A Design Utility Manager!

Technical Report CRI-85-25
November 18, 1985

David W. Knapp and Alice C. Parker

lThis research was supported by the National Science Foundation under computér
engineering grant #ECS-8310774

_3-3 . J L %

A Design Utility Manager®

2 3

Abstract

In this paper we present a software package which mana.ges the digital design process.
The design process is modelled using a planning paradigm. Under this paradigm design

is seen as a process in which abstract models of operators are applied to abstract models

of design states in a simulated or planning space, until a sequence of operators has been

constructed to some depth. The sequence, or plan, is then executed, or carried out, in an =
execution space. This execution is monitored for violation of expectations; if violations |
occur, control is returned to the planner. The planner forms part of the USC ADAM =
(Advanced Design AutoMation) system: at the time of writing it is capable of ‘
constructing plans and causing them to be executed. The knowledge base of the planner ™

is populated with register transfer level (RTL) concepts, and it can be populated with
other knowledge sets.

Categories: 8,16)
]'I‘his research was supported by the National Science Foundation under computer engineering grant
#ECS-8310774

Submitted to the 23rd IEEE/ACM Design Automation Conference (June 29, 1986) ’j

~—3 —3 —3 —3 —3 3

1. Abstract

In this paper we present a soltware package which manages the digital design process.
The design process is modelled using a planning paradigm. Under this paradigm design
is seen as a process in which abstract models of operators are applied to abstract models
of design states in a simulated or planning space, until a sequence of operators has been
constructed to some depth. The sequence, or plan, is then executed, or carried out, in an
execution space. This execution is monitored for violation of expectations; if violations
occur, control is returned to the planner. The planner forms part of the USC ADAM
(Advanced Design AutoMation) system: at the time of writing it is capable of
constructing plans and causing them to be executed. The knowledge base of the planner
is populated with register transfer level (RTL) concepts, and it can be populated with

other knowledge sets.

2. Introduction

2.1. The ADAM System

The USC ADAM system is designed to unify a gumber of design automation (DA)
programs into a single framework. The main areas of effort are a set of custom layout
tools, an expert system for the design of testable circuits, a knowledge-based synthesis
system, and a database which provides a common representational scheme for designs,
programs, and constraints. Within ADAWM, all design data, procedures, and rule sets are
treated as objects, communicating with one another by means of messages. The overall
structure of ADAM is described in [6].

The goals of the knowledge-based synthesis system, of which the design planner is a
part, are to produce correct implementations representing a range of tradeoffs, to allow
varying degrees of user interaction, to allow design to proceed incx:ementally starting
from a partially-complete initial design, and to meet several kinds of constraints. The
ADAM synthesis subsystem uses both hard-coded and knowledge-based techniques to

achieve these goals.

The ADAM planner is used to manage design activities. First a plan is constructed,

which details the activities and utilities that will be used; then the plan is executed. If
execution of the plan is successful, a design that is correct and which meets input
constraints is produced; otherwise the planner attempts to construct a new plan. The

planner is in control of the execution process as well as the planning process.

This paper proceeds as follows: first, some salient properties and problems of the digital
design domain are reviewed, and some related research is discussed. Next, descriptions of
the planning, estimation, and execution processes performed by the ADAM system are
given. Following that, the structure of the planner is discussed, and examples from the
planner’s knowledge base and rule set are given. The current status of the planner is
then given, with a description of the test cases so far run. Finally, a short Summary of

future plans for the planner and its place in ADAM are given.

2.2. The Digital Design Process

The digital design process can be characterized by complexities of two basic kinds.
First, there are complexities of sheer magnitude, such as gate counts; and second, there
are complexities introduced by qualitative choices, e.g. between technologies and
implementation styles. These qualitative choices often interact strongly. Moreover, their
interdependencies are often cyclic. This means that not only do the outcomes of design
decisions depend on the particular set of specifications, objectives, and constraints, but

the ordering of decisions can also be permuted, with different results.

