CRL

The ADAM Advanced Design Automation System: Overview,

Planner and Natural Language Interface

John Granacki, David Knapp and Alice Parker

University of Southern California

Abstract

This paper describes ADAM, =an integrated Advanced Design
AutoMation system, with focus on the knowledge-based synthesis
subsystem. Working parts of this subsystem include a number of
design activities and utilities, and a unified, multidimensional,
pierarchical design representation. Two aspects of the synthesis
subsystem are described in detail: the design planner and the
patural language interface. The planner builds a plan for synthesis
and analysis activities, drawing inferences from a knowledge base
represented by a semantic net. The natural language interface
accepts system-level behavioral specifications. Both of these
packages are currently being implemented.

1. Introduction

This paper reports on an integrated system, the ADAM
(Advanced Design AutoMation) System. ADAM is a unified
{ramework with a restricted natural language interface, a database
for the design representation and knowledge base, and a knowledge
based planner which supervises specialized procedures and rule-
based systems for synthesis, analysis, and custom layout.

The major subsystems of ADAM are custom layout tools, an
expert system for the design of testable circuits [2], and a
knowledge-based synthesis subsystem, which is the focus of this
paper.

Custom layout includes optimal power-ground routing (3] and a
CMOS silicon compiler. Some modules of the silicon compiler have
been tested. The compiler determines the dynamic placement of
transistors within cells and lays out the cells. The layouts will
adhere, where possible, to timing constraints.

2. Knowledge-Based Synthesis

The synthesis subsystem is shown in Figure 2-1. The goals of this
subsystem are to produce correct implementations, produce a range
of implementations with varying tradeolfs, allow the amount of
designer interaction to vary, start with a partial design in place,
design incrementally, and design according to constraints. This
system contains a planner, which examines a specification of the
design contained in the design representation and knowledge
about the design process (contained in the knowledge base), and
builds a design plan. Design activities and utllitles operate on
the design representation, using the knowledge base specified in the
plan. PALLADIO [4] inspired this work.

2.1. Deslgn Actlvities

Supported design activities include synthesis and design
verification. A package which synthesizes clocking schemes has
been completed [8], and a general data-path synthesis framework
has been prototyped [9]. This framework has shown that synthesis

Flan-—buildlng rulij

Planning Engine

Knowledge Deslgn
Base Information
Plan
\
Semantic Design Style
Net :
DDS
\
Activity
Processor
Mextra CIF
Spice

Figure 2-1: Overall Organization of the Synthesis Subsystem

and verification can share a common methodology. Utilities which
perform checks for specific classes of design errors are being
written. The completed V' collision detector [10] is guaranteed to
find potential value and operation collisions in registers, buses, and
operators.

The design activities and the planner rely on general-purpose
utilities, including a working critical path finder and estimators.
The area estimator, ARREST, provides estimates of area and
aspect ratio for standard-cell circuits. One result of this prdject is
the discovery of a strong correlation between the number of
switches (driver transistors) and cell area for NMOS and CMOS
cells. Another result validates Rent's rule [7] for polycell layouts,
and describes the circumstances under which the rule holds [6].

2.2. The Semantic Database

The design representation and design knowledge are stored in a
semantic database [1). All information is represented as objects.
The design activities, utilities, and the planner all operfate by
manipulating knowledge-base and design objects. A schema for
design information exists and is being extended to incorporate
design knowledge. The fundamental design object is the
component, which has attributes that describe it in terms of a
dataflow model, a structural model, a timing model, a
physical model, 2 set of bindings, and information about the
component’s status.

Funding for this paper was provided by NSF through Computer Engineering Grant # ECS-8310774.

Py
=S -3

— -

22nd Design Automation Conference

Paper 44.1
0738-100X/85/0727801.00 © 1985 IEEE 727

The component object type is a tepresentation of a system of
. subsystem, in which the models are unified and interrelated by
inferspace bindings. Components are uged to represent both
Packaged subsystems and the target design; components might
represeft a 7400 TTL part and 2 complete mainframe, A
collection of compogents forms a component library. Also
implemented for ADAM is the 3DIS (3 Dimensional Information
Space) [1], a Way of representing data to the user so that browsing
through the database js easy and efficient.

