Figure 4.lc shows the stack as it exists
at this point. Continuing in the same manner to complete

the scan of points for x="+" we obtain the results shown

e
- |

|
!
i

in Table U4.2. Completing the processing of Algorithm b1

|
by performing the scan of points with x= "_" presults in the;

access graph shown in Figure 4.5 with solid lines for ares.

~

The dotted arcs represent those arcs that would be in G if

|
1
'
!
|
|
]
. |
D were unconstrained. |
!
|
|

90 |



(1,2) (3,2)
(0,4) ' (0,4) (0,4)

(a) After point 1 (b) After point 3 (¢) After point 5

: (T,3) '
(6,4) (6,4) (6,4)
(d) After point 6 (e) After point 7 (f) After point 8
(9.4) (10.4)
1 (g) After point 9 (h) After point 10 (end of street ST i

scan)

Figure 4.4. Stack S configuration at various points
of execution of Algorthm 4,1 with the

configuration shown in Figure 4.3 as in-

put.
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Table 4.2.

Processing Steps for an Example of the

Processing of Algorithm 4.1.

; Process Stack Stack Arc Label
Step Action Fig.4.4 Created of Arc.

1 6 Push (1,2) (a) - -

2 11 ~ —~ ~ -

3 5. PR R m atsh s

4 10 _ _ _ _

5 9 Pop (3,2) (c) = =

65 e () @ - -

7 6. Push (7,3) () - -

8 7 Pop (7,3)  (£)  (77,8T)  (+,1,3,0)

s s R @ - .

10 5 Pop .0 m 9%,100) (+,2,4,0)

Push




Figure 4.5. Access graph for routed configuration
D shown in Figure U4.3. Dotted arcs are
i - present if tracks are ignored (i.e.,

unconstrained access graph).
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h,2.2 Execution time of Algorithm 4.1

i
|
The derivation of the execution times for steps 5-10 off
the algorithm is based oh'the same execution time analysis f
for Algorithm 3.1 in the previous chapter. Fortunately, as!
' we show below, Algorithm 4.1 is sufficiently similar to
Algorithm 3.1 that we can use the configuration requiring
maximum and minimum running times for Algorithm 3.1 to de-
termine the maximum and minimum running times for Algorithm

4.1.

Consider a configuration D with n points. Then the

first three steps of Algorithm 3.1 differ from the first
three steps of Algorithm 4.1 only by the inclusion of a
test for switching channels in step 2 of Algorithm 4.1.
The last two steps of each algorithm are identical. Thus,
referring to Table 3.2, steps 1, 2, 3, 11, and 12 of Al-

gorithm 4.1 require
(2n+2) + (2n-2) + 2n+4 +n-1 = Tn+3 operations .

Steps 4 through 9 of Algorithm 4,1 can be mapped into

similar steps of Algorithm 3.1 as shown:

. . e
Algorithm 3.1 Algorithm 4.1 Rumben 61 OHeravions

Each Time Entered !

|
step 4 step U4 2
step 5 steps 5,8 4
step 6 step 6 2

step 7 steps 7,9 4 E

L e } L. |



previous chapter to derive a configuration requiring the
configuration requiring the minimum number of operations.

These configurations are shown in Figure 3.8 and repeated

here in Figure 4.6.

(a)

e

(b)

A

Examples of unidirectional configuration

requiring a maximum and minimum number o

operations per interval for steps L -10

of Algorithm 4.1.

(a) The configuration requiring a maxi-
mum number of operations.

(b) The configuration requiring a mini-

| : mum number oi operations.

Figure 4.

adjacent point configuration analysis as carried out in the

Because of the mapping shown above, we can use the same

maximum number of operations by Algorithm 4.1 as well as a £

s
r



For the maximum case, step 5 is repeatedly entered

n-1 times for each scan of the points. Thus, 4(n-1) opera-
tions are performed by Algorithm 4.1 excluding steps 1, 2,

3, 10, and 11 for one scan of the ooswwmcwwnwos points. If
we include these steps, Algorithm 4.1 requires, in the worst|

case,

@vmsmx = 7Tn+3 +8(n-1) = 15n-5 operations .

For the minimum case, we again refer to Section2.2.1of
the previous chapter where we note that either of the node

sequences
d | .
X(ap)"ck or B¥(DA)™cK, k=20, mzoO

for the simplified vwmomamsom graph shown in Figure 3.7 ap-
plies. The number of operations reflected by these nodes

for Algorithm 4.1 is:

node operations-

o a w =
o &=

Thus, assuming a track always exists if needed, the

total number of operations corresponding to the simplified

| precedence graph node sequences for the minimum configura-
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ltion case (for one scan of the points) is !
2k + Um + Uk = 6k + Um .

The numbef of intervals represented by the node se-

quences is

k+2m+k = 2(m+k) .

Therefore, the minimum number of operations required by
steps U4-10 of Algorithm 4.1 for one scan of the configura-

tion point is

2%2[(n-1){2+5%il] \

min Olc+lim (n=1)
g 2 (m+k)

2(n-1) where k=0, )
It is interesting to note that this 1s the same result as
|

the minimum number of operations for steps 4-9 of Algorithm:

3.1. Finally, we see that the minimum number of operationsg

Ops_._ for the entire Algorithm 4.1 is
min

|
|
|
|
|

o

D8 sn Tn+3+4(n-1) = 1ln-1.

4.,2.3 Bounds on the size of the fixed-track

i

access graph i

!

The same bounds on the size of the unconstrained access,

graph as developed in Section 3.1.4.2 are applicable to

' the size of the fixed-track access graph since the fixed-
L o ) §
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track access graph is a mCUmﬁm@U of the unconstrained ac- W
cess graph. However, we can derive an upper bound for the _
number of arcs k in the fixed-track access graph in terms
of the number of original points m in the configuration,
since n can be no greater than m(l+|u|) where |u| is the
number of switching tracks in each original interval.
First, we need to show that a fixed-track access graph
for a configuration is a subgraph of the unconstrained ac-
cess graph for the same_ configuration. We define a con-
figuration UH to be route-equivalent to a configuration om if

1) D, has the same number of points as D,, and 2) for

3
every segment (a,b) in st or Dy there is a segment (a,b)
in ¥ of D,.

In addition, we define a graph QH to be a topological
subgraph of a graph @m if QH is a subgraph of mm ignoring

all arc labels.

Lemma U4.1: Let mc be an access graph for an unconstrained

f

for a fixed-track configuration ow. If Uc is

configuration Ucv and let G, be an access graph

route-equivalent to Uwv then mw is a topologi-

cal subgraph of mc.

Proof: The fixed-track access graph algorithm, Algor-
ithm b.1,can be mapped directly onto the un- |

constrained access graph algorithm, Algorithm

3.1, as discussed in Section 3.2. Algorithm

L o 98
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Theorem 4.1:

Proof :

4.1 generates no arcs that would not also be
created by Algorithm 3.1 if both were to pro-

cess the same configuration. Since the number

" of nodes created in step 1 of the algorithm is

the same, then a graph Gf generated by Algor-
ithm 4.1 is a subgraph of a graph Gu generated
by Algorithm 3.1 where both process route-
equivalent configurations. Thus, Gf is a topo-

logical subgraph of Gu' O

We now give two related bounds on the size of the fixed-

track access graph.

Let n be the number of points in the routing
configuration D, and ¢ the number of segments
routed in D. Then the number of arcs k in

the fixed-track access graph G for D is

k= 3n-c-3 .

By Theorem 3.1, the number of arcs k' in the
unconstrained access graph G' for D is exactly
én-c—B. Since the fixed—track'graph G is a
topological subgraph of G’, then the number of
arcs k in G is less than or equal to k’. Thus,

k = 3n-c-3. o o

]
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- 3(2n-g)+u+2 - 3n-3 .

max

4.3 Minimum-Length Paths in a Fixed-Track Configuration

A minimum-length feasible path may be found in a fixed-
track configuration in the identical way as for the uncon-
strained case discussed in Chapter 3, Section 3.3.

As an example of determining a minimum-length path for
a net in a fixed-track configuration, consider the config-
uration shown in Figure 4.8. Assume a net N==(p2,p6) is to

be routed.

minimum-length
feasible path

e s e
b1 | @%2 P3T < @O0 P5 1)%
vT"--J—"
1

minimum-congestion
feasible path

Figure 4.8. A fixed-track configuration illustrat-
ing the determination.of a minimum-
length and a minimum-congestion feas-
ible path.




The fixed-track access graph for this configuration is
shown in Figure 4.9. The heavy arcs represent a (in this
case, the only) minimum-length path between nodes 2+ and 6+;
as found by Algorithm 3.2. The path in thé configuration
represented by the path shown in Figure 4.9 is the minimum-

length feasible path shown in Figure 4.8.

(w,1,1,5)

(-,2,2,0)

Figure 4.9. The access graph for the configuration
shown in Fig.l4.8. The heavy arcs rep-
resent the minimum-length path between
nodes 6% and 27T,




The following corollary determines the bounds on k in
terms of the number of original points in D. This bound is

not as tight as that given by Theorem 4.1.

Corollary U4.1: The bounds on the number of arcs k in the

fixed-track access graph G for a routed con-
figuration D with m original unidirectional
points and |u| switching tracks between each

pair of unidirectional points is

0=k=3m-3.

Proof': Since there could possibly be no free tracks in
D, the minimum number of arés in G is 0. The
maximum number of arcs is derivéd from the up-
per bound stated in Theorem 4.1. Let n be the
number of points in D, ¢ the number of segments
routed in D, r the number of pseudo-points in
D, and m the number of original points in D.

By definition, n=m+r and r=0 if c=0. Since

1'%

cz0,

k = 3n-c-3
= 3r+3m-c-3

= 3(m-1) . 0

Thus, the maximum size of the fixed-track access graph

is a linear function of the number of unidirectional points

in D. 100,



One can also derive the result as stated for the upper !
‘bound in Corollary 4.1 if the unconstrained access graph !
containing the greatest nddedegree is found. The configura-l
tion generating this type of graph is the ﬁoint line with-

out any routed segments. The access graph for this con-

figuration is shown in Figure 4.7.

D—C———0O)

ui \U.2’ T ‘un_”_ Un

Figure 4.7. The access graph containing the most
arcs for a configuration with n points.
Arc labels are not shown for clarity.

Notice that two nodes have degree two, two nodes have

degree one, and all other (i.e., 2n-4) nodes have degree

three. Thus, there is a total degree of 3(2n—4)1‘-2(2)+1(2).i

Since the number of arcs in a graph isone half the total

degree, then




4.4 Minimum-Congestion Paths in a Fixed-Track

Configuration

Routing congestion is defined to be the number of routed
wires in a given board area. It 1is hypothésized that min-
imizing routing congestion as each new wire is added poten-
tially increases the total number of wires that may be
routed in a unidirectional configuration.

For the fixed-track case considgred here, instead of
minimizing congestion, the equivalent objective of maximiz-
ing the number of free éracks available for each feasible
path is used. To be exact, we wish to obtain a path for a
net N such fhat some function of the number of free hori-
zontal tracks available for routing the sections of the
path for N is maximized for any path in D for N. It 1is
because of this goal that the parameter p for each arc in
the fixed-track access graph was defined.

To motivate this section, consider once again the con-
figuration shown in Figure 4.8. If the minimum-length
feasible path is considered, the minimum number of tracks
available for the feasible section in street S+ is one.
However, the minimum number of tracks available for the two

+ -
feasible sections (one in street S and one in S ) of the

minimum-congestion feasible path 1s two. This illustration:

also serves to show that minimum-congestion paths are not

necessarily minimum-length paths (although they can be).
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We will now show how to find a fixed-track minimum-
congestion path.

Let- N= (s,t) be a two-point net, and consider the access|
" . |

graph G as created by Algorithm 4.1 for a configuration.

Let the label of each section be (x,8,p,t) where x is "+"
or "-," § is the length of the represented c-section; and
p 1s the track capacity of the channel represented by the

arc. The objectiveils to find a path in the access graph

from nodes s* to t* consisting of arcs a),85,... With
channel capacities PpsPode: such that for any other path
between sX and tx consisting of arcs al,az,... with channel

capacities pi,pé,..

mgx(pi) s max(pg).

i J

Fortunately, Dijkstra's least-cost algorithm as pre-
sented in Chapter 2 can be easily modifiéd to become a
"min-max" algorithm sufficient for our purposes. In step?2
of the algorithm, replace the operation "replace £(v) by
min{l(v),z(ui)+w(ui,v)}" with "replace £(v) by min{2(v),
max[z(ui),w(ui,v)]}." The rest of the algorithm remains
as originally defined. The run-time compléxity of the al-
gorithm is unchanged from that given in Chapter 2.

The minimum-congestion path for a net N=(s,t) in a

configuration is found in a similar fashion as for a

minimum-length path (Algorithm 3.2, Chapter 3) except thati

log
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the "min-max" modified Dijkstra's algorithm is used in
step 2 with w(ui,v)==Tx—p(ui,v) where p is the number of
free tracks in the channel represented by the arc (ui,v),
and T i{s the number of tracks (free and oécupied) in the
street containing the channel.

As an example.of finding a minimum-congestion path,
consider the configuration shown in Figure 4.10. The ac-

cess graph for this configuration is shown in Figure 4.11.

[ l L s wp o=E » < ] ]
. : ) A’ Y
zl 2 ®ojouN| O ®os $o7
P pa— / ~
- i

Figure 4.10. A configuration illustrating the de-
" termination of a minimum-congestion
path. The dotted line represents a
feasible minimum-congestion path for
N=(1,7).
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Figure U4.11. Access graph for the configuration in
Fig.4.10. The heavy arcs represent the

path found by the "min-max" modified
algorithm (see text).

The "min-max" modified algorithm is executed on the !
access graph resulting in the path shown in Figure 4.11.
i Note that if the standard least-coét algorithm were exe-
cuted instead, the path (1+,U+,6+,7+) wo@ld have been

found.

07|
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4,5 Fixed-Track Assignment

The last step in routing a wire in a unidirectional
configuration is to assign a portion of a free track to
each feasible section making up thg feasible path. First,
we define several related configurations. |

Let Di be a fixed-track configuration prior to the
consideration of any feasible paths. If a feasible path
for some two-point net Nj has been defined on Di’ then we
call the configuration a feasible routed configuration Di' After
the path for Nj has been assigned to tracks, the new routed
configuration is labeled D}. We have that D, . =D;. Thus,|
the routing problem is one of successively determining
three configurations for each.net Nj to be added (i.e., D,
D', and D¥). 1In the discussion that follows we consider a
single two-point net N. Thus, the subscripts on D, D', and

*

D* are not needed.

The procedures presented here are based upon the fol-

lowing assumptions:

1. all future nets that could be routed in D are

equally likely to occur.

2. no routed paths are rerouted or reassigned to

free tracks when routing net N.

The objective is to allocate tracks to feasible sec-

tions such that the probability of routing future nets 1is

|
|

| maximized. To do this required knowledge of future
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- 1
channel capacities. To gaiﬁ this information we must firsté
construct (Algorithm 4.2) a partially arc-labeled graph G’ i
which reflects the existence of the feasible path but does :
not require information with regard to the tracks assigned E
to fhe feasible path. Given G’, and based upon an estiméte |

of future track utilization, Algorithm 4.3 is used to

assign the feasible path to tracks.

4.5.1 Generating a feasible access graph G’. from

access graph G

Some of the arcs in G’ have incompletely specified arc
weights because a feasible c-section in the channel repre-
sented by such an arc has not yet been assigned to a track.
The number of vertices m’ in é’ is greater than the number
of vertices m in G by.an amount 2g where g is the number of

switches in the feasible path in D’. Thus,

As will be shown later, the number of arcs k'’ in G’ is
k+g-2 = k'= k+g .

The algorithm for creating the feasible access graph G’
from the access graph G involves splitting some of the

nodes in G into two nodes and deleting and adding arcs to

these nodes as necessary. As an illustration of the node

splitting process, consider Figure 4.12.




feasible path

Figure 4.12. Part of a feasible configuration illus-
trating the creation of G’ from G.

The graph G for the configufation without the feasible path
is shown in Figure 4.13a. The graph G’ for the feasible
configuration including the feasible path is shown in Fig-
ure 4.13b. Arcs are left unlabeled for the sake of clarity.
Noticé node p3+1 in graph G (Fig. 4.13(a)). The arcs

attached to this node reflect three channels: one from in-

j+1’
and the switching channel pj+l‘ The feasible path in Fig-

terval pj top one from interval pj+l ?o interval pj+3,
ure 4.12 splits the interval uj+l into two intervals, uj+l
and ﬁj+1 (the "hat" is an arbitrarily-chosen symbol used to

differentiate the two new adjacent inteérvals). In fact,

the feasible switching path in interval uj+l defines a




(a) Graph G for the partial configuration shown in
Fig.4.12. The heavy arcs reflect the path in
Fig.l4.12.

ih) Graph G’ derived from graph G where nodes p§+l,
p5+2,p§+3, and p5+3 in G are each split intod
two nodes. Arc a in G becomes arcs y and 3 in
G’, and arc a is added to G'.

Figure U4.13. Graphs G and G’ for the configuration
shown in Fig. 4.12.
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"feasible" pseudo-point, ﬁj+l (Fig.4.13(b)). The interval

is shown as the two nodes §+ and ﬁj+l in G’. We say.

i+l j+1
these two nodes are partners of each other.

Now notice arc a in G (Fig.4.13(a)). This arc is re-
flected as arc y in G’ (Fig.4.13(b)). The adjacent node
p3+l in G is no longer valid when the feasible path is con—i
sidered. 1Instead, node 53+l becomes the adjacent node in
G’. Also, a new arc B is added to reflect the outer channel,
530
In general, the arcs adjacent to all split nodes in G’

of the feasible segment (p5+1,§

are only partially labeled since the feasible path has not

|
yet been assigned to tracks. Algorithm 4.L presented later

in this chapter completes the labeling of these arcs as a

result of assigning the feasible path to tracks.

4.5.1.1 Algorithm 4.2. Create a feasible access graph G’

Purpose: This procedure creates a feasible fixed-track
access graph G’ from a fixed—trgck access graph G and a

description of a feasible path P defined on G.

Method: Each node in the path P in G is considered in

turn. If the node being considered 1s adjacent to a

switeching arc in P, then it is replicated and markead with

a hat (7). Arcs are deleted and added as the scan contin-l

ues along the path until the end of the path is reached.

