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1. Abstract

This paper describes an experiment to determine how register-transfer
tradeoffs affect the resultant silicon area and performance of layouts. Six
register-transfer level designs, each performing the same function with
different register transfer level structure, were implemented using a library
of CMOS/SOS standard cells, and an automatic placement and routing program.
The consumption of area and the critical path timing were calculated for each
design. The results show that register- transfer design variations do produce
changes in area and performance at the layout level. However, optimistic
timing analysis at the RT level, variations in relative storage timing across
technologies, and omission of fanout and path length delays altered the

resultant area and timing from that predicted at the RT level.

2. Introduction

One of the major differences between designing digital circuits with
discrete components and designing an integrated circuit layout is the
difficulty of predicting the impact of each design decision at the functional
level on the resultant performance and "cost"(which we will measure in area)
of the final design. While some area estimators exist for regular structures

[Thompson 80], and channel width estimators have been researched ( [Syed 82],
[Donath 81]), a model of area consumption as a function of design tradeoffs

has not been proposed.

In order to automatically synthesize register—transfer(RT) designs from
higher-level specifications, estimates of area consumption and critical path
timing are needed. Such estimates must take into account routing area, the
effect of signal buffering on area and timing, and the effects of fanout and

of path lengths on performance.

This paper describes an experiment designed to provide data for predicting

area consumption and performance at the register—transfer level. Six



register—transfer level designs were used in the experiment.1 All six of the
designs represented data paths designed to perform the same function, but the
structure of each design varied. The RT designs were synthesized
automatically ( [Hafer 83], [Hafer 81]), and estimates of “cost" and

performance were done by the synthesis program.

Each of the RT designs was manually implemented using a library of CMOS/SOS
standard cells, and then automatically placed and routed. Area consumption
and critical path timing were then computed and compared to the RT level

estimates,

The experiment is described in Section 3 and the results are discussed in
Section 4. Section 5 gives an analysis of the data, and conclusions are drawn

in Section 6.

3. The Experiment

There are virtually an infinite number of register—transfer structures
which can be chosen to implement a given function, most of which are inferior
designs. However, some data on register-transfer implementations have already
been produced by Hafer, and six RT implementations of the same function have
been shown to be non-inferior using Hafer's estimates of cost and speed.
Thus, we chose these six as examples of register-transfer tradeoffs. The
function implemented by these is shown in Figure 1, reproduced from [Hafer

83].

Figure 2 (a) through (e) show five of the six RT implementations. Design
#5 had to be discarded due to the timing assumption used during RT synthesis

which allowed inputs to be changed before an operator had finished computing

lone later had to be discarded due to timing problems which will be
described in section 3.



results based on the inputs. This overly optimistic assumption allowed design

5 to be produced, but it could not be made to function correctly in practice.

Design #1 uses a single ALU to do all operations, while #2 uses an adder to
do the adds and an ALU for the subtracts. The output of the ALU is connected
to the input of the adder through a multiplexer, so that no storage of
intermediate values is necessary here. #3 1is similar, except that the
operators are not chained, and so intermediate storage is necessary. In
design #4, the adder does both adds, while the subtracts are done by a
subtracter and the ALU. Design #6 contains two adders and two subtracters,
which perform the two adds and subtracts. 1In all designs, the outputs are
stored in registers. The RT synthesis program assumed that the inputs were
available for 100 nanoseconds. This time had to be lengthened due to the
implementation technology. Finally, the RT designs assumed 16 bit data

widths, but this was reduced to 4 bits for the layout of each design.

Each of the designs was manually implemented by replacing each RT element
with a set of standard cells and a specification of their interconnections.
Multiplexers were implemented with transmission gates. The ALU is essentially
an add/subtract unit constructed in the same manner as the adder and
subtracter, and therefore had virtually the same performance but used slightly
more area than the adder and subtracter. (Logic functions, unused in this
design, were omitted from the ALU, changing its characteristics from the ALU

data available to the RT synthesis program).