Furthermore, activities that are crucial in implementing one design may be irrelevant
to the completion of another. For example, in MOS monolithic logic a finite state
machine with a small number of states can be implemented very cheaply using one-hot
state encoding and dynamic storage; in such a situation, techniques of state minimization
appropriate to TTL SSI are a waste of time and silicon. It is sometimes more important
to produce a design quickly, almost without regard to its efficiency, than it is to produce
a highly efficient design. In the former situation, resort might be had to a silicon
compiler and a simplified controller/datapath design style, whereas in the latter case a
more compléx multipath/multicontroller architecture and more expensive design

techniques might be indicated. In another case, a program tuned only to a specific class

— 3

.:g? . _%

_ 3

3

3. 3 . _3

_ 3

.3

3

of applications may be applicable, such as a digital filter synthesizer.

Thus a fixed line of reasoning or sequence of activities will often lead to inferior
designs, because important alternatives may not be investigated, inappropriate

techniques may be applied, or relevant information may not be examined.

Unified design systems that attempt to maintain flexibility in the face of different
optimization criteria and target system requirements face stringent software engineering
requirements. In a system of /N modules, the number of possible interfaces is O[Ne].
Worse, the number of possible chains of /V operators is O[/NV!], and the choice between
sequences tends to be data-dependent. ADAM incorporates two strategies to deal with

these problems:

1. ADAM uses a unified representation of design data, which ensures that only
O[] interfaces need be constructed. This representation and its database
implementation have been described elsewhere [7], 1].

2. ADAM uses planning techniques borrowed from artificial intelligence research
to construct operator sequences at design time.

2.3. Related Research

The original unified DA system is CMUDA [4]; other systems that attempt to span the
design process are MIMOLA (8] and CADDY [11]. These, however, rely on a more or
less fixed path through the design activities. A recent enhancement to CMUDA [5] comes
closest to the ADAM planner by the employment of a knowledge base of scripts. The
Rutgers group [14] uses planning in a different sense than ADAM, by concentrating on
the propagation of constraints within a design, rather than as an activity scheduling
formalism. A system based on descriptions of hardware modules is reported in [15]; it
translates from DDL to layout using knowledge similar to parts of the ADAM knowledge

base.

3. The ADAM Planner

The design planner is an expert system with its own set of planning rules. It builds a
design plan by concatenating members of a set of possible analysis and synthesis tasks
and tools, including clocking scheme synthesis, component selection, critical path
location, and area estimation. The planner uses estimated statistical factors in order to
guide its choices of tasks where more than one option is possible. The planner uses
knowledge about the design process declaratively represented by a network of frames;
these frames contain knowledge about the design of hardware including taxonomy and
methodology. Plans and histories alike are represented as annotated tours through the

knowledge graph.

The planner is designed to oversee a suite of knowledge-based and hard-coded utilities.
Specifically, the problem addressed by the ADAM planning engine is that of finding-a
sequence of design activities that will, when executed, result in the transformation of a
specification at one level to a completed design at a lower level within a reasonable
amount of time. The activities may be computationally expensive and the data upon
which they operate tend to be highly complex. Hence activities should not be invoked
unless they have a high probability of being useful in a sequence which produces the
desired result. The planner allows ADAM to take into account the dependencies
generated by individual specifications and partial designs, and to sequence design
activities accordingly. Hence ADAM can construct sequences of design activities which
are not explicitly coded into the system, but are constructed in response to the needs of a

particular set of specifications and constraints.

Planning (12}, [13], [17] is an activity whereby the operation of a system is simulated in
order to economize search or avoid irrecoverable errors. At a minimum there are two
spaces that must be considered: a planning space and an ezecution space. The execution
space is populated with operators (in the case of ADAM, design utilities such as
hardware allocators, microprogram generators, and dataflow graph optimization tools)
and states (gfaphs and collections of symbols that collectively describe the design itself,
e.g. schematics, dataflow graphs, timing and control graphs, and physical layouts). The

planning space is populated with abstract representations of the execution space

|

13

3

13

operators and states. States in the planning space are characterized by collections of
assertions about more or less incomplete designs. An example of an assertion is the list
(exist PLA-Layout it), which states that a PLA layout of some circuit it exists.
Abstract representations of operators are characterized by preconditions and
posiconditions: the preconditions express the conditions that must pertain for the
operator to be applicable to a given state, and the postconditions express the conditions
that will pertain after the operation has been applied (i.e. on the sink state).
Preconditions are represented by sets of assertions that must be matched for the
operator to be considered applicable, and postconditions by the sets of assertions that are

added and deleted by the application of the operator.

