A RECONFIGURABLE
AND FAULT-TOLERANT
VLSI MULTIPROCESSOR ARRAY

ISRAEL KOREN

DIGITAL INTEGRATED SYSTEMS CENTER REPORT
DISC/81-1

DEPARTMENT OF ELECTRICAL ENGINEERING
TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY
HAIFA, ISRAEL

July 1981

This work was carried out in part at the University of Southern California,
" Electrical Engineering - Systems Department, and supported in part under a

VHSIC Phase 3 Contract No. N00039-80-C-0641 administered by the Department
of the Navy, Naval Electronics Systems Command (ONR), Pasadena, California.

A preliminary version of this paper was presented at the 8th Annual Sympo-
sium on Computer Architecture, Minneapolis, Minnesota, May 12-14, 1981.

ii

ABSTRACT

Multiprocessor arrays have the desirable property of regular-
ity, enabling a low-cost VLSI implementation. However, multiproces-
sor systems with a fixed structure tend to be error prone and re-
stricted to very specialized applications, which makes them less
attractive to the semiconductor industry. Consequently, reconfig-
urability and fault-tolerance are desirable features of a multipro-
cessor array. A multiprocessor array with a flexible structure is
adaptable to many applications and may restructure itself upon fail-
ure of a processor, to avoid utilization of faulty processors.

The objective of this work is to demonstrate the feasibility of
a multiprocessor array having these properties. An example of such
an array is introduced, and distributed structuring algorithms for
it are presented. Next, novel strategies for internal testing, for
identification of faulty processors, and for avoiding the use of

faulty processors are developed.

Index Terms: VLSI, multiprocessor array, reconfigurability, fault-

tolerance, distributed structuring algorithm, distributed testing.

- " rp- EEIS

R4

S o RO LT T H O P B P 1 1T TN T RS- LR RN R R

R L TR L Tt P PR Tl £ T T S e R R I TR

P L L R L & T T izt bagi™ - M .

r T cenny alew s al4EREes hesflele - vany ot
: S et BRI SO Ul T R R T Tl 1) B THT b PRL LR R Sl
e p D e oEeer Re® ol pypash et gareqand algRT C ot vl o
FE ol [ExATY 7 Ut vRYT nAsmagnit T f L e

TTr s MTEinE ovtcwn Jorq gm, bis gankteailoon o pc o4 AT

e T O T ek o I e T T s R R A

O T -1 rod dial AU S B 1 T I ot i PR
CDNT R S IR AN AT DITEYRT WY w0 s S
e B I S R TS E) ST GO RPN PRV T C I S

o Tt tiel Trmmpain Aot onf etiaie [ayean dxey D 1 o

T A Thieyr wgl bur acreey VIFURT T

BT L TERT AT T - R L T S

e UL M Y G LR - T L) & 4 ST Rl
S e N F AR R L T 3 L TG R T S T | LA £

e

ACKNOWLEDGEMENTS

This work has benefited from valuable discussions with Mel
Breuer, John Hayes, E11is Horowitz, John Nelson and Alex Thomasian
of the Electrical Engineering - Systems Department at the University

of Southern California.

iv

TABLE OF CONTENTS

page
B S TR A T ettt et ieeereeteeennneeneeennennoeeeeeeoneonnennns i
ACKNOWLEDGEMENT S\ttt ittt it iieeeeeeeneenneeneeneenaenans i1
I. INTRODUCTION tuvvesvneeeneneneneneeneeeennensnnans 1
II. BASIC STRUCTURING ALGORITHMS . ..'iiiirererennnnnnnn 7
[1T U o -
SQUAre APTaY .oeesoscesececsacssanscsssasasesonenss 10
0T o 10
BINATY TPEE i vivsnssssooioscennnsanesnnnaessssssss 15
ITI. DISTRIBUTED TESTING OF THE ARRAY ...evvvvrnvennnn.. 24
IV. STRUCTURING IN THE PRESENCE OF
FAULTY PROCESSORS 4uvvetietieenereeneeecennennennnn 29
LINRAPr APPAY .. ivcessicssoscosciresnnsesnssensanses 30
Other STruCtUresceviecerorisnnensocnesseonnesns 30
V. CONCLUSIONS ttittetiitie it iieieteeneneenanananannnn 35

g 36

.

v

"

o

..

- DR

e ey e

R I

-

e

I. INTRODUCTION

The current trends in the integrated circuit technology will
undoubtedly have a considerable impact on the way multiprocessor sys-
tems are designed and implemented. First, the decreasing cost of
hardware components will enhance the design of special-purpose multi-
processor systems [1,2]. Second, the exponential increase in the
gate count per chip which is expected to keep its current pace for
at Teast five to tén years, will enable the packaging of an increas-
ing number of processors into a single VLSI chip. Clearly, such
packaging is preferred over the use of several LSI chips when power
consumption, speed and reliability are considered.

However, the new VLSI technology does have limitations that
should not be overlooked. The man-year effort when designing a high-
density VLSI chip is expected to rise significantly, resulting in a
substantial increase in manufacturing cost. One way to reduce the
expected increase in manufacturing effort and cost is to design mul-
tiprocessor arrays having the desirable property of regularity. Reg-
ular structures take considerably Tess time to design and manufacture
[1-3]. VYet, even regular multiprocessor arrays might still be unat-
tractive to the semiconductor industry due to their tendency to have
restricted uses, resulting in a low sales volume. Consequently, a
VLSI multiprocessor array with a flexible structure is desirable

since it can be configured in several ways thus increasing the

1

. R 1T 4||r,| no ["
- o M ammTer 0 omayr. 0 1CiAfle, o
e S R A S S
ETUR R G
- ’:.’"'fﬁ'.:"'f‘.". S I I P LY I S
T I PYL N R R P T
STTEEEE . S|) oA ey 'y o
IR tomme el IR
o T N I TATR B (TL TR ThF A
B i ERTTET e ol o8 hodepe
T N TR
c R L R T "I | R -
T e e mtes o dane -
o S| FET o B S T R T
' N - kg ST o
:_ . B e B TS uEen D
o e I LTI E - I .
' = Fs T PR I T A I -
R T B e I - e s ‘ i . -
O) PR, F o
BEeslr Do on I T