The resulting graph is G’. In this procedure we use the
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concept of node partners where vX 1s the partner of v*. For

X

X - X + + X
=v , then vi=v , and if vi ' =v , then v  =v

|
-
example, if v E
|

This algorithm uses two pointers: zX which is always point-
ing to the current node being processed, and g which pointss
to the first node of each arc sequence representing a féas-
ible section in the configuration. Once such an arc se-
quence 1s found, g points to the first node in the sequence
and zX points to the last node. For example, consider the
path Pl shown in Figure.l4.14. Switching arcs are labeled
"w'", As the procedure executes, g will take on the values

2+, 0, 47, 0, and - successively.

)OO

Figure 4.14., Path Pl illustrating the values taken

on by parameter g as Algorithm 4.2 is

executed.

Input: An access graph G and a path P defined on G.
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OQutput: Feasible access graph G’.

Procedure:

Step 1.

Step 2.

Step 3.

(initialization) Set G’= G. Let the first

node in path P be sx. Since interval s*-1 in

the feasible configuration represented by G’

is no longer accessible to interval sX, delete

arc.(sx-l,sx) from G'. Let g=s*. If s* is

adjacent to a switching arc in P, then set

zx= éx and go to step 3.

(begin main loop) Let z* be the next node in
P, I zX is the final node in P, then go to
step 6.

(node and switching arc creation)

(a) If z¥ is adjacent to a switching arc in
P, then create a node 2% in ¢’ and go to
part (b) of this step. Otherwise, let

u® be the predecessor node of z* in P.

Replace the third parameter in the label

of arc (ux,zx) with the symbol "Z™". Go to

step 2.

(b) If the node partner 7% does not exist, go

to part (c) of this step. Otherwise, add

a new switching arc (%,2%) to G'. Label

this arc (w,1,"z", "a"). Relabel arc K
|
|
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Step 4.

Step 5.

(zx,zx) by (w,l,"Z”,az). (The symbols

in quotes are literally the arc labels.

(c)

They are replaced by actual numerical
values in a later procedure.) a, is the
switching track number of point pz in the

configuration represented by G.

If g=0 set g=zx and go to step 5.

(create the section arc produced by feasible

segment)

(a)
(b)
(e)
(a)
(e)

(end

(a)

If g=sx, s#1, and g< z then add arc

(g-1,2%) and label it (x,"A","Zm" "pr),

If g=sx, s#n, and g> 2z then add arc

(Zx,g) and label it (X,"A","Z","T"),

If g#s” and g<z then add arc (g,z")

and label it (s,"a","z","T").

If g;fsx and g >z then add arc (zx,é)

and label it (x,"aA","z","T"),
Set g=0.
of main loop)

Let uX be a node adjacent to z* in @&
where u< z. Replace the second and
third arc label parameter of arc (ﬁx,zx),

with "A" and "I" respectively.
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Step 6.

(b)

(c)

(termination and exit)

(a)

(b)

(c)

Let vX be a node adjacent to node z* in
G’ where v>gz. Since interval z is no
longer accessible to interval v in street

SX

in the feasible configuration repre-
sented by G’, delete arc (z*,v"). Let the
value of the fourth parameter in the label

of the deleted arc be T’.

If v* is the last node in Pl go to step 2.
Otherwise, the new interval z is access-
ible to v in street S* so add an arc

(2%,v*) to G’ and label it (x,"A","I",T').

Go to step 2.

Ir z* is adjacent to a switching arc in
P then go to step 7. Otherwise, delete

x S
arc (z7-1,z") in G’.

If g=sx, s#1, z#n, and g<z then add
arc (g-1,z"%) and label it (x,"A",":",
"T").

If g=sx, s#n, z#1, and g>z then add
arc (z¥-1,g) and label it (x,"A","I",

"T") .
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(d)

(e)

(f)

Step 7. (This step 1s entered only if the last node in

P is adjacent to a switching arc.)

(a)

(b)

(¢)

4.5.1.2 An example of the operation of Algorithm 4.2

If g#sx, z#n, and g<z then add arc

(g,z%) and label it (x,"™A","g","T"),

Tt g#sx, z#1, and g >z then add arc

(zX-1,8) and label it (x,"A™,"z","T").

Exit algorithm.

Create a new node 2z~ in G’. Add an arc
('x,‘x) to G’ and label it (w,1,"I", a ).
a, is‘the switching track number of point

P, in the configuration represented by G.

Delete arc (zx—l,zx) and add arc (zx-l,
%Y. Label it (x,"A™,"g", "),

Let v* be a node in G’ adjacent to node

zx where v >z (there may be none). Delete

X). Let T be the value of the

arc (zx,v
fourth parameter of the label of arc
(zX,v¥). add arc (2%,v*) to G’ and label

it (x,"aA","t",T"). Exit algorithm. a

The configuration shown in Figure 4.15 and its corres-
ponding access graph as shown in Figure 4.16 will be used

for this example.

|
|
The path P is shown in heavy arcs int




This interval becomes interval

3t in G'.
z”i %;\
p1| @b X vy | @ps _®06
VAR N P D
/
1 3 5<i 6 7 9 il
This point becomes point Pg in G*.

Figure M.lS: A feasible configuration illustrating
Algorithm 4.2.

(-32’320)' 3

(—:3:330)

Figure U4.16. The access graph for the configuration
in Fig.4.15.




graph. It corresponds to tﬁe minimum-congestion path shown
in Figure 4.15.

Figure 4.17 illustrates the major succgssive steps
taken by Algorithm 4.2. The path P is shown separately
from the graph for clarity. The numbers in the square;.
represent the order in which operations are performed Dby
the algorithm. Arc labels are shown only as they provide

useful information.

4.5.1.3 Analysis of Algorithm 4.2 and graph G’

Let graph G have m nodes apd k arcs, and let G’ have m’
nodes and k/ arcs. Let a path P be defined on G. It is
obvious that every switching arc in P implies two switch-
ing arcs in G’. " Thus, each switching arc in P contributes
two more nodes and one more arc in G’ than in G. Algorithm
4.2 does not destroy any nodes. Therefore, if P has g

(=]

switching arcs, then

’

m = m+2g .

The number of arcs k'’ in G’ is given by the following

theorem.

Theorem U4.2: Let an access graph G for a routed configura-

tion D have k arcs and m nodes. Let a net N

|
define a graph G’ obtained from G by Algorithd
: 1

4.2 and let G’ (the access graph for the feas-

|
ible routed configuration D’) have k'’ arcs and
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(a)

2% (step 1)

z* = 3% (step 2)

The initial steps performed by Algorithm
4,2,

Figure 4.17. An example of the steps taken by Algo-

rithm 4.2 to obtain graph G’ given graph
G as shown in Fig. 4.16.
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(step 4(a))

This arc removed (step 5(b),
v¥ = 5%)

(b) First pass through the main loop (i.e.,
steps 2-7) of Algorithm 4.,2.

Figure 4.17 (continued)

21

]
Eﬂ labeled in step 5(a) |
create node—g
(step 3(a))
E] add arc
(step 5(c¢))
dd arc




12| ,arc created step 3(h) ‘

15| this arc
added (step

5(c))

141 this arc

removed
(sgep 5(b),
u®t = 4 )

12 g = 37 (step 3(c¢))

- l

{ t
‘EE] zX¥ = 37 (step 2)

(c).Second pass through the main loop of
Algorithm 4.2.

Figure 4.17. (continued)
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=

(w,1,Z,0)

(+,A,§.‘.,T) g e

—_—

G =0 O

-

(-,4,%,0)

. (",33290)

18| this label 20| ‘remove this arc (step 6) -
changed in exit algorithm
step 3(a) -

3

3
&

16

z* i I

(step 2)

17

(d) Final passes through the main loop of
Algorithm 4.2. Major activity is moving
zX pointer from node-to-node until last
node is found. Final graph is G’.

Figure 4.17. (continued)

(@)

19| 2= 6"
(step 2)

z° = 5”
(step 2)
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m’ nodes. Also, let the path P representing
the route of net N in G contain a total of h

arcs of which g are switching arcs. Then,

k+g-2 = k'= k+g .

Proof: Let D have a set C of n unidirectional points. Each
segment of the feasible path in D’ for N has the
following possible combinations of end points in

bz

1. both end points are in C.
é. only one end point is in C.

3. neither end point is in C.

Consider each of these combinations in turn as they
impact the generation of arcs in G’. Let primed

nodes be the additional nodes in G’ not in G.

segment 7

P-------—'

e b U S

u v

Figure 4.18. Both segment end points in C.




1.

Both end points in C

Consider Figure 4.18. Note that segment y im-

plies the following in the street occupied by vy:

a. an arec {u-l,u) exists in G unless u=1.

b. arc (u-1l,u) does not exist in G%

¢c. an arc (v=1l,v) exists in G.

d. arc (v-1,v) does not exist in G’.

e. an arc (u-1l,v) will be in G’ unless u=1 or
v=n or both.

f. arc (u-1,v) 1s not in G.

Items a-f represent all ways G and G’ may differ

for a feasible segment with both end points in C.

Thus, we see that if u=1, or if both u#1 and

v#n, then G contains one less arc than G. If

u#1l but v=n, then G’ contains two less arcs than

G.

2

following differences exist between G and G’

Left-most end point in C

Figure U4.19 illustrates this configuration. The

street in which y lies:

a. an arc (u-l,u) exists in G unless u=1.
b. an arc (u-l,u) does not exist in G'.
¢. if an arec (v,w), w>v, exists in G, it

exists as (v/,w) in G’.

in the;

I
{
|
!
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d. an arc (u-1,v’') exists in G’ unless u=1.

e. arc (u-1,v) does not exist in G.

Differences a-e indicate that G’ cdntains the same

number of arcs as G for this case.

_ segment ¥
r_-------—l
o e o ‘ e o0 ‘ * . ele
u . v (v v+l

Figure 4.19. The left-most end point of segment vy
is in C. (v’ is not in C.)

3. Right-most end point in C

By symmetry with case 2, the same conclusion is

reached.

4, Neither end point is in C

Figure 4.20 represents this situation. The fol-

!
1

lowing differences exist between G and G’ in the

street in which y lies: :




a. arc (u,v’) exists in G’.

b. if arc (u,w) w>u, exists in G, then arc

(u',w) exists in G’.

c. if arc (v,w) w>v, exists in G, then arc

(v/,w) exists in G’.

segment 7
N !
o 0 9 . b L) e @ @
u /i<u' . .v *v' e
| l

Figure 14.20. Neither end point of segment y is in C.
(Neither u’ nor v’/ is in C.)

For this configuration, G’ contains the same number
of arcs as G. Thus, by considering the applicabil—l
ity of each configuration to the entire path P, ang
including the additional switching arc in G’ for

each switching arc in P, we get

k+g-2 = k's k+g . o
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The proof of Theorem 4.2 is constructive, and is the basis |

i
for Algorithm L.2. §
From observation of Algorithm 4.2, it is obvious that I

the timing complexity of the algorithm is no greater than

linear order. This is shown in the following theorem.

Theorem 4.3: Algorithm 4.2 is of complexity O(n) where n is

the number of points in D.

Proof: Algorithm 4.2 executes a constant number of steps
for each arc examined in path P, and each arc is
examined in turn from the first to the last without
retrace. Thus, the execution time of the algorithm,
is directly porportional to the‘length of P. P can

- be no longer than the number of arcé in G which is
directly proportional to the number of points in D |
as shown by Theorem 4.1. Thus, the execution time

of Algorithm 4.2 is directly proportional to the

number of points in D. o

4,5,.2 Assigning a track to a feasible segment

Consider the two segments shown in Figure 4.21. For
segment 1, three tracks are availlable for ény future paths.
However, segment 2 completely blocks the street. Thus, we
see that the track selected for a current feasible segment

can impact the routability of future néts.
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(psegment 1 | (fsegment 2.

\
\
® @ @ ® @ @

Figure 4.21. Track_ assignments have an impact on
future paths.

Assume a feasible access graph G’ containing a feasible

! path for a two-point net N exists for a given feasible

routed configuration D’. Each feasible segment in the path
is assigned to an unused track using the algorithm to be
presented here. By construction of G’, such a ﬁrack always
exists. The track assignment algorithm assigns a free
track to a feasible section in the channel occupied by the
section such that the probability of having free tracks
available for future paths is maximized. This is accom-
plished by determining the probability %_that a future seg-
ment is likely to occupy the outer channel of a feasible
segment, and the probability ]E that a future segment is
likely to oceupy the inner channel of the same feasible

segment (see Figure 4.22). If we assume there are

l




T=tl+ t2

‘then the free track Tt to be assigned within the channel to

+1 free tracks available for the feasible segment,i
|

the segment 1s determined as follows.

routed segment

tl free { 1
tracks
= em o em e m e = e = Grack T‘Tfree
t. fros { tracks
2 \
tracks _
/; probability;%

routed segment
in track u

Figure 4.22. A channel in a configuration illustrat-
ing the assignment of a free track to a

! feasible sectilon.

t P
1 1.
Let — = —. Thus
ty 5
t, P
6. = 2°1 (1)
1 o
2
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£, (P +2,)
Since T=‘tl+t2+-l then, from (1), T = ——— +1 or,
’ P
2

(T-1)7,
D (2)
Pl+ P2 _

n

(T-l)jf’2
Let t = t2+l. From (2), t = ?].TF; .

?2T + %’l
P+ 2,

(3)

Prr P,
Pr+ 8,

{x} denotes x rounded to an integer value.

Since t must be an integral value, t = where

In the track assignment.procedure described here, in-
stead of determining the probabllity of a future segment
occurring in a channel, the related concept of determining |
the number Q of equally-likely future 2-point nets that
could traverse the channel is used.‘ If Ql nets could be
routed in the outer channel of a feasible section y, and
Q2 nets could be routed in the inner channel of y, then we
let Ql==?l and 92==P2 in expression (3) obtaining (for

integral t)
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section where

1}
=
+

As an example, consider the feasible configuration

(Algorithm 4.3) we calculate Ql to be 4 and 92 to be 1.

The four potential future nets contributing to Ql are

future net which contributes to 92 is (p2,p6).

‘track

()

shown in Figure 4.23. The question is: do we assigh sec-

tion y to track 3 or 4? Using a procedure to be given later

(p-,0+)s (P-,Pa)s (P,sP,), and (p,,Pg). The only potential
1°P7 15783 \Fasky 2°F8

—

'Assume the inner routed segment bounding the channel is as-:

‘signed to track w. Then, we assign track Tt to the feasiblei

!

4 N

W E WU
¥
7

PO

|
|
[
|

1

Figure 4.23. A feasible configuration illustrating
the concept of track assignment in a

channel.
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4.5.2.1 Algorithm U4.3. Net counting procedure

.Purpose: This procedure determines the number of two-point:

|
nets any one:of which could be routed in a given channel 5

P .

Method: Using the feasible access graph G’ as found by
Algorithm 4.2, the number of two-point nets that can be
routed is found such that at least one path for each net
contains an arc in channel ¥. Only nodes representing un-
covered points in .the feasible routed configuration D’ are

considered.

Input: A feasible access graph G’ for a feasible routed
configuration D’, and a channel ¥ represented as arc x in |
G'.
Qutput: The number @ of nets that may be routed in channel
b |
Procedure:
Step 1. Let 5"be the connected subgraph in G’ con-
taining arc x. Find the biconnected compo-

nent! H in G’ containing arc x. Let set V

consist of the nodes of H.

A biconnected component of a greph G is a maximal subgraph
G’ of G such that G’ is a single isolated node, or every
node in G’ has degree two or greater. For more informa-
tion regarding biconnected components and how to find

them, see Aho, Hopcroft, and Ullman, The Design and Analy-
sts of Computer Algorithms, Addison-YWesley Publishing Co.,
1974, po. 179-186.

i
|
|
|
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Step 2. Let H' be the graph G’ with H removed. Separ-,
|

ate H' into its components H’,Hé,.g.,H&, and |
. , |

let V; be the node set of H;. .
Step 3. Remove from V and all V&, i=1,2,...,k, any

node v representing a covered point in D’.

Step 4. Let n be the size of V and n& the size of V;. ,

Then the number Q of two-point nets, any one

of which could be routed in channel P, is

k k
Q = % + (n-1) = n’i+ 1k ng_ng. o
i=1 i<

4.,5.2.2 Discussion and example of use of Algorithm 4.3

Consider. the connected graph G‘'c G’ where G’ is the
feasible access graph for some feasible configuration D’
as shown in Figure 4.24. If a point p; in D’ is the end
point of a segment (routed or feasible) in street SX, then
node 1* in G’ is shown as a square. Otherwise, the node
1*¥ i{s shown as a circle. 1In the discussion that follows,
we are only interesﬁed in points in D’ which could be end

points of future nets. Thus, we will concentrate on

circled nodes in 5ﬁ
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Figure 4.24. An example graph configuration illus-

trating the operation of Algorithm 4.3.

Divide G’ into a biconnected component H and the three

components H’, H., and H.. Each component H’. is connected

1* 723 3 i
to H by a single arc called a bridge. It is obvious that

there are three kinds of paths in G’ that contain arc x:
1. the paths with end points entirely in H;

2. the paths with one end point in H and the other

in mww and

3. the paths with one end point in mw and the other
in Hy, 17, _
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These three types of paths give rise to the three terms in
the expression for Qi in step 4 of the algorithm. Since

we are-interested in circle nodes only, and there are n ,

circle nodes in the biconnected component H, then there are
(2) = Ei%fll pairs of circle nodes in H, each of which is

the end point of at least one path contalning arc x.
Assume there are n& circle nodes in H&. Then there are

n-n&—n’ pairs of nodes (u,v) with u in H and v in H; that

define paths which contain arc x since the single circle

node adjacent to the bridge between H and H; does not de-

fine a path containing arc x if the other end of the path
is in H&. Thus, considering all H;, the number of node

pairs which define at least one path containing arc x is

k
(n-1) Z na where one of the nodes of each pair is in H.
i=1

Finally, if we assume that both end nodes of each path
are in mutually exclusive components H& and H3 then there
exists n;°n3 pairs of nodes where each pair defines at
least one path in G’ containing arc x. If we consider all

k components, then > n’en’, paths are defined. Thus,

i,j:1<]
the total number Q of node pairs in G’ where each node pair

defines at least one path containing arc x is as shown in
step 4 of the algorithm.
As an example of the use of Algorithm 4.3, consider

Figure 4.25. Assume we are interested in determining the
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nels of segment y. The feasible access graph G’ is as shown;

number of possible paths in both the outer and inner chan-
in Figure 4.26. In this case, G’ is connected, so G’ in

step 1 of Algorithm 4.3 is the same as G'. The labels of

arcs are not shown for the sake of simplicity.