For example, suppose the task is to implement a combinational logic element. The
specification is given as a set of Boolean equations; the ultimate result is to be a layout
(physical description) consisting of layer, width, and path information. Two ways to
achieve this result are classical two-level Boolean minimization followed by standard-cell
layout, and PLA minimization and synthesis. The preconditions for both ways are that
the logic equations exist; the postconditions of both are that the logic equations exist,

and that the layout also exists. This is shown in Fig. 3-1.

In the ADAM planner, a plan is constructed by forward chaining from the initial state.
Forward chaining is done by matching the precondition of an operator to the initial
state, and creating a new state at the sink end of the operator arc. This new state's
assertions are a copy of the initial state's assertions with the modifications specified by
the operator’s postcondition. If the second state is the same as the goal state, the process
is finished; otherwise the process is repeated. Once a goal state has been reached the
plan is complete. It can be executed at that time by applying the execution-space
operators to the execution-space states. Backward chaining is a similar method, except
that the goal state is the one from which operators are chained in an effort to reach the
initial state. Backward chaining was not used for the ADAM system because of two

considerations:

L. Incremental execution (i.e. at planning time) is inefficient in a backward-
chained system because the first operation executed is the last one planned.

Where there is a significant probability of misplanning or operator failure the
loss of efficiency becomes severe.

2. Most design problems have many acceptable solutions. It is entirely possible
that many hypothetical designs could meet a given specification, but without
knowing their details, choosing a single goal state from among them cannot
be done intelligently.

: ' Postcondition

(exist bool-eqns it)
(exist logic-diagram it)
(exist std-cel-ayout it)

build-Std-cell-logic

Precondition
; (exist bool-eqns it)
[

build-PLA-Logic

Posteondition

(exist bool-eqns it)

(exist PLA-truth-table it)
(exist PLA-Layout it)

Figure 3-1: Illustration of Planning

3.1. Sequencing Operators

We will now describe the way in which the planner constructs a plan. Given a ‘current
state’ of the design, represented as shown in Fig. 3-1 by a collection of assertions about

the design,

1. Find the set of activities that can be applied to the state. Add them to the
plan graph as arcs directed away from the current state.

-3 _ 3

-3 .3

_3

3

—3

2. The state of the design that results from applying each activity is constructed
from the initial state, less any assertions in the ‘delete set’ (preconditions no
longer true) of the activity, plus any assertions in the ‘add set’
(postconditions not previously true).

3. The most promising of the set of leaf states (i.e. states with no out-arcs) is
chosen as the next current state.

In the ADAM design planner the selection of the ‘most promising’ state is guided by

two considerations:

1. Operators that would add no new facts to the design state are not considered
even though they might be applicable.

2. Numeric estimates of the advisability of the applicable operators given the
design state and the planner’s current goals are generated and compared.

The sink state of the most promising operator is then made the current state and
chaining proceeds. The current search strategy restricts itself to leaf states generated in
the last iteration unless those leaf states are all dead ends, at which time other leaves are

considered.

3.2. Estimation and Goal Management

Estimation of the properties of the design state is an important part of the planning
process, since so many planner decisions are design dependent. A planner that was only
capable of matching symbols for the purpose of finding what activities were possible at a
given point would have no way to prune the search space, and would tend to produce
poor results because it would have no way to compare the merits of different
implementations. In the ADAM design planning engine these property estimates fall into

five basic classes:

1. A rough measure of the global advisability of applying an activity to the
current state. This is fast and does not rely upon execution-space details;
instead it only uses symbols found in the planning-space state.

2. Rough estimates of four numeric quantities: design time, area, speed, and
power consumption. These estimates rely only upon symbols found in the
current state and upon simple abstractions of its execution space counterpart,
e.g. the number of nodes in a dataflow graph.