I. INTRODUCTION

The current trends in the integrated circuit technology will
undoubtedly have a considerable impact on the way multiprocessor sys-
tems are designed and implemented. First, the decreasing cost of
hardware components will enhance the design of special-purpose multi-
processor systems [1,2]. Second, the exponential increase in the
gate count per chip which is expected to keep its current pace for
at least five to tén years, will enable the packaging of an increas-
ing number of processors into a single VLSI chip. Clearly, such
packaging is preferred over the use of several LSI chips when power
consumption, speed and reliability are considered.

However, the new VLSI technology does have limitations that
should not be overlooked. The man-year effort when designing a high-
density VLSI chip is expected to rise significantly, resulting in a
substantial increase in manufacturing cost. One way to reduce the
expected increase in manufacturing effort and cost is to design mul-
tiprocessor arrays having the desirable property of regularity. Reg-
ular structures take considerably less time to design and manufacture
[1-3]. VYet, even regular multiprocessor arrays might still be unat-
tractive to the semiconductor industry due to their tendency to have
restricted uses, resulting in a low sales volume. Consequently, a
VLSI multiprocessor array with a flexible structure is desirable

since it can be configured in several ways thus increasing the

number of possible applications. Clearly, some of the processors
will not be utilized in several applications but this should not be
considered a serious drawback since on cost alone processors will
be the expendable components in VLSI technology [3].

Another desirable feature of a VLSI chip is fault-tolerance.
Future improvements in the solid-state technology and maturity of
the fabrication process are projected to reduce the failure rate of
a single component. The failure rate predicted for high-density
VLSI chips, however, is still larger than that of present LSI chips
due to the exponential increase in complexity. Hence, frequent ver-
ification of the multiprocessor's proper operation is essential. Un-
fortunately, this verification cannot be achieved by external test-
ing of the VLSI chip because of the inability to access internal
points. Thus, internal testing (i.e., processors testing one another)
for error detection is necessary. Moreover, identification of faulty
processors provides the ability to tolerate certain faults and remain
operational in the presence of one or more faulty processors even with
some degradation in performance. Upon occurrence of a fault in one of
the processors the faulty processor should be identified and the array
possibly restructured to avoid the faulty processor being used. The
multiprocessor array, therefore, should be capable of dynamic restruc-
turing that takes place whenever a faulty processor is identified. An
array with such a property is superior over a fixed structure multipro-
cessor (e.g., a binary tree) which is sensitive to errors and in which

a loss of a single processor usually results in a system failure. The

e TPeLANL L T 24 Lyiunald ennianiile o 0T

i avels T Jnd o2

senflaps grens g BT -

TIE v omeate conle S g9 300t Qs leag e o o

R LR B L |

R A I L A e A

.

T P T o T R A 1, URE T & B TR

Tocotoper e T et ey oon Lemanfon o Sdn T oanem gty
o I BRI I i T SO B TN S e LR T

= e R TR T 77 1 I AP Tyt

AU S s St S LA S TV I 1 | STt S Vet IR T
N I B B f.;_'”- weogapgyg 2l onon o A
e T T T S B L L L T

.. Ao ST LR T B S IR E R AT S
e A ot IR T & SRS CR R S ALY
S i S B RS 3 onecj=Tas o o' ET L no b
T L T T TR BLRT. U W 1 O T S T TS S
T T ITRORTIE Lt Y V- LY ST NI SRR
vy o tas DT R ack e F o ez LSl

. 'T .1 21 - ;- I :_nlnlnl:_ﬂ_l_llll‘lIlq '

et ol Biayn ot L o

ot s te o nmnt ad blued omyadgen. o -

L S . arpt o frat f apmyons | .-E"-\“— :
e TN ot g T 5 3y e Rrague 21 0t o T
LA T R L T I LT I PO T £t .{nﬂq_l . n
s P IR S R Y- a5 [RPN R U €t By e Sll o A L Sl

P

v FAgpaat IOV tA o ey Y

—ryim

restructuring capacity may also enhance larger chip areas (wafer-
scale integration [1]) now prohibitive because of defects that exist
in large wafer areas.

The main objective of this paper is to demonstrate the feasi-
bility of a multiprocessor array with the properties mentioned pre-
viously. As an example, we consider in the following a rectangular
mxn grid as depicted in Figure 1. This grid may be structured as
a linear array, a square array, a loop or a binary tree. Not all
processors will necessarily be utilized in each of these configura-
tions; however, in VLSI technology, processors are the expendable
components. The transistor count of each processor in a special-
purpose VLSI chip is predicted to be approximately 1K to 10K while
the projected complexity of VLSI chips is 1000K and over. Conse-
quently, a grid consisting of 1000 or more processors will be feas-
ible. In Figure 1 there are m.n cells in the grid; each cell is
connected to its immediate neighbors denoted N - neighbor, E - neigh-
bor, S -neighbor and W- neighbor. The basic cell consists of an ap-
plication processor and a communication processor as shown in Figure
2. The application processor may be a microprogrammable processor
that can be programmed by the customer and tailored to his special
needs. The communication processor is responsible for the structur-
ing of the processor array. The complete array communicates with the
outside world through an external processor which initiates the various

structuring algorithms as well as the computational algorithms.

