A PLACEMENT ALGORITHM FOR
ARRAY PROCESSORS™

Dah-juh Chyan*
and

Melvin A. Breuer

DIGITAL INTEGRATED SYSTEMS CENTER REPORT
DISC/82-7

DEPARTMENT OF ELECTRICAL ENGINEERING-SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 90089-0781

DECEMBER 1982

*Dah-juh Chyan is a graduate student at the University of Southern
California and is also employed at Xerox Corp., El Segundo, CA 90245.

+This work was supported in part by the National Science Foundation
under Grant ECS-8005957 and by the Xerox Corp.

A Placement Algorithm for Array Processors

ABSTRACT

In this report a concurrent pairwise exchange placement algorithm executing on an array
processor is presented. Two force functions and their effects are discussed. The oscillation’
phenomenon caused by the concurrent computation is investigated and some solutions are
suggested. A design for the array processor is presented along with a complexity analysis which
indicates that this algorithm is O(Nz) faster than a conventional sequential placement
algorithm.

KeyWords

Placement, array-processor, pairwise exchange, oscillation, VLSI

1, Introduction

Conventional placement algorithms, such as the interactive placement-improvement algorithms [1} or
the min-cut placement algorithm(2], were designed to run sequentially on a single CPU. In the past ten
years, however, thanks to advanced VLSI technology, computing power has become so cheap that itis
feasible to employ specialized processing units such as array processors to perform such tasks. For
example, low cost array processors have been successfully utilized in signal processing applications(3] as
well as design automation[4). In this paper we present a pairwise exchange placement algorithm
designed to run on array processors. This algorithm takes advantage of the concurrent processing power
provided by an array of special purpose processors. Each processor consists of a simple ALU, a local
memory and a special control unit. Due to its simplicity, many processors may be put on a single VLSI
chip, thus reducing the implementation cost. A program which simulates this concurrent placement
machine has been coded in PASCAL, and experimental results have been obtained. An oscillation
problem was discovered as a result of these simulations. ~Several types of oscillation have been
identified, and methods to reduce this phenomenon are suggested. Even though oscillation is
undesirable because it makes it more difficult for the placement algorithm to converge, it may
contribute, from a statistical point of view, to a better placement .

2. The Concurrent Placement Algorithm

Consider the two dimensional array of processors shown in Fig. 1. Each processor is capable of
performing some global communication through a serial line. Adjacent pairs of processors are
connected via a local bus which can be used to exchange data at a high bandwidth. Each processor has
an ALU, a local memory and some control logic. There is also a global control unit which is capable of

initializing all the processors and is responsible for controlling the global communication.
A

E

Interface
1

Global
Control
Section

Fig.1 Array of processors
We consider the following placement problem:

Given a set of modules (either function blocks on a VLSI chip or packaged components) and a net list

which describes the interconnections among the modules as well as a regular array of positions for
modules lying in rows and columns, find an assignment of modules to positions so that the resulting
placement has a near-optimal minimal total wire length. The following is a concurrent placement
algorithm for solving this problem:

1. Choose an arbitrary or predefined initial placement which assigns each module to one

processor. Each processor carries the ID number of its assigned module in addition to the ID
numbers and locations of modules connected to it.

2. FOR Iteration = 1 to maximum-Iteration DO

BEGIN
3. FORCycle =1t04DO
BEGIN
4, Form-Interchange-Pair (Cycle); --concurrent operation
5. Interchange-decision-making; --concurrent operation
6. Interchange-data-between-pairs; --concurrent operation
1. Broadcast-new-location; --sequential operation
END;
IF stabilized THEN EXITLOOP; --global decision
END;
8. Report final placement: The computation stops and the last placement is reported through
the global control unit.

The final result usually is a relative placement because the physical module size is neglected. A post-
placement process which takes the physical size into account may be desirable. This algorithm will stop
if there are no more changes made in one iteration(the placement has stabilized); otherwise it runs for
a maximum number of iterations. Steps 1, 2, 3 are self-explanatory. In the following, the actions in
steps 4, 5, 6, 7 and 8 are described.

step 4: Form-Interchange-Pair (Cycle)

Formation of pairs is determined by the value of *Cycle.” The pair will be selected in the manner
similar to a sorting algorithm, known as Alternate Sorting. Since we are dealing with a two-dimensional
array of processors, the interchange will be performed alternately between X-dimension neighbors and
then Y-dimension neighbors. An example of the formation of pairs is depicted in Fig.2.

