An Extensible Object-Oriented Approach
to Databases for VLSI/CAD

Technical Report CRI-85-09
October 7, 1985

(DISC/85-3 - April 23, 1985)

Hamideh Afsarmanesh David Knapp
Dennis McLeod Alice Parker
Department of Computer Science Department of Electrical Engineering
University of Southern California University of Southern California

Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, California 90089-0871

23 April 1985

This research was supported by the National Scienc
the Joint Services Electronics Program throu

Research under contract # F49620-81-C-0070.

e Foundation, #ECS 83[0774, and
gh the Air Force Office of Scientific

Abstract

This paper describes an approach to the specification and modeling of information
associated with the design and evolution of VLSI components. The approach is
characterized by‘ combined structural and behavioral descriptions of a component.
Database modelling requirements specific to the VLSI design domain are considered and
techniques to address them are described. An extensible object-oriented information
management framework, the 3DIS (3 Dimensional Information Space), is presented. The
framework has been adapted to capture the underlying semantics of the application
environment by the addition of new abstraction primitives. An.experimental prqtotyp’e

" implementation of the database and its browsing-oriented interface is described.

3 73

Table of Contents
1. Introduction
1.1. The VLSI Circuit Design Domain
1.2. ADAM: Advanced Design AutoMation
1.2.1. The ADAM VLSI Application Domain
1.3. Information Management ‘Requirements of V'LSI Design
Environments
2. Conceptual Data Modeling for VLSI/CAD
2.1. Record-Oriented Database Models
2.2. Semantic Database Models
2.2.1. Object-Oriented Database Models
2.3. A Brief Summary of the 3DIS Data Model
3. A Conceptual Schema for Modeling Digital Circuits
3.1. The Component
3.2. Models of a Component
3.2.1. Hierarchy within the Subspaces
3.2.2. Models and Links
3.2.3. Relationships across Subspaces
3. 3 The Target, the Specification, and the lerary
4. An Example
4.1. The Component Schema
4.1.1. Models and Subspaces
4.2. The Dataflow Subspace and Dataflow Models
4.2.1. Dataflow Links
4.3. Bindings
5. Conclusions
5.1. Acknowledgements
I. Appendix A: Generalization Hierarchies for Four Subspaces
I.1. Notes

Figure 2-1:

Figure 2-2:
Figure 4-1:
Figure 4-2:

Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure I-1:
Figure I-2:
Figure I-3:
Figure I-4:
Figure I-5:

il

List of Figures
Perspective view of a part of information in a 3DIS
database
Right view of H42padder-Dataflow
Two-bit adder example
The generalization hierarchy of Components and
Bindings
A Component member and its partial dataflow model
The generalization hierarchy of Dataflow Models
The generalization hierarchy of Dataflow Links
The definition and connections of the Value ‘X'
The generalization hierarchy of Models
The generalization hierarchy of Single-Models
The generalization hierarchy of Links
The generalization hierarchy of Single-Links
Nets and Pins

13

14
19
21

22
25
27
29
37
38
39
40
41

-3 __3

3

-3

.3

3

1. Introduction

The Very Large Scale Integrated circuit (VLSI) design environment is
characterized by a large volume of data, with diverse modalities and complex
data descriptions [Bushnell 83], [Davis 82], [McFarland 83], [Neétor 82], and
[Knapp 85]. Both data and descriptions of data are dynamic, as is the
underlying collection of design techniques and procedures. Design engineers,
who are not usually database experts, nevertheless become the designers,
manipulators, and evolvers of their databases. A final distinctive property of
VLSI design environments is a requirement to model both the dynamic behavior

of a circuit and its static structure.

While database modeling concepts and tools are useful for managing VLSI
design environments, record-oriented database models are inadequate for
structured and dynamic VLSI design data. Semantic database models offer
concepts and techniques that are better suited to the capture of the underlying

semantics of the VLSI domain.

In this paper, we characterize a class of digital VLSI design ‘environments,
describe a unified system for VLSI design, and present an object-oriented
information framework appropriate to model these environments. The
remainder of this section concerns digital VLSI design application domains and
their specific database modeling requirements. Issues in conceptual data
modeling for VLSI/CAD (Computer Aided Design) are presented in Section 2.
Section 2 briefly describes an extensible object-oriented framework suitable for
modeling VLSI design environments, the 3DIS (3 Dimensional Information
Space), which has been adapted to capture some of the underlying semantics of
circuit structure and behavior. In particular, the 3DIS model has been extended
by the addition of new abstraction brimitives to support recursive definition of

environment entities and concepts. Section 3 describes the modeling of VLSI

circuits in the ADAM (Advanced Design AutoMation) system. An example
3DIS database for the ADAM VLSI design system is presented in Section 4 of
this paper. Finally, Appendix I gives a more detailed view of the database.

1.1. The VLSI Circuit Design Domain

The VLSI circuit design process typically begins with a descriptive high-
level specification of the design, consisting primarily of dataflow and timing
graphs, which together describe the data-transformation and timing behavior of
the desired hardware. Less detailed structural (i.e. schematic) and physical
specifications are given, describing static properties of the target circuit. The
descriptive graphs are hierarchical in that their components can be recursively
decomposed into simpler components. For example, a dataflow node multiply

can be decomposed into simpler shift and add constructs.

Several relationships might be specified among the components of these
graphs; e.g. between specific time intervals and data operations. Also, various
kinds of constraints can be attached to the graphs; for example, the duration of
a time interval can be limited, a schematic wire can be specified to be a
bidirectional bus connection, and the area of a physical bounding box can be
limited. The descriptive graphical representations contain both numeric and

symbolic attributes on their arcs and vertices.

Building a well-defined and complete high-level design specification is
itseff a nontrivial task. The descriptive specification of the design is usually
large and complex. Many kinds of data are involved and it is in a large part
recursively defined. Furthermore, the specification must be checked for
completeness and consistency before the design process actually begins. In
order to do so, VLSI design environments musﬁ support some ‘checking
routines’, e.g. [Carter 79|, [Parker 84a), [Pitchumani 84], that inspect the

specification data without involving irrelevant details.

‘...-j :§l ’_j

3

— 3

3 3 3 _.3% _.23

3

3 3

VLSI circuit design usually involves using a design library. This library
contains components to be used in the construction of new components. It can
also contain designs that are themselves under construction; these may be
subparts of a larger design (e.g. the control unit for a CPU), or they may simply
represent independent projects. Finding the appropriate library component to
use in a given situation may be difficult [Leive 81]. For example, if an adder is
desired, there might be several components named ‘adder’, a few named ‘ALU’,
and a few ‘complex standard’ (i.e. microprocessors). In other situations, the
behavior desired may not match the stated behavior of any component in the
library without some transformation being applied. For example, A
microprocessor is capable of implementing a floating-point multiplication under

software control.

The output of the design system usually includes a set of graphs,
relationships, and constraints similar to those of the descriptive specification,

but with a much more detailed physical description.

1.2. ADAM: Advanced Design AutoMation

The ADAM system [Knapp 83a], [Granacki 85, [Park 85] is intended to
provide a unified system for VLSI design, starting with a functional and timing
specification and proceeding to circuit layout. The ADAM system describes
VLSI circuits by means of four recursively defined and explicitly interrelated
hierarchies. In ADAM, the representational formalisms of the input descriptive
specification, the library components, and the output design are identical. This
in turn facilitates the task of design verification and validation, e.g. testing the

equivalence of specified and implemented dataflow graphs.

1.2.1. The ADAM VLSI Application Domain

ADAM supports several major circuit design activities. These activities
comprise the main part of the process by which the primarily dataflow and
timing descriptive specifications are mapped into the primarily physical output
components [Parker 84b]. An appropriate information modeling environment
for ADAM must support these tasks:

e Algorithm Synthesis: The dataflow graph is transformed and its
operators decomposed if necessary in order to optimize speed, area,
power, and other tradeoffs. For example, an operation may be
specified as a loop traversed a fixed number of times; but speed
requirements may lead to its being expanded into an in-line sequence
in order to perform serial/parallel transformations [McFarland 81].

o Partitioning: Some part of the specification is partitioned so that
the parts can be dealt with separately. For example, the dataflow
graph might be partitioned into primarily control-oriented and data-
oriented parts [Thomas 77). Such operations may involve rebuilding
the representation hierarchies.