Signals were buffered as necessary, and all implementations used the same
pad cells. The choice of cells to implement each register or functional unit
was uniform across the designs in order to isolate the effects of the RT

tradeoffs from implementation tradeoffs.

The designs were then placed and routed using the MP2D program run on a VAX

11/780. 1/0 pads were allowed to be placed uniformly around the periphery but



there were no other constraints placed on their location. Furthermore, no
initial placement information was provided for any of the internal cells, and
no critical timing paths were specified to the program. This was done to

avoid biasing the implementations in any way.

4. Results

The results of the experiment can be divided into the area consumption of
each design, and the critical path delay. Because the placement and routing
package supplies detailed area statistics, the area used for each RT element,
for routing, for 1/0 pads and unused area can be tabularized directly from the

program outputs.

Table 1 shows the area statistics. The internal overhead refers to
buffering of signals. The wiring category includes all routing of signals,
including feedthroughs, and power and ground routed to the cell rows. The
subtotals for each design represent all area which could be accounted for,

except for the scribe line.

Some trends in the data are immediately obvious. The operator area
increases from design #1 to #6, except for a minor dip at #3, and the wiring
area follows the same trend. Total used area, total chip area and unused area
all increase in the same way. An interesting category is the multiplexer
area, which varies randomly over the designs. This is an interesting result,

since multiplexing is not even considered in the RT level cost analysis.

Performance results are given in Tables 2 and 3. Table 2 shows operator
delays across the five designs. The uniformity of the delays should be noted.
Table 3 gives critical path delays for the five designs. The first entry is
the delay predicted by the RT synthesis program. The second entry is the
critical path delay for each design if fixed gate delays are considered. No

allowance is made here for variable delays due to capacitance of loads. The



third entry is the path delay with capacitive loading considered. This was
computed for each gate in the critical path by using the total capacitance
values supplied by the placement and routing software for each signal output,
along with the delay per picofarad for each gate and its associated
propagation delay. Due to the variable nature of the loads as a function of
fanout and path lengths, multiple potential critical paths had to be examined
to locate the worst case delays for each design. The fourth entry 1is the
number of operations in the critical path, as predicted by the RT synthesis
software. The fifth entry shows the actual number of operations in the
critical path when the critical paths in the layouts were examined. The sixth
and final entry shows the number of register stores in the critical paths.
The mumber of operations in the critical paths varied from that predicted at
the RT level because the optimistic timing assumption referred to earlier
allowed the RT amalysis to consider much greater overlapping of functional
units than that actually possible in the implementation. Partially offsetting
this difference is the fact that designs #4 and #6 have operator-operator
connections. This configuration gives a critical path delay through both
operators which is less than the sum of the delay through each, since the
second operator can begin as soon as the lowest order bits feeding it have
been produced. Thus operator overlap occurs, but the reasoning behind it is

different from that at the RT level.

5. Analysis

This section touches on the relationship between performance and silicon
area, and factors affecting each. In addition, we discuss the relationship of
these results to predictions made by the RT synthesis software. Finally,
reasons for the discrepancies between the predictions and the measured data

are enumerated.

Figure 3 shows the relationship between area and performance for the 5

designs. With the exception of design #3, we see a clear inverse relationship



between area and performance. Design #3 performed better than the area
figures would have predicted. We see that the sharing of the ALU in design #1
produces the smallest design, and the slowest, since there is no parallelism.
Adding a second operator in design #2 allows some parallelism. Delay
decreases about as fast as total area increases here. Note that a
rearrangement of interconnections (and the substitution of a subtracter for
the ALU, which does not significantly change the statistics) to allow more
parallelism decreases delay another 25% without increasing area consumption.
Design #4 adds a third operator to speed up the operation but, due to the data
precedence relationships, this operator has no effect. 1In fact, the adder
cannot start its second operation until the ALU is finished with its subtract,
and so the net effect is that of somewhat more than two operations in series.
In fact, the delay would look very similar to design #2 except for the fact
that the ALU can start as soon as the least significant result bits from the
adder and subtracter are available, overlapping operation significantly. The
sixth implementation shows about 157 increase in total area over #4 and 33%
over design #3, but the performance gain is about 33%. This is due entirely
to the fact that the chaining of operations now allows parallelism to exist on
the bit 1level, so that the first and second adds and subtracts overlap
significantly. In fact, due to data precedence relationships, the designs go
from serial (#1) to parallel (#3), and the only further performance gains are

due to bit-level parallelism.