/,outer channel of 7

_feasible segment ¥

.5 ,6

inner channel of 7

Figure U4.25. Example of feasible routed configura-
tion illustrating use of Algorithm 4.3.

arc x for outer channel _ _ Hq
‘Q‘ ’— ————— -
=~ -~ *
~ I/ \
N
¥ ” + { +»’
4 4= - 5 6
\ \ 1/2
VN s
‘ \\\ ’/ ;
I I
,
Il P
~
arc x for inner channel

Figure 4.26. Feasible access graph for feasible !
routed configuration shown in Fig. f
4.25. ;




The square nodes in Figure 4.26 represent points in
Figure 4.25 that are covered. From Figure 4,26, we see
there are U circle nodes in H and 2 circle nodes in Hj .
Thus, n=14 and ni==2° By step 4 of Algorithm 4.3, the

number of possible future nets Nl in the outer channel is

a, = 23+ 3(2) +0

12 .

-

For this example, since the arc x for the inner channel is
in the same biconnected component as for the outer channel,
the number of possible paths 92 for the inner channel is

the same as @ i.e., R,=12.

1 2

4.,5.2.3 Timing of Algorithm 4.3

Since Algorithm 4.3 is a straightforward procedure
without branch statements, we can determine the time neces-
sary to do each step and then add the results to get an ex-
pression for the time complexity of the algorithm. To get
G’ from G’ requires O(e) steps (see Aho [28], p. 176) where
G’ has e edges. & (e) operations are also required to de-
termine the biconnected component H.

Thus, step 1 requires no more than J(e) operations.
Since the maximum number of nodes n in_af is a linear func-
tion of the number of edges e (see Corollary b,1), step 1

is order J(n).




- |
Step 2 also requires U(n) operations to identify the

components of H'. The actual process of creating the com-
ponents 1s done as a byproduct of step 1. Step 3 requires |
| a single examination of each node in G’ to determine if the
node is covered or not. Thus, step 3 is d(n). Finally,

step U4 requires two multiplications and one subtraction for:
the first term in calculating N. The second term requires
k additions, one subtraction, and one multiplication. The

5
third and final term requires ngfgl additions and the same

number of multiplications. Thus, assuﬁing all operations
take unit time, step U requires k2+-uk+-50perations. The
value‘of k.will not be analytically considered here, but
experience showé it is usually much smaller than n. How-
ever, in the worst case, kK approaches %. Thus, step U4
requires up to %? + 2n+ 5 operations. Step U4 appears to
be the predominant factor in determining the total time
complexity of the algorithm. Thus, Algorithm 4.3 1is of
complexity 0(n2). However, experienée shows that this al-
gorithm normally behaves as an U(n) algorithm since k is

usually very small.

4.5.2.4 Switching track selection

With Algorithm 4.3 available we can now assign each
feasible section and switch represented by path P to ap-

propriate tracks in D. We can also fix numeric values to

all As and £s in G’ so that G’ becomes the updated access




graph G* for the routed configuration D¥.

In this section we describe how the switching arcs in
path P are assigned to switching tracks in D’. Let the
nodes in P be sequentially labeled ail,azz;..., and let the
arcs be sequentially labeled 01’02’°" . Thus arc g4 is
adjacent to nodes_Bil and B;z’ 05 is adjacent to Bzz'and
523, etc. We scan path P for each switching arc in turn.
Let o4 be such a swigching arc. Then there exlsts a
switching arc (Bzi,szi) wiEh an undefined channel size Zi,
and a switching arec (é:i,éii) with an undefined channel
size %i. Let point Bi in D/ be located at aai. Pseudo-

point pé should then be located in the unoccupied switch-
r .

ing track located at

where Q. and Q. are obtained by using Algorithm 4.3; once

1 2
. . Xi _Xi
for Ql, where x in the algorithm is arc (Bi ,Bi ), and
AX. Ai-
once for @, where x in the algorithm is arc (ﬁil,Bil)°

Figure 4.27 illustrates the notation used thus far.

The value of I, is thus |az -a, |-1 and I, =|az -
1 pi Si 1 Bi
ag | -1. If either I, or I, (or ‘both) 1is zero, then de-
141 . %
lete the respective switching arc in G’.
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|

feasible path

: D
l Pi+1
switching track g = = switching track
located at aﬂi _ . located at «p4,
| | | e

Figure 4.27. Interval (pB »Pg ) in D'. p, and
1 Pia By
Pé are located at aB and aé re-
i i i
spectively.

After all switching arcs in P have been assigned to
switching tracks; it is possible to obtain the value of
all arc lengths (As) in G’ as follows. Scan G’ for an arc
with an undefined A. Let that arc be (u,v). Then A =

Iau-avl. Continue scanning G’ until all As are defined.

4.,5,.2.5 Feasible section track assignment

In this section we describe how all feasible sections
are assigned to horizontal tracks. Path P contains se-
quences of nodes all of which are lableed + or -. Each of
these sequences is separated by a switching arc, and each
sequence represents a feasible section. We can label each
of these sections with an integer as shown in Table 4.3

below.

141




Table U4.3. Section Characteristics Required for !
Track Assignment and Assignment of é
Numeric Values to the Feasible Access
Graph Arc Labels ;

Section P Nodes P Ares Channel Inner i

width Track |
1 311,812,... O19:99p5¢- Tl Ty
2 321,822,... P ELPPEREE T2 Ty
3 531,332,00. G3950355 ¢ T3 ma

Associated with each section 1 is the width Ti of the chan—g
nel in which the section lies, the number Ty of the inner i
occupied track nearest the section, and the set of arcs
and nodes in P which represent the section.

The nodes and arcs listed in Table 4.3 are found by a

simple scan of path P. The channel width Ti is the minimum

p value in the labels of all arcs OgqsT4pse e » The inner
track my is the maximum t value in the labels of all arcs
cil’°i2""

|
The actual track assignment is accomplished by taking
|
each section i in turn and calculating the track number Ts

using the expression




G .can be updated to become the final access graph G¥*. Note

B LA -
i i l Q. TR :

The values Ql and @, are calculated using Algorithm bh.3 as
described earlier. The arc x used in Algorithm 4.3 for QZ
can be any one of the arcs 011’012"" . For Ql, the arc x
1s the section arc created in step b or 6 of Algorithm 4.2

as a result of feasible section 1.

h,5.2.6 Updating the feasible access graph G’ to the

final access graph G¥*

Once tracks have been assigned for N, the feasible graph

'Lhaf’G* could also be produced from the final configuration
D° {i.e., D¥ is configuratidn D with the new net N routed)
directly using Algorithm 4.1 to produce the access graph.
However, since G’ exists and it is faster to construct the

new G¥ from the old G¥ than from D*, we do not use D¥.

Algorithm 4.4: Update the feasible access graph G’ to the

final access graph g*.

“.me channel capacity represented by the arc) in the arc

i

'iirpose: This procedure replaces all literal "t"s (I is

labels of G, and removes those arcs with zero channel ca-

pacity.

e e : IR 5.5 |




Method: This algorithm is equivalent to Algorithm 4.3 with1
respect to its control struqture. Therefore, the function
of the variables g and z* are the same as before. The def-
inition of T 1s the same as that in the previous section,

namely, the track assigned. to a feasible section.

Input: A feasible access graph G’ derived from access
graph G as per Algorithm 4.2, a path P defined on G, and
the track assignﬁants for all sections in the path for N in

pE,

Output: An access graph G* representing D¥ where D¥ is the
configuration D plus the routed net N.
Procedure:

Step 1. Let the first node in path P be s*. Let g=s"

Ir s is adjacent to a switching arc in P, then

set z* =s* and go to step 3.

Step 2. Let zX be the next node in P and let zX be in
section i. If z¥ is the final node in P, then

go to step 6.

Step 3. (a) 1If z* is adjacent to a switching arc in

P, then go to part (b) of this step.

X

Otherwise, let u” be the predecessor node

of zX in P. Let the label of (u¥,z*) in

P be (x,8,p,t) and let arc (ux,zx) be a

part of section i. Then replace the



Step 4.

Step 5.

(b)
(a)

(b)

(e)
(d)

(e)

If g=s", s#1, and g< 2z let y be arc

literal "I" in the label of arc (uX zx) 1

l
in ¢’ with T,-t-1. If this value is Zero,|

|
delete arc (ux,zx) in G’. Go to step 2.

If g=0 set g= z* and go to step 5.

X
(g“lséx) .

If g=sx, s#n, and g>z let y be arc

(z*,g).
If g#s™ and g<z let y be arc (g,z%).
If g#s” and g>z let y be arc (zx,é).

Replace the literal "T" in the label of

arc y in G’ with T Replace the literal

;-
"IZ" in the same label with Ti+ni—Ti. b
this value 1s zero, delete arc y from G’.
Set g=0 and go to step 5.

X in G

Let ux be a node adjacent to z
where u<z and let the label of arc
(ux,zx) in G be (x,8,p,t). If node point
Pu is within the span of a section of
the recently routed path in street s*
then replace the literal "I" in the label]
of arc (u*,z") in G’ with 1;-t-1. If

zero, delete arc. Otherwise, replace

"T" with p.




Step 6.

Step 7.

(b)

(a)

(b)

(c)

(d)

(e)

(f)

(a)

‘where v >z and let the label of arc Acwu<J“

Let v> be a node adjacent to 2% in G’ |
I

in G be (x,8,p,t). If v* is the last node

|
|

in P, go to step 2. Otherwise, replace
"t" with p. Go to step 2.

Ir z° is adjacent to a switching arc in P

then go to step 7.

If mumxv s#l, z#n, and g<z then let y
be arc (g-1,z%).

If mn.m.unv s#n, z=1, and g>z then let y

be arc Aquwvmv.

If mxmwu z#n, and g<z then let y be
arc (g,z°).

If mwmmu,‘.v z#1, and g >z then let y be

~

arc (z°-1,8)

Replace the literal "T" in the label of
arc y in G with qw. Replace the literal
"g" in the same label with ew+nwn.ﬁw. If

this value is zero, delete arc y from G'.

Exit algorithm.
Replace the literal "T" in the label of
arc (z%-1,2%) in @’ with 1. Let the

label of arc Amxuwumxv in G be Axuouovnv._




Replace the literal "I" in the label of

‘are (2*-1,2%) in G’ with p-1.

X pe a node adjacent. to z* in G’

(b) Let v
where v >z and let the label of arc
A<xuwxv in G be (x,8,p,t). If point P,
is within the span of a section of the

recently routed path in street s¥ then

replace the literal "I" in the label of
arc (2%,v®) in G’ with 7-t-1. If zero,

delete arc. Exit algorithm. m|

4.5.3 A comprehensive example of fixed-track routing

We now present an example of routing two nets in a con-;

figuration UH which already contains two routed nets. Fig-
ure 4.28 shows the original configuration. There are five
horizontal tracks in each street and one vertical switching]

|
!
~
track in each interval. m
_
|

S, & & 65 6o & & 6o 6o O, 6o
_
|

Figure 4.28. Configuration D; used to illustrate
_ fixed-track routing. !
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Consid = = i ‘
nsider two nets Nl (pl,p8) and N2 (pu,pY). We will

route Nl first followed by N2.
First, we obtain the access graph G1 for Dl using Al-

gorithm 4.1. Graph Gl.is shown in Figure 4.29.

Next, we find a feasible minimum-congestion path Pl far

‘net Nl in Gl by using Dijkstra's algorithm as modified in

Section 5.1 of this chapter. Figure U.30 shows path Pl'

It is interesting to note that there are several minimum-

congestion paths possible for N1 in Gl° Although not to be

explored in this dissertation, it is possible to find a
shortest minimum-density path by performing a multi-variable
minimum-cost path finding procedure on Gl' In fact, .
'Dijkstra's least-cost path algorithm as given in Chapter 2
may be easily modified to do this. This subject is left
for further study.

We now assign tracks in Dl to the feasible path Pl'

Since P. consists of one section and no switches, we will

1
only be assigning one horizontal track to the feasible path.

First we obtain the feasible access graph Gi using Algorithm

4.2. Graph G, is shown in Figure 4.31. Next, we determine

_ 1
which horizontal track should be assigned to the single
section represehted by Pl' Note that the feasible section
is attached to point p, in D’. Thus no future paths will

be routed to the outside of the feasible section. We

therefore assign the outermost track, track 5, to the feas-

ible segment without having to use Algorithm 4.3 and the
1
| < 148
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Figure 4.29. Graph G1 representing configuration Dl'
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assignment procedure outlined in Section 4.5.2.5. The as-
signment procedure as outlined there would also allocate

track 5 to the feasible section since @, =0 (1.e., arc x in

1
Algorithm 4.3 does not exist), whereas Q, = 229 (arc x for

Q, can be either arc (1+,6+) or (6+,7+)). Thus, the track

2
T to be assigned to the feasible section is (from Eq.(5)),

T.Q, +8
&

T=m+ 42 1
Ql-%Qg

L [3en ).

‘2+[ 229 } > -

Since the feasible path has now been assigned to a

track, we have a complete characterization of the configur-

¥

ation DI as shown in Figure 4.32.

1
///,net Nq
@, @ & @ Oo; O 6| 65 $o5 6oy 6o

Figure 4.32. Configuration Di (= D3) showing net N
+
routed in track 5 of street S .
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Since we now want to route N2 in Di, we can update Gi
¥

to become Gl by using Algorithm 4.4, or we can rename the

configuration Di as D, and obtain G, using Algorithm 4.1.

2 2
We choose to obtain G; and then rename it G2. After pro-
cessing Gi with Algorithm 4.4, we get the graph Gi shown in

Figure 4.33.

We now repeat the same steps for net N2==(pu,p7) as we
did for net N, . We have the configuration D, (Fig.4.31)
and the access graph G2 (Fig.4.33). A minimum-congestion
path p, 1s found in G,. Figure 4.34 shows path Py

A feasible access graph Gé for Dé is derived from G2
using Algorithm 4.2. Gé is shown in Figure 4.35. There
are two sections in path P2. Table 4.4 gives the charac-
teristics of these two sections and the tracks assigned as
per Section 4.5.2.5 of this chapter. The tracks assigned

to the sections are also shown in the table.

4,6 Conclusions

The fixed-track routing methods presented in this chap-
ter represent a new approach to routing. The notion of
assigning new segments to tracks such that .blockage of
paths for potential future nets is minimized appears to be
a very useful notion. It 1s anticipated that the fixed-
track routing method is as useful for changing the routing
of existing unidirectional configurations as routing new

configurations.

153 |




(+,10,2,2)

(w,1,1,1)(w,1,1,3)

1 6 3

(_,2;5,0) (—32)5,0) (—:2,5)0) ('2,5,0) ) (-:2,1)0) (",231»0) ("‘,2,5,0) (_,2,5,0)

(—18:3a2)

Figure 4.33. Access graph G{ (=G2), Note that the "I' symbols in the arc labels
of arcs (1+,6+) and (6+,7+) in Fig. U4.32 have been replaced with

the appropriate channel widths 2 and 4 respectively.
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Although the (worst-case) complexity of fixed-track
routing methods as derived in this chapter is 0(n3logn) for |
n-1 nets and n points, realistic configurations (even those!
with a large number of nets) seem to require only O(nz) op-
erations. Thus, .the method given here is practical and
requires little more time than in the unconstrained case.
Further evidence of this may be seen in Chapter 9. Also,
as in the unconstrained case described in Chapter 3, if one
or more paths exist for a net in a fixed-track configura-
tion, the method presented here guarantees that not only
will a path be found, but that the chosen path 1s optimal
for either of the goals presented; namely, minimum length

or minimum congestion.
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CHAPTER 5

FLOATING-TRACK UNIDIRECTIONAL ROUTING

5.0 Introduction

Whereas in the previous chapter track assignmenté were
fixed, in this chapter sections and switches for routed
paths may be reassigned to other tracks (i.e., "floated")
(within minor constraints) in order to create a feasible
path for a net being added to the configuration. The pri-
mary motivation for considering floating-track routing is
to enhance the probability of routing chpletion in a uni-
directional configuration. To achieve this gocal a new
graph model is required. |

The floating-track access graph is first présented and
then three routing cost goals are considered in turn,
namely: minimum-routed path length, minimum-congestion,
and minimum-routed path perturbation. Minimum-length and
minimum-congestion routing were considered at length in
Chapters 3 and 4, respectively, and are therefore only
briefly treated here. Minimum perturbation routing is

unique to the floating-track case.

5.1 Density

We define a density function dx(pi) to be the number

of routed paths intersected by an imaginary vertical line

_L39]




Py can take on values only at points pl,pz,...,prl in a con-
figurétion D. The density at point Py in street s* is the

sum of all sections in g™ intersected by the imaginary ver-
tical line passing through Py tneluding the sectioncpvering
Dy - For instance,'the routed configutation shown in Figure

5.1 has the densities for both streets S+ and S~ as shown.

+

d (p)

: -1 1 1 1 234 : L 3 2 1 0
| || b ! I I | |
| |1 e ; = 4: |
l P - l i l
| l I | ] :

‘ : Y 4 m/ }( l p12
] pqpa ropslog 97 Pg__ T D10 VD1l

: . | L | | | l l |
i N : | i | |
0 12 221606 1 1 1 il 1

d (p)

Figure 5.1. Example showing street densities.
Whereas the street densities d+(piy and d—(pi) are de-
|f‘ined for each point pl,pz,...,pn, the interval densities
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'd¥(2) are defined only for original points. The <nterval !
density d"(a) 1s the number of pseudo-points in the unidi- ?
fectional intervai a. For. instance, the density of 1ntervaﬁ
Py is 2, whereas the density of interval p3 is undefined.

The segment density px(u,v) of a segment (pu,pv) is de-

fined to be max dx(p) where u and v are in C and the
Pu§p§ Py

segment lies in street s*. Since a segment is uniquely
defined by its end points, and it lies in only one street,

the superscript x is superfluous and is therefore not needed.

The segment (pl,pB), for instance, in Figure 5.1 has segmenﬁ
density p(1,3) =max{1,1,1} =1. The inner segment density i
of a segment y is the density of a segment where only sec-
tions (including y) between the point line and the segment
Y are considered. For instance, in Figure 5.2 the segment

density of segment y is 4 and the inner segment density is

3

p16 ;
p11 p12 P13 Py pl%

|

;

Figure 5.2. A configuration illustrating segment |
densities.

|

|




5.2 The Access Graph for the Floating-Track
Routing Problem '

|
|
|
|

As for the fixed-track access graph, the floating-track

access graph is a subgraph of the unconstrained access

graph.