L <—>{0/n-

e

- < 1,n-]

<

N-Neighbor

s W-Neighbor<= ;

<—>E-Neighbor E

S-Neighbor

m-10 &I m-,1 &>

eoe @ m']:

Figure 1. A rectangular mxn grid of processors

Application Processor

T T T T oot TT T T T T T 1
| 1
: Microprogram Processing i
i | Control Memory Unit ;
: |
| |
| l
: Local Memory l

|
| l
b e e e e e -

Communication Processor

e e a
I |
| |
| . . :
| Configuration Mode !
} |
1 |
| |
: |
E Status ID = (i,)) :
| |
| |
s J

Figure 2. The basic processing unit.

The paper focuses, in what follows, on the communication processor
within which four registers are defined (Fig.2). The ID register
contains the row and column indices. THe Mode register indicates the
cell's mode of operation. Each cell can be either a processing ele-
ment (PE) participating in the processing in a given configuration
or a connecting element (CE) transferring data when needed from N
to S, from E to W and vice versa without performing any kind of pro-
cessing. The Status register stores the status of the immediate
neighbors. If the d-neighbor (i.e., the immediate neighbor in the
d-direction where d €{N,E,S,W}) is either faulty or does not exist,
we say that the cell is d-terminal. In this case, no attempt to com-
municate with the d-neighbor will be made. The Configuration register
(CR) contains information about the present structure, the level num-
ber of the cell within the array (such as linear array or binary tree)

and the directions of the predecessor (DI) and successor (DO) cells.

IT. BASIC STRUCTURING ALGORITHMS

Since the multiprocessor system has no fixed structure, struc-
turing algorithms for the various configurations are needed. First,
structuring algorithms are presented that are based upon the assump-
tion that all processors are operating correctly.

To achieve optimal use of a multiprocessor system, most process-
ing should be distributed rather than centralized. Similarly, struc-
turing algorithms should be distributed. Such a property is essential
if the system is to operate in the presence of faulty processors as
will become apparent in Section III. Obviously, simplicity of the
structuring algorithms is desirable in order to reduce the chip area
used for them and, thus, increase the size of the array.

Structuring within the grid is done by distributing the following

type of messages:

M(structure code, level within structure, direction).

The header of the message M is the code of the desired structure, such
as LA for Tinear array, SA for square array, LP for loop and BT for
binary tree. The level number within the array indicates the position
of the processor receiving the message M in the array. The direction

d (dEE{N,E,S,N}) indicates the neighbor to which the next structuring
message should be transmitted. Since changes in the direction of trans-

mission are necessary, we find it convenient to define the functions,

opposite (op), clockwise (cw) and counterclockwise (ccw) as:

S if d=N E if d=N
W if d=E S ifd=E
op(d) = cp o G cw(d) = P
N if d=S W if d=S
E if d=W N if d=S

Similarly ccw(d) is defined.

Although packet transmission is used in structuring, continuous con-
nections among neighbors are used in normal operation since the pre-

decessor and successor cells are known [4].

Linear Array

To structure a Tinear array of size k on an mxn grid (k=men),
the strategy depicted in Figure 3(a) is used. A processor receiving
a structuring message will transmit either another structuring mes-
sage or an acknowledgement. A positive acknowledgement (ACK) if the
construction is complete and no more processors are needed. A nega-
tive acknowledgement (NACK) if it is impossible to complete the con-
struction. The structuring process (Fig.3(b)) is initialized by
transmitting a message M(LA,k,E) from the external monitor to pro-
cessor (0,0) and its propagation time is of the order O(k). If an
acknowledgement message M(ACK or NACK,LA.,j) is received from the DO—
neighbor the message M(ACK or NACK,LA,j+1) is transmitted to the DI—
neighbor. When the negative acknowledgement reaches the origin cell,
the maximum size of a Tinear array in the given grid is made known to

the external monitor.

L B R e B I] RN, 1T L T B S Y 1 I T BT
ek I ot
[‘ . - b 1
R B B A R TN . B
3 -I'I.I.— Y= e T_I
ot el tapee s L
- u,‘lllﬂi LA el U AR R 1T F S A AT WIS vl Y
R ol T T TR B Ty TP o 5) Sl s o TR TR R i
len:." DT § i Y. P e TR
.I. . , TEToa MoopE o nRER g oyE T, R "9, 'a .
PIET e g cede B teaghoab (a0 cped oAb mage el
e ornienden vt A ra L elE e dfnase. o0 Acs 0 D
st T E MO dpmag afegn o eyfrtiae S, teneohaf o lee oy
St L T T TR L (U T R SRR EO T T, VR ST SO
wrjfin N el o, !"r‘”f:CI'h'ﬂT }T:'i‘ ,"Ii "'| I I‘:'|'I"'I"_I =y
Y | L DRSS & R RIS o R ST 1] IR SR
I uf RN B o :f.;;l ap s WY AT ceganr o Rt s
orn’ E{‘.""LF I ERRTRRT 1 S RN B L o BT ST L T 0 oo ,lll'.. S
r Gl e Vinle amt LA AL S ET g Uarosded o n
S c DDt L S A e g Y e L T
“fea Dbt e sop cwowpaal o oewdioran e g el
Tt e R LR rT I rl ha 7 P Tl N B AL SRR TR

k k-1 eee
OIO O] 0,2 | — O,n-2 ! O,n']

100 | <—],2 =—— eoe =] n-Dfe——] -]

20— 2,1 —>= eoe

(a)

receive a message M(LA,z,d) from &-neighbor

(£=k,k-1,...,1; d€{E,W})

CR:=LA,%

if £=1 then transmit M(ACK,LA,1) to &-neighbor

else if d-terminal then begin
if S-terminal M(NACK,LA,1) to &-neighbor
else transmit M(LA,£-1,0op(d)) to S-neighbor
endbegin
else transmit M(LA,2-1,d) to d-neighbor
, endif
endif

(b)

Fig. 3. Structuring algorithm for a linear array on a
grid.