¢ Floor Planning: Given partitions and constraints, high-level chip
plans can be constructed that aid in the prediction and optimization
of critical properties [Otten 82]. For example, a section of the
physical chip die might be dedicated to data operations and another
to control functions, before their detailed structure is known. This
creates constraints on both the structure and low-level physical
layout that must be monitored and flagged if they are violated.
Such constraints are not quite the same as semantic integrity
constraints; they may be estimates, guidance, or absolute
constraints, they can be modified and retracted, and they are
generated during design time.

e Data Path and Control Synthesis: The major data paths are
- allocated hardware resources and the order of operations is fixed
[Granacki 82], [Hafer 83|, [Hitchcock 83]. Controllers are specified
and synthesized [Evangelisti 79], [Leiserson 83], [Nagle 82], and
[Park 85). Interconnect between data operators and between data
operators and control hardware is synthesized. Microprograms are
constructed. In each of these steps, information about the reusability

_3

3

3

of operators, their control signals, and their costs in speed and area
are crucial. For example, a floating-point multiplier may have
already been included but a fixed-point multiplier is also needed.
Can the floating-point multiplier be used directly, or must it be
modified? Is it available during the interval when the fixed-point
operation is needed? Are the data buses suitably connected or would
new ones have to be added? These questions can be difficult to
answer if the floating-point multiplier is a library component for
which little is known about internal operations, if it has been built
up from smaller components, which might also shared by other
operations, or if it has been optimized for floating-point arithmetic
only. :

Built-In Test Synthesis: Hardware is added to make the end
product testable [Breuer 85]. This is increasingly important as the
ratio of pin count to chip area decreases and chips become less
controllable and observable. To make it possible to test circuits,
information must be attached to components and designed circuits
describing how they can be tested and with what time and space
penalties Some combinations of circuit types and test methodologies,
support testing without extra hardware; others require expensive test
control and generation hardware, while still others require
replication of units for error detection and correction.

Module Selection: Design library elements are brought in to the
physical and schematic subspaces to implement operators, memories,
and random logic [Leive 81]. As the library elements become more
complex the search for suitable modules becomes more difficult and
the cost/speed/power tradeoffs become more difficult to keep track
of.

Placement and Routing: Modules are allocated physical positions
on the layout, and interconnect wires are mapped out [Soukup 81].
Physical positions of features may not conflict, and design rules
must be observed. The volume of information at this step is
€normous.

Validation and Verification: At any step of the design process,
performance and function may be validated using an appropriate
simulator or formal verification tool [Carter 79), [Parker 84a], and
[Pitchumani 82]. The design, or parts of the design, are shown to

be correct with respect to some part of the specification. For
example, the physical layout may be processed in order to extract an
equivalent circuit, which is compared to the desired circuit in order
to prove logical equivalence.

e Backtracking: Part of the design may be ‘undone’ when it is
discovered not to be adequate or correct. This creates a host of
consistency and concurrency problems. For example, a component
used in a variety of places may not be suitable for one application. A
new version can be constructed, but the new and old versions must
coexist because of the other uses of the component [McLeod 83].

1.3. Information Management Requirements of VLSI Design

Environments

3

-3 _.3

3

This section describes the fundamental characteristics of digital VLSI
design environments. The major goal here is to set forth the distinctive
information management requirements of VLSI/CAD design applications in

terms of the general characteristics of the VLSI design process:

e The design data is introduced and accessed by many kinds of users
including analog simulators, dataflow optimizers, human users, etc.
Thus various representations of design data must coexist.

e The number of application packages is large. A central
representation can be used to minimize difficulties with incompatible
data formats.

o The design data is of large volume, and of various modalities and
complexities, e.g. graphical, symbolic, numerical, textual and
formatted data.

e Structural information (e.g. data-description, data-interrelation, and
data-classification) is complex and of large quantity. Structures must
support programs, documents, messages, constraints, graphs, etc.

e The structure of the stored information changes over the lifetime of
the database. Thus the structural framework must support dynamic
use.

3

-3

3

3

o The end-users, design engineers and CAD application programmers,
are familiar with their application environment, but are not likely to
have expertise in databases or programming. Yet the same end-
users often become the ultimate designers, manipulators,
maintainers, and evolvers of the database.

Since the structural information is large, complex, and dynamic, it must

be as conveniently accessible to end-users as the database information contents.

2. Conceptual Data Modeling for VLSI/CAD

Historically, the reported work in the VLSI database design literature
describes management of design information as collections of raw data in files.
Automated filing systems have no structures to model the semantics of design
environments. Interpretation of the stored design data is completely hidden in
the application programs and the users’ minds. Data manipulation is performed
only by application programs, while the data itself does not express any of the
application semantics. These database systems are costly to maintain and
evolve as the design information is modified in the course of the database life

cycle.

2.1. Record-Oriented Database Models

Record-oriented database models are usually exemplifigd by the
hierarchical, network, and relational data models. Capabilities of these
database models in supporting VLSI/CAD design environments have been
studied both in the literature and in practice. Modeling constructs of these
database models are greatly influenced and limited by the record structure of
physical database organizations [Kent 79], [Hammer 81]. For instance, record
structures are not suitable to model loosely-formatted information such as
documents, graphs, messages, or programs, 'tha,t arise in niany design

application environments.

Hierarchical database models represent data as records that are organized

as nodes of tree-like hierarchies. Network database models also use record .

structures to represent data, but they organize records in a network, using only
one-to-many relationships. The structures defined on the modeling constructs
of the network and hierarchical database models are mainly implementation

dependent and may not capture the semantics of the application.

Relational data models have a well-defined set of structuring primitives
based on the mathematical notion of a relation, where a relation is a set of n-
tuples. Tuples are used to represent many-to-many relationships among data.
Although relational data models perform much better in modeling design
environments than hierarchical and network models, they still lack the semantic

expressiveness required to model complex and evolving design data [Kent 79).

Furthermore, these data models provide limited guidance to users.
Design, maintenance, and use of record-oriented databases require high level
database expertise. These models are not suitable for non-database-expert VLSI
designers who intend to build, use, and maintain their own databases.
Examples of VLSI/CAD design databases that have used record-oriented
database models include [Wong 79], [Eastman 80}, and [Stonebraker 82].

2.2. Semantic Database Models

Recently, the suitability of semantic database models as tools to help in
the construction and use of design databases has begun to be examined [Katz
82], [McLeod 83], [Batory 84], and [Dittrich 85]. Semantic database models
have succeeded in expanding data modeling beyond the capabilities of record-
oriented data models. They provide a rich set of semantically expressive
constructs and mechanisms that reflect more of the meaning of both data and

its logical structure, and make it easier for users to understand and use

_3 3

—3 3

—3

3

databases [Afsarmanesh 84]. The high level semantic structure of the design
data is modeled by several fundamental abstraction primitives that organize
and interrelate the modeling constructs of databases. Specific modeling
concepts are introduced in some semantic database models to capture the

database dynamics.

2.2.1. Object-Oriented Database Models ‘

Some semantic database models are object-oriented in the sense that the
modeling constructs and the construct manipulators of these models are defined
as objects. Objects correspond to the concepts, entities, and activities of
application environments ‘naturally’. A more recent feature in object-oriented
database models, incorporated in the 3DIS data model, is the uniform view and
treatment of the structural and non-structural (data) database contents that

simplify database manipulation and modification tasks.

2.3. A Brief Summary of the 3DIS Data Model

The 3 Dimensional Information Space (3DIS) [Afsarmanesh 85a] is a
simple but gxtensible information management framework. This data model is
mainly intended for applications that have dynamic and complex structures,
and whose designers, manipulators, and evolvers are non-database-experts. As a
step towards addressing the modeling needs of such application environments,
the 3DIS unifies the view and treatment of all kinds of information including

the description and classification of data (meta-data).

3DIS databases are collections of interrelated objects, where an object
represents any identifiable piece of information, of arbitrary kind and level of
abstraction. For example, a component H42padder, an attribute
Designer-Names, a string of characters Low-Order;Bit, a structural

component (meta-data) nOEM-Component, and a procedure

10

Insert-an-OEM-Component are all modeled uniformly as objects in a
homogeneous framework. Therefore, what distinguishes different kinds of
objects is not how they are modeled, but rather the set of structural and non-

structural (data) relationships defined on them.