-3

3. Estimates of the four quantities based on trial implementations. In such cases,
a plan is constructed and carried out in the execution space as an effort to
try to defire the range of possible implementations. :

4. Estimates of the four quantities based on analytic and statistical models.
These vary in complexity and accuracy, and rely on procedures called in by
the planner.

5. Estimates of the reliability of other estimates.

The first three classes of estimation are currently implemented. A statistical estimator

for area exists but has not yet been integrated into ADAM.

The estimators used by ADAM's planning system are chosen so as to be as close to
monolonic as possible. Monotonic estimators are not necessarily accurate; they merely
satisfy the constraint that ESTp[A(a:)] > ESTP[A(y)] iff P(z) > P(y), where z and y
are two designs, the function P is the projection of those designs onto a property space
(e.g. that of area), the function ESTp is the estimator function of the quantity P, and
the function A is the abstraction mapping from the execution space to an abstract
planning space. Such an estimator is useful for comparing two or more design
alternatives regardless of its absolute accuracy, because the choice of an alternative with
a greater or lesser P would remain unchanged in the presence of more information than

was available in the abstract space.

It can easily be shown that a combination of monotonic estimation and binary search
results in an overall search complexity of Of[nlogn], where n is the maximum depth of
the plan and the outdegree of each plan node is bounded by some k. For this reason,

monotonicity is theoretically important as a measure of estimator quality.

3.3. Mixed Planning and Execution

In the preceding discussion, plans have been described without reference to the
execution space. However, the line between planning and execution is not distinct, and
planning and execution beqome mixed. For example, suppose the purpose of the planner
is to find the fastest possible implementation of a behavior within the constraint of a

fixed target technology. The plan is constructed using class 1 estimators. The only

3

.

—3

information available to such estimators at the time of the completion of that plan is the

collection of assertions at the last node of the plan. Clearly that is not enough.

Suppose, for example, that a critical-path algorithm was scheduled somewhere in the
plan. It would, when execute;i; mark all the nodes on the critical timing path of the
design. This information is crucial to the timing estimator which is used to select a
design style [16], and consequently to the choice of an appropriate synthesis package for
that style, but it is not available until the planned critical-path-marking step of the
plan is actually carried out. The only thing available before that happens is the assertion
(timing-graph critical-path-marked true) but the details of the path and the actual

marking do not exist until the algorithm has been executed.

Secondly, many activities are not atomic. That is, each activity can be decomposed
into further sub-activities. Hierarchical planning is a recognized area of artificial
intelligence research (13|, [12]. When it is combined with actual plan execution, the
detailing of a hierarchical plan begins to take on the attributes of execution; in fact the
ADAM planning engine regards the detailed expansion of a hierarchical activity as
equivalent to execution of a procedure. The difference is that expanding a plan which
represents hierarchical activities only adds and deletes symbols (assertions) in an abstract
space, whereas procedurally encoded activities affect the execution space and hence the

concrete design itself.

Another reason planning and execution become mixed is plan failure. There are two
ways in which a plan could fail. First, the plan could be executed to the end, but
produce an inferior design, or one that did not meet constraints. Second, plans could fail
because of inadequacies in the knowledge representation or application programs which
become apparent at run time. Both of these kinds of plan failure are addressed by the
ADAM planner, which at this time simply constructs a new plan and tries it when an

execution dead-end is detected.

4. Structure of the Planner

The ADAM planning system structure is shown in Figure 4-1. There are two main
sources of declaratively encoded knowledge in this system: the planner rules and the
design knowledge base. Planner rules are if/then productions constituting knowledge
about how design plans are constructed and the structure and meaning of design
knowledge base constructs. The design knowledge base is organized as a collection of
frames (9], [3] which collectively describe design activities, styles of hardware, and

functional classes of hardware. The planning engine is a custom coded forward chained

rule interpreter.

Plan-building Rules

!

—-—.(Planning Engine

)

Knowledge Base
Hierarchy
(Semantic Net) Plan
Mextra Execution
Engine
Spice
Execution Rules

—

Design Information
(components)

Target Design

Module Library

Cell Library

CIF

Figure 4-1: The ADAM planning engine

3

3

3

3

— 13

SR)

4.1. Planner Rules

Planning engine functions which allow the planner to construct plans are divided into
nine classes. Each class (or expert) has its own subdivision of the planner rule set and its
own local collection of assertions (data set). The experts communicate by means of
messages, which are passed as a result of rule firing (i.e. it is possible for a rule’s then-
part to consist of mixed assertions and messages to other experts and/or primitive

objects). The planning engine experts are described in Table 4-1.