10

Square Array

A structuring algorithm for a square array of size uxv on an
mxn grid (u=m; v=n) is shown in Figure 4. Each processor trans-
mits the structuring message to both his South and East neighbors.
The distributed algorithm is initialized by a message M(SA,u,v)
transmitted from the external monitor to processor (0,0) and the
propagation time of this algorithm is of the order O(u+v). Note
that the statement "if CR=SA,k,4 then stop" prevents retransmis-
sion of the same structuring message which might otherwise occur
since the processors are not necessarily synchronized and the mes-
sage from the North-neighbor might be received before or after the
message from the West-neighbor.

The idea of transmitting a message simultaneously in two direc-
tions may also be employed whenever a message is to be broadcast
among all processors, regardless of the current configuration. Thus,
a standard message M(BRCT, command or data) (where BRCT stands for
broadcast and the command can be clear, test, etc.) can be used with
a shorter propagation time of the order of O(mtn). A similar algo-
rithm, with the same propagation time, may be devised to issue the
initial cell IDs. These IDs are useful in some computational computa-

tions (e.g., [5]) as well as in the following structuring algorithm.

Loop

When embedding a loop (ring) in a rectangular grid we must first
realize that only even length loops can be structured on such a grid

as stated in the following Temma.

i

receive a message M(SA,k,£) from &-neighbor
(k=u,u-1,...,1; £=v,v-1,...,1)
if CR=SA,k,£ then stop else begin
CR :=SA,k,£
if k=2 then begin
if S-terminal then transmit M(NACK,SA,1,2) to N-neighbor
else transmit M(SA,k-1,£) to S-neighbor
end
endif
if £z then begin
if E-terminal then transmit M(NACK,SA,k,1) to W-neighbor
else transmit M(SA,k,£-1) to E-neighbor
end
else if k=1 then transmit M(ACK,SA,1,1) to N-neighbor and W-neighbor

endif

Fig. 4. A structuring algorithm for a square array.

12

Lemma: The cells in an nxn grid can be structured into a Toop of

length k (k=men) if and only if k is even.

Proof: Consider the grid as being a graph G with m.n vertices. A
Toop of Tength k corresponds to a k-vertex cycle in G. Hence, we
have to prove that all cycles in G have an even number of vertices.
Consider the horizontal and vertical cuts illustrated in Figure 5
and suppose we are given a cycle in G. A cut-set of the cycle is
defined as the subset of edges along the cut which are part of the
cycle, e.g., the cut-set corresponding to the vertical cut in Fig-
ure 5 contains two edges; the cut-set corresponding to the horizon-
tal cut is empty.

Obviously, the number of edges in any cut-set (horizontal or
vertical) must be even. Since each edge in the cycle belongs to
exactly one cut-set the total number of edges in a cycle is the
sum of even numbers and is therefore even. Consequently, the neces-
sity of the condition k is even has been proved. The sufficiency

is clear from the structuring algorithm in Figure 6(b). a

Corollary 1: An mxn grid has a Hamiltonian cycle if and only if

either m or n is even.

Corollary 2: A loop on a grid consists of k cells if k is even and

(k+1) cells if k is odd.

.

et =3 gan ke gt o Coo i
S - , .

M e e mpmt - :

e IR Tk o T VA s NP o
- 1=y Oy T Te w0 4 e -
oo, o, 32 r"‘}i'.'*"f"".' D o 1Y

IR LA L B A -

= - ""'I":h '_J- m "m ' - = =

Yol - == L - 1
1 ¥ [

CortEe ur AFoasphT T oset 0 b -
Co¥ T s s LTI . N

LT B T T B A .

T AU L AT O B

PR (e S L = TR TR CrV - el (R U

U e T mdg e e ded e _

R L P YT ol N S e ST '
N
! 1
- : - .
S teo, lmyoamm T T . o

13

vertical cut

a cycle

—¢
T ____horizontal
cut

Fig. 5. Horizontal and vertical cuts in the graph G
corresponding to a rectangular grid.

15

Various structuring algorithms for a Toop on an mx n grid with
even and odd values of m and n may be derived, for example, in Figure
6 we show an algorithm which is based upon the assumption that m is
even. If m is odd this algorithm does not allow the use of the cells
in the Tast row. A more general algorithm that allows the use of all
cells for even m and odd m may be devised but is more complicated and
hence, requires more chip area for every cell, thus reducing the num-

ber of cells in a given wafer area.

Binary Tree

Binary trees have been shown to be attractive interconnection
schemes [2,6] for general-purpose multiprocessors [7] as well as for
special-purpose applications such as data-base machines [8]. A VLSI
implementation of a binary tree requires a mapping of the tree on a
plane. Such a mapping can be done in several ways. The ways differ
in the number of Tlevels in the resulting binary tree, in the time
needed for propagation through the tree, and in the complexity of the
structuring a]gorithm.. Two of them yield relatively simple algorithms.
The one shown in Figure 7 has been used extensively (e.g., [2,6]) and
a (centralized) placement algorithm for it has been described [6]. We
call this one type 1 tree. The type 2 tree, illustrated in Figure 8,
has not been studied before. The minimum size of the grid needed to

k

place a k-level binary tree (with 2°-1 PEs) has been calculated for

both type 1 and type 2 schemes, with the following results:

16

Bl+2] [{2 [0 0O O O O
I T 1 I O I I B

2
2] [

]

H—-4 O O 0O 0O 0O 0O

O O 0O O O []
O O 0O o O [
O 0O 0O dd [l
OO0 dd []
I I R N O W O []
e e] s 0 R I O B =
- O O O -
[—feof—{-] [[]
DD__H___%TD =
i [g e R T R =
= [[O =
gl B

3]

2] J O 0O 0O O

[[2]

e 0 OO0 OOO0O0 0O

N

Figure 7. Type 1, six-level binary tree.