Each object has a globally unique object-id that is an identifier either
defined by users, or generated by the system. An object can also have several
user-specified surrogate object-names which also uniquely identify it. Objects
may be referred to via their unique identifier-names, object-names, or via their

relationships with other objects.

The 3DIS model supports atomic, composite, and type objects:

e Atomic objects serve as the symbolic identifiers for atomic
constants in databases. These objects carry their own information
content in their object-ids. Therefore the object-ids of atomic
objects are to be specified by users. Atomic objects cannot be
decomposed into other objects. The contents of atomic objects are
uninterpreted by 3DIS databases, in the sense that they are either
displayable or executable without any further interpretation of their
information content. Strings of characters, numbers, Booleans, text,
audio, and video objects, as well as behavioral (procedural) objects,
are examples of atomic objects. Text objects represent long
character strings, while audio and video objects represent digitized
images and voices. Behavioral objects represent the routines that
embody database activities, modeling an object that is executable.
Behavioral objects accomplish modeling of data definition,
manipulation, and retrieval primitives, e.g.

" Insert-an-OEM-Component.

e Composite objects describe (non-atomic) entities and concepts of
application environments. The information content of these objects
can be interpreted meaningfully by the 3DIS database through
decomposition into further objects. Mapping objects are a kind of
composite objects. Each may be decomposed into a domain type
object, a range type object, an inverse mapping object, and the
minimum and maximum number of the values it may return.
Mappings represent both the descriptive characteristics of an object,

-3 __3

.3

—3 —3 —3 T3 T3 T3 73

11

e.g. Model-Name, and the associations defined among objects, e.g.
Has-Model-Constituents. Mappings model both single and multi-
valued relationships. An example composite object is a node
FAL1.Df, where FAL1.Df in Figure 4-3 is the symbolic name
(colloquially, logical reference name) of an object. These objects are
not displayable, except in terms of their relationships with atomic
objects. For example, FALlDf's Intended-Function is
Low-Order-Bit, FA1.Df’s Structural-Dimension is 1, etc. If a
composite object is related to certain other composite objects then it
may be displayed recursively in terms of the atomic objects related
to those composite objects.

e Type objects contain the descriptive and classification information
of a database. Every type object is a structural specification of a
group of atomic or composite objects. It denotes a collection of
database objects, called its members, together with the shared
common information about these members. A type object can be a
subtype of another type object (supertype). Subtypes inherit all of
their supertypes’ properties. A type object can be the subtype of
more than one type object. Therefore, the subtype/supertype
relationships among type objects can be represented by a directed
acyclic graph (DAG). Examples of type objects .are
In-House-Component and Dataflow-Model. '

Basic relationships among objects are defined through the three
fundamental abstraction mechanisms of classification, aggregation, and

generalization:

o Classification represents member/type relationships by relating an
atomic/non-atomic object, e.g. H42padder, to its generic type
object(s), e.g. In-House-Component.

e Aggregation represents member-mapping/type relationships by
relating a type object, e.g. In-House-Component, to the mappings
that define its members, e.g. Designer-Names,
Realization-Bindings, etc.

o Generalization represents subtype/supertype relationships by
relating a type object, e.g. In-House-Component, to a more
general type object, e.g. Component.

12

The 3DIS model has also been extended to accommodate other kinds of
abstractions that are useful in VLSI design applications. For example,
abstraction primitives to support the definition of recursively defined entities

and concepts such as sets, lists, and binary trees are included in the model. In

particular, for the ADAM design database, the 3DIS supports the recursive

definition of VLSI cells, as will be described in the next section.

An integral part of the 3DIS model is its simple and multi-purpose
geometric representation. This geometric framework graphically organizes both
structural and non-structural database information. in a 3-D representation
space. It reflects a mathematically founded definition for 3DIS modeling
constructs in terms of the geometric components that represent them. The
three axes in the space represent the domain (D), the mapping (M), and the
range (R) axes. Relationships among objects are modeled by (domain-object,
mapping-object, range-object) triples that represent specific points in the

geometric space.

Figure 2-1 illustrates a perspective view of the geometric representation of
the 3DIS database example of Section 4. In this figure, FA-1 and FA-2 are
members of the type object Single-Node, while they are also the
Model-Constituents of H42padder-Dataflow. Figure 2-2 illustrates the
right view of the simplified geometric representation for the
H42padder-Dataflow. The figures have been simplified to represent only a

part of the information in the database.

Several geometric components such as points, lines, and planes
encapsulate database information at several levels of abstraction, which has an
advantage of enhancing the readability of the display. For instance, in Figure

2-1, the vertical line emanating from the object H42padder-Dataflow

_ 3

_.3

3

3

13
AM
Has-Member
Has-Model-Constituents
Is-Dataflow-Mpdel-Of
D
*ShgeNode =
H42padder
FA-1 '
H42padder-Dataflow

R FA-2

Figure 2-1: Perspective view of a part of information in a 3DIS database

corresponds to all mappihgs defined on that object. Similarly, an orthogonal
plane passing through the same object, which is also represented as the right
view in Figure 2-2, contains the information about all objects directly related to
H42padder-Dataflow. The variety and level of information encapsulation
supported by the geometric representation is a unique feature of the 3DIS data

model.

The geometric representation also provides an appropriate foundation for
information browsing and serves as an environment for a simple graphics-based
user interface. Da;tabase browsing is supported by a ‘display window’ to the
geometric framework, through which users may focus on and investigate an
object or an ‘information neighborhood’ of their interest. A further description

of the 3DIS user interface is given in [Afsarmanesh 85b).

14
AM
@ 9 Tl Has-Model-Constituents
Is-Dataflow-Model-Of
R l ¢ —
FA-2 FA-1 H42padder H42padder-Dataflow

Figure 2-2: Right view of H42padder-Dataflow

3. A Conceptual Schema for Modeling Digital Circuits

The digital circuit design process can be regarded as a search of a
multidimensional ‘design space’ [Director 81] for a particular solution that meets
constraints on functionality, timing, power, cost, and so on. The entire design
space can be broken down into subspaces which are near-orthogonal in the sense
that decisions taken in one subspace affect decisions taken in another subspace
weakly across some region of interest. For example, a single functional
specification can be mapped into several different implementations with varying

speeds, power dissipations, and costs.

The conceptual model described below is based on four subspaces chosen
. for their near-orthogonality. These subspaces are each hierarchies in their own
right. For example, one of the subspaces is used to represent schematic

(structural) information; this subspace is a hierarchy with block diagrams at the

.3 _3 .31 3

3 __3

.3

3

-3

S

—3

3

15

.top, registers and ALUs at the middle, gates a little lower, and transistors at the

bottom. Design entities are described in terms of these subspaces and a set of

relations across them.

3.1. The Component

The fundamental structure of the ADAM conceptual schema is the
component. A component can represent either a specification, a design in

progress, or a member of the design library.

A specification is represented as an incomplete component; that is, it
contains information about the target design represented in the same way as the
completed design. The information that is present in the specification usually
represents the operations the target must perform and the constraints it must

meet.

A design in progress is an incomplete component. As the design process
progresses, it should gradually become more and more complete, until finally it
can be manufactured. In the initial stages of design, the target compdnent
contains primarily dataflow and timing information; in the later stages it will
contain more schematic information, and finally most of the information will be
physical layout. The original dataflow, timing, and schematic information are

preserved for documentation and verification/validation purposes.

The design library is used to store both procured components (OEM
components) and ‘In-house’ components. An in-house component may be either

complete or incomplete, while incomplete OEM-components are not allowed.

16

3.2. Models of a Component

A component is described in terms of four models and a set of
relationships (bindings) across the constituents of the models. The models
correspond to the four subspaces of the design space. Each model represents the
component in a different way. For a given design task, any or all of the models

may have to be referenced. The models are:

1. The dataflow model. This model describes the data transformation
operations performed by the component. Its primitives are nodes
and values. Nodes represent data transformations; values represent
data passed between nodes.

2. The timing and sequencing model. This model describes time-domain
and branching behavior of the component. Its primitives are ranges
and points. A range represents a time interval during which an
operation can take place; points represent infinitesimal ‘events’,
which are partially ordered because the ranges have signs as well as
durations.