,
,

name rules area of expertise

planner 34 building plans (overseer)

extender 9 concatenation of operators onto plans

expander* 7 expansion of hierarchical tasks and task execution
frame-expert 7 general frame system navigation

frame-extend 8 frame system navigation for

the purpose of concatenating operators

frame-expand 6 frame navigation for execution
and hierarchy expansion

donex* 14 determine completeness of plans
evaluator* 5 calculation of numeric properties of designs
estimator* 1 used in constructing estimators on the fly

* Partial rule set, augmented at run time by rules taken from frames.

Table 4-1: Planner Rule Set Divisions as of 11-10-85

Planner rules are domain independent in the sense that they only concern the syntax of
plans and frames. This allows planning expertise to be separated from the specific digital

system expertise in the collection of frames; in theory it is possible to implement design

planners for many kinds of application domains merely by changing the contents of the
F" frame set. It is also possible to build smarter planning strategies into the planner rule set
(

without modifying the domain expertise: for example, the depth-first successive-

11

approximation strategy could be switched to the A* strategy [2] with only rule changes

and the addition of the lookahead function required by A*.

Two typical rules are shown in F ig. 4-2. Each rule is composed of three parts: a type,
in both of these cases F1, which controls the firing of the rule, an if- part, and a then-
part. The type flag F1 means that the rule can fire only once in a given coatext without
explicitly being reset. The if- part describes the conditions under which the rule can fire;
in the first example rule, that part consists of four clauses. The first clause states that no
assertion can exist of the form (prime leaf ?leaf), where ?leaf will match any name;
meaning that there can be no leal considered to be a prime candidate for expansion.
The other three clauses must be matched; there must exist at least one ?leaf (which can
have any name) which is both a leaf and which is done, and the goal must be expand.
If all of these things are true, the then- part of the prbduction is evaluated. This consists
of two subclauses: the first states that the ?leaf is to be declared terminal and the
second results in a request being passed to an expert manager to count the terminal
leaves. (terminal ?leaf) is simply an assertion added to the data set, whereas the

manager will first compute the required number and then assert it in the data set.

The second rule specifies that some ?leaf must exist which is both 2 leaf and done,
but which is not dead; only variables which match all of these criteria will be decla;red
dead and passed to the donex (done expert) to determine if they represent finished
designs.

(F1 ((no (prime leaf ?leaf)) (goal expand) (leaf ?leaf) (dome ?leaf))
(and (terminal ?leaf) (ask manager count terminal)))
; if there is no prime candidate leaf, and the curremt goal
; 1s expansion, and at least ome leaf represents a complete
; design, then assert that the finished leaves are terminal
; and ask that the manager count the terminal leaves.

(F1 ((nor (dead ?leaf)) (goal extend) (leaf ?leaf))
(and (ask domex finished ?leaf) (dead ?leaf)))
; if the goal is extension, and a set of leaves is not marked
; dead, then mark all such leaves dead and ask if the desigms
: repregented by those leaves .are complete.

Figure 4-2: Two Rules Taken Verbatim from the Planner

3

3

-3 3

3

3

:
:
:

3

4.2. The Design Knowledge Base

The design knowledge base is a collection of frames containing information about VLSI

design, organized into three classes.

1. Task frames describe design activities that can be carried out. An example of
a task frame is the description of a pipelined hardware allocator.

2. Hardware frames describe ways to implement particular functions and classes
of functions in hardware. An example of a hardware frame is one that
describes controllers.

3. Style frames describe variations on basic hardware structures. An example of
a style frame is one that describes various kinds of adders, such as carry-
lookahead and carry-bypass.