17

Bl2j+N] [1 [l{2e{3l>2—{1] []

1 [2]

O oo
A 0O O
g
F O O
2] [
4 0 O
g5
= O 0
(] e il
m
.
m

3]

o O O
sH—H—H—H

nO O Ooooooodgodgnd

Figure 8. Type 2, six level binary tree.

18

> if k is odd
- 1> if k is even
Size of grid _

kL k-3
<3-22-1> % <3.22-1> if k is odd and k= 3

for type 2 tree _
k 2 K2\ if ks even
x (327 -1

In practice we are interested in the Targest tree (maximum k) which

Size of grid _ <
for type 1 tree k+2
X\ 2

can be placed on a given mxn grid. To simplify the expressions, we

assume mzn, and for type 1 tree we obtain

! 2[1ogz(m+1)]- 1 if []ogz(m+1)]= [Togz(n+1)]

max. k(l) =

| 2[1092(n+1)] otherwise

For type 2 tree we have

2[1og2<m§—]+2 if |:1092<
/

2[1092 T>-|+ 3 otherwise

Lol

These results are illustrated in Figure 9 for a square mxm grid and
may be used to determine the best way to place a tree on a given grid.
Since cells serving as connecting elements (CEs) are needed in

any binary tree placed on a grid, it is necessary to calculate and

19

‘pLAb U x W

ue uo pade|d g URD 1Y} 3343 AJRULG B UL S[9A9| 40 Jaqunu wnuixep ‘6 6L
. __ |
00L S6 £9 0S Ly
00 56 " 5 ¢ e ez g 48
" ; m S T
" : , A R K
“ m m IR
m m m S I
m < m < m m L L]
@1t fal et @t 7
m JRR S 1s
: e L
[ol
(2)
U= w
w_ xXow

20

compare the propagation time from root to leaves in the two schemes.

For type 1 trees the total propagation time (i.e., number of cells

traversed) denoted by Dél) is

k2
(1) éjT:3 if k 1is even
it =

k-1

3.22.3 if k s odd

For type 2 trees we obtain

k-4
2) 9-éjT:4 if kz4 1is even

o
k-1

3.27-4 if k=3 1s odd

To compare these two, we form the difference yielding

k-4
1_é7?" if k 1is even
o(1)_p(2) _
k 7k 1 if k s odd

Thus, type 1 trees have a substantially lower propagation time if
the number of Tevels is even, and a slightly higher propagation time
if k is odd. Lastly, we present the structuring algorithms required
for type 1 and type 2 trees. A structuring algorithm for a type 1

tree is depicted in Figure 10. Here, c is the number of CEs needed

21

receive a message M(BT,£,c,d) from &-neighbor

)
(£=k.k-1,...,1; €=2 % "-1,...,1,0; d €IN,E,S,H})
if cz1 then begin
set CE

if d-terminal then transmit M(NACK,BT,1) to &-neighbor
else transmit M(BT,£,c-1,d) to d-neighbor
end
else if £=1 then transmit M(ACK,BT,1) to &-neighbor
else begin
if cw(d)-terminal or ccw(d)-terminal then transmit M(NACK,BT,1)
to &-neighbor

else begin
CR := BT,s
L-2
[55=]

c =2 -1

transmit M(BT,£-1,c,cw(d)) to cw(d)-neighbor
transmit M(BT,£-1,c,ccw(d)) to ccw(d)-neighbor
end
end

Fig. 10. Structuring algorithm for Type 1 binary tree
on a grid.

22

between a PE at level £ and a PE at level (4-1). The PE at level
k (i.e., the root) may be conveniently positioned in the middle row.
Consequently, the algorithm is initialized by transmitting the message

k-1

2

M(BT,k,c=2 -1,E) to cell ([%J,O). Figure 11 shows a structur-

ing algorithm for a type 2 tree; it is initialized by the message

k=4

M(BT,k,c=3.2 2

-1,E) transmitted to cell ([%ﬁ,o).

Reexamination of the distributed structuring algorithms in Fig-
ures 3, 4, 6, 10 and 11 reveals that whenever a structuring message
is received, several conditions are checked, and as a result, an out-
going message and its destination are determined. A straightforward
implementation of these algorithms in a PLA or ROM is therefore feas-
ible and results in a simple and economical implementation of the com-
munication processor in each cell. Moreover, these algorithms do not
necessarily have to reside internally in each PE; instead they can be
broadcast to all PEs when needed. THe broadcasting of a structuring
algorithm is time-consuming, however, structuring is not expected to be

needed frequently and as a result, the reduction in chip area makes

this approach very attractive in many cases.

23

receive a message M(BT,4,c d) from 6-neighbor

(£=k,k-1,...,1; c=3- Z[TJ ...51,0; d€N,E,S,HW}) '
if cz1 then begin
set CE
if d-terminal then transmit M(NACK,BT,1) to 6-neighbor

else transmit M(BT,£,c-1,d) to d-neighbor

end
else begin
CR :=BT,4
if £=1 then transmit M(ACK,BT,1) to &-neighbor
else begin
| [—2—1

if £=5 then (3. -1) else O

if £=3 then d else cw(d)

if £=2 then cw(d) else ccw(d)

if £=2 then d else cw(d)

if p-terminal or y-terminal then transmit M(NACK,BT, 1) to &-neighbor

<= ™R o
K

else begin
transmit M(BT,£-1,c,a) to y-neighbor
transmit M(BT,¢-1,c,B) to p-neighbor
end
end
end

Fig. 11. Structuring algorithm for Type 2 binary tree
on a grid.