3. The structural model. This describes the schematic diagram of the
component. Its primitives are modules and carriers. A module
represents a schematic block, gate, transistor etc.; a carrier
represents a schematic wire.

4. The physical model. This describes the layout, position, size,
packaging and power dissipation of the component. The primitive
elements are blocks and nets, which represent layout cells and
interconnect respectively.

For example, the OEM-component ‘74181’, which is a 4-bit TTL ALU slice, has
a dataflow model with add, subtract, AND, and OR nodes, which represent its
data transformations; it has a timing-and-sequencing model that describes its
propagation delays for various combinations of inputs; it has a schematic

diagram that either consists of a box with connection points or a gate diagram,;

and it has a physical description that signifies its being packaged in a 14-pin

DIP.

-3 __3

.3

3

~3 _3 3 _.3

17

3.2.1. Hierarchy within the Subspaces

The four models are each hierarchically structured. For example, a
dataflow node is either primitive or it is defined recursively in terms of other
nodes and values. Similarly, a value is either primitive or defined recursively in
terms of other values. Similar recursive definitions are used in all four

hierarchies.

3.2.2. Models and Links

The generic name Model is used for nodes, ranges, modules, and blocks.
The dataflow model of a component is therefore a Node, which can be
recursively decomposed as described above. The generic name Link is used for
values, points, carriers, and nets. These too can be decomposed, with the
exception of points, which represent atomic events of infinitesimal duration and

enumerated kind.

3.2.3. Relationships across Subspaces
All relationships between models and links of different subspaces are
explicitly represented by means of bindings. These bindings express the
interrelationships between the constituents of the four subspaces. There are two
basic types of bindings:
1. Operation bindings, which relate dataflow elements to structural

elements and time ranges.

2. Realization bindings, which relate structural elements to physical
elements.

For example, an operation binding is used to express the relationship between
an operation (dataflow), the ALU in which it is performed (structure), and the

time interval during which it happens, while a realization binding is used to

represent the correspondence between a particular layout region and the ALU.

18

3.3. The Target, the Specification, and the Library

The design being constructed is called the target. The target should be
functionally equivalent to the specification; it is composed of primitive
elements and members of the design library. Near the top of the hierarchies,
the dataflow of the target might be syntactically identical to the dataflow of the
specification, but at the low levels this is unlikely. For example, suppose the
specification contains a multiplication node. The definition of multiplication
can be regarded as a series of doublings and conditional additions. But under a
given set of timing, power, and area constraints, the dataflow actually
implemented might be radically different. For reasons like this, the specification
and the target are considered to be two completely different components. The
relationships between constituents of the target and the specification can be

very complex, and their exact description is still under investigation.

Furthermore, there may be substantial differences between the way in
which a library component is used and its actual capabilities. In the target, an
addition might be implemented in a general-purpose ALU. If no other
operations are performed in that ALU, then the only node bound to it in the
context of the target is the addition. But the physical ALU that is present in the
design is capable of far more than that: it can also subtract and perform logical
operations. This ‘unused behavior’ can be found by examining the dataflow and

timing models of the library component that represents the generic ALU.

Various kinds of verification and validation methods can be implemented
uéing the three different representations. For example, the method of inductive
assertion can be used to verify that a multiplication in the specification is really
decomposed properly in the target. Moreover, the unused behavior can be useful
both in determining proper control signals and in verifying that the proper

control signals are used.

.3

3 _ 3

-3

—3 M 3

—3 —3 —3 —3I T3 T3 —I I 3

-

19

4. An Example

A small example, illustrative of the digital circuit design conceptual
schema, will now be discussed. The example is that of a particular component, a
two-bit binary adder, which can be represented as in Figure 4-1. First the
schema of the component will be discussed; then the dataflow model of the
component will be examined in detail. The timing, structural, and physical
models of the component will not be examined in this section. The full
conceptual schema is described in Appendix I. Finally, the way in which

bindings are used to unify the four subspaces will be discussed.

Carry-Out
X1
1]
Yl
Carry
Xjo]
FA- Zjo)
Y(0]
Carry-In’

Figure 4-1: Two-bit adder example

20

4.1. The Component Schema

The subtype/supertype (generalization) hierarchy of component
definitions is shown in Figure 4-2, where boxes represent type objects, the
arrows represent subtype/supertype relationships, and the undirected lines that
come out of the boxes lead to mappings (properties) that describe members of
the types. The type Component has properties that denote its name, four

Models of the component, and two sets of Bindings.

There are two subtypes of Component. The OEM-Component
represents a component supplied by an OEM (Outside Equipment
Manufacturer). As such it is characterized by the name of the manufacturer, the
manufacturer’s designation (Kind), and a list of Suppliers. Other properties,

such as Price, have been omitted in the interest of simplicity.

The other component subtype, In-House-Component, represents a
component that is manufactured in-house. It may not even be a complete
design; that information is captured by the Complete-Bit!. Target designs
and specifications are both examples of incomplete components. A design library
component, on the other hand, could be complete or incomplete as design policy
dictated. By way of contrast, no OEM component is allowed to be incomplete.
The in-house component also has a set of Designer-Names, denoting the
people responsible for its construction, a Process, which identifies a particular
fabrieation process, and a Guru, i.e. someone who knows how to use the

component and is willing to answer questions.

The member of the Component type used for this example is shown in

lP’l'esumably more complex historical information could be attached, eg. a
Verification-History. Such properties have not been considered in this context.

R

3

.2

3 2 __3 _32

:

21
- Component-Name
Operation-Bindings -
dngs - Dataflow-Model
Component - Timing-Model
ization-Bindi - Structural-Model
) - PhysicaFModel
In-House- OEM-
Component Component
[L Guru lL Kind
Process Suppliers
Designer-Names Manufacturer
Complete-Bit
Binding
Operation- Realization-
Binding Binding
[L DLPath [L SuPath
St-Path Ph-Path
Range-Path Kind-of-St-Path
Kind-of-Df-Path Kind-of-Ph-Path
- Kind-of-St-Path

Figure 4-2: The generalization hierarchy of Components and Bindings

In-House-Component ‘H42padder’
Component-Name H42padder
Dataflow-Model ®
Timing-Model ————3> (H42padder.Timing)
Structural-Model @=————3» (H42padder.Structure)
Physical-Model &———3» (H42padder.Physical)
Operation-Bindings | =3 (OB1), ®&—3> (OB?),...]
Realization-Bindings | =3 (RB1), ®—> (RBY),..]
Complete-Bit false
Designer-Names _ ['David’, ‘John’)
Guru ‘Fadi’
Process ‘MOSIS NMOS 2-micron’

Dataflow-Model ‘H42padder-Dataflow’
Model-Name H42padder.Dataflow
Has-Model-Constituents | =3 (FA2.Df), e |
Has-Link-Constituents * [o—>(X), &—>(Y),...] |
Has-Structural-Dimension 2
Function ‘Two Bit Adder’

Single-Node ‘FA1.Df’

Component-Name FAL.DI
'HasKind &———3 (Full-Adder-Data-Flow)
Intended-Function ‘Low Order Bit'

Figure 4-3: A Component member and its partial dataflow model

| i .3 .3 ___3

1

23

Figure 4-3. This Component is an In-House-Component. Its name, a
property inherited from the supertype, is ‘H42padder’. The four Models are
similarly named; Figure 4-3 shows only the ‘H42padder.Dataflow’ Model in
detail, where again some mappings such as Complete-Bit and Designer have
been omitted in the interest of simplicity2. Operation-Bilidings and

Realization-Bindings are also shown schematically as lists of logical

- references to the actual binding objects, which will be discussed in Section 4.3.

The other properties of ‘H42padder’ are self-explanatory. The dataflow graph
of ‘H42padder’ is given in Figure 4-1.

4.1.1. Models and Subspaces
Each of the four models of the component represents a different aspect of
the component. The models can be thought of as projections of the component |
onto four design subspaces; hence the Dataflow-Model of a component is its
projection onto the dataflow subspace. In this example, we will examine only

the dataflow subspace.

The reason that only the dataflow model need be considered in detail is
that the other mbdels are syntactically much the same as the dataflow model.
The differences mostly consist of the addition and deletion of minor attributes
as the underlying phenomena being modeled dictate. For example, the
structural counterpart of a dataflow value is the carrier. Naturally the carrier
attribute driver, which describes hardware implementation attributes like
tri-state, open-drain and so on, has no counterpart in the dataflow model,

which is used to represent abstract functions. Many such slight differences exist

but are not discussed in the body of the paper. The interested reader is referred

to the Appendix and to [Knapp 83b) and [Knapp 85].