Each arc in the floating-track access graph G ié

labeled with a five-tuple of the form

(type s0,p5t 3)‘-) o

The parameters in the label are:

type -

Each of these parameters is required by the floating-track |
' |

menm o om_m o or "w" depending on whether the arc is
in the upper street, the lower street, or is a

switch, respectively.

the length of the feasible c-section represented

by the arc.

the maximum street density over the .length of

the feasible c-section represented by the arc.

the track occupied by the nearest outer routed
section to the feasible section represented by
the arc. If there is no outer routed section,

then t is the outer-most track plus one.

the number of routed sections that must be

moved to accommodate the feasible c-sectlon rep-

resented by the arc.
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routing algorithms developed in detail later in this study.
Specifically, the length 6§, density p, and number of per-
'turbed sections A are used to determine minimum-cost feas-
ible paths. The track t and parameter A are used to route
feasible paths. |
In the algorithm presented here for generating the
floating-track access graph G, the depth of stack S at the
time an arc is created is used to obtain p in the label of
that arc. As the algorithm progresses, the size of stack S
grows and shrinks in direct proportion to the density
dx(pi) of each point pi in D. A record of the maximum value
of dx(p) is kept for each c-segment represented in the
Stack. This value is p in the arc label. Since a list of
all routed sections and their assigned tracks are a part of

the description of D, the value t is directly available.

Algorithm 5.1: Construction of the floating-track access

graph.

Purpose: This algorithm generates a weighted undirected
graph G (called a floating-track access graph) for a given

routed configuration D where street capacities are consid- |

ered and track assignments for routed path may be reassigned

i
|
as necessary to improve the routability of a feasible path. |
|

Method: The.point line is scanned twice from left-to-right,

- !
first for street S+, and then for street S . During each |




scan, successive adjacent points @H and p.

i+1 are examined.

Appropriate stack operations and graph constructdion are per-

formed in steps 5-9 of the procedure based upon which of
the nine adjacent point configurations (see Table 2.2,Chap- !
ter 2) is applicable. .mnmvm 5-10 are performed only if
tracks are avallable for awm feasible segment being pro-

cessed. Let ¢ be a channel whose left end is at interval |
_

u Then the stack contains elements of the form (J,p,t,A)

’E

where p represents the maximum segment density of a feasible

segment routed in p, t 1is the track occupied by the outer

routed section bounding the channel, and A is the number of
sections which must be moved to permit a feasible c-section .
to be routed in p. As for Algorithm 3.1, we define point
US+H to be an uncovered imaginary point lying just to the
right of point Um on the point line in D.

Input: Routed configuration D.

Output: The floating track access graph G for D.

Procedure:

Step 1. (initialization) Set x="+", and clear stack

+ .t +
m.OOSmnWCOnnsmmssoammva,...vbu

17,27,...,n .

|

Step 2. (switching arcs) Consider each point Py “
i=1,2,...,n. If point Py is a unidirectional;

point and the number ¢ of pseudo-points in the!

unidirectional interval with p, as its left

e e S 76 R o e 5 e S S5 i




point is less than the switching track capacity
T then construct an arc between nodes i+ and
i~ and label it (w,1,9,a;,0). If point p; is
a pseudo-point, let it be in unidirectional
interval u. If the number ¢ of pseudo-points
(including pi) in u is less than the switching
track capacity Tw fthen construct an arc be-

tween nodes i and 1~ and label 1t (w,1,¢,a,,0).
Step 3. Set i=0. Push (O,O,TX+1,O) on top of stack S.

Step 4. (main loop). Set 1=1i+1l. Let the top item in
stack S be (j,p,t,\). Consider points bi and
Pi41 in D. Select the applicable case from
Table 5.1 and branch to the stép indicated.

(In steps 5 through 7, let t, be the track oc-

i
cupied by the routed segment whose end-point
is i. If no such routed segment exists, set

t;=0.)

Step 5. Pop S ﬁo get (j,p,t,A). If t<T" and j #0,
then construct an arc (i,j) in G and label it
(x,ai-aj,p,t,a). Set B =X\ if.t-ti==l. Other-
wise set B8 =0. Push (i, depth (S),t,A) on S
regardless of the value of j or t. Go to

step 9.

Step 6. Let (j,p,t,\A) be the top element in stack S.

Push (i,O,ti,B) on S and for every element

-
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in S set the second field to itself or depth
(S)-1 whichever is greater. Set 3 =Xx+1 if

téti.=1” Otherwise set B=1. Go to step 9.

Step 7. Pop S to get (J,p,t,A). If t<T* and j#0
then construct an arc (1,J) and label it (x,
ai—aj,p,t,ﬁ). Set g =\ if t—ti==1. Otherwise

set B=0. Go to step 9.

Step 8. For every element in stack S, set the second
field either to itself or to the depth of S,

whichever is greater.
Step 9. (end of main loop) If i#n, then go to step b,

Step 10. If x="+", then set x="-", set stack S empty,

and go to step 3.

5.2.1 Exampie of operation of Algorithm 5.1

As an example of the operation of Algorithm 5.1, con-
sider again the configuration shown in Figure 4.4 (Chapter
4) which is repeated in Figure 5.3 for convenience. For
this example, pt=y, T7=2, and TV =1.

Algorithm 5.1 begins by creating 20 nodes and 7 switch—;
ing arc each labeled (w,1,1,0,0) as directed Dby steps 1, 2,
and 3. Stack S has one element as shown in Figure 5.4(a). |

Table 5.2 shows the oepration of this algorithm for street
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Table 5.1. The Jump Table for Algorithm 5.1.

IF: THEN:
Adjacent Point g 1B Pyyq 18 Py 18 Py4p 38
Configuration. Covered Covered Left Point Left Point Go To Step
(Table 2.2) in s¥ in s¥ in Segment in Segment

1 no no —_ —_ 5

2 yes no _ " no —— 5

3 no yes = yes 5

4 no yes — no 7

5 yes yes no no 7

6 yes yes no yes 5

T yes no yes — 6

8 yes yes yes yes 6

9 yes yes yes no 8

(19T
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(F,3.3.1)
(0:1’0:.0)

(a)

(3 ,2L3Sl)
(0,2,0,0)

(d)

(7,1,4.1)
(6,1,0.0)

| (g)

(gl

(0,2,0,0)

(b)

(0,2,0,0)

(e)

(6,1,0,0)

(h)

Figure 5.4. Stack contents for example

5.1.

Figure 5.3. A configuration illustrating the use of
Algorithm 5.1

EPRINCIS R

(0,2,0,0)

Track
4y
+ - [
Street S 2
1
int line — Jo €
IPO n ) @, 3| Oy %5 Soofo-Qog| S @
E Street S‘{ 5.

(e)

(6;13030)

(f)

(9,0,0,0)

(1)

of Algorithm

10
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Table 5.2. Algorithm 5.1 processing steps for example. Only the operations per-
formed for street ST are shown.
i Piﬁiﬁfs Stack Action Fig.5.4 Arc Arc Label
1 6 Push (1,0,3,1). For each element (a)
in S, set the second field to 1
For each element in S, set the
2 8 second field to itself or 2 which- (b)
ever 1is greater
3 5 Pop (1,2,3,1). Push (3,1,3,1). (c) (1,3) (+,4,2,3,0)
For each element in S, set the
ly 8 - second field to itself or 2 which- (d)
ever 1is greater
5 7 Pop (3,2,3,1). (e) (3553 (+,4,2,3,1)
6 5 Pop (0,2,0,0). Push (6,1,0,0). (f)
: ) Push (7,0,4,1). For each element
| 7 6 in S8, set the second field to (g)
] itself or 1 whichever 1s greater.
! 8 7 Pop (7,1,4,1) (h) (7,8) (+,1,1,4,0)
! 5 Pop (6,1,0,0). Push (9,0,0,0). (1)
3 10 Pop (9,0,0,0). Push 10,0,0,0). - (9,10) (+,2,0,0,0)
|
i




The graph resulting froﬁ processing the configuration
D in Figure 5.3 with Algorithm 5:1 is shown in Figure 5.5.
{Note that the graph structure is similar to that in Figure
4.6 (Chapter 4) since this example is essentially uncon-
istrained (i.e., all channels contain at least one free
‘track) with the exception of switching paths (6+,6_) and
(7%,77).

5.2.2 Execution time of Algorithm 5.1

The control structufe of Algoirthm 5.1 1s equivalent to
that of Algorithm 3.1. The analysis given in Section 3.3.2l
of Chapter 3 is thus applicable to this case except that
the number of opérations per step differs. Table 5.3 gives‘

the number of operations in each step of Algorithm 5.1. d

is the depth of stack S.

Table 5.3. Number of operations per step in Algorithm
5.1 as a function of the number of unidi-
rectional points n.

Step # of Operations # of Times Each Step is Entered

1 2n+2 1

2 3n-3 1

3 2 2

Yy 2 2n

5 8 .see discussion
6 4+34d see discussion
7 ' see discussion
8 2d see discussion
9 1 2n
10 3 2
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Figure

(w,1,1,3,0)

- . (+,1,1,4,0)
3 ’ .

(w,1,1,13,0)

5;5. Access graph for configuration D shown
in Fig.5.3. This graph was generated by
Algorithm 5.1
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i The precedence graph Gp for the floating-track access graph |

|
|
construction algorithm is shown in Figure 5.6. The only
difference between this gfaph and the graph_Gp in Chapter 3f

(Fig.3.4) is the number of operations required by each of

Ethe steps (shown as underlined integers adjacent to each

|
‘node in Fig. 3.4 and Fig. 5.6).

i Figure 5.6. The precedence graph G, for the floating-
' track access graph constructlon algorithm,:
Algorithm 5.1. See Sectilon 3. 3.2, Chapter 3,l
for a complete explanation of thls graph. i

i

s . i B e T2




Graph Gp can be collapsed to G;

as was done in Chapter

3 using the same set definitions as shown there, namely:

node A in G; 18 of2,243563 ,

P
node C in G; is {4,5},

node B in G/ 1is {7,8},

node D in G; is {91,

where the elements of those are nodes in Gp. The graph G;

is shown in Figure- 5.7.

Figure 5.7. The simplified precedence graph G’.




! The configuration reflecting this sequence is shown in Fig-.

T ————

|

|
|
|

|

ascertained. 1In Algorithm 5.1, when point Dy is being pro-

We need one more piece of information before the maxi-
mum number of operations required by Algorithm 5.1 can be
cessed the depth d of stack S equals dx(pi)l Note that fori
dz 2, the weight of node B is greatér than that of any other
node in G;. If we maximize the number of times node B ap-
pears in a path P in G;, the total number of operations re-
quired by Algorithm 5.1 processing a configuration reflected
by that path will be maximized. A valid path in G; which

accomplishes this is

¥ p c¥ .

In terms of graph Gp, the path is

gF g 5%,

ure 5.8.

°
°
L]

S U= U S |

P P P Pysa Prs2 Pres Por+1 Pok+a |

Figure 5.8. A configuration requiring the maximum
number of operations by Algorithm 5.1.
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Note that for the configuration shown in Figure 5.8,
the depth of stack S grows from 1, when the algorithm be-
gins, to k when the algorithm is processing. interval Uy
Since step 6 has been repeatedly reentered during this time,

'the number of operations 0psk performed by Algorithm 5.1 up

to and including interval u

K is
|- k
e é‘)psk= (2k+2) + (3k-3) + 2+ 2k + 2 (4+432)
a L=1
1 I A b4 r n

’ . step 1 step 2 step 3 step U k x step 6

=gk + 2k + KEHD)
- =%(3k2+25k+2).' | (1)

Completing the scan, and noting that k= % -1, we see
that

k
(7n+l) + 2 (4+32) + 2(k+l) +
4=1 4

+ b 3
steps 1-U k x step 6 step 8 ~k x step 7

Opsn

n 0=
"

-

2
3—%— + %n.—ll

steps are required for one scan of the points in the con-

| figuration. For both streets, the maximum number of oper-
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ations required, Opsmax’ is

41

_ 3.2
Opsmax = 0"+ n-21 .

Thus, in the worst case, Algorithm 5.1 is O (n%).

Naturally, the street capacities, Tx, have an impact on
the maximum depth of stack S. Thus, if TX is small com-
pared to the number of unidirectional points in the config-
uration, the maximpm number of operations required by Al-
gorithms 5.1 in the worst case is U(nT*)~0(n)., Since for
'real problems, TX'<<n, the expected average complexity for
Algorithm is €(n).

The least number of operations required by Algorithm
5.1 is for the configuration shown in Figure 5.9. Algor-
ithm 5.1 executes Opsmin operations for this configuration

where

Opsmin = 19n -13 .

Therefore, in the best case, Algorithm 5.1 is J(n).

N N T N

Py ob) p3 Dy ps Pg

Figure 5.9. A configuration requiring the fewest !
number of operations by Algorithm B ks |

i
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5.2.3 Bounds on the size of.the floating-track

access graph

By Lemma 5.1 below we see that the floating-track ac-
cess graph 1s a topological subgraph'of the'unconstrained
access graph. Thus, Theorem 4.1 in'Chapter 4 also holds’
for the floating-track access graph. If n is the number of
unidirectional points in a configuration D and ¢ 1s the num-
ber of segments routed in D, then the number of arcs k in

the floating-track access graph G for D is
k = 3n-c-3.
Lemma 5.1: Let G];1 be an access graph for an unconstrained
configuration Du’ and let Gh be an access graph
for a fixed-track configuration Dh' It Du is

route equivalent to Dh’ then Gh is a topological

subgraph of Gu‘

Proof: Similar to proof for Lemma 4.1, Chapter 4. g

5.3 Minimum-Length Paths in a Floating-Track

Configuration

A minimum-length feasible path may be found in a float-|
ing-track configuration in the identical way as for the un-
constrained case discussed in Chapter 3, Section 3.5. Nat-

urally, the floating-track access graph is used in Algor-

!ithm 3.2 rather than the unconstrained access graph. The ’




second parameter (§) in each arc label is used to compute

the cost of the minimum-length path in the graph.

5.4 Minimum-Congestion Paths in a Floating-Track
Configuration '

For the floating-track model, congestion is defined in
the same way as for the fixed-track case, except that here
we attempt to minimize the number of wires routed in a given
area rather than maximize the number of free tracks as we
did in the fixed-track case. Therefore, whereas p was de-
fined to be the number of free tracks in a section channel
in Chapter 4, in this chapter we redefine p to be the seg-
ment density as defined in Section 5.1.

The same algorithm as outlined in Section 4.6.1 of
Chapter 4 is used here except that w(ui,v)==p rather than

Tx—ﬁui,v) as in the fixed-track case.

5.5 Minimum-Perturbation Paths in a Floating-Track
Configuration

In this section we consider the problem of finding a
path for a net N sudh that a minimum number of previously
routed sections need to be reassigned to new tracks in order
to accommodate the assignment of tracks for the-path. For
instance, in thé configuration shown in Figure 5.10, the
minimum-perturbation path requires only one section to be
moved. Assume section (12,14) 1is assigned to track 2 in

street S”. Note that both the minimum-congestion path and

the minimum-length path require two sections to be moved.

| 178




6LT

this section must be moved up

new section

(’to next track to accommodate

/f’ ---------- -“\
/
il
o ¢ o é ¢ @
O P2 N5 By P Pg Py Pg Pg Pig Pu
\\
W

minimum-congestion path
; minimum-length path
e, e ]

nimum-perturbation path

9?’20 -02\}) P22 3| Py

Figure 5.10.

A routed configuration D 1llustrating the three kinds of paths dis-

cussed in this chapter.




. - o —!
A restriction imposed on the results presented here is

that two or more sections within the same path may not overmi
lap each other in the same'street. If they do, the results?
of these algorithms are unpredictable, especially as the ‘
configuration becomes aensely routed. Figure 5.11 shows a
path where sections 1 and 3 overlap each other. If there is
only one free track in street S+ then either segment 1 or 34
cannot be assigned a track. The algorithms presented here ;
do not account for those overlapping sections and thus any

implementation must either test for and discard such paths,

or make some provision for them.

feasible segment 3

feasible segment 2

—---_ - ----s

?pl p3 ..gu’“f}\ “___57’ Tp |

feasible segment 1

Figure 5.11. A path with overlapping segments 1
+
and 3 in street S

Another restriction imposed by the results presented

here is that only outer routed sections are - moved if ne-
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lcessary. In order to minimize any possible adverse effect
due to this restriction, we always route a new segment in
the innermost available track. It thus follows that when
previously routed sections must be moved to create a free
track for a feasible section, it is only necessary to move

outer routed sections.

5.5.1 Finding the floating-track minimum-perturbation
path

Given a configuration D, a floating-track access graph
G for D, and a net N==(pé,pb) to route, we desire to find a

= in G such that some func-

path P between the nodes aX, b
tion of the arc parameter A along P is minimum for all paths
between ax and bx. Since all section arcs in G represent
canonical channels in D, whéreas P may consist of sequences
of adjacent canonical channels, it is not possible to con-
sider the optimizing function to be simply the sum of all
the s in path-P. The following procedure is a modifica-

tion of Dijkstra's minimum-cost path procedure which pro-

perly uses A to obtain minimum-perturbation paths.

Algorithm 5.2: Dijkstra's minimum-cost path procedure

modified to find minimum-perturbation paths.

Purpose: This procedure finds minimum-perturbation paths
in a floating-track access graph from a given source node

uovto a given terminal node x.

o . . __ 181
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1
Method: Let Si be a proper subset of V, the node set of G,%
|

such that uoéisi, and let §i be the subset of V which con-

|
sists of all nodes not in S. Let V contain mn nodes. The |

basic idea is to construct an increasing sequence SO’Sl""’
Sn—l of subsets of V in such a way that, at the end of stage
i, minimum-perturbation paths from Uy to all nodes in Si arg
known. We define a label z(ui) for each node u, where z(ui)
will be the number of routed segments perturbed by routing
the feasible path repreéented by the minimum-perturbation

path from Uy to Uy when the algorithm has processed set Si’

We further define a node label p(ui) which is used by the

|
algorithm to keep a correct record of the number of per- i
turbed sections required by the minimum-perturbation path }

containing node ui.

Input: A floating-track access graph G, a source node Uy

and a terminal node Xx.

Output: The minimum-perturbation path in G between Uy and
. PRED(ui) points to the next node adjacent to Uy in the

path beginning at x and ending at ug -

procedure: !
|
Step 1. Let z(uo)==0, PRED(uO)=1JO, 2(v) == for all

v €G and v#uo, and SO={uO}.