24

ITI. DISTRIBUTED TESTING OF THE ARRAY

A multiprocessor array can be tested either externally or in-
ternally. Due to the hardware complexity of the array and the pin
limitation of .a single VLSI chip, external testing is time-consuming
and incomplete since no access to internal logic signals may be pro-
vided. Accurate identification of a single faulty processor within
the array is often impossible. Consequently, internal testing in
which each processor is tested by one or more of its neighbors is
preferred [9]. If a faulty processor exists, all processors that
are not faulty should be aware of the failure and refuse to interact
with it. Since all interactions with the faulty processor must be
through its immediate neighbors, it is sufficient that only these
neighbors know the exact status of the faulty processor. This avoids
excessive bookkeeping (each processor keeping track of all other pro-
cessors' status) and complex status broadcasting algorithms, which
must ensure that the vital status information is transmitted only
through processors known to be functioning properly. Hence, we sug-
gest fully distributed testing of processors, i.e., each processor
is tested locally by one or more of its immediate neighbors, and
the information about its status is kept locally in its immediate
neighbors. Each one of the immediate neighbors of a given processor
must know the status of this processor and should not rely on indi-
rect information passed to him from other processors. Therefore,

each processor must test, and be tested by, all its immediate neighbors.

25

Note that no voting mechanism to determine the status of a processor
is required. Every immediate neighbor of a faulty cell will be aware
of the failure and refuse to interact with it and the faulty cell will
effectively become isolated from the rest of the system.

To achieve a high level of fault coverage when a complex process-
ing element is tested by its immediate neighbors, a large number of
test patterns should be applied. Furthermore, such a test may re-
quire access to points which are not accessible via the ordinary com-
munication links. To avoid excessive use of chip area that is re-
quired to store the test patterns and resulting responses in each pro-
cessor, and-addition of extra communication links, we may incorporate
other fault-tolerance techniques into the architecture of the processor.
First, a processor can be made to tolerate certain faults [9]. Sec-
ond, other faults that cannot be tolerated by the processor will at
least be detected by self-checking techniques [10]. Thus, not only is
the testing of one processor by its neighbor simplified but also immed-
jate detection of certain faults is provided [11]. In summary, well
known design techniques can be used at relatively Tow cost [10] to
reduce the complexity of testing one PE by its neighbor to testing of
the hardcore (the checking circuits) and the communication links.

While processor A is being tested, the testing of another pro-
cessor, say B, can take place simultaneously; hence, the testing of
the entire array can be organized so as to minimize the testing time.
Let N denote the total number of test applications, i.e., one proQ

cessor being tested by its neighbor. Let T denote the number of test-

fr

<o

A I Rl e

L T

I-ul -
= '

B

o v
- F N
. .
N v
R I
A Py !
coa o
!
' I

- amrr ad
-7 1
SR TRE T Y
VIIIII'- : r
BT Ll I-"L;”'_'_
STty s -
icoYoee cpno o f
I TR B
™ Y T R

R

Ao S|I_

B KR

Dt T ‘*"llj"lu"

e T L Jomard.alr od

ol ORI &

Jeffre

Coo Jont neg |i‘_'|'i';i" o

- vomwPomenun Loovn C

LR

0 LIRS T

SR Rl U C R

]

hl 1
.
-
__I
,
)
o

!

.
"y

TrrTanr otk oot oEsupataeg o L, e 0nd

Mg * Fong g el ood a0

P I Tt T A SN £ 73 Tl Sl
A A BT Tl 1) e 1 0 T Gl BT T
PR B T S L B e VR el I LI

B B T T R S 1. VR R
N & L LA SRR 1 1{ fali
e It ane nfdead i el

Loirmpy o per [rfPuewa paidas -

.EJ

R Tl v LI b1 5

-

R Jdadoar napal B 8 o

' Cor T &R g e 0 40

i

MED I af! oo B

fratfom foad Toorelwn e 4

R I L 0 T [] Sl

L

ST

26

ing periods to be minimized. For a rectangular mxn array N is

given by

=
1l

4.2+ [2(m+n)-8]3 + [mem-2(m+n)+4]-4

1

4emen-2(m+n).

IT a processor tests only one neighbor at a time, there are at most

Mmen . 3 MenN s .
5 pairs, i.e., no more than —5 processors are testing their

neighbors. Hence,

T= N _ g - 4(mtn)
m-n men
2

The number of testing periods can be reduced if each processor tests

two of its neighbors simultaneously:

_ N 3(m+n)
Tz 2m-n 6 - men
3

If a processor tests all its neighbors (four at most) simultaneously,
the number of testing periods is further reduced to five; in one step
the PE tests all its neighbors while in each of the other four steps
it is tested by one of its immediate neighbors separately. An algo-
rithm (preferably, a five step one) is now needed to indicate when
each processor must test all its neighbors. In each step of the al-

gorithm, a message M(TS,c,testdata) is broadcast where TS stands for

27

test and ¢=0,1,2,3,4 is the step number. Each processor must imple-
ment a function

if cell (i,J)

: is to test its neighbors in step ¢

f(c,i,j) =
0 otherwise

Such an algorithm is illustrated in Figure 12, and the appropriate

function is

1 if |1[5=lc+2j|5; c=0,1,2,3,4
f(c,i,j) =
0 otherwise

where |1z is the residue of i modulo 5.

28

o 1 2 3 4 5 6
ol Bl M [[[[
f 2 2 O B 0O [4
721 [0 B [[@ [O
3l M [@2 O B 0O
a 2 [0 Bl O [@ [
ol Bl M [[O B
11 @ 2 O B 0O [=

Fig. 12.

Internal testing strategy.