2In all of the fbllowing figures, the use of parentheses () denote objects whose details have
been omitted in the interest of simplicity. Square brackets | | represent list delimiters.

24

4.2. The Dataflow Subspace and Dataﬂow Models-

The schema for Dataﬂow-Models is shown in Figure 4-4. Objects of
type Model each have a name, a Complete-Bit similar to that of
Components, and a Designer. There are four subtypes of Model, one for
each subspace. Shown in Figure 4-4 is only one, Dataflow-Model, also called
Node for short. The other three subtypes of Model are Structural-Model,
Timing-Model, and Physical-Model. Their generalization hierarchies are

shown in Figures I-1 and I-2 of the Appendix.

Dataflow-Model has the following properties:

e Function: this property indicates the overall function performed by
the Node. For example, in Figure 4-3 the function of ‘H42padder-
Dataflow’ is that of ‘T'wo Bit Adder’.

e Dimension: this property indicates the bit width of the Node.

e Has-Link-Constituents: this property tells what links (in this
case, i.e. for dataflow models, links are Values) are contained within
the model.

¢ Has-Model-Constituents: this property tells what models
(Nodes) are contained within the model.

The model and link constituents of a model together express the
application domain semantics of that model, thereby supporting its recursive
definition. In the example of Figure 4-3, which corresponds to the two-bit adder
dataflow graph of Figure 4-1, the link-constituents a;re the input, output and
carry Values; and the model-constituents are the Nodes ‘FA-1' and ‘FA-2'.

The constituents of a model are represented as lists of logical references.

The objects that are logically referred to in Has-Model-Constituents
are of type Node-Component, which also designates that they are either of

_3 __13 3 3

|

.3 __3

— 3

F 25
[”"‘ Model-Name
r Component-Name Complete-Bit
Component-Position Designer
[r (for display purposes) [r
|'”“ Single-
g Model-
Model
r. Component ¢
A - A
Fﬂ Node-
rﬂ Component
rm . Dataflow-
Single-
- Nil Model
r,,. Node . (Node)
™ L Intended-Function l— Function
F - Has-Kind
Has-Link-Constituents
— Has-Model-Constituents
L Has-Structural-Dimension..

Figure 4-4: The generalization hierarchy of Dataflow Models

26

type Single-Node or Nil. If the reference is to Nil, then the constituent is not
further defined, i.e. the Node is either a primitive or its definition does not
exist at present. In either case the recursive definition of the model ends at this
point. If the reference is to a Single-Node, as is the case in the example, the
recursive definition of the model continues through it. In the example, the
Single-Nodes are called ‘FA-1' and ‘FA-2'. ‘FA-1' has the Intended-Function
‘Low Order Bit’; presumably ‘FA-2’ is the high order bit of the adder. Both
‘FA-I’ and ‘FA-2’ could have the value ‘Full-Adder-Data-Flow’ in their

Has-Kind properties; that means they are both one-bit full adder nodes.

But the Has-Kind property means more than that. ‘Full-Adder-Data-
Flow’ is itself a Node, and is represented by a Dataflow-Model; hence it is
further defined in terms of its model and link constituents. This is the recursion

abstraction at work: Models are defined in terms of other Models.

4.2.1. Dataflow Links

Figure 4-5 shows the type-subtype hierarchy of Links for the dataflow
subspace. Links are a little more complicated than Models, because they bear
the burden of representing connections between Models. The type-subtype
hierarchies of Links in all four subspaces are shown in Figures I-3 and I-4 of

Appendix

A Dataflow Link is called a Value. A Value has a Name, such as
‘Carry’, which is inherited from the supertype Link. It also inherits a
Complete-Bit and a Designer, with meanings similar to those of the

Component’s corresponding properties.

The reason a Value should have an explicitly mentioned Designer is that

a Value is potentially a structured entity, for example a complex floating-point

3 3 3

3

3 3 3 3

27

Link-Name
Complete-Bit
r Designer
Single Link- - Component-Name
Component [~ Component-Position Link
(for display purposes)
A A
Value-
Component
) Has-Kind

Single-)

Element Nil Value
L HasStructural-

Dimension

Has-Sublink-
Constituents

Single- Role

Value - X Sub-Value

r— Sub-Value-Path ~ Sub-Value-Path
DF-Net - Visibility-Bit DF-Pin

DF-Connections

- Single-Node

Figure 4-5: The generalization hierarchy of Dataflow Links

28

number. If the Value is a simple array, then the Has-Structural-Dimension
property tells the dimension of the array. If the Value is structured, then its
Has-Sublink-Constituents property " defines the structure.
Sublink-Constituents are of type Value-Component, which also indicates
that they are either of type Nil, or if they are of type Single-Element it
signifies that they are again either of type Single-Value or Sub-Value (Figure
4-5).

For example, a floating-point number ‘Flonum’ is a structured value
consisting of "two fields ‘Mantissa’ and ‘Exponent’. These are Sub-Values,
which have Has-Kind properties of their own. The Has-Kind property of
‘Mantissa’ might refer to a Value named ‘Long-Signed-Integer’. On the other
hand, the Has-Kind property of ‘Exponent’ might refer to ‘Excess-64-Integer’.

The input ‘X’ of Figure 4-1 is a Single-Value. Figure 4-6 shows X’ in
more detail. The Has-Kind property of ‘X’ points to the Value ‘Two-Bit-
Integer’. The Value ‘Two-Bit-Integer’ has the Structural-Dimension 2.
‘Two-Bit-Integer’ also has Sublink-Constituents consisting of two
Sub-Values, named ‘High-Order-Bit’ and ‘Low-Order-Bit’ respectively. The
Has-Kind properties of these bits have logical references to the primitive
Value ‘Bit’. The Has-Sublink-Constituents of the Value ‘Bit’ is nil, so the

recursive definition of ‘Two-Bit-Integer’ ends at this point.

But ‘X’ represents something more than its constituents. It has a Role
which is ‘second vector input’. Furthermore, it has connections, represented by
a Dataflow-Netlist. The Dataflow-Netlist is a list of logical references to
DF-Nets. In Figure 4-6, the two bits of the ‘Two-Bit-Integer’ X' are

connected separately, only the connections of the ‘Low-Order-Bit’ being shown.

3

29
Single-Value X'
Component-Name X
Has-Kind [
Dataflow-Netlist [*=> (High Order Connection), 4]
Role ‘Second Vector Input’ -
DF-Net (Connections of low-order bit of X)
Sub-Value-Path *X .Low-Order-Bit’
Visibility-Bit true
DF-Connections 2L
DF-Pin (Connection of X to FA-LDf's A input)
Sub-Value-Path (Full-Adder-Data-Flow's ‘A’ Input)
Single-Node > (FA-1.Df)
Value “Two-Bit-Integer
Link-Name Two-Bit-Integer
Has-Sublink-Constituents [= (High Order Bit), «]
HasStructural-Dimension 2 i —
Sub-Value Low-Order-Bit'
Component-Name Low-Order-Bit
Has-Kind
Value ‘Bit’
Link-Name Bit
Has-Sublink-Constituents > (nil)

Figure 4-8: The definition and connections of the Value X",

30

The DF-Net has a Sub-Value-Path. This is a path into the structure of
the value being connected. For example, if the high-order bit of the mantissa of
a complex floating-point number ‘A’ was being connected as an individual, the
path would look like ‘A.Real Mantissa.Bit83'. In Figure 4-6, the path simply
points to the low-order bit of X'.

The DF-Net also has a Visibility-Bit; this determines whether the bit
can be ‘seen’ from outside ‘H42padder-Dataflow’. Since ‘X’ is an input, this bit
is true for all its DF-Nets. Other structured Links may have their visibilities
determined on a field-by-field basis, which is why the visibility information is

attached to the individual connections rather than to the Single-Link itself.