Step 2. 'For each node v in Si:
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(a) if arc (ui,PRED(ui)) is not the same type
|

as arc (ui,v) go to part (b) of this step.

If k(ui,PRED(ui)) éx(ui,v) and if z(ui)< |

4(v) then set PRED(v) =u, and replace £(v

i
by z(ui). If k(ui,PRED(ui)) <k(ui,v) and
it p(ui)-kk(ui,v)<.z(v) then set PRED(v) =
|
Go to part (c) of.this step.

and replace Z(v) by p(ui)-+k(ui,v).

(b) 1if L(ui)-+x(uiv)'<z(v) setfPRED(v)==ui,

m(v) =£(ui), and replace 4(v) by z(ui) +

X(ui,v).

(c) compute min{£(v)} and let u, denote
veg it 5 |

a node v for which the minimum is at-

tained. Set Si+ ==SiU {u

1 1413

Step 3. If i=n-1, exit procedure since no path exists

between uo and x. If ui+l

i+l and go to step 2. if ui+l==x, exit pro-

cedure since the minimum-perturbation path

# x, replace i by

has been found between uo and x. a

This algorithm executed the same total number of steps

as Algorithm 2.1, namely (for n nodes in G)

) n-1 |
6n+(2n+1)log(2n-1)+log(n)+3 = log(2n-i-1) operations
1 =




[ ——

| |

5.5.2 An example of the use of Algorithm 5.2 I
|
|

Consider the configuration shown in Figure 5.12 and
assume net N=(1,13) is to be routed. The floating-track
access graph for the configuration is showﬁ in Figure 5°13.?

Algorithm 5.2 begins by setting (1) =0, PRED(1*) =1, |
L(v) == for all vE€G and v#l+, and SO={1+}. A record of
the execution of Algorithm 5.2 for this example 1s shown
in Table 5.4. Each row represents one complete iteration

of step 2. Note from this table, the number of sections

that must be moved to accommodate feasible path (1,13) is 2.

5.5.3 Track assignment for minimum-perturbation

routing

Algorithm 5.3: Minimum-perturbation path tfack assignment.l

Purpose: This procedure moves paths to adjacen§ tracks as
necessary and assigns the feasible path as found by Algor-

ithm 5.2 to tracks in the configuration D.

Method: This simple procedure sequentially scans the
minimum-perturbation feasible path in D, moving routed sec-|
tions one track further away from the point line as neces- |
sary and routing the feasible sections. Track assignments ;

for switches are not considered.

Input: A routed configuration D and a feasible minimum-

perturbation path P for D.
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(¥,1,2,0,0) =y (+,3,0,0,0) (,1,2,0,0p7(~12,1,0,0)

Ci /Y 6

(‘:3:1:1)1) ‘ "6:1,0>0)

(_’3’i,1’ v,1,2,0,0) (-,3,0,0,0)
(3) & (41)44,6,3,3,2) (8- 7—

f(w,1,2,0,0) 6 (w,1,2,0,0)
Q , (+,12,u,3,2') | ,

(+,24,4,1,1) (10} | (-,6,4,2,3)

"‘ w,1,2,0,0) ,

w,],2,.0, (-,3,2,1 (+’3’2’1’1) @
(+,9,2,4,0)N\_ [ (w,1,2,0,0) f(w,1,2,0,0) {w,1,2,0,0)

- | (1 12-)
(W’la2,0:0 @ ":3>1»230 % ("'»3)1:2:0 —’9’2’2’1)

Figure 5.13. The floating-track access graph for the configuration shown in
Fig.5.12. Isolated nodes 5+,6—,8+,15+, and- 15 are not shpwp.
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ithm 5.2 for an
as the one with

The execution sequence of Algor

Table 5.4

A node v is selected

example.

Once a node v 1is

1 Sy, it no longer is consid-

oW .

in the

the minimum value

selected and out i

ered by the algorithm.
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OQutput: Track assignment for each section of a minimum-

perturbation path for a net N.

Procedure:

Step 1.

Step 2.

Step 3.

Step 4.

Recall that the label of an arc in G is (x,6,
p,t,\) where x, 6, p, t, and A are as defined
in Section 5.4. Let the arcs in path P'be

numbered sequentially in numerical order. Set

i=0, L=0, £=0.

Set 1=i+l1l. If arc i is a switching arc, go
to step 3. Otherwise, set X==max(1,ki), and

E==max(€,ti) and go to step L.

Move the X routed paths (with the inner-most
path in track t) in D covering.the point p,
which is the left point of the switching in-
terval, one track further away from the point
line. Route the feasible segment in track t
(or track 1 if t=0). Set A=t =0. Go to

step 2.

If all arcs in the path have been examined,
exit the procedure since net N has been routed.
Otherwise, return to step 2 to examine the

next arc in path P. o

188




5.5.4 An example of the operation of Algorithm 5.3

Using the minimum-perturbation feasible path found in

|the example of Section 5.5.2 (Fig.5.11), and beginning with .

|
i :

arc (1+,2+), each arc is examined in turn. The first arc |
'is a section arc with label (+,3,0,0,0). Thus, x and t re-
main zero in step 2. The next arc is a switching_arc SO
segment (1,2) in street st is routed in track 1 and no

routed sections are moved. The next arc, (27,37), sets A
and t both to 1 in step 2. The next arc is a switching arc;
thus, segment (2,35 is routed in track 1 and street S , and
the routed segment originally in track 1 1s moved to track

2. Continuing this way, the final routing configuration D¥

is shown in Figure 5.14.

5.5.5 Timing analysis of Algorithm 5.3

Algorithm 5.3 is a straightforward procedure which op-
erates in linear time since it examines each arc exactly
once. If we let d be the number of section arcs and z the
number of switching arcs in path P then the number of op-
erations required for Algorithm 5.3 is shown in Table 5.5.
| The total number of operations required by Algorithm

5.3 is (summing the number of operations shown in Table

5.5):

Ops = 1+2z+3d-3z+3z+d

2z+4d+1
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Table 5.5. Number of Operations per Step for
Algorithm 5.3.

Step Number of Operations

1 1

2z for switching arc 3(d-z)

. for non-switching arc
3 3z
b d

| For Ops z= 3. and d=3n-3, thus

‘ max’ 2 °?
t)psmax = 3r}-2 + U4(3n-1)
=15n =14 .
For Opsmin’ we assume a minimum number of arcs in a path,

namely, one. Then z=0 and d=1 and, hence

5.6 Conclusions

The floating-track routing method describe here 1s more
general than the fixed-track case in that segments assignedi

to track may be reassigned to different tracks in order to
|

|

accommodate a new routed path. Whereas the fixed-track

routing method lends itself to routing change, the

I it s et o O]




floating-track method lends itself more ﬁo routing a total

new configuration.

The timing complexity for the floating-track method is

similar to the fixed-track method. The (worst-case) com-
plexity is 0(n3logn) for n-1 nets and n points. However,
for realisticconfigurations (e.g., where the number of
tracks in either street is small compared to the number of
points in the configuration) the complexity is J(n2). Thus,
the method given here 1s practical and requires approxi-
mately the same execution time as for the fixed-track case.
Chapter 9 gives experimental evidence that this is the
case. ' Also, as for the fixed-track case, if one or more
paths exist for a net in a floating-track configuration,
the method presented here guarantees that not only will a
path be found, bﬁt that the chosen path is optimal for any
of the goals considered; namely, minimum-length, minimum-

congestion, or minimum-perturbation.




CHAPTER 6

MINIMUM SWITCH UNIDIRECTIONAL ROUTING

6.0 Introduction

Special cases of unidirectional routing are considered
in this and the next chapter. Specifically, the problem
studied in this chapter is that of routing a two-point net
N in an unconstrained unidirectional point environment D
such that there is a minimum number of switching patﬁs in
the feasible path for N in D.

An example of routing problems where the number of
switches is to be minimuzed is found in routing problems
where each plane has a preferred wire direction. Since each
switch is orthogonally directed with respect to horizontal
sections of a path, it is necessary to minimize the number
of switches in the path.

Although the approaches presented in the previous three
chapters of this report can be easily modified to solve the
minimum switch problem, the approach described here is more
straightforward and efficient. As for the general approaches

already discussed, this approath determines a minimum-cost

path in a graphical model of the unidirectional configura-
tion. The graph used is called a simplified access graph. |
|
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6.1 The Simplified Access Graph !

Let D be an unconstrained unidirectional point environ-
ment with n points. Let x represent "+" or "-", Define a
graph G_ = (V,E) where the node set V contains nodes v?.

X : .
Each node vi represents a maximal subset of intervals

X X

uq ,uq s..« along the point line in D such that each such
1 2

interval in vi is accessible in the street Sx to all others:
in the subset. Each node is labeled + or - if accessibil-

ity is via street S+ or S, respectively, between intervals

in the subset represented by the node. The arc set E is
defined on V where an arc exists between two nodes u* and
vx if and only if the interval subset associated with u
contains at least one interval that is also contained in
the interval subset asscciated with v*. For the sake of
simplicity, the subset of intervals assoclated with a node
vX is also labeled .

As an example of a simplified access graph, consider

the unidirectional point environment D shown in Figure 6.1.

P1 Do 3k oy Eg

Figure 6.1. An example configuration illustrating

interval accessibility.




The nodes defined by D are:

node . intervals |
node SRLSLVALD . |
+ £+ +
V1 By s Ugs By
V2 u2, U.3, U.u
v+ u+
3 3
vy Y

The graph GS is defined by this environment is shown in

Figure 6.2.

Figure 6.2. The simplified access graph for the ]

routed configuration shown in Fig. |
6.1.
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1

We now give an algorithm for the creation of the simpli=-
|

fied access graph. . 5
|

Algorithm 6.1: Simplified access graph construction.

Purpose: This procedure generates a simplified access

graph GS from a routed configuration D containing n points.

Method: The n points in D are scanned twice from point Pi>

first with respect to street S+,ahd the second with respect
to street S~ . At each point Py, the configuration of p, and
Pi41 is determined (i.e., is Py OF DPy4q covered, and, if
so, is it the first or last point of the segment?). Dependj

ing upon the configuration, an arc is created, and a stack ’

operation is performed.
Input: A routed configuration D.
Qutput: The simplified access graph GS for D.

Procedure:
Step 1. (initialization) Set x= "+" and clear stack
S. Define n-1 locations called NODE. NODE(u)
contains the node that contains interval u in
street SX. Set all n-1 NODE locations to O.

Set a single location called VERTEX to O.

Step 2. Set i=0. Push item (0) on stack S. (Even
though there is no point Py in D, we need this

dummy item in S to ensure correct processing

|

of the end points in D by the algorithm.) Set
3 |
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Step 3.

Step 6.

Step 8.

Step 9.

Step 4.

Step 5.

Step T.

VERTEX = 0.

(main loop) Let the top item in stack S be (J)
Set 1=1+1. Consider points Py and Pi+1 in D.
Select the applicable case from Table 6.1 and

branch to the particular step as indicated.

If 1=1, then go to step 7. Otherwise, go to

step 5.

If x="+", then set NODE(i) =j. Otherwise,
create an arc between the node labeled "+" and
numbered NODE(i), and the node labeled "-" and

numbered J. Go to step 9.

If x="+", then set NODE(i) = j.. Otherwise,
create an arc between the node labeled "+" and
numbered NODE(i), and the node labeled "-" and

numbered j. Pop S. Go to step 9.

Set VERTEX = VERTEX+1l. Create a node numbered
VERTEX and labeled x. If x="+", then set
NODE(i) = VERTEX. Otherwise, create an arc be-
tween the node labeled + and numbered NODE(i),
and the node labeled "-" and numbered VERTEX.

Push VERTEX on stack S. Go to step 9.

Set VERTEX = VERTEX+1. Create a node labeled x

and numbered VERTEX. Go to Step 5.

If i #n-1 then go to step 3. Otherwise, go to!
|

step 10. |
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Step 10. If x="+", then set x="-" and go to step 2.

Otherwise, exit algorithm. o

Table 6.1. Jump Table for Algorithm 6.1

IF THEN
Py 15 Py, 1s By 18 Pyyy 18
Covered Covered Left Point Left Point Go To Step:
in 8% in s* of Segment of Segment
no no-. — - —_ I
yes no no — 5
no yes = yes b
no yes — no 6
yes . yes no no 6
yes yes no yes 5
yes no yes -— 7
yes yes ~ yes yes T
yes yes yes no 8

We next show the characteristics of graph GS.
First we show that graph Gs is a bipartite unidirected

graph.

Theorem 6.1: Given any routed configuration D, the simpli- |

fied access graph GS for D is a bipartite

graph.

Proof: By definition, any interval in D occurs in exactly

one + node and one - node. Also by definition, alli

intervals accessible to each other in a particular |
| |
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street occur in the same node. Thus, no arc con-
nects any_like-labeled nodes. Since there are only
two sets of like-labeled nodes in G_, G_ is bipar-

tite. ' |

The size of Gs is of interest since the processing time

of any algorithm which processes GS is directly related to

the size of G. The following theorems relate the size of

GS to the number n of points in D and the number c¢ of routed

segments in D, thereby showing that Gs is no larger than a

linear function of n.

Theorem 6.2: Given a routing configuration D with c¢ routed

Proof:

Case 1

segments on a unidirectional point set P=
{pl,pz,...,pn} with the points p; and p  at
the extreme ends of the line of points, and a
simplified access graph GS with m nodes, then
m=c+l for c=1l, if a segment between P4 and

P, exists, or m=c+2 for c 20 otherwise.

We will prove this theorem by induction.

Assume a segment between pl and P, exists and no
other segment exists. Then there are two nodes in
Gs and one segment in D. Thus, for c=1, m=-c+l
holds. Let c¢c=2 and let one of the two segments
have end points p1 and pn. Then an additional node

exists in GS. Finally, assume m=c+l for m nodes

|
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Lemma 6.

Case 2

Proof:

and c segments, and let a segment be added to D in
S+. Then one additional node is created in Gs(i.e.,
since segﬁents cannot cross each other in S+, and
two segments cannot have the same end point, then
the addition of a segment creates an additional

node in G_). The same argument holds for S” as well;!

i.e., adding a segment in S~ creates an additional

node in GS.

Thus, by induction, the number of nodes in GS is
one more than the number of segments in D for m=z1,

or m=c+l.

Assume no segments exist in D. Then Gs contains two
nodes. Thus, if ¢=0 then m=2, and m=c+2 1s sat-
isfied. Now assume m=c+2 and add a segment in st
(or S7) such that the added segment does not have

pl and Ph as end points. Then one additional node
is added to GS. Therefore, case 2 is proven by in-
duction and the number of nodes in GS is two more
than the number of segments in D assuming no seg-

ment exists with end points pl and pn. o

1: Given an unconstrained routing configuration D
with n unidirectional points, the number of

nodes m in GS is less than or equal to n+l. i

Tre maximum number of segments that can be routed

|
|

in a given street on n points in n/2. I1If the




T |

" : . : l
maximum number of segments is routed in a street, |
|

then no more than one less than the maximum number

|
|
|

n/2 of segments can be routed in the opposite stree@
If, in fact, n/2 segments were routed in both |
streets, a closed loop occurs and thus one of thé
routed segments is unnecessary (see Figure 6.3).
Therefore, the maximum number of segments c¢ routed

in a configuration is n-1. From Theorem 6.2, m=

c+2. Thus, m=n+l. a

Figure 6.3. Example of a closed loop of routed seg-
ments. Removal of any one segment still
leaves all points electrically ccnnected.

Theorem 6.3: Consider a routed configuration D with n

points and c¢ éégments. Let k be the number

of arcs 1in the access graph GS for D. Then

c=k=n-1 for czl. k=1 if c¢c=0.

el



Proof: (c=0) If there are no segments in D, then there
are two nodes in GS with one arc between them by

definition of G_. . Thus k=1.

(lower bound, ¢ >0) Consider c¢c routed segments in
D and k arcs in Gs' Adding one more routed segment
to D adds at least one more arc in GS. Now assume
each one of the c+l segments added k+1 arcs, or

c=k. Since this is the minimum, k=c.

(upper bound, ¢ >0) There are n-1 intervals in a

unidirectional configuration with n points. Since

each arc in Gs could be uniquely constructed by one
~and only one ipterval in D, then there can be no

more than n-1 arcs in GS. o

6.2 Minimum-Switch Paths

In this section we consider adding a net N= (s,t) be-
tween two points s and t in a configuration D. Stree ca-
pacities are ignored. Ue assume the path for N may cross
from one street to the other via switches. It 1is desired

to minimize the number of such switches in crder to keep

the interval congestion down.

A characteristic of the algorithm presented here 1s that

the path is not restricted to be of minimal length. In
fact, a path may "double back" on itself if required in

_lorder to complete the route successfully. We define a node
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‘

Pn G, to be an s-node if it eontains interval u_. Likewise,!
Ya t-node in GS contains interval Uy Note that GS may con—!
pain two s-nodes and two t-nodes depending on whether or not
%ps or Py are uncovered. To route net N= (s;t), at least one
s-node and one t-node must exist. |

To motivate the minimum-switch path algorithm presented

in the next section, consider the configuration D shown in

Figure 6.4.

Figure 6.4. Example routing configuration illustrat-
ing addition of a minimum-switch path in
an unconstrained configuration.

It is desired to add net N=(3,10) to the configuration.

First, we generate from D the access graph Gs as shown in

o I __A__?_Q_ﬂ




Figure 6.5. Then, by finding the shortest path between ;
either one of the s-nodes (s is point p3) and one of the
t-nodes (t is point plo), we have in G a representation oﬁ
the path in D which contains the minimum number of switcheﬁ
for N. Algorithm 6.2 implements this procedure. The
shortest path in Gé, unique in this case, is v5,vl,vg.

- Since there are two arcs in this path, there are two switch-
ing paths in the routed path for N in D. There are no
paths with fewer than two switching paths for N. Figure

6.6 illustrates the routed path in D.

Figure 6.5. Access graph GS for example in Figure
6.4.




path nﬂnésented

switching by node VI,:>

P10 Pu
-

path repre- A e mm—m——- -
.~ sented by

node vg path represented

byrxﬁew%

Figure 6.6. Configuration showing feasible path
as produced by Algorithm 6.2

6.2.1 Algorithm 6.2. Minimum-switch path algorithm

The following algorithm finds a minimum-switch path in

G_.
S}

Purpose: This algorithm determins a path for net N= (s,t),
point Py to the left of Dy in an existing unconstrained
routed unidirectional point environment D such that the

number of switching paths is minimized.