A simplified pair of frames from the current implementation of the planner's knowledge
base are shown in Figs. 4-3 and 4-4. The frame of Fig. 4-3 is called sehwa-fast, and it
describes an operator or task, which in this case is a Lisp program named Sehwa that
does pipelined datapath synthesis [10]. It has five subfields: invariant, add,
advisability, subtasks, and hardware. The invariant field describes the assertions
that must exist for the Sehwa program to be applicable: there must be a design focus of
attention (dfoa), which may have any name (?it); the leading question mark implies a
match variable, such that any string will be matched and unified. There must also be a
dataflow graph ?itsdfg and a library family ?library-family, which is a set of

components the allocator can choose from.

Five assertions will be added to the sink state of this operator: one to the effect that
the design will be pipelined, one that a control table will exist, as well as assertions of the
existence of a schematic (RTL) structure graph, a timing graph and a set of relations

expressing the relationships between dataflow, structure, and tumntr graphs.

The advisability field represents a nonprocedural, limited-information estimator of
the overall advisability of using this operator in a given situation. The advantage of this
approach is that no particular fact or set of facts need be present for the estimator to
work; therefore the estimator can be constructed without precise knowledge of the

situations in which it will be applied. Moreover, the estimator is designed to operate on

13

unexecuted plans, i.e. on collections of assertions such as the ones that populate
invariant and add sets. This has the important advantage that plans can be
heuristically guided on the basis of hypotheses (e.g. that end-product area will be a
problem) until information that confirms or denies those hypotheses is produced by

actual plan execution.

The estimator is much like a production system: it consists of a set of rule-like clauses,
each of which has implicit if- and then- parts. The if- parts enable the transformations
in the then- parts if and only if they are matched in the design state. Hence the first of
these specifies that if the design is already supposed to be pipelined, and the design time
and the speed of the design (dtime and ctime respectively) are both important, then the
number advis should be incremented by 20. The next production specifies that the
existence of a timing constraint graph makes this operator even more preferable. As of
this writing this is the only estimator directly attached to the sehwa-fast frame. Another,
more elaborate estimator that operates on partially executed plans is attached to the

frame of Fig. 4-4.

The subtasks field in this case is a pointer to a Lisp program description frame. That
frame contains details and rules describing the actual invocation of the Sehwa program
under Unix; the intention of such frames is to make it possible to have numerous
communication and calling disciplines, from a simple function call within Lisp to the

starting of an independent coroutine process under Unix.

The hardware field is a pointer to a hdwe frame. This frame has more details on the
estimation of hardware properties, on the various other styles and tasks related to the

task frame, and so on. Part of that frame is shown in Fig. 4-4.

The hdwe frame of Fig. 4-4 describes a particular kind or class of hardware. The name
of the frame is generic-rtl, meaning that it is a description..of register-transfer-level
hardware of unspecified style and structure. The level field is used to encode this fact in
machine-usable form. The to-build field is an unorganized (random) collection of task

frame names: this organization puts the most burden on the planner because no ordering

_.1

3

.3

-3

-3 __3

3 3 3 ___3

3 3 73

.3

3 T8

3

14

(task sehva-fast ; pipelined allocator

(invariant (; all of the folloving must exist for this to apply
(dfoa ?it) ; a particular hardware unit. Any name fits
(datfl-graph ?it ?its-dataflov-graph) ; its dataflow graph
(1ibra-famly ?library-family))) ; a library family

(add (and ; all of the folloving will be added to the design
(pipelined ?it) ; it will be pipelined
(ctrl-table ?it ¥ctbl) ; there will be a control table
(struc-graph ?it %stg) ; there will be a structure
(timng-graph ?it Xtmg) ; and a timing graph
(datfl-timng-struc-binds ?it §dfsb))) ; and a set of termary bindings

(advisability (; bype 1 estimator of advisability for this task
(((pipelined ?it) (tight ctime) (tight dtime)) ; if all three exist

(+ advis 20)) ; then add 20 to advisability

((timng-const-graph ?it ?itstacg) (+ advis 10)) ; timing constraints
((struc-graph ?it ?itssg) (- advis 8)) ; structure exists
((timng-graph ?it ?itstmg) (- advis 15)) ; timing graph exists
((tight dtime) (+ advis 9)) ; design time is tight
((tight ctime) (+ advis 14)) ; speed is important
((or (tight area) (tight pover)) (- advis 7)))) ; area, pover penalty

(subtasks (lisp sehwa-fast-lisp)) ; how it is dome, by invoking lisp

(hardware (generic-rtl))) ; pointer to related tasks, analysis

; tools, and descriptions

Figure 4-3: Example Task Frame

or mutual exclusion information is given, but must be discovered.