The analysis shows that the operators affect area and delay far more than
the registers or the multiplexers. Moreover, design #3 1is heavily
multiplexed, but 1is a non-inferior design. Due to the CMOS technology
implementation of multiplexers, performance did not degrade and cost did not

increase with increases in switching as was expected.

Buffer overhead seems to be a relatively constant area factor, and 1/0 pad

area is constant. Wiring area is proportional to functional area, and to



total area. Unused(unuseable?) area increases as used area increases.

Figure 3 also shows the (normalized) cost—speed curve produced by the RT
predicter. While the two curves are very similar, the reasons for their shape
are different. First of all, the optimistic timing assumption the RT software
uses allows operator overlap to a greater extent than is realizable. Thus,

design #2 and design #4 appear slightly faster than they actually are.

The implementation of 4 bit data paths instead of 16 bits has exaggerated
the effect of interconnection delays and minimized the effects of carry
propagation through the operators. Thus, fanout delays and path length delays
which show up with some significance in design #6 might be less significant in

the full 16 bit implementation.

Finally, the data the RT predicter used had proportionately higher storage
delays, which made design #3 look slower than it really was, due to the two
stores in the critical path. The RT predicter also had ALU data which

indicated a cheaper, slower ALU than the one implemented.

Figure 4 shows the variation in the ratio of functional area to wiring area
as functional area increases. Wiring consumes a larger portion of used area
as functional area increases. Figure 5 shows normalized CPU times to place

and route the five designs as a function of total chip area.

6. Conclusions

Because the entire experiment is based on CMOS standard cells, all of the
conclusions given here are predicated on the use of these cells, and the
associated placement and routing software. Any other layout methodology could

not be predicted to manifest the RT tradeoffs in the same manmer.

From the results shown, we can see that there is a tradeoff between area

and delay. As the amount of parallelism increases, the area also increases.



However, there is a point where adding more hardware increases performance
only because parallelism on the bit level can then be realized. This tradeoff
could be considered to be as much an implementation tradeoff as an RT

tradeoff.

The effects of routing and switching on total area appear to be well-
behaved. We can hypothesize here that routing area can be predicted to
increase as functional area increases, and at a slightly faster rate. We can
also hypothesize that switching area can be considered to be a second-order

effect.

The timing model used by the RT predicter, with the exception of the
assumption about early removal of inputs, proved to be a reasonable predicter
of delay. Fanout and path delays in design #6 became significant, however,

and in VLSI designs would not be able to be ignored.
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Criss.Cross :=
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P

’ Crisscross #1 #2 #3 #4 #6
Registers 665.3 443.5 443.5 443,5 443.5
Operators 987.8 1854.6 1733.6 2721.4 3467.2

Muxes 625.0 443.5 675.4 221.8 0.0

Internal
Overhead 403.2 524.1 524.1 524.1 806.4

Input/
Output 2232.0 2232.0 2232.0 2232.0 2232.0
Wiring 2486.7 3304.1 3175.2 3985.0 5047.5

Sub Total | 7400.0 8801.8 8783.0 10126.0 11996.6
Unused * 2188.0 2683.2 2657.0 3074.2 4867.4

Total 10593.0 12584.0 12535.0 14375.0 16864.0

* does not include area for scribe line

Table 1 : Area statistics for the 5 designs
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Crisscross #1 #2 #3 #4 #6

Hafer's RT
Design 562 308 265 240 220

CHOS
Design 200 144 112 144 100
(no loads)