Method: This algorithm determines a path in a simple ac-
cess graph GS for a particular routing configuration D.

The path found directly identifies the entire minimum




switching path in D for N.

Procedure:

Step 1.

Step 2.

Step 3.

|
Generate the access graph GS for D using Al- |

gorithm 6.1.

If uS and ut are both in the same node v in

G then the path between Pg and Py does not

S,
swltch between streets. The street containing
the segment for N is in S+ if v is labeled "+"

or S is v is labeled "=",

If Ug and u, are not both in the same node,
then obtain the shortest path P between Pg
and Py using Dijkstra's Algorithm (see Sec-
tion 2.11, Chapter 2). This péth represents
a feasible path for N in D such that a mini-
mal number of switches are used. If no path
is found in GS, then there exists no feasible

path for N in D. Each node in P represents

a segment in D, and the arcs represent

switches. The label of the node identifies

the street in which each subpath lies. To i

" determine the location of the switching paths

and, thus the end points of each segment, let

path P in GS consist of z nodes v

ql,qu),(vq2,vq3),..., E
|

). Each node vq consists of a set .
' i

ql,qu,...,

v with z-1 arcs (v
q,

(v ,V
qz—l Clz
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where m 1s the number of nodes in the simplified access !
~graph. This expression also assumes that the path found
by the algorithm passes thrbugh all nodes in the graph.

The maximum number of nodes m in the gfaph is m=n+l
where n 1s the number of points in the configuration from
which the graph is obtained. The only configuration which |

gives this value is shown in Figure 6.7.

Figure 6.7. The configuration which produces the
maximum number of nodes in the simpli-

fied access graph.

The access graph contains n+l nodes each of which have !
|
i
|

degree d(ui)= 1 except for two nodes which each have de-

gree n%l if n is odd, or one has degree r_21_ and the other

has degree 521--1 if n is even.

Substituting m=n+l, and noting that the two nodes witd
|
!

degree greater than one contribute the greatest number of
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operations to the above expression when 1=0 and 1 in the

summation, then

1A

Opsd 3n+3+nlogn+.Q%l(l+logn) + I3%l(l+log(n—l))
n+l
+ 2 (l+log(n-i))
i=2

A

5n+l+(2n-1)logn + (logn!-log(n-1)) .
Using Sterling's approximation for n!,

logn! < Mn2+l logn - %n .

Then,

0psd< %[9n+2+(8n—1)logn—log(n-l)].

Adding the number of operations for steps 1 and 2, we
obtain the total maximum number of operations, Opsmax’ re-
quired by Algorithm 6.2. Thus

Ops_, = % [2Un+12+(8n-1)logn-log(n-1)1,

and Algorithm 6.2 is of O(nlogn) complexity.
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CHAPTER 7 .
ROUTING WITH NO SWITCHES IN A
UNIDIRECTIONAL CONFIGURATION

7.0 Introduction

In this chapter we consider the second of the three
special cases of unidirectional routing. The case consid-

ered here 1s to route nets in a unidirectional point en-

vironment where switches are not permitted. Thus, a routed
two-point net is equivalent to a routed segment. The pointi
line consists of points only ffom the original point set P.:
The objective function for which the results described here
apply is to minimize the number of existing routed segments
which must be moved to the opposite street to aécommodate

a new feasible segment. This object;ve function differs
from that considered in Chapter 5 where routed sections are
moved to adjacent tracks in the same street whereas in this
chapter segments are moved to the opposite street. Actual
track assignment is not considered. Hence, there are no
track constraints.

After a brief discussion on the types of connections at

a point that .are allowed in this chapter, the concept of a

conflict graph is introduced. Using the fact that a con-
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flict graph for a routed configuration 1s bichromatic, the
method of determining the path for a new net is straight-

forward and efficient.

7.1 Tree Connectilons

Up to this point, all connections considered at points
in a configuration have been chain connections, i.e., two
segments meeting at a common point must be routed in oppo-
site streets. A tree connection is one where two segments
meeting at a common point are routed in the same street.
We further restrict the two adjolning sections to meet at

the same point as illustrated in Figure 7.1.

chain connection

tree connection
r © o ) @

Figure 7.1. Routed configurations illustrating a

chain connection (top) and a tree con-
nection (lower).




There is a benefit to considering tree connections
since they enhance the probability that a new net will be
successfully routed. As an example, consider the routed

configuration shown in Figure 7.2. Assume net N==(p3,p5)

mitted, segment (pu,p6) can be moved to form a tree con-
nection at point Py and the new net can be routed in the

lower street as shqwn in Figure 7.3.

le 5 9; Pl ‘Ps s &

Figure 7.2. Since tree connections are not permitted,
net (p3,p5) cannot be routed.

Figure 7.3. With tree connections permitted,net
(p3,p5) can be routed,

is to be routed. If only chain connections are permitted,

N cannot be routed. However, if tree connections are per-




7.2 The Conflict Graph

41
|
|

Let a confliet graph H for a routed configuration D be t

an undirected graph (V,E) where V is a set of nodes, each i
representing a two-point net in D, and E 1s a set of arcs

where an arc a in E joins nodes u and v if and only if

1. one of the two end points of the two-point net
represented by u lies between the end points of

the two-point net represented by v; or

2. the two nets corresponding to u and v share a
common point which has been prespecified to be

a chain connection.

Note that 1f two two-point nets Nl and N2 have a common
point such that a tree connection is permitted, then no arc:
is inserted between nodes Nl and N2 in H. i

Finally, each node is labeled "+" if the two-point net
represented by the node is in the street S+, or "=-" if the
two-point net represented by the node is in the street S .
This labeling imposes a bicoloring on H thereby implying
that H is bichromatic.

As an example of a conflict graph, consider the routed
configuration shown in Figure 7.4a. The conflict graph

for this configuration is shown in Figure 7.4b. Assume

only chain connections are permitted.
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Figure 7.4a. A routed configuration. No switching
paths are allowed.

7.Ub. Conflict graph for the routed configuration

shown in Fig.7.4a. (An arc in the graph implies

that nets represented by the two adjacent
nodes must be routed in opposite streets.)
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7.2.1 Generating the conflict graph

The following graph generation algorithm assumes that
either 1) only chain connections are allowed, or 2) both
tree and chain connections are permitted. Also, all nets to

be routed are two-point nets.

Algorithm 7.1: Creating a conflict graph

Purpose: This procedure creates a conflict graph H for a
routed configuration D. D contains n points. No switching

paths are permitted.

Method: Two stacks, U+'and U™ are used to store two-point
nets in street S+ and S~ respectively as they are en-
countered in a léft—to-right scan of the point line. A
pointer associaﬁed with each net points to the top of the
opposite stack at the time the two-point net is pushed on
its appropriate stack. When the two-point net is popped,
an arc is created between the node in H corresponding to
that net and each node in H correspoﬁding to two-point nets
in the opposite stack down to the depth pointed at by the

pointer associated with the popped net.
Input: A routed configuration D.

IQutput: A conflict graph H for D.
Define the operation PUSH (N,x) to be:
push net N and PTR, where PTR 1is the depth of

stack Ux, onto stack Ux, and create node V§ in H.
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Define the operation POP. (N,x) to be:

pop stack u* to get N and PTR. Let the nets

in stack U* from the top of u* down to PTR

be a,b,c,... . Create arcs (Vﬁ,vz);(vﬁ,vg),
X X
(VN,VC),... in H.
Step 1. Let Py be the left-most covered point in the

Step 2.

Step 3.

Step 4.

" is covered by only one routed net, go to step 3.

line of points. Go to step 3.

Let pi be the next covefed point in the point
line scannihg from left to right. If there are

no more covered points, exit procedure. If Py

Otherwise go to step 4.

Let the net n covering p, be in street s*. 1If
Py is the left point of the net, PUSH (n,x).
If Py is the right point of the net, POP (n,2z).

Go to step 2.

(a) Let the two nets covering p; be ny and ny.
If both nets are in the same street s* 1let
nlbe the net with p; as its right point.
POP (nl,x) and then PUSH (nz,x) and go to
step 2. If both nets are not in the same
street then do the following: (for all

cases let n, be in street s*).
(b) If Py is the right point of one of the nets
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1.2.2

(c)

(d)

Timing analysis of Algorithm 7.1

and the left point of the other, let the

nets be ull and ub fespectively. Then, if
tree connections are note permitted, PUSH
(nz,i) and then POP (ql,x). If tree con-
nections are permitted, POP (nl,x) gnd then

PUSH (nz,i). Go to step 2.

If Py is right point of both nets, let PTR1
be the pointer on top of stack UX. If tree
connections are not permitted and PTRl is

less than the depth of Ux, or tree connec-

tions are permitted and PTR, 1s greater

1
than the depth of Ux, POP (nl,x) and then
POP (n,,X). Otherwise, POP {n,,X) and

then POP (nl,x). Go to step 2.

If Py is the left point of both nets, PUSH
(nl,x) and then PUSH (nz,i). Set PTR in

the top of USE to the depth of U* minus one
rather than to just the depth of UX. Go to

step 2.

If a stack PUSH or POP, and arc or node creation are
each assumed to be unit operations, then the operation PUSH
(N,x) requires two operations, and POP (N;x) requires 1+d

operations where d is the depth to PTR in stack uX.
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It 1s apparent that maximizing d maximizes the number
of operations required by Algorithm 7.1. In other words,

Emaximizing the number of routed nets that conflict in any

!
|

configuration maximizes the run time of the algorithm. At

|
- most, n/b4 nets can conflict with another as illustrated by

' the configuration shown in Figure 7.5.

Figure 7.5. An example of a configuration which
maximizes the number of operations
required by Algorithm 7.1.to generate
the conflict graph H.

There are at most %rlrwuted nets in such a configuration.

The maximum number of conflicting nets occurs when half of

‘the nets are in the upper street and half are in the lower
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street. Thus, as the algorithm processes, lrl PUSHs are

2 |
executed in step 3, one each for the first n/4 points
attached to nets‘routed in.the upper street. The second
in/& points are attached to the lower nets.' A PUSH is ex-
ecuted in step 3 for each_of these points. The third n/4
points are attached to the upper nets which conflict with
all of the lower nets. Thus, step 3 is ekecuted n/4 times
with a POP occurring each time. Finally, the last n/l
points are attached to the lower nets. A POP is executed

in step 3 for each of these last n/4 points.

Half way through the processing of the configuration in?

;Figure 7.5, each stack U+ and U has a depth of n/4. As

lthe third n/4 points are processed, the depth decreases by

.one for each point processed in stack U+. The same thing

'happens in U~ during the processing of the last n/4 points.
i
| Thus, !

Opspay = 207) +20F) + (1+F) + (14 -1) + (14 7 -2)

-+

et @ () H B+ (14 2)

+ ...+(2)

n/l
n+2 2 (2+%—i)
i=1

2
I - S Tn
16 = L -
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7.2.3 The size of H

a
\
Let b be the number of two-point nets routed on D, n be.

the number of unidirectioﬁ points in D, and k the number of:
arcs in graph H. By definition, there are b nodes in H.

| The maximum number of two=-point nets that can be routed
/in D 1s n/2. It will be shown later in Section 7.3.1 that
the graph H is bipartite. Thus, the maximum number of arcs
in H occurs if H is a complete bipartite graph with the
same number of nodes in each non-adjacency node set of H.

2
Thus, if H has n/2 nodes, then H has k= (%—)(%) = %3 arcs

in the worst case.

7.3 Finding a Non-Switching Path

In the discussion that follows, we consider a feasible

solution to a unidirectional point routing problem to be

| defined as before; namely, a path in the routed environ-
ment has been found, but the path has not been assigned to
a track. A routed solution has been obtained from a feas-
ible solution when the feasible path is assigned to a
track. Only feasible solutions are considered in this
chapter; routed solutions require a track assignment pro-

cedure which is left for further study.

7.3.1 Theory

The following theorems are presented since they imply a

| procedure which minimuzes the number of routed nets which
(

|
Imust be assigned to the opposite street to accommodate a
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feasible path for a new net. A1l of the theorems assume a i

ter-

' Theorem 7.1: Let H be a conflict graph representing a non-,

|
conflict graph constructed per Section 7.2.1 of this chap- |
!

Proof:

switching two-point net unidirectional rout- i

ing problem P. Then H represents a feasible \

solution to P if and only if H 1is bichromatic,

(if) Let H be bichromatic. Then each node in H is
labeled such that no two adjacent nodes have the
same label. From the definition of H, two non-
adjacent nodes represent nets that do not intersect
if routed in the same street. Thus, if all nets
represented by nodes in H having the same label are
routed ih the same street, and all remaining nodes
represent nets routed in the opposite street, no
intersections will occur, and thus, a feasible so-

lution results.

(only if) Let H be a conflict graph for a feasible
solution to a unidirectional routing problem. Then
all nets routed in the same street are non-inter-
secting and are represented by non-adjacent nodes
in H. These nodes have the same label. For the
nets in the other street, the corresponding nodes

have the opposite label. These nodes are also not
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| adjacent to each other. Since adjacent nodes in H
i |
. represent only nets routed on opposite sides of the!
3 _ |
! point line, H is bichromatic. =

|
i
|

ECorollary 7.1l: Let H be a conflict graph for a non-switch-

| ing two-point net unidirectional routing

problem. Then H represents a feasible so-

lution if H has no odd cycles.

Proof: By a well known theorem in graph theory, a graph H

is bichromatic if H has no odd cycles [27]. a

The next two theorems require the definition of a graph
H’ derived from the conflict graph H as follows. Let H’ be

the graph H plus an additional node n representing the two-

point net N to be routed in D.- Add arcs ays i=1,...,9 to
iH' between nodes v, and n, 1=1,...,q if one end of N is
within the span of the two-point net in D represented by

de v..
node vy

Thoerem 7.2: Let H be a conflict graph representing a
routed configuration D and let H’ be a graph
as described above, where node n represents
a two-point net N to be routed in D such that
no switching paths are permitted. H’ repre-
sents a feasible solution to the problem of
routing N in D if there are no odd-length

paths between any nodes Vl’VZ""’Vq in H.
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Let the nodes vl,vz;...,vq in H that are adjacent ;
to n in H’ be caleld set V. Assume there is a path,
of m arcs in H between two nodes u and v in V.

(This path exists in both H and H’.) Since nodes u
and v are also adjacent to n in H’, then there ex-
ists a cycle ¢ of length mt+b where b is 1 or 2 de-
pending on whether nodes u and v are adjacent or
not. If u and v are adjacent (i.e., b=1), then
there 1s an odd-length cycle consisting of u, v,
and n, and, by Corollary 7.1, H’ is not bichromatic
Thus, b must equal two and cycle c¢ is of length
m+2. If there are no odd-length paths between any
nodes in V and H then m is always even, and the ad-
dition of nodes n to H to create H’ induces a feas-
ible solution. However, if there is some path in

H between two nodes in V that is of ddd length,
then m+2 is odd also, and a cycle of odd length is
in H’. Thus, by Corollary 7.i, H’ is not bichroma-
tic, and H’ does not represent a feasible solu-

tion. Q

Theorem 7.3: Let H be a conflict graph representing a

routed configuration D and let H’ be the
graph derived from H as described above
where node n represents a two-point net N

to be routed in D. Let the set V consist
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_ |
of the nodes Vl’VZ"'° adjacent to node n in.

|
H’. Then any two hodes v, and Vj in set V :

! are in different graph components of H if

| the label of Vi is opposite to the label of

A%

| j for 1#j.

| Proof: By Theorem 7.2, there are no odd-length paths be-
tween any two nodes in V in H. Assume node vl is

labeled "+" and vJ is 1abeléd "-", where v, and v.

1 dJ
are in V. Sincé all nodes lying in a path between

: Vs and vj are bicolored, the path must be of odd

length. Thus, there is no path connecting vi and
vj in H,y and therefore, Vs and vJ must be 1n sep-

arate components of H. a

7.3.2 Algorithm 7.2 Non-switching unidirectional

! path algorithm

The central algorithm of this section is now presented.
The theorems and corollaries presented above imply and di-

irectly support this algorithm.

iPurgose: The algorithm routes a net N in a routed config-
uration D. No paths are permitted in the switching chan-
nels of D. This algorithm assumes that N is a two-point

net, and it obtains a path for N in D such that a minimum

number of existing routes are assigned to opposite streets.
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Procedure:
“ Step 1.

Step 2.

Step 3.

Step 4.

If the conflict graph H does not already mxn_
ist, create it using Algorithm 7.1. Create

conflict graph H’ as defined in Section |
T3 ele

Find all components of H (see »HWOdHﬁrs 543
in[28]). If any two oppositelylabeled nodes
in V are in the same component, then exit
since a non-switching path does not exist

for net N in D.

Separate the components of H into two sets

gt ana w” such that H' contains those com-

ponents that have nodes in V labeled "+",

and H contains those components that have

nodes in V labeled "=", Let n+ be the num-

ber of nodes in the components in " and T

be the number of nodes in the components in

H .

Update graph H’ to a new conflict graph H
reflecting the routed configuration contain-

ing the path for the net N as follows:

A . + -
label node n in H’ as "+" if 7 <1 ag "_n
3

+

if 7w >u", and either "+" or "-" if 5t =g

Reverse all labels on mHH_soamm in the com-

ponents of the set with the smaller number
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of nodes (this implies all routed nets rep-
resented by the relabeled nodes are re-
assigned to the opposite street they cur-
rently occupy. The label of node n identi-
g fies the street in which net N will be

routed. a

7T.3.3 Examples of the use of Algorithm 7.2

Consider the routed configuration D1 shown in Figure
T.6a. The conflict graph Hl for D, is shown in Figure

7.6b. Assume that a net N==(pl,p6) is to be routed. The !
!

1
set V is {¢7,D} . Since the nodes in V are all labeled "-",

graph H; which includes node n is shown in Figure 7.6c. The
then node n is labeled "+". Thus, net N has a feasible
path in street S+, and this example requires no reassign-

ment of routed nets to accommodate N.

N
" \\
&
&« F ® { “® TO B
Py Py Py Py P5 p_P6 °7 -8

B c |

Figure 7.6a. Routed configuration Dl used to illus-
trate non-switching routing.
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Figure 7.6b.

Figure 7.6c.

Conflict graph Hl for routed config-
uration Dl'

Conflict graph Hi.
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As an example of a routing problem where routed nets

must be moved to accommodate a new net N, consider the

routed configuration Um shown in Figure 7.7a. The conflict

graph mm for Um is shown in Figure 7.7b. The graph mm
which includes new node N = Av:vvmv is shown in Figure 7.7c.
The set V is mw+uo+.m|w. Since the nodes are not all
labeled the mmSmV_mdmvs mm is partitioned into components

as shown in Figure 7.7d.

o N

Figure 7.Ta. Routed configuration Dy used to illus-
trate non-switching routing.