29

IV. STRUCTURING IN THE PRESENCE OF FAULTY PROCESSORS

The structuring algorithms presented in Section III were de-
veloped under the assumption that there were no faulty processors.
In the following we introduce the necessary modifications to handle
faulty processors. A faulty processor may be known by its neighbors
prior to the structuring or found to be faulty during the structur-
ing process. Consequently, the following strategy is suggested for

each processor during structuring.

(1) Receive incoming message.

(2) Determine outgoing message, its destination and

the internal setting; transmit message.

(3) If there is no response,or a faulty one, update

status and repeat (2).

If this strategy is adopted, we only have to incorporate into the
structuring algorithms all the possibilities of faulty neighbors.
When this modification is introduced in an algorithm, there are two
opposing objectives. The first one is to maximize the number of pro-
cessors still available (which is at most mn-1); the second one is to
minimize the additional complexity introduced into the structuring
algorithm (and hence, additional area occupied by the communication
processor in each cell). A complex algorithm that may maximize the

number of processors still usable after a fault occurrence may be

30

wasteful when the array is fault-free, because a smaller number of

processors would initially fit into the same chip area. In the fol-
Towing we adopt the viewpoint that it is beneficial to have a rela-
tively simple algorithm mainly because of the low failure rate pro-

jected for a single processor in a VLSI chip.

Linear Array

In order to obtain a relatively simple algorithm for structur-
ing a linear array on a grid with faulty processors we use the stra-
tegy depicted in Figure 13(a) and 13(b). This strategy does not re-
quire any previous knowledge about the position of the faulty pro-
cessor and leaves the last available processor in the array unchanged,
thus simplifying expansions of the Tinear array to a second IC chip.
The number of unused processors varies with the position of the faulty
processor, and its expected value approaches n-1 for n,m>>2. For a
1000-processor array, this means that a tolerable percentage of 3.1%
of the processors is not utilized. In the special case, illustrated
in Figure 13(b) (or whenever a processor is terminal in both d and S
directions), backtracking is necessary. The algorithm shown in Figure
13(c) provides a one-step backtracking; if unsuccessful (as a result
of an additional faulty processor), a negative acknowledgement is

transmitted. A slightly more complex algorithm may provide a two-

step (or more) backtracking.

Other Structures

The situation is more complicated for the other three structures

especially binary trees., Since structuring Messages ire [79”§W7[Lﬂ7

31

By N
{
[]
(a) .)
L o] |5 > » |
<—]| e
F - |l |

® o 0 af}—|

(b)
receive a message M(LA,z,d) from &§-neighbor
(£=k,k-1,...,1; d€{E,W})
If CR=LA,2 then begin
if 6=S or S-terminal then transmit M(NACK,LA,2) to DI—neighbor
else transmit M(LA,2-1,0op(d)) to S-neighbor

end
else begin
CR:=LA,2
DI:=)
if £=1 then transmit M(ACK,LA,1) to &-neighbor
else begin

if d-terminal then
if S-terminal then transmit M(LA,2¢+1,d) to &-neighbor
else transmit M(LA,£-1,0p(d)) to S-neighbor

end if
else transmit M(LA,£-1,d) to d-neighbor
end
“end

(c)

Fig. 13. Structuring algorithm for linear array (faulty processors
are present).

32

simultaneously by all processors at the same level, local modifica-
tions in strategy by one of the processors are not allowed. Conse-
quently, whenever the pre-assigned processor does not respond or has
a faulty response, a negative acknowledgement is transmitted back.
This, however, does not imply that the structuring of the binary
tree is impossible, since there are always processors in the grid
which are not used in a binary tree structure.

To allow structuring in the presence of faulty processors, we
suggest the following strategy. If a negative acknowledgement is
received (although the desired structure should fit into the grid)

a testing period is first initiated to ensure proper identification
of the faulty processor. Next, each processor whose d-neighbor is
faulty will declare itself a connecting element (CE) and transmit a
message to its op(d)-neighbor causing it to declare itself a CE also,
and so on until all processors in the row and column of the faulty
processor are declared CEs, as shown in Figure 14. For a 1000-
processor grid, 6.1% of the processors will become connecting elements.
A much smaller percentage of PEs will become CEs if only the communi-
cation 1link between two adjacent PEs is faulty. In this case, each:
PE will claim that the other one is faulty, will thus declare itself
a CE and finally only the row (or column) containing these two will
turn out to be a row (column) of CEs.

Once the faulty processor has been taken care of, renumbering

of the remaining PEs can be initiated, if necessary, by broadcasting

33

1 21> 1 CE 1 2 —» 1
2 <— CE 4 = g
] g —= | CE 1 e é’ 1
CE CE CE F CE CE CE CE CE CE
CEf— 5
| & 2 >] CE] 2 1
ZI e CE j > 3
| & 2 | 1 CE 1 ‘§]

Figure 14.

Five-level binary tree on a grid (a faulty
processor is present).

34

an appropriate message, and the ordinary structuring algorithms may
then be used. Figure 14 shows the resulting binary tree (note that
when a CE receives a message, it is transmitted unchanged to the op-
posite direction). In most cases, the maximum size of the binary
tree that can be placed on the grid will not change as is evident

from Figure 9.

35

V. CONCLUSIONS

An example of a reconfigurable and fault-tolerant VLSI multi-
processor array has been presented. It demonstrates the feasibil-
ity of an array with these desirable properties, but it is neither
a unique array with such features nor an optimal one in any sense.
Further research steps are needed to consider other reconfigurable
and fault-tolerant systems (e.g., one which is based on the hexag-
onal array [2]) and to devise ways to compare them with regard to
possible structures and the corresponding classes of computational
algorithms, complexity of structuring algorithms, fault-tolerance

capacity, and other reliability measures.

10.

11,

36

REFERENCES

M.J. Foster & H.T. Kung, "The design of special-purpose VLSI
chips," Computer 13, 26-40, January 1980.