There are two estimators attached to the frame in Fig. 4-4. They are different in two
ways from the estimator of Fig. 4-3: in their syntax and in the level of detail they are
capable of accommodating. The syntax of the estimator rules is identical to that of the
planner’s rules. They are interpreted by the same mechanism. The estimator is built just
before it is invoked by concatenating rules from all hardware, style, and overlay frames
that are applicable to the given situation, as well as a set of rules that are always
appended to this class of estimator. The result is a set of rules that has been built using
rules from several sources; hence the rules for area, the first three productions, represent
only part of the rule set of the estimator that is actually interpreted. The result of
estimator rule set interpretation may be the evaluation and reporting of numbers, e.g. by
the then- part (ask counter count nodes ?itsdfg), which results in a message being
passed to an actor named counter, which returns the number of nodes in the dataflow
graph in the form-of an assertion in the estimator’s data set. Numeric expressions are

evaluated and asserted by a postfix interpreter.

15

(hdve generic-rtl
(level (rtl))
(to-build (random (maha sehva-fast sehwa-slow setlib-fast setlib-cheap
' estb-ctrl-randoa estb-ctrl-PLA estb-ctrl-mpg
build-ctrl)))
(Estimators
(area
((F1 ((dfoa ?it) (datfl-graph ?it ?itsdfg))
(ask counter count nodes ?itsdfg))
(F1 ((dfoa ?it) (datfl-graph ?it ?itadfg)
(number ?itsdfg nodes ?n)) -
(ask evaluator set-me area (?n 80000 *)))
(F1 ((dfoa ?it) (struc-graph ?it ?itstg))
(ask counter count modules ?itstg)))
dtime
((F1 ((oor (number ?itsdfg nodes ?n))
(dfoa ?it) (datfl-graph ?it ?itsdfg))
(ask counter count nodes ?itsdfg))

.]
Figure 4-4: Example Hardware Frame (Simplified)

5. Current Status

As of this writing (11-6—85), the system is capable of constructing and executing plans
under the direction of class 1 estimators. It is written in Franz Lisp and runs under
Berkeley 4.2 Unix and SUN 1.4 Unix. It consists of approximately 3000 lines of
uncompiled and unoptimized code including the current planner rules and knowledge
base. The rate of rule firing averages about 0.7 rules/second, and the rate at which
operators are added to the plan is about a fifteenth of that (Table 5-1). The majority of
that time is spent in the unification algorithm which matches rule condition parts to the
contents of data sets. These results do not include the execution time of the procedural
utilities and activities, not all of which are interfaced to the execution mon‘ivtor at this
time. They do, however, include the time necessary to invoke the procedures. This rate

is expected to stay roughly constant as both the plan and the knowledge base grow, but

to decrease roughly linearly as the number of planner rules increases.

The results given in table 5-1 are for an otherwise unloaded SUN model 2/120
workstation, with 2 megabytes of semiconductor RAM, running SUN 1.4 Unix. The plans
so constructed were not carried out in detail, so the operation of the utilities is not

included in the overall run time, although the planner's supervision overhead for the

3

3 3

Test goals
Case
#
1 maximize speed

(3]

minimize area
and power

3 minimize power
and design time
maximize speed

4 minimize design
time and area

Table 5-1:

D WO [V

W N =

16

tasks
scheduled

. choose fast library

. exhaustive pipelined allocator
. use microprogrammed control
. build controller

. choose cheap library

. run nonpipelined allocator
. choose PLA controller

. build controller

. choose cheap library

. run fast pipelined allocator

. choose microprogram controller
. build controller

. decide PLA control

. choose cheap library

. run nonpipelined allocator
4.