DICD|CD nininlainin (o) [o) [anmw)

DD UIUTCTUIUIUIU fm) [m) [« =] BRIa[alal[alialin

[) [) (o) nlnlnlninin DD UIUIUTUIUIU
[@n) [=n)]) CIUJCIUTUIU ool Ininininininin
DID|ID nininininln [w) [en] [UIUIUIUIUIY
[@n) [an)] () CIUIUIUICIY an)[a=)][==] e aallallala

[an)[an][a [an)[an][a UTUTCTUIUIU
Cycle=1 Cycle= 2 Cycle= 3 Cycle= 4

Fig.2. Formation of interchange pairs

step 5: Interchange-decision-making .

The same computation is performed in all pairs simultaneously aimed at determining if the total wire
length can be reduced by interchanging the positions of the modules in the pair. For any pair, if the
gain is greater than a certain threshold, an interchange will be carried out in the next step. The function
used in determining the gains is called the net-gain function. Several useful net-gain functions, each
providing its unique features, will be discussed in a later section.

step 6: Interchange-data-between-pairs

In this step those modules which were determined to be interchanged in previous steps are actually
interchanged. The information which needs be interchanged includes the module ID numbers and the
connectivity information. The data being exchanged is sent through a local bus which connects each
pair of processors. ' '

Up to this step all the actions take place simultaneously among all interchange pairs. The next step is
the only action that has to be performed sequentially through all the pairs.

step 7: Broadcast-new-location

Because a complete graph communication network is very costly in terms of VLSI real estate and logic,
it was decided that a global bus be used. All processors can read from the bus simultaneously, but only
one processor is allowed to write onto the bus at any one time. Accordingly, the interchange pairs have
to sequentially broadcast their new locations (or simply the movement) to all other processors. The
order of broadcasting can be simply a row-major ordering. All processors update their own data upon
receiving the broadcasted information. Clever hardware design may be employed to shorten the
broadcasting time. We will show an example in section 5.

3. The net-gain function

The net-gain function for each pair is actually the combined result of two values. Each module in the
pair contributes one value that is a function of the relative locations between this module and its
connected modules. If the value of this function is positive, it will cause a reduction in total wire length
if we move this module to the opposite side of this pair. When adding the two values, if the resulting
sum is positive, an interchange should be performed; other, one should not take place. We will call the
relative location function a ‘force function’ for reasons that will become clear later.

The force function is an important factor in determining the optimality of a placement. Unfortunately,
there is no single function which is superior to all others. In the following, we will analyze two types of
force functions which have produced good results.

3.1 Constant force function

A constant force function is a function in which each connected module pair contributes a constant
force of unit value in the x or y direction so as to pull each module toward the other. The force function
is derived based upon the positions of a module before and after an interchange. Consider a module.
pair interchange in the x-direction where a module m moves from the right to the left. All modules to
which m is connected which lie to the left (right) of the module in question contributes a force of +1
(-1). When m moves from left to right the sign of the force is reversed. A module which is in the same
column as m always contributes a force of -1. The force is independent of the distance between the
modules.

Assume we have the placement situation shown in Fig. 3. The force function in the x-direction is 1 for
m1 and 0 for m2. The net-gain for this pair will be 1. Note that m3 contributes -1 to the force for m2.
Also note that when a horizontal interchange pair is considered, the relative positions in the vertical
direction are irrelevant. A similar computation is applied to a vertical direction interchange pair.