DF-Connections are used to describe connections in the dataflow
subspace. The DF-Connections of a DF-Net are references to DF-Pins. A
DF-Pin refers to a Single-Node, e.g. ‘FA-1.Df", and a Sub-Value-Path,
which represents a connection point on that Single-Node. In the example of
Figure 4-6, the Sub-Value-Path of the ‘X’ connection point is a path to the
‘A’ input bit of the ‘Full-Adder-Data-Flow' model, which is given in parentheses
in Figure 4-6 (recall that ‘Full-Adder-Data-Flow’ is the Has-Kind property of
‘FA-1.Df").

Using both the Sub-Value-Path of a link, as expressed in the DF-Net,
and the Sub-Value-Path of a Single-Node connection point, as expressed in

the DF-Pin, very general kinds of connections can be constructed.

For example, using both paths in their full generality would allow us to
make arbitrary permutations of structured array values at connection points. If
a twobit Value ‘P’ was to ' be connected to the ‘X’ input of
‘H42padder.Dataflow’, it would be possible to connect ‘P[1]’ to “X[0]’ and ‘P[0)’

to ‘X[1]", thus achieving a bitwise reversal at the point of connection.

3

3 3 3 3

3

31

4.3. Bindings

The two binding sets represent the interrelationships between the
elements of the models. Operation-Bindings show the relationship between an
operation (or value), a structure, and a time interval; (for. example, an addition,
an adder, and a microcycle). Similarly, a different Operation-Binding might

represent the relationship between a value, a bus or register, and a microcyecle.

Realization-Bindings are used to represent the relationships between
structural elements and physical realizations (for example, between an adder’s

schematic (structure) and its layout).

Both kinds of Bindings have properties that represent paths into the four
hierarchies, e.g. ‘St-Path’ as shown in Figure 4-2. The reason paths must be
used is that Bindings refer to unique Single-Model-Components. Such a
Single-Model-Component may be deep down in the recursion hierarchy, and
the only way to uniquely specify it is by giving a complete path down into the

hierarchy, starting at the root Component.

The Kind-of-Df-Path property of Operation-Binding ~simply indicates
whether the binding is to a Node or a Value; similarly the Kind-of-St-Path
property indicates whether the binding is to a Carrier or a Module. These
are examples of the use of a ‘generic interrelation abstraction’®. All
combinations are permitted in the schema. Similar considerations apply to

Realization-Bindings.

The reason that there is no Kind-of-Range-Path property for

Operation-Bindings is that the only valid timing element for a binding is a

3This abstraction primitive and the recursion abstraction mentioned earlier were specifically
defined for the ADAM VLSI design database, and are supported by the 3DIS data model.

32

Range. Points have infinitesimal duration, and hence are never suitable for

binding either operations or values to structural elements.

5. Conclusions
This paper has described a representation and a schema that form the

fundamental data structure of the ADAM (Advanced Design AutoMation)
project. We briefly described the 3DIS, an extensible information modeling
framework that captures the underlying semantics of the ADAM VLSI
application environments, and supports the requirements specific to this
domain. We have applied the database modeling framework to the ADAM

system and have presented an example 3DIS database design.

The 3DIS database is object-oriented in that all data entities, relationships
defined on entities, events and operations, as well as the description of data
(meta-data) are modeled as objects. It provides a well structured unified view
of the application information that reduces the requested level of expertise for
database manipulation, and database development. The extension of the 3DIS
.model to support the specific modeling requirements of engineering design
environments, such as modeling recursively defined entities and concepts,

simplifies the task of database design.

We expect significant benefits from the presented approach in
construction of the overall ADAM system. Since the design data is unified by

the database, adding application packages is greatly simplified. Since non-

experts can access the underlying schema easily, the designers of CAD packages

need not be database experts to use the system flexibly.

The representation schema is based on the idea of unifying the design

data in three major structures called the specification, the target, and the

library, respectively. Each of these consists of a single component or a collection
of components, where all components are modeled in the same way. A
component is represented in terms of four noniéomorphic hierarchies: dataflow,

timing, structural, and physical. The four hierarchies are linked by explicit

relationships called bindings.

This schema has several advantages. It cleanly represents the data of
interest. None of the important relationships between specification and the.
target is obscured. Designer freedom is limited to the degree permitted by the
specification. The same concepts and techniques can be used to analyze and
construct target designs, specifications, and library components. Finally, the

design details are hidden until they are needed.

The unification of the database with the synthesis and analysis tools
results in an automated process from algorithm specification to circuit layout.
This in itself is expected to simplify the design process and enhance design

correctness.

A Pascal-based graphical interface to the 3DIS, implemented on an*lBM
PC/XT [Afsarmanesh 85b] is currently under conmstruction. A Pascal-based
graphical editor for an older, file-oriented version of the design data structure
(DDS) has been implemented [Knapp 84].

There are some other design automation software packages using the old
DDS and other specialized file formats. These packages include: a clocking
scheme synthesis package, a pipeline allocation package, an operation and value
collision detector [Park 84], [Park 85], and [Parker 84a], a knowledge-based
system for the insertion of testability-enhancing components into otherwise

finished register-transfer designs [Abadir 85], a knowledge-based system for

34

making PLAs (Programmed Logic Arrays) testable [Breuer 85], and a general-
purpose register-transfer level allocator [Parker 84c]. Other packages currently
under development for ADAM and building on the database described in this
paper include a silicon compiler, an area estimator, a restricted natural-
language interface for design specification, a design activity planner, and a
semantic-net representation for designer knowledge and high-level design

description information.

Future work on this project includes integrating the system into a
coherent whole. In particular the data structures of the synthesis packages must
be changed from the DDS file format to the new 3DIS-oriented database
support system in order for ADAM to function as a single unified system. The
implementation of the 3DIS database system and its user interface must be
completed. The definition and implementation of database activities, e.g. the

invocation of semantic checking routines, must also be added.

3

35

6.1. Acknowledgements

The authors would like to thank all of the people at USC and elsewhere
whose comments, suggestions, and participation helped to pose the questions
and refine the solutions presented here. In particular, the authors would like to
thank Mel Breuer, Bernie Cohen, John Granacki, Lou Hafer, Sally Hayati, Fadi

Kurdahi, Sany Leinwand, Mike McFarland, Nohbyung Park and K. V. Bapa
Rao.

36

I. Appendix A: Generalization Hierarchies for Four Subspaces
This appendix gives a more global view of the type-subtype hierarchies.
Parts of these figures have been shown in the body of the report; the full figures
are included as a comprehensive reference. There are a few minor differences
between the dataflow hierarchy, which was used as an example, and the other
hierarchies. Some of these differences are discussed here. In the figures that
follow, the following two conventions apply. First, where property names are
given and the range types of the properties are not obvious, colons (:) are used
to indicate the type object over which the property is defined. Second, where

the type objects are starred (¥), the property defines a one-to-many relationship.

I.1. Notes |
In the example given in the body of this report we discussed the -dataflow
subspace in detail. The other subspaces are not structured in exactly the same

way. Here we will discuss some major differences.

1. The Static-Storage-Property of a Module represents the
possibility that it might have static storage elements in it, i.e.
memory. Hence a register would have this property true, where a
gate would have false.

2. Timing-Models have a set of Durations. These represent either
constrained or achieved time intervals. Hence it would be possible to
have both constraints and achievements listed for the same range.

3. Timing-Models also have a Causality property, which
distinguishes constraining, measuring, and causative arcs from one
another. ‘

4. Physical-Models have a number of unique attributes.

a. Shape: this expresses the bounding polygon of a plece of
layout.

b. Boxes: A block may not consist entirely of sub-blocks. In that
case it has some primitive (layer, rectangle) boxes.