2.3. The DDS Deslgn Data Structure

Within the design objects, design data is modeled with the Design
Data Structure (DDS) [S|. The DDS is a multilevel design
fepresentation. It partitions design information into *subspaces®
so that there are no implicit relationships between the objects of
one subspace and the objects of another, The structural, timing,
bebavior and physical characteristics of 2 design do not decompose
into isomorphic hierarchies. Thus, the representation uses separate
bierarchies.

¢ The data flow behavior subspace specifies bebavior
by means of a single-assignment language. It js
internally represented like a data flow graph except
that arcs and podes must be subscripted if they belong
to loops, and it is bierarchical.

¢ The structural subspace is analogous to a schematic
diagram. It i3 5 recursively defined hierarchy of
"modules®, which tepresent logical structures, and
®carriers®, which contain valyes.

o The physleal subspace contains pbysical properties,
Its primitive elements are *blocks® and “nets®, and
contains attributes such as power dissipation and size,
Layout information is contained in this subspace.

¢ The timing and control subspace is a hierarchy of
time ®ranges®, each of which is a pattially ordered set
of *points®. The timing subspace encompasses timing
diagrams, timing constraints, and controkflow graphs.

The four subspaces are algebraically related to one another by
four types of interspace bindings. No other interspace relations,
exist, even implicitly. '

L value to carrler to range: this three-way binding
states that a given value js to be found on a given
carrier (i.e. a structural element capable of carrying a
value) over the given time range.

2. node to module to range: this binding states that 2
bebavioral node is implemented by a particular module,
and that the module is performing that function over

the given time range.

3. block to module: this binds a block of the physical
subspace to a module of ithe structural subspace,

4. carrler to net: this binds a carrier to a physical
conductor, for example 3 data bus.

the add is Petformed and that the ALU performs the add. A
graphical interface to the DDS, AGIS, bas been completed.

Paper 44.1
728

Figure 2-2: The Four Design Subspaces

3. The Design Planner

The design planper aids the designer in interactively selecting
syathesis and analysis tasks, i determining which design
techniques to use, and in selting up and Mmonitoring design
constraints. A pumber of accomplishments €an be reported o
here. These include

L the classification of design tasks into types, the
enumeration of design techniques, apq the
determination of commonly used analysis routines,

2. a structural framework for the plaaner,

3. the design of 3 knowledge base for design tasks, design
techniques, and design alternatives,

4. the design of 2 unified data structure for the
representation of history, current status, and future
plans,

S. the selection of measures to be used by the planner in
determining ordering of tasks and selection of design
alternatives, and

6. a method for construction of plans using the measures
and knowledge representation.

3.1. Framework of the Planner

The planner includes a knowledge base, which contains the
taxonomic and methodological koowledge. Second, there is ap
abstract representation of the current system state. Third, there is
a representation of past and future states, i.e. of history and plans.
Fourth, there is 2 planning engine that builds plans from the

‘demons’, (e.g. area budget enforcement demons) which monitor the

Finally, there are 8upport components used to update and derive
the abstractions that constitute the planner's ‘state’, and to
mediate the implemeatation of jts decisions,

3.2. Knowledge Representation

The koowledge base is a set of interpenetrating graphs, similar to
Semantic nets and context models [11]. I contains knowledge
including taxonomy (eg. * g computer consists of CPU and
memory...’), methodology (e.g. ‘Ope €an transform a serja} design
to a parallel one by..'), and other information, {e.8. the
performance benefits of a cache). Ap example fragment is shown in
Fig. 3-1.