(4,2) means 4 units long in x-direction
2 units long in y-direction

/A
4
<

;.\

Fig.3 Example of forces

3.2 Linear force function

A linear force function is one in which each connected module contributes an attraction force between
the two modules which is connected proportional to the distance between the modules, i.e, itisa
Hooke’s Law system. However, unlike the constant force function, using the linear force function will
not reduce the total wire length 2(d;) in a strict mathematical sense. Instead, it will reduce the sum of
the squares of all wires, i.e., Z(di)2 . Experimentaily, however, the linear force function still leads to a
small total wire length. We will again use Fig. 3 to illustrate the linear force function, but this time the
distance in the horizontal direction is taken into account. The net force function for m1 will have a
value 3, and the net force function for m2 will have a value 1 (note that m3 being in the same column as
m2 contributes -1 to the function in spite of x-direction distance is 0.) The net-gain for this pair will be
4. Note that when a horizontal interchange pair is considered, the distance in the vertical direction is
not used to calculate the gain. The advantages and disadvantages of the constant force function and
the linear force function are discussed next.

3.3 Experimental results for different Force Functions

The two functions described have been modeled in a simulation program. In the tested cases, the linear
force function was found to lead to a smaller total length. It was also found that the linear force
function lead to faster convergence. We believe that local optimization contributes to this result.

Local optimization is a more serious problem for a concurrent placement algorithms than it is for a
conventional placement algorithms because the module has to travel through every location along the
path to reagh its final place, thus increasing the probability of getting trapped in a local optimal position
along the path. Since the linear force function is more sensitive to long wires, it did better in avoiding a
local optimal placement, and consequently has a better chance of obtaining a better final result. When
the constant force function is used, it is quite possible that some modules get trapped in local optimal
positions. In the best case, a module may be able to get out of a trap but has delayed the process of
convergence; in the worst case, a module may never leave a locally optimal position. It appears that
the linear force function is much better than the constant force function, but before we jump to any
conclusions, we have one more factor to study, namely oscillation. - In the following section, we
investigate the oscillation phenomenon and discuss its implication on the two force functions .

4. Oscillation

In this section we will discuss a unique property of concurrent placement algorithms, namely oscillation.
Oscillation refers to the phenomenon that a number of modules perform endless exchange of positions.
The reason for oscillation is that erroneous decisions are possible when numerous pairs of modules are
considered simultaneously for exchange. Because the algorithm can not predict the movements of other
modules, it can only assume that the other modules will not change positions. Unfortunately, this
assumption is not always true and a decision to exchange positions may turn out to be
counterproductive, i.e., instead of reducing the total wire length, it may increase it. Such an
interchange is referred to as a mal-interchange. However, a mal-interchange is only a necessary
condition for oscillation; to cause an oscillation also requires some patterns of placements to form and
appear repeatedly. In the following, we show some simple patterns which cause oscillations. More
complex oscillation patterns are also possible, but are rarely observed.

. 4.1 Patterns of Oscillation
We will show two simple oscillation patterns. The first one will cause oscillations for both the constant
force function and the linear force function. The second example will cause oscillation only when the

linear force function is used.

Oscillation pattern I. This kind of oscillation occurs most often. It happens when two pairs of modules
are connected in the manner shown in Fig. 4.

ml 2

Fig.4 Oscillation pattern I

The force pulling m1 to the right is +1, and the force pulling m2 to the left is also +1, therefore, m1
and m2 decide to change positions. So do m3 and m4. An endless exchange thus occurs.

Oscillation pattern II: This type of oscillation only occurs for linear (or higher order) force function. It
happens when two pairs of modules are connected in the manner shown in Fig. 5.

p=
£13'I%4

Fig. 5 Oscillation pattern II
The force to pull m1 to the right is +3, the force to pull m2 to the leftis -1, i.e,, m?2 resists the movement
to the left; unfortunately, the sum is +2 and therefore, m1 and m2 change positions. So do m3 and md;

an endless exchange thus occurs. In general, the linear force function has a higher probability of
causing oscillation.

4.2 Methods of reducing oscillation

There are many ways to reduce the oscillation phenomenon. We present two methods here, one of
which interlaces interchanges, the second one employs a threshold value for the total force.

(1) Interlacing the exchanging pairs

If one forms the pairs in the interlaced manner shown in Fig. 6a, it can be shown that the occurance of
pattern I oscillation will be reduced by at least one haif when the constant force function is used.