O—0

® Q\ﬂ

Figure 7.7b. Conflict graph mm for routed configura-
tion Um.

-
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Figure T.Te-

component 2

Figure 7.7d.

T

Conflict graph Hé with node N un-
labeled.

component 1

!
7/

component 3

Conflict graph H

components.

partitioned into

2
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Figure 7.7e. The new conflict graph with node n

labeled.
B
C i)
L * o .
2 tD? Dy IQS Lof._p"__uﬁ__n___l‘lo 914 P>
D N
A

Figure 7.7f. The new configuration containing a
path for net N. Two paths (A and E)
were moved to accommodate net N.
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Nodes in V={B",c*,0"} are labeled both + and -. Thus,

the components of H2 are separated into two groups H; (con-

 taining components 2 and 3) and HE (containing component 1).

+ , .
The number of nodes % in H2 is 3 and the number of nodes T
!

5 1s 2. Since rT<n’ node n is labeled "-" and each
node in component 1 is relabeled. The new conflict graph
which represents the configuration D2 with a path for N is
shown in Figure 7.7e. The new configuration is shown in
Figure 7.7f.

To illustrate a rouéed configuration for which a path
cannot be obtained for a specific net N, consider the con-
figuration shown in Figure 7.8a.

The conflict’ graph H3 f'or_D3 is shown in Figure 7.8b. |
The set V for this example is {A+,B-}. Nodes A and B are
in the same component of H3, they are oppositely labeled,
and they are both in V. Thus, a non-switching path does

not exist for net N in D..

3

P Po | Tp3 Py Pg Tps

Figure 7.8a. Routed configuration D3 used to illus-

Trate a routing failure for net N=

(pg,pS).‘ 231



Figure 7.8b. The conflict graph mw for the config-
uration Uw,

7.3.4 Timing msmwwwwm of Algorithm 7.2

There are no loops in Algorithm 7.2. Therefore, the
timing msmwwmum,ow nsm.mHmOdeﬁa consists of the sum of
the number of operations required by each step. In step 1,
if the conflict graph is not available, then QASNV time is
required to generate H as shown in Section h.,2, where n is
the number of points in D. If H 1is w<mHHmch (say from a
previous execution of Algorithm 7.2), then step 1 requires
O(n) time to generate H'.

Step 2 requires the determination of components of H.
Whichever method is used, at least mmov_mamm in H must be
examined. Thus, any process of complexity O(k) fulfills
this wmncuwwamsnu where k is the number of edges in H. It

is suggested that the depth-first search method be used
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' although any spanning tree method of complexity 0(k) may be;

;
|

T

: iused. The depth-first search method is of complexity 0(k) ;
!and is simple both conceptually and in implementation.

|

%Since k==n2/l6 in the worst case (see Section 7.2.3) the
%complexity of step 2 is 0(n2).

Step 3 requires only lingar time since the partitioning
of graph components is at most a single examination of eachl
node in H. In step 4, no more than n/4 node labels will -
change. Thus step 3 and step 4 botﬁ operate in time O(n).

From the foregoing aiscussion, it is seen .that the non-
switching unidirectional path algorithm 1s of complexity
O(n°) in the worst-case.

To obtain a 'reasonable best-case time complexity for
the non-switching unidirectional path algorithm, a routing
configuration 1s desired such that the number of arcs k in
H be minimum. For k=0, step 2 is of complexity O(n) and
step 3 is not even executed. Thus, in the best case, the
single-layer unidirectional routing change algorithm is of

time complexity O(n).
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CHAPTER 8

A CELLULAR APPROACH TO UNIDIRECTIONAL ROUTING

8.0 Introduction

Using an extension of the well-known shortest path
technique described by Lee [6], it is'possible to apply
this technique to find suitable paths in a unidirectional
.configuration. The technique described in this chapter
applies only to an unconstrained configuration. Applica-
+ tion of Lee's method to finding minimum length paths in

constrained configurations is left for further study.

The basic Lee algorithm divides the two-dimensional
routed configuration (not necessarily unidirectional) into
a grid of cells with a fixed number of rows and columns.
Then a cell marking procedure is performed. Finally, a
traceback from the terminal point of the net to be routed
to the starting point of the net is performed to find the
desired path. The process described in this chapter di-
vides the unidirectional configuration into differing size
cells as shown in Figure 8.1 rather than fixed size cells
as for the Lee method. The rest 5f the procedure is iden-

tical to that described by Lee.
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Figure 8.1. An example of the cell structure im-

* posed on a configuration. (The circled
integers are the cell values inserted
by Algorithm 8.1 assuming a net N=
(pl,p7) is to be routed.)

8.1 A Minimum-Length Path Cellular Algorithm

The procedure given in Algorithm 8.1 is basically Lee's

algorithm with non-fixed size cells.

Algorithm 8.1: Cellular minimum-length path in a unidirec-

tional configuration.

Purpose: This procedure finds the shortest feasible path
in a routed configuration D for a two-point net N between

two points s and t in D.
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‘Method: Lee's shortest-path procedure using the cell struc-

—————— - e e T I S

.ture as demonstrated in Figure 8.1.

Input: A routed configuration D and the two end points of !

the net to be routed..

Qutput: A shortest feasible path for the net in D.

Procedure:

Step 1.

Step 2.

Layout the rectangular cell structure on D
where upper and lowér sides of cells are
eiéher the horizontal sections of all paths
routed on D, the point line, or the outer
track adjacent to the outermost routed path
on either side of the unidirectional points.
The left and right sides of each cell are
imaginary vertical lines intersecting each

point in D and extending to the outermost

horizontal lines.

Label each cell with an integer as follows:
(1) label all cells which are adjacent to

the uncovered side of point s with the

value 1.

(2) select a cell with a label that has at
least one unlabeled adjacent cell such

that the label of the cell is minimum.

Let the label of the cell be 1i.

Label
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Step 3.

(3)

Beginniné with a minimum-labeled cell (called
the current cell) adjacent to the uncovered
side of point t, work back through the cell

structure constructing a path P as follows:

(1)

(2)

T H

each adjécent unlabeled cell i+l. If

there are no cells with unlabeled ad-

Jacent cells, exit procedure since no

path for N exists.

if a newly labeled cell is adjacent to
an uncovered side of point t, go to step
3. Otherwise, continue labeling cells

by returning to éubstep (2).

let the label in the current cell be 1.
Select the next cell in P to be a cell
adjacent to the current cell with label
i-1. In case several adjacent cells
with label i-1 exist, select the next
cell in P to be the one to the right or

left of the current cell.

let the new cell just selected in the
previous substep be the current cell.

If this cell has label 1 then a complete
minimum-length path P between points s
and t has been found so exit this pro-

cedure. Otherwise go to substep (1).
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! 8.1.1 An example of the use of Algorlthm 8 1 !
|

As an example of the use of Algorithm 8.1, consider the!

configuration shown in Figure 8.2, and assume a net between

points p3 and p9 is to be routed.

Figure 8.2. A routing configuration illustrating the
use of Algorithm 8.1. Net N= (p3,p9) is
to be routed.

A rectangular cell structure, shown in Figure 8.3, is
constructed on .the configuration, and the cells are labeled

per steps 1 and 2 of Algorithm 8.1. A minimum-length path

ias found in step 3 is shown as a dotted line.

| ©lelolo @
® | o ettty | ©

©Q ©) ® O @‘ 77
3 [PLOPs @ s Prebs @ [
@ lo |9 ©

S

Figure 8.3. The complete labeled cell structure for
the configuration shown in Fig. 8.2.
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1 8.1.2 Timing analysis of Algorithm 8.1

‘D, and let n be the number of points in D. Obviously, the

7
|

|
) Let B be the number of cells created in a configuration
|
: s
|

timing complexity of Algorithm 8.1 is dependent upon the
number of cells B in D. The minimum number of cell; oc-

' curs when D has no routed paths. The maximum number of
cells 1s obtained when D has the maximum number of nets
routed such that the total length of all sections is maxi-

mized. This occurs for n-1 segments routed as shown in

Figure 8.4,

I t}
i ¢ o ' @ | 4 .<o ¢ o

Figure 8.4. An example of a configuration which
maximizes the number of cells.
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| must be examined for each labeled cell to determine if they

In this case,

jus]
]

_ 1+3+5+.--+n_1+2+u+§+.-.+n_2 ,

%-n(n-l) .,

In step one, a minimum of 2n and a maximum of %—n(n—l) |

cells must be constructed. If we assume each cell requires

1
2

operations. In step two, a minimum of one and a maximum of

unit time to layout, then step one requires at most >n(n-1)

-21-n(n-l) cells must be labeled. At most three neighbors

have been labeled or not. Thus, step two requires at most

3

§n(n—l)operations. Step three requires at least one oper-|
ation if the source and terminal points are adjacent in D,
but it requires at most %quthJ operations 1f all of the

cells must be retraced. Thus, for the entire algorithm,

2n+2 s Ops = %—n(n-l) .

8.2 Discussion

It is interesting to compare this method with the
graphical method discussed in Chapter 3 for unconstrained
configurations. Although the graphical method required
only O(nlogn) operations to find a minimum-length path for
a net in a configuration, whereas the extended Lee method

described in this chapter requires 0(n2) in the worst case,
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the capabilities of either method are identical. The Lee
method has been presented to illustrate both that (1) con—.
ventional routing techniques can be used to solve at least
the unconstrained unidirectional routing problem for i
minimum-length paths, and (2) solutions methods tailored
to specific probléms such as unidirectional routing can

sometimes be more efficient than general methods applied to

1

the same problem.
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CHAPTER 9

EXPERIMENTAL RESULTS

9.0 Introduction-

Whereas theoretical aspects of optimal unidirectional
routing have been presented thus far, in this chapter we
attempt to present the results of some analysis performed
to both validate this research as well as provide further
insight into the capabilities of this form of routing.
Using simple statistics and a computer program implement-
ing the major algorithms presented in Chapters 2, 3, U, and
5, we obtain results which ¢learly show the viability of
these unidirectional routing methods when applied to large
boards.

The results presented here are generally in terms of
averages rather than worst-case values. Thus, timing re-
éults are average times obtained from ensembles of data.
Similarly, performance parameters, such as execution times
and completion rates, are given in terms of average values
obtained from synthetically generated problems. No rout-

ing problems using real boards have been analyzed.
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9.1 The Program

9.1.1 Description

B e e e

A routing program, called UNIROUT, was written and used
!to provide all the data summarized in this chapter. Writ-
%ten in FORTRAM IV to run on a CDC 7600 computer, it imple-
i‘ments all procedures as presented in Chapters 2, 3, 4, and

5 with the following exceptions:

1. the implementation of Dijkstra's least-cost

procedure does not incorporate the more ef-

ficient search method suggested in Chapter 2.

Rather the standard linear search method is

used, and hence this algorithm has a time

complexity of 0(n2).

2. Algorithﬁ 4.4 which updates a feasible graph |
G’ to produce a final access graph G*, is not
implemented. Rather, a less efficient but
simpler update procedure is used to produce
a new configuration directly from the feasible

t access graph.

3. Algorithms 5.2 and 5.3 which assign minimum-
perturbation paths to tracks in a configura-
tion are not implemented. Rather, the un-
constrained case update procedure is used to
assign tracks to arcs for the floating-track

case. Processing from the point line outward
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|
|

in both streets, this procedure assigns all
segments to free tracks nearest the point

line.

The UNIROUT program is organized to first read in a

. problem set, and then route nets as directed by the con-

trol card in the problem set. The problem set consists of

a control card, a configuration description, and a net list
Subroutine INPUT reads all input, syntactically analyzes
it, and constructs the data structure used throughout the

rest of UNIROUT.

After the input has been completely read into the data
structure, each net in the net 1list is routed, one after

the other, by repeatedly executing subroutines GENERS

 which creates the access graph, MIN which finds a minimum- '

cost path in the access graph, ASSIGN which assigns seg-

| ments to tracks, and UPDATE which updates the program data

9.1.2 Input

Two sets of inputs were prepared and processed. The

i

|

|

1

| structure in preparation for routing the next net.
|

l

l

|

|

l

| first set (called INPUT 1) consists of 24 cases composed of

eight groups of three problem sets each. Each problem set
consists of an empty configuration and a net list. The
eight groups correspond to problem sizes of 10 point, 20

points,..., and 80 points in the configurations. The num-

‘ber of nets to be routed per problem set varies from 5 to

' L oul

|
|
|




|

21 but it never exceeds half the number of points in the
configuration.

All 24 cases were processed by UNIROUT for each config-
uration type (namely unconstraiﬁed, fixed-track, and
floating-track) and each cost goal (namely, minimum-length,

l
minimum-congestion, and minimum-perturbation). }
|
tified by a two-character label and a two-digit number. The:
|
!
I

When a problem set is executed by UNIROUT, it 1s iden-

first character is either U, X, or F, and identifles the

problem set configuration type (see Table 9.1). The second
character is either L,.D, or P, and identifies the routing
cost goal to be used in routing the nets contained 1n the !
net list. Table 9.1 defines fhese characteristies. The
first digit indicates to which group the problem set be-

longs (e.g., "1" for the 10-points per configuration group,.
|

"2" for the 20-points per configuration group, etc.), and

the second digit identifies one of the three problem sets
in the group. For example, problem set UL-3.2 is executed
with an unconstrained configuration with minimum-length
routing cost goal. The configuration has thirty original
points, and the problem set is the second one in the 30-
points per configuration group.

The net lists for all problem sets in INPUT 1 were
randomly generated by computer. The net length distribu-

tion is weighted towards shorter nets in an attempt to




!simulate what would be reasonably expected in realistic

' shown in Figure 9.1.

routing situations.

" between the end points of the net.)

- potentially be routed in a configuration of 32 points is

Table 9.1. Problem Set Designators

(The length of a net is the distance
An example of the net

length distribution for 138 nets which individually could

; Designator
U
Configuration X
| Type
F
| L
' Routing Cost D
| Goal
P
1
Configuration )
! Size
; 3
b
5

Meaning

Unconstrained configuration
Fixed-track configuration
Floating-track configuration

Minimum-length path

Minimum-congestion (i.e.,
"density") path

Minimum-perturbation path
20 points, 10 segments
(1/2 of points)

50 points, 25 segments
(1/2 of points)

80 points, 20 segments
(1/4 of points)

80 points, L0 segments
(1/2 of points)

80 points, 60 segments
3/4 of points)

24|
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I e

|
i of a given configuration size and suffix designator (i.e.,

| . %
EA, B, or C) have identical net lists. For example, the

|
|

Enet list for problem set XD—BA is the same as for FP-3A.

% INPUT 2 is used to obtain execution tiﬁes for each of
%the major subprograms of UNIROUT as a function of the num-
ber and type of arcs in a path in an access graph. Whereas
each problem set in INPUT 1 was executed in the standard
way to route each net in a configuration which inecludes all
previously routed nets in the net 1list, each net in INPUT 2
was routed only ih the original configuration in the prob-

lem set. This permits a controlled investigation of the

performance of the program.

As an example of these inputs, note the input listing
in Figure 9.2. The character in column 1 of each card
identifies the card type. The "C" card is the control
card. The "T" cards provide titlihg information for output
plots. The "S" card prevents the use of the updated con-
figuration for routing the next net. Instead, each net in
the net list is routed in the original configuration. The
"P" card identifies the switching track locations occupied
by the points in the configuration. The "U" and "L" cards
identify routed.segments in the upper and lower streets
respectively. The "N" cards are the net list. The con-
figuration described by the P, U, and L cards of Figure

9.2 is shown in Figure 9.3.
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MZZZZZZZ L Z Z L Z 2 Z 2 22 2 Z Z Z L ZZZZZZZZZrrrrrCCccccuoe~t-10

r——— configuration type
—— routing cost goal

number of polnts in configuration

number of upper street tracks: |
number of lower street tracks

number of switching tracks in each interval
= F -} == INPUT SET ==<=-"" CASE XL-1B = == == = =
11 ' '
X L2010 103  XL-1B

FIXED=-TRACK, MINIMUM-LENGTH 20 POINTS, 10 SEGMENTS

CASE XL-1B 10 UPPER TRACKS, 10 LOWER TRACKS, 3 SWITCHING TRACKS
1591317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

.gfgg’:::::::::::?==wend points of fouted_segmentl
6 10 .

track assigned to routed segment

(=1

[
VowrmnmNnyoun
n

00
Q@
=y
0

s pd e
WHR VUV OWWHO NG,
-
~

Figure 9.2. Input listing for a fixed-track minimum-
length configuration.
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?9.1.3 Output

1
|

|
| Three forms of output result from executing any of the !
iinputs Just described. An output listing giving pertinent |
Edata for each net routed is provided. Each line of the i
ﬁlisting contalns information for a routed net such as the
Inet end points, the number of nodes and arcs in the access
graph after the nét is routed, the number of arcs in the
path for the net in the access graph before the net is

routed, and execution times for each major subprogram in

UNIROUT.

A second form of output is punched cards where each

%card contains data similar to that presented in the output

ilisting. An optional plot of the configuration'represented
| by the input elther before or after any net has been routed

|

iis also output.
|

9.2 Performance

|
|
19.2.1 General results

The results obtained from executing INPUT 1 are sum-
marized in Table 9.2. As expected, all unconstrained and
lmost floating-track routing problems achieved 100% routing.
' However, the fixed-track problems achieved mixed results.

There was only one problem set for which the floating-
track configuration had a routing failure. The reason for
this can be seen in Figure 9.4 where a.pathological case

exists. Note that point Py is connected to point pll by
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FLOATING-TRACK DENSITY . 10 POINTS. 5 2-POINT NETS

CASE (FD-1.2) 5 UPPER TRACKS. 5 LOWER TRACKS. 2 SWITCHING TRACKS

PRy 1 Py Pry Py Py 4 'R PRo '
|
| UNIDIRECTIONAL CONFIGURATION CASE FD-1.2 N=10- 3 (11- 3)

Figure 9.4. A configuration illustrating the failure of a net to be routed.
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two nets which have point p9 in common. Thus, the route

for net (3-10) 1is blocked and no path exists for the net.

!
!

|

In general, if the first and last points in a configuration

are connected by at least two or more segments, then all

subsequent nets with end points lying on each side of the

» path connecting the first and last points cannot be fouted.