3.3. Representation of Design Time: Hlstory and Plans
Plans and historjes alike are represented as annotated tours

through the semantijc 8raph; in a history the annotations represent

afthievements. whereas in a plap the tour is bypothetical al}d the

2 & O oe

H :

anootations represent goals and objectives. The planner constructs
these tours.

jplormation pooded o ... b= how 0 coostruct &
how © etimste ot = Cache L oocsiss of
how 0 estimate spocd == (rmgoq,m—hmptmnﬂh
o estimate propertics ... == e X computible with

coosider wiing when
taxooomic st compatible
oflect ! | affect 00 spocd
oa arcs High Spood
Obi
offect 00 power == (Gl Otiecd e effect 00 design time

taxooumic structures ipcompatible

wheo aot o we it

| bow 0 coostruct
Serisl ALU
(Taxooomic Object)

Figure 3-1: Fragmeot of the Knowledge Base

3.4. Measures Used by the Planner

Two types of measures are used by the planoer to prunme the
design space, those which describe attributes of designs, and those
which describe attributes of plans and techniques. Estimates of
design attributes vary in accuracy, depending on the estimation
techoique and the state of the design. Attributes of plans and
techniques, such as run-time and quality of results, are usually
e§timated with a fixed technique, e.g. where a method runs in
O(n?) time.

Attributes of the design include its taxonomic classification, its
area, speed, and power consumption, and (recursively) the
attributes of its subunits. For example, 8 particular cache memory
might be taxonomically classified as write-through, in addition to
the physical attributes of power and area, and the timing-space
attribute of eycle time. Caches in general bave attributes of going
well with high speed design; of being particularly useful where
processor and memory speeds are mismatched; of increasing costs;
and creating data-dependent slowdowas (i.e. misses).

Attributes of plans and techniques include expected
plan/technique run-time, the probabllity of successful application,
the utllity of a successful application (e.g. it will provide 80 %
performance gain over other techniques), and an estimated
reliability of the probability and utility estimates themselves.
The measures are all context sensitive, depending on the current
design. As an example, consider the: technique ®Allocate using
Mixed Integer-Linear Programming® where the problem size is
large. The probability of success is high, but the utility is low
because of the computational complexity. The reliability of the
estimated probability and utility measures is high because the
algorithm's properties are well known.

H

4. Natural Language Interface

A natural language interface for entering system specifications, is
being developed. This will facilitate the comstruction of a
complete, correct, conpsistent, concise and comprehensible
specification, via an interactive dialogue with the designer. The
interface will allow the user to assist in the disambiguation of the
input, simplifying a difficult part of natural language processing.
One component of the interfate is PHRAN, a phrasal analysis
program [11] which accepts English sentences and captures the
semantic content in a declarative representation using concept-
pattern pairs. The subsequent representation of the sentences will
be mapped by SPAN, a specification analysis program, into the
DDS representation.

For example,
Specification !Text: On receipt of a flag, activity A sends a
command, stop to activity B.
Pattern: [(condition)(s-activity}(root send)(value) (to{r-activity))]
Data Flow portion of concept in DDS:

.ﬂas- *stop®
¥ S0
d LV
Analysis is currently being done to combine the 700+ word
vocabulary into larger phrasal units and to find recurring language
structures in specification texts.

The list below shows a small {ragmeat of the vocabulary.

acknowledge bus concurrert multiplexer
address byte device receive
asynchronous . command event sead

block communicate handshake transfer

List 1. Vocabulary Fragmeat.
On-line specifications written by student participants are being
used Lo test the vocabulary.

4.1. Identification of the Concepts to be used by PHRAN

Digital systems contain one or more processes (independently
executing environments) which compete andfor communicate. A
process can be started asynchronously (whenever specified
conditions become true); execute indefinitely; start, suspend and
terminate other processes asynchronously; exclude other processes
from executing; communicate with other processes; and be
asynchronously terminated or suspended itself when some specified
conditions become true. Clock rates at which processes run may
vary from process to process. Processes communicate via shared
data, synchronize at critical points, or compete for shared
resources.