CcHoSs
Design 410.7 313.2 225.7 261.4 165.3
(gate loads
&parasitic)

Ops in CP
for Hafer's
RT Design 4 3 2 2 2

Effective
number of
ops in CP 4 3 2 2.3 1.3

Storage
elements .
in CP 2 1 2 1 1

Table 2 : Critical path analysis (delays in nanoseconds)

Crisscross #1 #2 #3 #4 t#6

£5(ALU)

Muxes off
Subtract 82.2 80.3

£5(ALU)

Muxes off
Add 82.2

£f1(ADD) 83.5 89.5

f3(Subtract) 79.8 89.0

Table 3 : Delays for operators in the critical paths
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1. Abstract

This paper describes an experiment to determine how register-transfer
tradeoffs affect the resultant silicon area and performance of layouts. Six
register-transfer level designs, each performing the same function with
different register transfer level structure, were implemented using a library
of CM0S/S0S standard cells, and an automatic placement and routing program.
The consumption of area and the critical path timing were calculated for each
design. The results show that register—- transfer design variations do produce
changes in area and performance at the layout level. However, optimistic
timing analysis at the RT level, variations in relative storage timing across
technologies, and omission of fanout and path length delays altered the

resultant area and timing from that predicted at the RT level.

2. Introduction

One of the major differences between designing digital circuits with
discrete components and designing an integrated circuit layout 1is the
difficulty of predicting the impact of each design decision at the functional
level on the resultant performance and "cost”(which we will measure in area)
of the final design. While some area estimators exist for regular structures

[Thompson 80], and channel width estimators have been researched ( [Syed 82],
[Donath 81]’, a model of area consumption as a function of design tradeoffs

has not been proposed.

In order to automatically synthesize register—transfer(RT) designs from
higher-level specifications, estimates of area consumption and critical path
timing are needed. Such estimates must take into account routing area, the
effect of signal buffering on area and timing, and the effects of fanout and

of path lengths on performance.

This paper describes an experiment designed to provide data for predicting

area consumption and performance at the register—transfer level. Six



1 All six of the

register—transfer level designs were used in the experiment.
designs represented data paths designed to perform the same function, but the
structure of each design varied. The RT designs were synthesized
automatically ( [Hafer 83], [Hafer 81]), and estimates of “cost” and

performance were done by the synthesis program.

Each of the RT designs was manually implemented using a library of CMOS/SO0S
standard cells, and then automatically placed and routed. Area consumption
and critical path timing were then computed and compared to the RT level

estimates.

The experiment is described in Section 3 and the results are discussed in
Section 4. Section 5 gives an analysis of the data, and conclusions are drawn

in Section 6.

3. The Experiment

There are virtually an infinite number of register—-transfer structures
which can be chosen to implement a given function, most of which are inferior
designs. However, some data on register-transfer implementations have already
been produced by Hafer, and six RT implementations of the same function have
been shown tb be non-inferior using Hafer's ‘estimates of cost and speed.
Thus, we chose these six as examples of register-transfer tradeoffs. The
function implemented by these is shown in Figure 1, reproduced from [Hafer

83].

Figure 2 (a) through (e) show five of the six RT implementations. Design
#5 had to be discarded due to the timing assumption used during RT synthesis

which allowed inputs to be changed before an operator had finished computing

lone later had to be discarded due to timing problems which will be
described in section 3.



results based on the inputs. This overly optimistic assumption allowed design

5 to be produced, but it could not be made to function correctly in practice.

Design #1 uses a single ALU to do all operations, while #2 uses an adder to
do the adds and an ALU for the subtracts. The output of the ALU is connected
to the input of. the adder through a multiplexer, so that no storage of
intermediate values is necessary here. #3 is similar, except that the
operators are not chained, and so intermediate storage is necessary. In
design #4, the adder does both adds, while the subtracts are done by a
subtracter and the ALU. Design #6 contains two adders and two subtracters,
which perform the two adds and subtracts. In all designs, the outputs are
stored in registers. The RT synthesis program assumed that the inputs were
available for 100 nanoseconds. This time had to be lengthened due to the
implementation technology. Finally, the RT designs assumed 16 bit data

widths, but this was reduced to 4 bits for the layout of each design.