One way to prevent this from occurring is to route nets
which contain either the first or last points in the con-

figuration after all other nets in the net list are routed.

Table 9.2. Routing Completion for INPUT 1 Problem

Sets.
Number  Number _
Nets Nets Percent
Attempted Routed Complete
Unconstrained - Min Length 317 317 100
Fixed Track - Min Length 317 280 88.3
Min Congestion 268 209 78.0
Floating Track - Min Length 317 317 100
Min Congestion 317 316 99.7
Min Perturbation 317 30T 100

9.2.2 Fixed-track performance

Table 9.2 indicates lower completion rates for fixed-

track routing problems compared with the other cases. There

are several reasons for this.
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1. The algorithms used do not necessarily globally

optimize track assignments.

2. No sorting of the net list was accomplished

prior to execﬁting the routing program.

Fixed-track routing réquires further study. A brief
examination of the data shows that some heuristic "rules"
may be easlly incorporated that could improve the comple-
tion rate. For instance, a pass over the net 1list could
find gfoups of nets that occupy local regions of the con-
figuration and.sort the 1list accordingly. Furthermore,
nets from the same multipoint net could be made as short
as possible by ordering the nodes of the multipoint net
smallest to largest and then route each resulting two-point
net in the same order. For example, the multipoint net
(5,3,8,2) would appear in a net list as {(5,3),(3,8),(8,2)}
if it were not sorted.! However, with the net list sorted
as described, the more straightforward configuration in
Figure 9.6 results. It is seen in Figure 9.5 the density
in the streets between Py and p5 is 3 which leaves only
20-3 =17 tracks available for future nets, while for Fig-
ure 9.6 19 tracks are available. For this study we did
not order the net list since we did not want our results
to be dependent on other parameters such as ordering. The

resulting routed paths appear in Figure 9.5.

1Tn all cases investigated here maximum "randomness" is
desired.

_ e 2D




Figure 9.5. A routed configuration resulting from
the net 1list {(5,3),(3,8),(8,2)}.

Figure 9.6. A routed configuration resulting from
the net 1list {(2,3),(3,5),(5,8)}.
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Finally, it was noticed‘that once a configuration was
routed with enough nets to cause a net to fail to be
routed, the tendancy was for all subsequent nets 1n the net
list to also fail to be routed. Figure 9.7 graphically
illustrates this point. A @ represents a failed net aﬁd |
represents the last net in the net 1list. The results shown,
here are consistent with the findings of Agrawal [29] re-
lating routing completion to routirig density, namely once a

critical routing density is reached, most future nets fail

to be routed.

XL-2.1 [— ¢

¥L~2.3 ’

XL-3.3 LLLL

XL-6.2 . 0006

XL-7. 2 LLL

XL-5. 3 000 00eo o]

XL-5.1 L X I

XL-6.3 e o

XL-6.1 LL i

XL-5.2 [ ) : e 0009009 |
0 ; lz) | 1'5 26 2,5

location of net in 1list

Figure 9.7. Plot of failed nets.
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;9.3 Execution Times

'9.3.1 The analysis

i ‘
|
.

|

The output from the routing program using INPUT 2 data

%was analyzed to determine the more significant characteris-.

{

|
|
%tics concerning the execution times of UNIROUT.

: The execution times output from the three problem sets

in each group were plotted as a function of both the total
number of arcs in the path and the access graph,and the
number of switching arcs in the same path. Those paths
which required exéeséive execution times (due to plot I/0

times) or which were not routed were discarded. Linear to i

order least-squares regression lines were obtained from

|
ithe remaining data. Figure 9.8 shows a plot, in this case
| |

the total execution time?versus path length (number of arcs,
|
in the path in the access graph) for case UL-2 which has 50%

!
points in the configuration. The isoclated triangle symbols.
represent raw data, the broken line connects average times

for each path length, and the smooth curve is the quadratic

regression line for the raw data.

9.3.2 Access graph construction

The access graph construction subprogram (called GENERS

in the routing program) consists of three graph construc-

2Total execution time 1is the time to generate an access
graph, find a minimum-cost path, and update the config-
uration with the new net. For unconstrained problem sets,
track assignment is not performed.
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|
i

|

Etimes for these routines are summarized in Figure 9.9. The'

. routed segments to the number of points in the configura-

'
———— e

tion subroutines one each for the unconstrained, fixed-

track, and floating-track configurations. The execution

configuration density is a measure of the density of a con-i
. |
figuration and is defined to be the ratio of the number of
tion. Note that the time requirs to construct the access
graph is a linear function of both configuration size (Fig-

ure 9.9a) and configuration density (Figure 9.9b) as pre-

dicted by the theoretical timing analysis presented in

Chapters 3, 4, and 5. For the floating-track access graph,;
the expected worst-case complexity of 0(n°) (where n is the,

|

number of points in the configuration) was not observed.
The reason the floating-track access graph algorithm takes.
slightly longer execution time than for the other two

types of access graphs is because as thevalgorithm executea
the stack must be scanned for each arc in the graph to de-
termine the number of tracks that would potentially have to
move if the new path contalned that arc. The stack is not

scanned in either of the other access graph generation al-

gorithms.

9.3.3 Minimum-path timing analysis

9.3.3.1 Minimum-length paths

The execution times required to find a minimum-length

path in an access graph are shown in Figure 9.10 as a func-
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15 4
configuration density = .5
floating-track
= unconstrained and
13 floating-track
o 10,
n
S
(0]
£
o
<+
m L L] L]
20° 50 - 80
number of points in the configuration
(a)
number of points - 80
1519
~ Pixod-srack floating-track
9] ———
2 unconstrained I
E 101
[}
£
Lol
+
5 7 < 7=
.25 «50 1D

configuration density
(b)

Figure 9.9. Execution times for graph construction.
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15 < configuration density = .5

104
“a
3}
)
@
5
d) -
g2 3
o
+

20 arcs in path

10 ares in path

20 50 80

number of points in configuration

Figure 9.10. Execution times for the minimum-length

path procedure.

tion of the number of points in the configuration repre-

sented by the graph. ©Note that as the number of points in

a configuration increases, the execution

time to find a

minimum-length path grows approximately linearly. The

same relation holds for the number of nodes in the access

graph since ‘the number of nodes 1s exactly twice the num-

ber of points in the configuration.




—_—— . I

E It was also observed that there is no significant im- ?

Epact on execution time due to configuration density or con-'

?figuration type.
|
59.3.3.2 Minimum-congestion paths

|
| Execution times are shown in Figure 9.11 for the

minimum-congestion path procedure as a function of the
number of points in the configuration represented by the
graph in which the paths are to be found. Longer paths
show a decidedly non—linear trend because the 0(n2) nature

of the minimum-cost algorithm has a greater effect for

larger n.
! 20 arecs in path
' configuration density = .5
15 '

~ 104 10 arcs 1in path

o

()

L45]

=

()]

E )

7 5
!
i T v v

20 50 80

number of points in configuration

Figure 9.11. Execution times for the minimum-
congestion path procedure.
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29.3.3.3 Minimum-perturbation paths

x The execution times required to find minimum-perturba-
i tion paths in an access graph are shown in Figure 9.12 as a;
function of the number of points in the coﬁfiguration rep-

resented by the graph.

configuration density= .5
20 arcs in path

15 9
! ) 10 arcs in path
| o '
0
£
~ 10 1
[}
£
pu
<+
|
. 5 4

==

L Ll LE

20 50 80
number of points in configuration

Figure 9.12. Execution times for the minimum-
perturbation path procedure.

It is apparent from Figure 9.12 that as the number of
points in the configuration increases, the time to find a

minimum-perturbation paths grows at least quadratically
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with the number of points. "It is apparent that for both
minimum-perturbation and minimum-congestion routing, the
time-saving search technique suggested in Chapter 2 for the'
Dijkstra algorithm would be useful in reduéing the execu-
tion time growth as the number of boints in the configura-
tion increases.

As for both the minimum-length and minimum-congestion
procedures, there was no significant impact on execution
time due to configuration density or configuration type

for the minimum-perturbation procedure.

9.3.4 Track assignment analysis

Since track .assignment is not needed for the uncon-

strained case (there are no tracks!), and track assignment
for the floating-track case was implemented as part of the
update p;ocedure (the update procedure prepares the con-
figuration for routing the next net in the net list), oniy
fixed-track assignment timing will be discussed here.
Figure 9.13 shows two examples of the execution times
required to assign paths to tracks as a function of the
number of arcs in each path. The results for minimum-
length path track assignment shown in Figure 13a shows a
well behaved spread of points and an approximately linear
relationship between the track assignment procedure execu-
tion times and the number of arcs in the pathbeing assigned

to tracks. The spread of points is primarily due to the
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|
|

' variation in the number of segments in the path.

.path for the fixed-track, 50-point configuration case is

The results for minimum-congestion track assignment

shown in Figure 9.13b are similar to those for the minimum-.

length assignment results. Note that the ﬁumber of arecs inI
minimum-perturbation paths tend to be larger than in mini-
mum-length paths.-

It was noticed that the number of switching arcs in
each path was correlated to some degree with the total num-

ber of arcs in each path. A plot of the number of switch-

ing arcs 1n a path versus the total number of arcs in the

shown in Figure 9.14. This plot supports the observation.
Thus, the same results for execution times as a function of
the total number of arcs in - a path also tend to hold as a
function of the number of switching arcs in the path.

Since the number of segments in a new path in a configura-
tion is one more than the number of switches in the path

in the access graph representing the configuration, the
execution time results given in this section also apply as
a function of the number of segments in a new path in a
configuration.

An analysis was made of the execution time to assign
paths to tracks both as a function of the number of points
in a configuration and of the configuration density. Fig-
ure 9.15 shows the plots for minimum-length paths, and Fig-

ure 9.16 shows the plots for minimum-congestion paths.
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Figure 9.16. Execution times to assign minimum-congestion feasible paths to
track in fixed-track configurations.
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The results of this analysis show that as the number

of points in a configuration increases, the time to assign

- minimum-length paths to tracks increases as a function of

n® where a>1 and n is the number of points in a configur-
ation (Figure 9.15a), minimum-congestion paths increases i
as well but at a linear rate (Figure 9.16a). However, both
path types exhibit a polynomial increase in execution

time as the density of the configuration increases (Figures!

9.15b and 9.16b).

9.3.5 Update analysis

The two update routiens used in UNIROUT are UPDATEU
and UPDATEX. Both of these routines construct a new con-
figuration given an old configuration, the feasible path,
and, in the casé of UPDATEX, the tracks assigned to new
segments and switches. UPDATEU is used for both the un-
constrained and floating-track problems, whereas UPDATEX,
which is derived from UPDATEU, is used for fixed-track
problems. |

They both essentially run in times which increase lin-
early and slowly as a function of the number of arcs in a
path and the number of points in a configuratibn. Further-
more, the update routines make only a minor contribution to
the total execution times for UNIROUT. For example, where-

as the total time to route a net in an unconstrianed 80-

271




cle

Table 9. 3.

Summary of Experimental Results

Function of

Function of

Path Arcs Function of Points Density
Process observed expected observed expected observed expected
(average) (worst-case)
Access Graph
Construction
Unconstrained linear linear linear —
Fixed-track linear linear linear —
Floating-track linear quadratic linear -_
Minimum-path Algorithm
Length linear —_ quadratic* quadratic* — —
Congestion linear S quadratic* quadratic® — S
Perturbation linear — quadratic¥ quadratic#® —_— —_
Assignment
Unconstrained — —= e — — —_
Fixed-track linear — quadratic quadratic quadratic —_—
Floating-track — e e linear — —_—
Update
Unconstrained linear — linear —_ linear —
Fixed-track linear -— linear —_ linear —
Floating-track linear — linear —_ linear —

Note:

*)(nlogn) search function not implemented.




E——

point configuration with density = .5 was 31 msecs, UPDATEU.
only took 8 msecs. For UPDATEX, execution times never ex-

. ceeded 2% of the total time necessary to route a net. |

9.4 Conclusions

! The experimental results presented in this chapter sup-

port the theoretical timing analysis presented in earlier

chapters. Table 9.3 summarizes these results.
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CHAPTER 10

CONCLUSION

10.0 Summary

In this work we have studied the problem of unidirec-
tional routing, an important problem in routing boards with
rectilinear point spacing and fixed-vias. Algorithms have
been proposed for routing between unidirectional points
such that routing is locally optimal with respect to mini-
mum wire length, minimum board congestion, and minimum
routed wire movement. Furthermore, each of these routed
wiring goals has been examined in light of three types of
unidirectional configurations: unconstrained board config-
uration where neither tracks nor street boundaries exist,
fixed-track board configurations where once segments of a
path are assigned to tracks they are never reassigned to
accommodate the routing of subsequent paths, and floating-
track board configurations where wires may be reassigned
to free tracks to accommodate the routing of subsequent
paths.

Several special cases have been examined. A unique
graphical method using bipartite graphs has been presented
which routes a minimum-switch path in a unidirectional con-

figuration. In addition, the special case of routing a
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;graphs.

path in a unidirectional configuration where no switches

are permitted was solved using the concept of bichromatic

Finally, using non-standard cells, the Lee algor-

iithm was adapted to solve the minimum-length path routing
|

problem in a unidirectional configuration.

Several important contributions presented in this work

are as follows:

1.

we have developed a new graphical model, called
an access graph, for supporting the construction
and/or search for paths in a unidirectional con-
figuration.

the methods presented in this study not only find
a path if one exists, but they also make track
assignﬁents such that the routability of potential
future nets is enhanced. In this regard, our tech-
niques encompass the primary attributes of cellu-
lar routes (e.g., Lee routes).

methods presented in this stﬁdy réassign segments
to tracks in order to make room for new nets. The
graphical technique employed here supports this
unique capability particularly well.

the methods presented in this study are useful

in updating a routed board as well as routing a

new configuration.
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The fixed-track routing methods presented in Chapter U E
and analyzed in Chapter 9.are particularly useful in updat-!
ing printed-circuit boards of the type considered in this ?
work. Since the routéd portion of the board is not dis- %
turbed during the routing process, new paths may be routed
with minimum impact.

The floating-track routing methods presented in Chapter
5 are also useful in updating routed boards where existing
routes are assigned new tracks during the routing of new

paths. One of the methods presented (minimum-perturbation)

minimizes the number of routed segments moved every time a

new path is routed.

|

|

1 10.1 Suggestad Research

1. Extend the research reported here to consider mul-
tiple-goal routing. For instance, the techniques presented
in Chapter 4 should be adequate to permit the simultaneous
minimization of wire length and congestion in 0(n2) time.

A possible initial approach could be to minimize both length
and congestion in the minimum-path algorithm using the ex-

pression
afl(length) + bgg(density)

where a and b are weights and fl and f2 are functions of

length and congestion respectively.
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2. No attempt was made to examine the context in whichj

junidirectional routing 1s performed in routing the entire

‘board. The best method for obtaining the unidirectional

inet lists should be examined. Attempts at global optimiza-;

! !
tion could be made.

3. Examine the performance of unidirectional routing
to a greater depth than that done in Chapter 9. Some spe-
cific areas of examination are: fixed-track and floating-
track performance both for new and changed configurations,

route real problems, try various sortings on the net list |

before routing, and compare the results from the techniques!
given in Chapters 3, 4, and 5 with those given in Chapters
16, 7, and 8.

4., An assumption was made for fixed-track track assign-
ment that minimizing the probabiltiy of future net con-
flicts by examining all possible two-point paths that
could traverse the inner and outer channels of a segment
to be assigned to a track would improve the completion rate
of fixed-track routing. Investigate and analyze the valid-
ity of this assumption. Develdp other ways to minimize the

effect of routed path blockage as nets are routed.
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APPENDIX ' |

COMMONLY USED SYMBOLS : |

an original point in a configuration
a pseudo-point

a unidirectional point (either an original
point or a pseudo-point)

(1) an interval between two unidirectional
points (py,P;,q)

(2) a node in a graph (used by Dijkstra's
algorithm)

the lacation of point Py

a set.of original points {al’aZ""”am}
a set of pseudo-points {ql,qz,...,qr}

a path in a graph

a unidirectional configuration

the upper street in a unidirectional config-
uration

the - lower street in a unidirectional config-
uration

a net which contains exactly two end points
an ordered list of nets

an access graph

Erack capacity in the upper street S+

tréck capacity in the lower street S~

the number of free tracks in a channel
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the set of nodes in a graph
the set of arcs (i.e., edges) in a graph
a node in the node set V of a graph

takes on the symbol "+" or "-" when used
as a superscript

a set of values reflecting characteristics
of a channel

represents a switching path, arc, or interval
the length of a section channel
the number of-nodes in a graph
the number of edges in a graph

a set of nodes used in Dijkstra's min path
algorithm

the total cost (i.e., weight) of a minimum-
cost path from node u, to u

0 i
the cost (i.e., weight) of an arc (u,v)
the degree of node u
a stack
a precedence graph
a simplified access graph

a source node, interval, or point

(1) a terminal node, interval, or point

(2) the track within a channel assigned to
a feasible segment

a reduced precedence graph
the number of arcs in an access graph
the number of segments in a configuration

(1) the number of original points a; in a
configuration

T
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(2) the number of nodes in a simplified
access graph

a node in a path P
a section

the number of empty tracks in a channel
(i.e., channel capacity)

a track

the inner tracks adjacent to a section whose

left end point is pj

a new routed configuration derived from a
configuration D and a net not in D but
routed in D¥

a feasible access graph

(1) the number of switches in a feasible
path in a configuration

(2) a pointer used in Algorithm 4.2
a feasible pseudo-point

a feasible interval

a pointer used in Algorithm 4.2

temporary symbols used in the construction
of a feasible access graph

a set of unidirectional points {p],pz,...,pn}

the probability that a future two-point net
will traverse a given channel

a street track assigned to a feasible segment

the number of equally-likely future 2-point
nets that can traverse a channel

the track occupied by the innermost segment
of a channel

a channel

a connected subgraph
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(1) a biconnected subgraph of a connected
graph

(2) a conflict graph

(1) a node in a path

(2) a temporary variable used in Algorithm
5.1

the label of ard By

the access graph for a new routed configura-

tion D¥
the street density in street S+ at point pi

the number of pseudo-points in interval a
where a 1s bounded by original points

+
the density of segment (u,v) in street S

the number of routed segments that must be
moved to accommodate a feasible c-section

the number of pseudo-points in an interval a
where a is bounded by original points

the depth of a stack

the number of two-point nets routed in a uni-
directional configuration

the number of Lee cells in a unidirectional
configuration

]
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