A taxonomy of high-level system behavior bas been produced,
and is shown in Figure 4-1.

Concurrent
Asynchronous
Processes
Asyochronous Asynchronous
Behavior within Behavior Involving
a Process Ivo or Moro Processes
Asynchronous Interprocess Communicatisg Competing
Braaching Control and Sequential Processes
Subproc Proc Initiated
Asynchronously

Figure 4-1: A taxonomy of High-Level System Behavior

Paper 4.1
729

Ao example of asynchronous branching is RESET.

Asynchronous branching occurs when the current sequence of
events within a process is altered or escaped from asynchronously
in response to a change in a value of a logical predicate at some
instant in timg.

The RESET example has certain properties which require the
DDS to contain special semantics. RESET is modelled in the
control and timing subspace by a special predicate, attached to a
time range, and is evaluated over the range as a continuous
function of time. Effectively, each point of the alpha-omega arc is
an or fork to the point ap as shown in Figure 4-2'.

T « “R n wp v

{RESET, @)

Figure 4-2; Represcatation of Asynchronous Branching

5. Conclusions

This research is an ongoing project. However, we can draw some
conclusions” at this stage. The DDS is useful for system
specification, the use of PIIRAN for processing specification text is
feasible, synthesis packages can use the DDS as both an input and
output medium, semantic-net models can be used to capture design
koowledge, and that a planning approach bolds promise in the
design of digital systems.

rbe special points @ and w are used in the representation of loops. The
point o is the starting point of a loop, and the poiat w is the end of the loop.
l

References

1l H. Afsarmanesh, D. Knapp, D. McLeod, and A. Parker.
An Extensible Object-Oriented Approach to Databasees for
CAD/VLSI.
Submitted to the 11th International Conference on Very
Large Data Bases.

[2} Breuer, M. and Zhu. X.
A Knowledge Based System for Selecting a Test
Methodology for a PLA.
In Proceedings of the £8nd Design Automation Conference.
ACM and IECE, 1985.

i3] Breuer, M. and Chowdhury, S.
The Construction of Minimal Area Power and Ground Nets

for VLSI Circuits. '
In Proceedings of the £8nd Design Automation Con ference.

ACM and IEEE, 1985.

4 H.Brown and M. Stefik. o '
Palladio: An Expert Assistant for Integrated Circuit Design.

1982.
Memo KB-VLSI-82-17 (working paper), Xerox PARC.

Paper 44.1
730

fel

7l

(8l

(9l

10]

(1)

Knapp, D. and Parher, A.

A Data Structure for VLST Synthesis and Verification.

Technical Report DISC 83-6a, Digital Integrated Systems
Center, Dept. of EE-Systems, University of Southerp
California, Octoher, 1983.

Fadi Kurdahi and Alice Parker.

Wiring Space Estimation of Standard Cell Designs.

Technical Report DISC/84-5, University of Southern
California, Department of EE-Systems, November, 1984

Landman, B. and Russo, R.

On a Pin or Block I:elationship for Partitions of Logical
Graphs.

IEEE Transactione on Computers C-20:1469-1479, 1971,

Park, N. and Parker, A.

Synthesis of Optimal Clocking Schemes Jor Digital
Systema.

Technical Report DISC/84-1, Dept. of EE-Systems,
University of Southern California, May, 1984,

Parker, A., Kurdabhi, F. and Mlinar, M.

A General Methodology for Synthesis and Verification of
Register Transfer designs.

In Proceedings of the 21at Design Automation Conference.
ACM SIGDA, IEEE Computer Society, June, 1984.

Parker, A., Park, N. and Knapp, D.

Simulation Effectiveness and Design Verification.

Technical Report DISC/84-2, Department of EE-Systems,
University-of Southern California, October, 1984.

Wilensky, R., Arens, Y. and Chin, D. .
Talking to UNIX in English: An Overview of UC,
CACM 27(6), June, 1984.