Fach of the designs was manually implemented by replacing each RT element
with a set of standard cells and a specification of their interconnections.
Multiplexers were implemented with transmission gates. The ALU is essentially
an add/subtract unit constructed in the same manner as the adder and
subtracter, and therefore had virtually the same performance but used slightly
more area than the adder and subtracter. (Logic functions, unused in this
design, were omitted from the ALU, changing its characteristics from the ALU

data available to the RT synthesis program).

Signals were buffered as necessary, and all implementations used the same
pad cells. The choice of cells to implement each register or functional unit
was uniform across the designs in order to isolate the effects of the RT

tradeoffs from implementation tradeoffs.

The designs were then placed and routed using the MP2D program run on a VAX

11/780. 1I/0 pads were allowed to be placed uniformly around the periphery but



there were no other constraints placed on their location. Furthermore, no
initial placement information was provided for any of the internal cells, and
no critical timing paths were specified to the program. This was dome to

avoid biasing the implementations in any way.

4. Results

The results of the experiment can be divided into the area consumption of
each design, and the critical path delay. Because the placement and routing
package supplies detailed area statistics, the area used for each RT element,
for routing, for I/0 pads and unused area can be tabularized directly from the

program outputs.

Table 1 shows the area statistics. The internal overhead refers to
"buffering of signals. The wiring category includes all routing of signals,
including feedthroughs, and power and ground routed to the cell rows. The
subtotals for each design represent all area which could be accounted for,

except for the scribe line.

Some trends in the data are immediately obvious. The operator area
increases from design #1 to #6, except for a minor dip at #3, and the wiring
area follows the same trend. Total used area, total chip‘area and unused area
all increase in the same way. An interesting category is the multiplexer
area, which varies randomly over the designs. This is an interesting result,

since multiplexing is not even considered in the RT level cost analysis.

Performance results are given in Tables 2 and 3. Table 2 shows operator
delays across the five designs. The uniformity of the delays should be noted.
Table 3 gives critical path delays for the five designs. The first entry is
the delay predicted by the RT synthesis program. The second entry is the
critical path delay for each design if fixed gate delays are considered. No

allowance is made here for variable delays due to capacitance of loads. The



third entry is the path delay with capacitive loading considered. This was
computed for each gate in the critical path by using the total capacitance
values supplied by the placement and routing software for each signal output,
along with the delay per picofarad for each gate and its associated
propagation delay. Due to the variable nature of the loads as a function of
fanout and path lengths, multiple potential critical paths had to be examined
to locate the worst case delays for each design. The fourth entry is the
number of operations in the critical path, as predicted by the RT synthesis
software. The fifth entry shows the actual number of operatioﬁs in the
critical path when the critical paths in the layouts were examined. The sixth
and final entry shows the number of register stores in the critical paths.
The number of operations in the critical paths varied from that predicted at
the RT level because the optimistic timing assumption referred to earlier
allowed the RT analysis to considef much gfeater overlapping of functional
units than that éctually possible in the implementation. Partially offsetting
this difference is the fact that designs #4 and #6 have operator-operator
connections, This configuration gives a critical path delay through both
operators which is less than the sum of the delay through each, since the
second operator can begin as soon as the lowest order bits feeding it have
been produced. Thus operator overlap occurs, but the reasoning behind it is

different froﬁ that at the RT level.

5. Analysis

This section touches on the relationship between performance and silicon
area, and factors affecting each. 1In addition, we discuss the relationship of
these results to predictions made by the RT synthesis software. Finally,
reasons for the discrepancies between the predictions and the measured data

are enumerated.

Figure 3 shows the relationship between area and performance for the 5

designs. With the exception of design #3, we see a clear inverse relationship