3

_._3

3

3

3

3

3

- Model-Name
Model - Complete-Bit
~ Designer
T i)[
Dataflow- Structural- .
Model Model
(Node) (Module)
I.l- Function l.l- Statie-Storage-Property
Has-Model-Constituents: Has-Model-Constituents:
ast eNgdnes-égrexfponent‘ % gdule-C;rg;%nent‘
Has-Lmk-Consh{ug%s: " Has—LinkC-Con.sti-t&ents: g
alue-Componen
Has Structural-Dimension Has Structural Dimension
Timing- Physical-
Model Model
(Range) (Block)
[L Durations lL Shape
Causality Boxes
Has-Model-Constituents: Contacts
. ! mponent*
Has-Link-Constituents: Power-Supply
Point-Compopent* : L.
~ Has-Structural-Dimension ~ Package-Description
- Has-M%thuents:ﬁ
en
- Ha&Lhk-Consﬁtuggzn
Net-Component*
~ HasStructural-Dimension

Figure I-1: The generalization_Ahierarchy of Models

38

Single-Model

~ Component-Name

- Component-Position

(for display purposes)

Module-
Component
(Nil_|
Single-
Module

{

|- Has-Kind: Module
Intended-Function

Block-
Component

L

Component
NN ANA
Node-
Component
[Nil |
. Single-
Node
|—]- Has-Kind: Node
Intended-Function
Range-
Component
Nil
[Ni | Single
Range
LL Prodiates
Has-Kind: Range
Asynchronous-Predicates

Single-
Block
[L Rotation
Mirroring
Has-Kind: Block

Figure I-2: The generalization hierarchy of Single-Models

|

3

3 3

3

[“" | 39

~ Link-Name
Link - Complete-Bit
11
r Dataflow- Structural-
_ Link) Link
rv (Value) (Carrier)
[I- HasStructural-Dimension [l- HasStructural-Dimension
Has-Sublink-Constituents: Persistence-Storage-Property
r Value Component* Has-Sublink-Constituents:
' Carrier-Component*
Timing Physical-
Link Link
(Point) (Net)
I-L Path
Boxes
Contacts
Resistance
L Capacitance
L Has-Sublink-Constituents:
Net-Component*

Figure I-3: The generalization hierarchy of Links

40

- Component-Name

SogleLink- | - mponent-Pasition
Component
T\ A
Carrier-
Value-
Component Component
Nil
LN] Single- ; Smgle L Has-Kind‘Ej
Element [HasKind: Element ind:
Value ‘T 1\ Carrier
Single- Sub- Single- Sub-
Value Value Carrier Carrier
[L Rok [L Rl
Dataflow-Netlist: Df-Net* Structural-Netlist: St-Net*
Point~ Ne(,.
Component Component
[ra) Single . Single- [N]
Element | HesKind: Element | HasKind:
Point : Net
(___T L)
[l
Single- Single- Sub-
Point Net Net
U- Role [I- Role I— Layer
Sinks Physical-Netlist: Ph-Net*
Sources Electrical-Property
Subscript

L Visibility-Bit

Figure I-4: The generalization hierarchy of Single-Links

41

DF-Net

— Sub-Value-Path

| Visibility-Bit

—~ DF-Connections: DF-Pin*

St-Net

~ Sub-Carrier-Path
- Visibility-Bit
~ St-Connections: St-Pin*

Ph-Net

— Sub-Net-Path
- Visibility-Bit
- Ph-Connections: Ph-Pin*

DF-Pin

- Single-Node: Single-Node
~ Sub-Value-Path

St-Pin

— Single-Module: Single-Module
— Sub-Carrier-Path

Ph-Pin

— Single-Block: Single-Block
— Sub-Net-Path

Figure I-6: Nets and Pins

42

.3 __ 3

¢. Contacts: Similar to boxes, but representing particular
interlayer interconnection points.

d. Power-Supply: Describes the power requirements (not the -
connections) of the block

e. Package-Description: Describes the package of an OEM or =
packaged component, as opposed to a layout.

5. A Single-Block has two attributes, Rotation and Mirroring, that =
describe coordinate transformations applied to the block in
determining its position and orientation.

6. A Single-Range has the following predicate attributes:

a. Predicates: describe the conditions under which normal
branching will occur.

b. Asynchronous-Predicates: describe the conditions under
which branching is not synchronized to a particular point in .
the timing graph, e.g. resets. The semantics of both kinds of o
predicates is described in detail in [Knapp 83b).

7. Single-Modules and Single-Nodes have Intended-Function o
attributes, which signify the functions they perform in the target)
design, as opposed to the function(s) they may have as isolated
entities. Hence, for example, a Single-Module Add4 might have ”]
Intended-Function ‘Address Indexing Adder’, whereas its intrinsic
function (that of its Has-Kind) is just Adder.

" 8. A Net has the following properties that do not have direct
counterparts in the other subspaces:

o
a. Boxes: These are the constituent rectangles of the physical J
layout of the NET. They are colored rectangles, i.e. they have
layer information attached. . j

b. Contacts: These are the interlayer connections that form
parts of the Net.

c. Path: This is the abstract path along which the Net’s boxes ,—]
are laid out. |

d. Capacitance: The summed parasitic capacitance of the Net.

e. Resistance: The series parasitic resistance of the Net.

[a 9. A Sub-Net has an additional property Layer. This can be derived
in some cases from the Boxes of its Kind; in other cases this
information will be difficult to express in a single attribute.

10. A Carrier has a2 Persistence-Storage-Property, which describes
its ability to store charge. Under some circumstances charge storage
can be used as a memory mechanism.

11. Points do not have any attributes. This is because they are of
enumerated type, and their attributes are implicit in the type.
Those types are:

a. Simple points have one in-arc and one out-arc. These points
represent events. :

b. Alpha points have one out-arc and no in-arcs. These points
represent loop reentry points. The out-arc must have an
indexing subscript, as the loop is considered to be a (possibly
infinite) set of instantiations of the arc(s) between the alpha
and the omega points. '

¢. Omega points have one in-arc no out-arcs. These points
represent loop backjump points.

d. Or-fork points have one in-arc and a number of out-arcs.
They represent branch points. Each out-arc must have a
predicate attached to it, describing the conditions under which
the arc is taken.

e. And-fork points have one in-arc and a number of out-arcs.
These represent cobegin constructs, i.e. points at which
“concurrent streams of events flow apart.

f. Or-join points have a number of in-arcs and a single out-are.
They represent points at which several disjoint execution paths
merge.

44

g. And-join points have a number of in-arcs and a single out-
arc. They represent coend points.

12. Single-Points have sink and source sets; these refer to
Single-Ranges and express the connectivity of the timing graph.

[Abadir 85]

45

References

Abadir, M.S. and M.A. Breuer.

A Knowledge Based System for Designing Testable VLSI
Chips.

IEEF Design and Test of Compulers , August, 1985.

to appear.

[Afsarmanesh 84]Afsarmanesh, H., and Mcleod, D.

A Framework for Semantic Database Models.
In Proceedings of NYU Symposium on New Directions for
Database Systems. New York, NY, May, 1984.

[Afsarmanesh 85a]

Hamideh Afsarmanesh.

8DIS: An Extensible Object-Oriented In formation Model.

Technical Report, Department of Computer Science,
University of Southern California, April, 1985.

[Afsarmanesh 85b]

[Batory 84]

[Breuer 85]

[Bushnell 83]

Hamideh Afsarmanesh.

The 8 Dimensional In formation Space (3DIS), An Extensible
Browsing-Oriented Framework for Database Systems.

PhD thesis, Department of Computer Science, University of
Southern California, 1985.

Thesis forthcoming.

D. S. Batory, Won Kim.

Modelling Concepts for VLSI CAD Objects.

technical report TR-84-35, Department of Computer Science,
University of Texas at Austin, December, 1984.

Breuer, M. and Zhu, X.

A Knowledge Based System for Selecting a Test Methodology
for a PLA. . _

In Proceedings of the 22nd Design Automation Con ference.
ACM and IEEE, 1985.

M. Bushnell, D. Geiger, J. Kim, D. LaPotin, S. Nassif,

J.Nestor, J. Rajan, A. Strojwas, H. Walker.

DIF: The CMU-DA Intermediate Form.

Technical Report CMUCAD-83-11, CMU Center for
Computer-Aided Design, 1983.

[Carter 79]

[Davis 82]

[Director 81]

[Dittrich 85]

[Eastman 80]

[Evangelisti 79]

[Granacki 82]

46

Carter, W. C., Joyner, W. H. and Brand, D.

Symbolic Simulation for Correct Machine Design.

In Proceedings of the 16th Design Automation Con ference,
pages 280-286. ACM SIGDA and IEEE Computer Society
DATC, June, 1979.

R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley,
S. Polit.
Diagnosis Based on Description of Structure and Function.

In Proceedings of the National Con ference on Al, pages
137-142. AAAI 1082.

S. W. Director, A. C. Parker, D. P. Siewiorek, D. E. Thomas.
A Design Methodology and Computer Aids for Digital VLSI
Systems.

IEEFE Transactions on Circuits and Systems
CAS-28:634-645, July, 1981.