D|CD|CD nl Inl 1N

[m) [an][as] NUInilINnY

[) [) [a o) NICinCINIV

lolcb| [UInUnVInIY] |m [@im)

[aw] [an][an) NIUINVINIYIN] (CoAd @l mi] &
[w) [aiw]) NIYUINVINIY @ m3

[aw][as][a= o U U [=m) [) 1
Cycle= | Cycle= 2 6b 6¢c 6d

6a Fig. 6 Interiacing the exchange pair

The patterns which may cause an oscillation are shown in Fig. 6b, 6¢c and 6d. It is easy to verify that the
patterns in Fig. 6c and 6d do not cause oscillations when a constant force function is used. Therefore,
the chance of pairs forming an oscillation pattern as shown in Fig. 6b is reduced to only one half of that
in non-interlaced case. The reduction in the probability of oscillation should be even greater than one
half when we consider that oscillation happens mostly between pairs lying in adjacent rows (or
columns.) Actually, it was very surprising to find that in many test cases the interlaced placement

scheme does terminate all the oscillations. The interlace scheme not only terminates oscillation, but also
modifies the placement shown in Fig. 7a to that in Fig. 7b.

en)liEs ST b ===
e liEn an]BiEslE=lE=
B D] [chl b ol [cb
ol €180 :_‘__‘%3‘2 e liEs) ol b ol b
S —,F—% an]fiEs an|BiEslE=lE
= op] [Chl b] b
7) en)fiEs an)liEs bl c
Te 7d Te
Fig.7

Other methods based on the interlaced concept can also be devised. Three way interlacing is an

example. This is shown in Fig. 7c, 7d and 7e. It further reduces the probability of oscillation, but at
the cost of slowing down the placement process.

(2) Employing a non-zero threshold value

In section 3 we chose the threshold to be 0, i.e., if the net-gain is greater than 0, we allow the exchange
take place. This decision was made because when the force exceeds 0, it indicates a possible reduction
in the potential function. However, we showed in section 4.1 that both pattern I and pattern II with net-
gain functions equal to 2do notlead toa reduction in total wire length. This fact suggests a change in
the threshold value may be useful. For example, we may choose the threshold to be 2. However, this
still does not guarantee the complete elimination of oscillation. In Fig. 8 we show an example where a
threshold equal to 2 still results in oscillation.

Fig. 8 Oscillation occurs for threshold less than 4

One approach to terminate oscillation is to increase the threshold value gradually after the placement
process has proceeded for some time. The disadvantage with this scheme is that we may sacrifice some

10

real improvement in the objective function. When to start increasing the threshold value thus becomes
a crucial decision. This method is an effective way to terminate the oscillation despite some drawbacks.

4.3 Effects of oscillation

Oscillation caused by mal-interchanges is not a desirable phenomenon because it creates some difﬁcﬁlty
in deciding when to stop the placement process. But it does not mean that mal-interchanges only cause
negative effects. Experiment results actually showed that a placement scheme with more oscillations or
mal-interchanges usually lead to a lower value of total wire length. In one experiment, we modified the
concurrent placement algorithm so that we formed the pairs in the same manner as in Fig. 2, but only
one pair of modules is allowed to make a decision and carry out an exchange at a time, any new location
is broadcast and updated immediately, i.e., we solved the test placement problem in a totally sequential
manner. No oscillation is possible and the placement process terminates relatively fast, however, the
result is very unsatisfactory, i.e., the resultant total wire legth is quite high in comparison to the result of
an concurrent placement algorithm. One other experiment used the interlace placement scheme. The
result is not quite as good as that for the non-interlaced concurrent technique. To explain why the non-
interlaced concurrent algorithm outperforms the other techniques, we offer the following reasoning .
Our force F is the (directed) sum of individual forces corresponding to each connected module. The
individual forces are calculated under the assumption that the connected modules do not change their
locations. However, we are actually uncertain about this. This uncertainty introduces a random factor
into our force. It is reasonable to say that our calculated force Fy, is the sum of a force F and a random
variable R, i.e., F F +R, where F is the force we would obtain if we could predict the resultant
placement of this cycle If we always use Fp no mal-interchanges can happen. But because of the
random factor R, we sometimes get mal-interchanges. Since we do not have much information about
this random variable, we assume it is a normal distribution function and its mean value may be obtained
from experiments. It is possible that this random factor R may help overcome the local optimization
barrier. Even though we could not prove our reasoning rigorously, we believe the randomness concept
should be useful to some extent. Fig. 9a is an abstract depiction of this idea. Let the Y-axis represent
the total wire length of the system and the X-axis the relative location of module m. Assume m is
originally at location x. If the force F is not enough to overcome the barrier B, the random variable R
added to F sometimes makes it possmle for m to move away from a local optimal position so that
module m has a chance to reach a better position, e.g., point G. Let the probability of m leaving the trap

be equal to P, and the p(R) in Fig. 9b be the probability density function of random variable R. Then
P= J’ o g PROR