C.A. Mead & L.A. Conway, Tntroduction to VLSI Systems, Addison-
Wesley, Reading, Massachusetts, 1980, Sec. 8.3.

D.P. Siewiorek, D.E. Thomas & D.L. Scharfetter, "The use of LSI
modules in computer structures: trends and limitations," Com-
puter 11:7, 16-25, July 1978.

H. Sullivan & T.R. Bashkow, "A large sca]eﬁ homogeneous, fully
distributed parallel machine, I," Proc. 4th Symposium on Com-
puter Architecture, 105-117, March 1977.

B. Ackland, N. Weste & D.J. Burr, "An integrated multiprocess-
ing array for time warp pattern matching," Proc. gth Anmual Sym-
posium on Computer Avchitecture, 197-215, May 1981.

E. Horowitz & A. Zorat, "The binary tree as an interconnection
network: applications to multiprocessor systems and VLSI," IEEE
Trans. on Computers C-30, 247-253, April 1981.

C.H. Séquin, "Single-chip computers, the new VLSI building blocks,"
Proc. Caltech Conference on VLSI, 435-445, January 1979.

S.W. Song, "A highly concurrent tree machine for database appli-

cations," Proc. 1980 Int'l. Conference on Parallel Processing,
259-268, August 1980.

J.G. Kuhl & S.M. Reddy, "Distributed fault-tolerance for Targe

multiprocessor systems," Proc. 7th Symposium on C ter Archi-
tecture, 23-30, May 1980. ymp omputer Archi

W.C. Carter et al., "Cost effectiveness of self-checking com-

puter design," Proc. 7th 5 : 7 i I
117-123. June 1977. ymposium on Fault-Tolerant Computing,

R.M. Sedmak & H.L. Liebergot, "Fault t
-L. t, olerance of a general
Eurpose computer implemented by very Tlarge scale 1ntegration !
EEE Trans. on Computers -29, 492-500, June 1980. ’

10.

11,

36

REFERENCES

M.J. Foster & H.T. Kung, "The design of special-purpose VLSI
chips," Computer 13, 26-40, January 1980.

C.A. Mead & L.A. Conway, Introduction to VLSI Systems, Addison-
Wesley, Reading, Massachusetts, 1980, Sec. 8.3.

D.P. Siewiorek, D.E. Thomas & D.L. Scharfetter, "The use of LSI
modules in computer structures: trends and limitations," Com-
puter 11:7, 16-25, July 1978.

H. Sullivan & T.R. Bashkow, "A large sca]eé homogeneous, fully
distributed parallel machine, I," Proc. 4" Symposium on Com-
puter Architecture, 105-117, March 1977.

B. Ackland, N. Weste & D.J. Burr, "An integrated multiprocess-
ing array for time warp pattern matching," Proc. gth Annual Sym-
posium on Computer Architecture, 197-215, May 1981.

E. Horowitz & A. Zorat, "The binary tree as an interconnection
network: applications to multiprocessor systems and VLSI," IEEE
Trans. on Computers C-30, 247-253, April 1981.

C.H. Séquin, "Single-chip computers, the new VLSI building blocks,"
Proc. Caltech Conference on VLSI, 435-445, January 1979.

S.W. Song, "A highly concurrent tree machine for database appli-
cations," Proc. 1980 Int'l. Conference on Parallel Processing,
259-268, August 1980.

J.G. Kuhl & S.M. Reddy, "Distributed fault-tolerance for large
multiprocessor systems," Proc. 7th Symposium on Computer Archi-
tecture, 23-30, May 1980.

W.C. Carter et al., "Cost effectiveness of self-checking com-

puter design," Proc. 7th Symposium on Fault-Tolerant Computing,
117-123, June 1977.

R.M. Sedmak & H.L. Liebergot, "Fault tolerance of a general
purpose computer implemented by very large scale integration,"
IEEE Trans. on Computers C-29, 492-500, June 1980.

N\

ALt

4 SR WL TR P R T R R .
o trnel Rt T e e -
- et Tl T e w4 Jgpsmnt A e B
S SAY LT TLL Ledtmpramesa s o uret - -
i f"i;' LA e TamodY L e sl
- . : o -] o =, - - .
P LY (A ' = (Foarad U fRY 5 V- ATRTI LN 1
ST WD RS
ICEET S I LS LS S S LA SOV
- X e - R G 10 - L T B TN e L
o RN et e
_‘\.;_r\ ! |||‘;- |:|. R | rlll - 'I— ”.Ir]” -.I—':UI ‘L"] L] vl |“' .'T U s B
=T Al T et [e I T A LT LT
LTegp ol R - ILE - SR LI R "
-‘—II I.f I" 1 - - lll - -II’ “i*a [1 1 1
SRR LA T Pt ol M reems P ‘
R L Y (T b & 1 SR Lt (R R | IR L N 1, T - . '
-_ . [i”:r'll u _-i‘ "_.'—' .I ‘1 - I'-_"&hu .k' 4 i . -
S TR o TEE R L RS § LY S AL TS RN
R 2 U fr CE P T Ayt ot v R
SiTian cmedpdal v e B e tpaeeng o e Y o o
R " SRR SR L i - WM. Tyt
S a-'
T A Ebn:fg'fwf—d - Focu a0 Do L R Tan L.
- PN e e s ey L LT I TS K T Ul i B
JTBL L e
Rl al“-f'.".' e R T It L T L o
R AT S T P ST TR B B
VLT T
ecenen p T - ' S Il A DL B T ROty
l.";_;- [S o E bt '_.J'l'"""jll"'l' | el LUK T 1|.7._.

qrggemvin T

. A
V- NS

-
Caden cvans otz yfdunGt nfiodl Ha

L

B

- I 1) (= S

L8

T 7 Tsmweh PAR mpesT
E U !
. F

o u_Z,