Dittrich, K.R., Kotz, A M., Mulle, J.M.

An Event/Trigger Mechanism to En force Complex
Consistency Constraints in Design Databases.

Technical Report, Institut fuer Informatik II, Universitaet
Karlsruhe, West Germany, 1985.

C.M. Eastman. ‘

System Facilities for CAD Databases.

In Proceedings of the 17th Design Automation Con ference.
1980.

Evangelisti, C. J., Goertzel, G., and Ofek, H.

Using the Dataflow Analyzer on LCD Descriptions of Machines
to Generate Control.

In Proceedings of the 4th International Symposium on
Computer Hardware Description Languages. ACM and
IEEE Computer Society, October, 1979.

Granacki, J.J. and Parker, A.C.

The Effect of Register-Transfer Design Tradeoffs on Chip Area

and Performances.
In Proceedings of the 20th Design Automation Con ference.
December, 1982. o

3 -3

3 3 3 _.3

— 3

—3 —3 ~—3 3

!—?

[Granacki 85)

[Hafer 83]

[Hammer 81]

[Hitchcock 83]

[Katz 82]

[Kent 79]

[Knapp 83a]

[Knapp 83b]

47

John Granacki, David Knapp, and Alice Parker.

The ADAM Advanced Design AutoMation System: Overview,
Planner, and Natural Language Interface. :

In Proceedings of the 22nd Design Automation Con ference.
1985.

Hafer, L., and Parker, A.

A Formal Method for the Specification Analysis, and Design of
Register-Transfer Level Digital Logic.

IEEE Transactions on Computer-Aided Design CAD-2(1),
January, 1983.

Hammer, M., and McLeod, D.

Database Description with SDM: A Semantic Database Model.

ACM Transactions on Database Systems 6(3):351-386,
September, 1981.

C. Y. Hitchcock III and D. E. Thomas:

A Method of Automatic Datapath Synthesis.

In ACM/IEEFE 20th Design Automation Con ference
Proceedings, pages 484-489. ACM/IEEE, 1983.

Katz, R. H.

A Database Approach for Managing VLSI Design Data.

In Proceedings of the 19th Design Automation Con ference.
1982.

Kent, W.

Limitations of record-oriented information models.
ACM Transactions on Database Systems 4:107-131, March,
1979.

David Knapp, John Granacki, and Alice Parker.

An Expert Synthesis System.

In Proceedings of the International Con ference on Computer
Aided Design (ICCAD), pages 419-424. ACM-IEEE,
September, 1983. '

Knapp, D. and Parker, A.

A Data Structure for VLSI Synthesis and Veri fication.

Technical Report DISC 83-6a, Digital Integrated Systems
Center, Dept. of EE-Systems, University of Southern
California, October, 1983.

[Knapp 84]

[Knapp 85]

[Leiserson 83]

[Leive 81]

[McFarland 81]

[McFarland 83]

[McLeod 83]

[Nagle 82]

48

David W. Knapp.
The Agis Data Structure Editor
USC DA Group, 1984.

David W. Knapp and Alice C. Parker.

A Unified Representation for Design Information.

In Proceedings of the 1895 Con ference on Hardware
Description Languages. IFIP, 1985.

Leiserson, C. E., Rose, F. M. and Saxe, J. B.

Optimizing synchronous circuitry by retiming,.

In Proceedings of Third Caltech Con ference on VLSI, pages
23-36. Computer Science Press, 1983.

Leive, G.

The Design, Implementation, and Analysis of an Automated
Logic Synthesis and Module Selection System.

PhD thesis, Dept. Of Electrical Engineering, Ca.rnegle-Mellon
University, Pittsburgh, Pa., January, 1981.

McFarland, M.

On Proving the Correctness of Optimizing Transformations in
a Digital Design Automation System.

In Design Automation Con ference Proceedings no. 18, pages
80-97. ACM SIGDA, IEEE Computer Society-DATC,
June, 1981.

McFarland, M. and Parker, A.

An Abstract Model of Behavior for Hardware Description.

IEEE Transactions on Computers C-32(7):621-637, July,
1983.

McLeod, D., Bapa Rao, K. V., and Narayanaswamy, K.

Information Modelling for CAD/VLSI.

In Proceedings of the ACM SIGMOD International
Con ference on Management of Data. San Jose,
California, May, 1983.

Nagle, A., Cloutier, R., and Parker, A.

Synthesis of Hardware for the Control of Digital Systems.

IEEE Transactions on Computer-Aided Design
CAD-1(4):201-212, 1982.

3 __3

-3

-3 _3 _3 _3 _3

[Nestor 82]

[Otten 82]
[Park 84]
[Park 85]
[Parker 84§]
[Parker 84b]

[Parker 84c]

[Pitchumani 82]

49

J.A. Nestor and D.E.Thomas.

Defining and Implementing a Multilevel Design Representatxon
With Simulation Applications.

In ACM/IEEE Nineteenth Design Automation Con ference
Proceedings, pages 740-746. ACM/IEEE, 1982.

Otten, R.H.
Automatic floorplan design.

In Proceedings of the 19th design automation con ference.
IEEE and ACM, 1982.

Park, N. and Parker, A.

Synthesis of Optimal Clocking Schemes for Digital Systems.

Technical Report DISC/84-1, Dept. of EE-Systems, University
of Southern California, May, 1984.

Park, N. and Parker, A.

Synthesis of Optimal Pipeline Clocking Schemes.

Technical Report DISC/85-1, Dept. of EE-Systems, University
of Southern California, January, 1985.

Parker, A., Park, N. and Knapp, D.

Stmulation Effectiveness and Design Veri fication.

Technical Report DISC/84-2, Department of EE-Systems,
University of Southern California, October, 1984.

Alice C. Parker.
Automated Synthesis of Digital Systems.
IEEE Design and Test , November, 1984.

Parker, A., Kurdahi, F. and Mlinar, M.

A General Methodology for Synthesis and Verification of
Register Transfer designs.

In Proceedings of the 21st Design Automation Con ference.
ACM SIGDA, IEEE Computer Society, June, 1984.

Pitchumani, V., and Stabler, E.P.

A Formal Method for Computer Design Verification.

In Proceedings of the 19th Design Automation Con ference,
pages 809-814. ACM SIGDA and IEEE Computer Soclety
DATC, June, 1982.

50

[Pitchumani 84] Pitchumani, V.
An Assertion-oriented Method for Verification of Parallelism in
Hardware.
- In IEEE Proceedings of the ICCD, pages 462-467. October,
1984. :

[Soukup 81] Jiri Soukup.
Circuit Layout.
Proceedings of the IEEE 69(10}, October, 1981.

[Stonebraker 82] Stonebraker, M., and Kalash, J.
TIMBER: A Sophisticated Relation Browser.
In Proc. 8th Int. Conf. Very Large Data Bases, pages 1-10.
Mexico City, Mexico, Sept. 8-10, 1982.

[Thomas 77] Thomas, D.
The Design and Analysis of an Automated Design Style
Selector.
PhD thesis, Dept. of Electrical Engineering, Carnegie-Mellon
University, Pittsburgh, Pa., April, 1977.

[Wong 79] S. Wong, W.A. Bristol.
A CAD Database.

In Proceedings of the 16th Design Automation Con ference.
1979.

3

3 12

An Extensible Object-Oriented
Approach to Databases

for VLSI/CAD
Hamideh Afsarmanesh Tuvid Knapp
Dennis McLeod , Alice Pzrker
Department of Computer Science Department of Electrical Engineering
University of Southern California University of Southern California

Digital Integrated Systems Center Report
DISC/85-3

Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, California 90089-0871

23 April 1985

This research was supported by the National Science Foundation, #ECS 3310774, snd
the Joint Services Electronics Program through the Air Force Office of Sgientific
Research under contract # F49620-81-C-0070.

Abstract

This paper describes an approach to the specification and modeling of information
associated with the design and evolution of VLSI components. The approach is
characterized by combined structural and behavioral descriptions of a component.
Database modelling requirements specific to the VLSI design domain are considered and
techniques to address them are described. An extensible object-oriented information
management framework, the 3DIS (3 Dimensional Information Space), is presented. The
framework has been adapted to capture the underlying semantics of the application
environment by the addition of new abstraction primitives. An. experimental prototype

" implementation of the database and its browsing-oriented interface is described.

3