YA 1‘
P

FY)

11

5. One Sample Design of a Concurrent Placement Machine

In this section we present a sample design of a concurrent placement machine. Our machine is capable
of pipelining the broadcasting process while part of decision making process is in progress, i.e., most
computations are done immediately after the broadcast information is received. Therefore, most
arithmetic operations are being performed while the broadcasting process is still undergoing. This
machine will support both the constant force function and the linear force function. We assume that it
is the responsibility of the global control unit to stop the placement process or to terminate oscillation.
Before presenting our design we have to analyze the two force functions in order to find out what
hardware we will need.

5.1 Analysis of the Computation

In this design we are trying to minimize the computation required to calculate the value of the force
function. Therefore, we decided not to recalculate the forces from scratch for every iteration. We will
maintain a current force value. This value will be modified by an appropriate amount whenever a
relocation of interconnected modules occurs. This approach complicates the hardware design, but
reduces the computation time substantially.

(1) Constant Force Function

Assume we have a pair of modules m1 and m2 as shown in Fig. 10a. We find that for a constant force
function, only the movements of modules in columas x and x+1 contribute to modify the forces on ml
and m2. This follows because as long as the modules stay outside column x and x+ 1, their
contributions to the resultant forces on m1 and m2 remain unchanged. Fig. 10b is a transfer table
showing the movements of modules that are connected to ml. nl is the number of modules that stay in
column x. n2 is the number of modules originally in column x and found to be in x +1 after the
broadcasting. Similar definitions apply to n3 and nd.

after
L. 1
onglna.l X X+
mi] @]
x | nl n2
’ + * x+1| n3 n4
x x+1
10a 10b
Fig. 10

The force contributed by modules connected to ml can be divided into two parts: F1, the force
contributed by the modules which are not in the same column as m1, and F2, the force due to those
modules in the same column of mi. Thus

F1=(Z1+ 2(-1))
i e
F2=21
)J{(j) =X
where j is any module connected to m1, and x(j) is the x- location of module j.

First, let us consider the case where m1 does not change its location in acycle. Itis obvious that after
the broadcasting, F1 should be updated to F1’, where
F1'=F1+n2-n3

Similarly, F2’=F2-n2+n3
Let E1=F1-F2, E2=-F1-F2
The value of the force function is equal to E1 if m1 is on the left side of the module pair; the force is
equal to E2 if m1 is on the right side. After each cycle

'EI' =F1’-F2' =F1+ n2-n3-(F2-n2+n3)=El + 2(n2-03)= E1+2(nl +n2)-2(n1 +n3)
Notice that nl +n2 is the number of modules originally in column x; n1+ n3 is the number of modules
in column x after the cycle. '

E2 =-F1I'-F2’=-(F1+n2-n3)-(F2-n2+n3) =-F1-F2=E2

We have designed our machine so that prior to a broadcasting process, we add twice the number of
modules that are in column x to E1. During the broadcasting process, m1 will update the locations of its
connected modules. After the broadcasting process, we subtract twice the number of modules that are
now in x. Thus we obtain a new value for E1. E2 will remain unchanged in this case. Two similar
terms are used when processing the y-direction exchange.

Now we consider the case where m1 changes position. Expressions for F1', F2 are now different.

F1'=F1-n1-2n3-n4

F2’'=F2-nl+nd4
and EI’=F1’-F2' =F1-F2-2(n3+ n4)=E1-2(n3+n4)

E2’ =-F1’-F2’'=-F1-F2+2(nl+n3)=E2+2(nl+13)

Notice that n3+nd equals the number of modules originally in column x+ 1, and n1 +n3 equals the
number of modules eventually in column x. Therefore, before broadcasting, we subtract from E1 twice
the number of modules in column x+1. After the broadcasting, we add to E2 twice the number of
modules in column x.