Run time results for the ADAM planner on SUN 2/120

build controller

runtime
(seconds)

(]
-~}
e}

333

287

272

utilities is included. Because the plans were not carried out in detail, only type 1

estimators were used in these plans. They therefore represent explorations more than

final implementations. The more sophisticated type 2 estimators, although present and

working, did not figure in constructing plans but only in evaluating the terminal states of

. the plans.

5.1. Future Work

In the immediate future several further capabilities are to be added to the planner,

including:

o interfacing rules for the several activities and utilities so that they do not
have to be invoked by hand,

e integration with the ADAM database management system so that designs,
specifications, frames, rule sets, and procedures can be accessed in a uniform

way,

17

e addition of rules to compute and allocate budgets,
¢ implementation of task-subtask hierarchies,

o addition of design-time budgeting, monitoring and interrupt capabilities so
the planner can abort programs that exceed their run-time budgets, and

e addition of rules to cope with plan failure.

There are many other capabilities that are envisioned for the ADAM planner, such as
the ability to deal with partitioned and hierarchical designs, interfacing with the design-
for-testability system, interfacing with richer and more elaborate activities and utilities,
and the expansion and validation of ever-growing sets of frames and rules. Because
ADAM is a unified system that has the capability for expansion built into it, it is not
expected that it will ever be finished; rather it will only grow more capable with the

passage of time.

[1]

(3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

(11]

18
References

H. Afsarmanesh, D. Knapp, D. McLeod, and A. Parker.
An Extensible Object-Oriented Approach to Databases for CAD/VLSL

In Proceedings of the 11th International Con ference on Very Large Data Bases.
VLDB Endowment, 1985.

Avron Barr and Edward Feigenbaum.
The Handbook of Arti ficial Intelligence.
William Kaufmann, 1981.

Ronald J. Brachman.
I Lied About the Trees.
The AI Magazine 6(3), 1985.

S. W. Director, A. C. Parker, D. P. Siewiorek, D. E. Thomas.
A Design Methodology and Computer Aids for Digital VLSI Systems.
IEEE Transactions on Circuits and Systems CAS-28:634-645, July, 1981.

S .W. Director,
1985

Presentation at the 1985 CANDE Workshop.

John Granacki, David Knapp, and Alice Parker.

The ADAM Advanced Design AutoMation System: Overview, Planner, and
Natural Language Interface.

In Proceedings of the 22nd Design Automation Con ference. 1985.

Knapp, D. and Parker, A.
A Unified Representation for Design Information.
In CHDL-85 Con ference Proceedings. North-Holland, August, 1985.

Marwedel, P.

The MIMOLA Design System: Detailed Description of the Software System.

In 16th Design Automation Con ference Proceedings, pages 50-63. ACM SIGDA,
[EEE Computer Society-DATC, June, 1979.

M. Minsky.

A Framework for Representing Knowledge.
The Psychology of Computer Vision.
McGraw-Hill, 1975.

Nohbyung Park.
Synthesis of High-Speed Digital Systems.
PbD thesis, University of Southern California, 1985.

Wolfzang Rosenstiel and Raul Camposano.
Syathesizing Circuits from Behavioural Level Specifications.
In Proceedings of CHDL-85, pages 391-403. North-Holland, 1985.

(12]

13

[14]

[15]

(16]

[17)

19

Earl D. Sacerdoti.
A Structure for Plans and Behavior.
Elsevier Scientific Publishing, 1977.

Mark J. Stefik.
Planning With Constraints.
PhD thesis, Stanford University, 1980.

Louis I. Steinberg and Tom M. Mitchell.
A Knowldege Based Approach to CAD: The Redesign System.

In Proceedings of the 21st Design Automation Con ference, pages 412-418.

[EEE/ACM, IEEE, 1984.

Shigeru Takagi.
Design Method Based Logic Synthesis.
In Proceedings of CHDL-85, pages 49-63. North-Holland, 1985.

Thomas, D.

The Design and Analysis of an Automated Design Style Selector.
PhD thesis, Dept. of Electrical Engineering, Carnegie-Mellon University,
Pittsburgh, Pa., April, 1977.

Wilensky, Robert.
Planning and Understanding.
Addison-Wesley, 1983.

3 3 _3 i .3 3 3

3 3

3 3 3