Note that for the constant force function, we only need to know the number of modules in column
x or x+1. The arithmetic operations are performed immediately before and after the broadcasting
process. This is not the case for the linear force function. In the following, we omit the lengthy analysis
and briefly describe what should be done for the linear force function.

13

14

(2) Linear force function

The difference between (2) and (1) is that not only must the movements of modules in columns x and
x+ 1 be taken into account, all other connected modules which move also participate in generating the
new force. We noticed that we have to add 1 to F1 when a connected module moves to the right, and
subtract F1 by 1 when a connected module moves to the left. Let NT be the total number of modules
connected toml. We subtract NT from the force if m1 moves to the right. Some other operations will
involve n1+n2, nl+n3 and n2+n4. After examining the necessary operations needed to calculate the
force value, we note that basically we need to maintain two values for both the x- and y- dimensions.
Some arithmetic calculations are involved. In addition to that, we need the capability to know the
number of connected modules in a given column or row. '

5.2 The Actual Design

Fig. 11 is a detailed block diagram of one processor. To speed up the search and count operation we
decided to use a content addressable memory(CAM) to hold the ID and X-, Y- locations of the
connected modules, and to use a tally circuit to determine the number of modules that match a certain
pattern, e.g., a coordinate. The pattern to be matched is stored in either Cmpr-ID, Cmpr-X or Cmpr-Y.
We use X-LOC-1, ... to store the relavent coordinates for the processors. We use registers XT1, XT2,
YT1 and YT?2 to maintain the four values mentioned in section 5.1. There are two internal buses- A-
BUS and B-BUS. They are used to transfer the operands to the ALU. N-BUS(Neighbor Bus) is a bus
that connects a processor to all its adjacent processors. Some switching circuitry is needed to control the
data flow. The G-BUS is a global bus. During the system initialization phase all initial data is
transmitted through the G-BUS. The broadcast data is also sent out through the G-BUS. The data
being broadcast includes (1) the ID of the module doing the broadcasting, and (2) its new X- or Y-
location. Note that a module that does not change locations does not broadcast any data. This is
achieved by using a daisy chain control circuit. This circuit allows modules that do not change locations
to simply pass a token to the next one in the daisy chain. If a module does change its location, it holds
the token until it finishes its broadcasting. For each cycle the global control generates one token and
passes it to first processor in the daisy chain. By so doing, the time for the broadcasting process is
proportional to the number of movements in that cycle. This number is expected to decrease as the
placement improves. The daisy chain control also assures that at most one processor is putting data on
the global bus. Global control circuit will make sure that all processors are running synchronously.

5.3 The Time Complexity
In this section we compare the time complexity of a conventional placement algorithm to our

concurrent placement algorithm. We choose the force-directed interchange algorithm presented in (1]
(page 259) because it is very similar to our algorithm. Basically, the concurrent machine can make up

ais
ghai)r’)

ontrol
\
i >
eresam— STATE
X-LOC -1 R/L MACHINE
—<€1X-1.0C Flag
. < & 2>
X-LOC+1 CONTROL
Y-LOC -1
P Ref. Loc.
<—1Y-LOC &Control Signals
Y-LOC+1

—q [1
M A-BUS

Cmpr. ID|Cmpr. X |Cmpr. Y B-BUS #_q
Y Y) 5K] AR 1LI ’
CAM . XT1
(Content 4ddressabld Memory) [Tally XT2
4 ALU
ID X Y - > — YT1
- bircuit
-
- Y
X o — |
CON. ; gg;’e | >—
Input/Oubut Reéster ' '
1 .
N Node ID
L A A ‘;
YY
i % N-BUS
a (Nejghbor Bus)
* A A G-BUS
{Globa: 2us)

X and BV are ON/OFF switchs to control data flow

Fig. 11 BLOCK DIAGRAM OF ONE PROCESSOR

to N2/2 decisions in each cycle, assuming we have an NxN array of processors, while a sequential
machine can only make one decision in one cycle. It is thus fair to say that if a sequential machine takes
P cycles to complete a placement, the concurrent machine will take P/(N2/2) cycles to finish. Here we
ignore the effect caused by oscillation. Let the total time for a sequential machine to complete a job be
Ts, and the total time for concurrent machine be Tc. Then

Ts=Ps«Cs
and Te=P/(N2/2)sCc (» indicates multiplication)
where Cs is the time for the sequential machine to finish one cycle, and Cc is the time for the concurrent
machine to finish one cycle.

Now we have to-compare Cs and Cc. As mentioned in [1] the sequential algorithm has to maintaina Q-
list and keep updating it. It takes at least O(N 2) time to do so, i.e., Cs= O(Nz). Note that the total
number of modules is proportional to N2, It is more difficult to calculate Cc because Cc is equal to the
sum of exchange time (Tx), the broadcasting time (Tb) and a small constant. Let Cp,,, be the
maximum number of modules that can be connected to any given module. Cp . is O(Nz). The
exchange time is O(Cp,,), and therefore Tx is O(N 2). Broadcasting time varies from cycle to cycle.
Since each exchanged module needs a constant time to do the broadcasting, the broadcasting time is
proportional to the number of exchanges. Initially, there will be many exchanges taking place. Asthe
placement gradually settles down, the number of exchanges becomes smaller and smaller. Therefore,
we can only estimate the average number of exchanges in one cycle. Let Te be the total number of
exchanges in the entire placement process. Then the average number of exchange per cycle is

Ve = Te/(2P/N 2). We can estimate the total number of exchanges by using the following argument:
From the experimental results, the number of exchanges in the i-th cycle is approximately K«(1/i), for
i=1,23, .., 2P/N2, where K equals the number of movement in the first cycle. K is at most N2/2.

The total number of exchanges Te is then given by the expression
Te=SK*(1/i) =~ K*f(l/i) di ~ K* Log(2P/N2) =(N2/2)*Log(2P/N?)
i

where i ranges from 1 to 2P/N2
Therefore Ve~ (N2/2)xLog(2P/N2))/(2P/N?)= N4 Log(2P/N2)/4P

From [1] we know that the complexity of P is at least 0(N4) because it is proportional to the square of
the total number of modules, which is O(N 2). Therefore we obtain Ve=0(Log N). It is obvious that
Ce is dominated by the exchange time Tx which is ON2). Ceis O(N?). Since Cs and Ce are of the
same order of complexity, we conclude that the concurrent placement scheme can speed up the
placement process by a factor of O(N 2).

6. Conclusion
In this paper we presented a concurrent placement algorithm and an array architecture which can

implement this algorithm. We discussed the oscillation problem and its effects. We compared the time
complexity of the concurrent algorithm with a conventional (sequential) placement algorithm. The

15

16

conclusion is that we can speed up the computation by a factor of O(Nz) while retaining the same if not
better quality of results.

Several problems have not been addressed in this paper. The first deals with how to deal with
placement problems which are larger than the concurrent machine can handle. For this case a divide
and conquer approach is being investigated. A second problem deals with the expandability of our
machine. If our machine is implemented on a chip, it would be desirable to interconnect these chips so
that larger problems can be processed. Finally it is possible to modify the computational formula to
deal with the problem of "weighted" signal nets. In conclusion, we believe that the use of array
processors is a powerful and useful tool to be used in solving design automation problems.

REFERENCES

1. M. Hanan and J. M. Kurtzberg, "Placement Techniques", Chap. 5 in Design Automation of
Digital Systems: Theory and Techniques, Vol. 1, Editor, M. A. Breuer, Prentice-Hall,
1972. pp. 213-282.

2. M. A. Breuer, "Min-Cut Placement", J. of Design Automation and Fault Tolerant Computing
Vol 1, October 1977, pp. 343-382.

3. H.T.Kungand C. Leiserson "Algorithms for VLSI processor Arrays”, Sec 3, Chap. 8in
Introduction to VLSI systems by C. Mead and L. Conway, Addison-Wesley, 1980
pp. 271-291.

4. M. A. Breuer and K. Shamsa, "A Hardware Router", J. of Digital System, Vol. 4,
Winter 1980, pp. 393-408.

