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ABSTRACT

In this report we present a stochastic model for estimating the amount of
wiring space (i.e. t:h.e dimensions of the routing channels) needed for a
master-slice integrated circuit. A master-slice IC is modelled as an NxN
lattice of points, with each point representing the intersection of a
horizontal and vertical channel. Wires are assumed to follow minimal
rectilinear paths and allowed to use as many vias as necessary. Wires at an
intersection are classified as belonging to one of six classes. Distributions
of the number of each type at a channel intersection are derived. As the
dimensions of a channel intersection are functions of the number of wires
belonging to each class, expected values of these quantities are derived. The
problem of making estimates sensitive to placement strategy is discussed. In
particular, the intimate relation between placement, Rent’s Rule and wire
length distribution is addressed. Finally, preliminary results on extending

the model to allow wires with only a fixed number of vias are presented.
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1 Background

An integrated circuit (IC) realizing a function f consists of a large
collection of sequential and combinational subcircuits, each realizing a
subfunction f;, which, when interconnected by wires realize the composite
function f., The process of IC design is essentially omne of mapping a graph
representation of f, where the nodes represent subcircuits and the edges
represent interconmections, onto a planar surface. This transformation

generally consists of the following steps:

1. Selection of a set of components that correspond to the nodes of
the graph.

2. Assigning physical locations to the components on the planar
surface. This is known as the placement problem.

3. Interconnecting the placed circuits by wires, with the wires
between the circuits corresponding to the edges between nodes in
the logic graph. This is known as the routing problem.

The quality of the placement and routing is measured by various parameters,
the two more common ones being area of the resulting IC and the average wire
length., Other parameters such as propagation delay through wires and power
consumption have not been dealt with explicitly, and it is generally agreed

that wire length encompases these two parameters.

With regard to area and wire length, placement and routing are mutually
competing tasks. That is, placement must be dome before routing the wires.
However, to obtain the optimal placement with respect to area and wireilength,
knowledge about the routes of the wires is needed. In addition to this problem
of minimizing area and wire length, fabrication technology imposes certain
design constraints such as minimal separation between wires, minimal sizes of
transistors, etc., which have to be satisfied by the optimal placement and
routing configurations. Recently, .it has been shown [18] that the problem of
compacting an IC layout subject to these comstraints belongs to the class of

NP-complete problems. This coupled with the fact that the state—of-art of



fabrication technology makes it possible to design ICs having almost a million

devices forces the designers to seek good sub-optimal solutions that can be

obtained rapidly.

The various design styles currently in practice reflect this desire to
shorten the design cycle time. In general, there are three basic design

styles, which are listed below in increasing order of design effort.

1. Master Slice (also called Gate Array)
2. Poly Cell

3. Custom

1.1 Master Slice Design

Master Slice (MS) or Gate Array design is currently the most popular method
of IC design in industry. Briefly, a MS chip comsists of a two-dimensional
array of uwniformly spaced logic cells of identical size that have been pre-—
fabricated up to the diffusion layer. EBach logic cell consists of a few
uncommitted transistors and resistors which, when interconnected in various
ways will realize some simple Boolean function such as a logic gate or a
latch. Placement of logic comsists of assigning the circnitg to one or more of
these basic cells. Once a circuit is assigned to a cell the transistors are
interconnected in such a way as to realize the function of the circuit. The
spaces between cells, called channels, are used to route the wires connecting
the cells. Each channel has a number of tracks in which the wires lie. In MS
designs the number of tracks in a channel, i.e., the width of the channel, is
constant. Once the placement is complete the wire routing phase begins and

consists of two phases.

The first phase, called Global wiring or Loose wiring [11] simply assigns
wires to channels, assuming connections are made from the center of the cells.

Each channel has pre-defimed capacity, i.e., has allocated to it a given



number of tracks, which may not be exceeded. Wires follow rectilinear paths
with horizontal wire segments on ome plane and vertical segments on another
prlane. Wires change direction, i.e., switch planes, by the use of vias, which
are holes that provide contact between the two plames. The maximum number of
vias allowed at an intersection of a horizontal and vertical channel is fixed
and may not be exceeded. When the number of wires allocated to a channel
during this phase exceeds the channel capacity a Global Overflow is said to
occur. The output of the Global Wiring phase is a list channels assigned to

each wire and the locations of the global overflows.

The second phase, called the Exact Embedding phase, assigns wires to
specific tracks within a channel. Usually, all vertical wire segments are
allocated tracks first, followed by a horizontal track assignment. When a

connection cannot be completed at this phase an Actual Overflow is said to

occur.

The more sophisticated Global Wiring programs attempt to smooth out
differences between the channel supply and demand values while reducing the
number of global overflows. The success of the exact embedding phase depends
on the quality of the global wiring phase, however, having no global overflows
does not guarantee that 100% wiring completion can be achieved. In general,
after an initial run of the two phases, channel capacities are modified by the
user to reduce the number of overflows and the routing steps repeated. When
the number of actual overflows is sufficiently small the remaining incomplete

connections are manually completed.

1.2 Advantages and Disadvantages of MS Design

The regularity of MS strnctures‘pmvides for a number of advantages over

other design styles, a reason for their great success in industry. These are

1. It provides for relatively short design cycle times.



2. It is very cost effective for low volume designs where tolerance
limits on power and timing are mot too critical.

3. The placement and routing phases have been automated to a large
degree .

The price paid for having identical cells and wmiform routing channels is

1, It is difficult to adjust path delays as all transistors are of
fixed size. This implies that the chip would operate much slower.

2. As arrays are pre—fabricated up to the intercomnmect stage, the
exact access points within a cell are not known. Thus more than

necessary contact points have to be provided with the resulting
chip being larger than necessary.

3. Chips have relatively low density.

1.3 PolyCell Design

PolyCell design offers ome additional degree of freedom over MS design. In
PolyCell design the height of a row of cells is uniform, however, different
rows may have different heights and this variation is usually in multiples of
some unit., This allows the designer to use functional blocks, e.g. ALUs,
Registers, etc., which have been custom designed and pre-defined in a library.
Once the library modules have been selected, they are placed in rows and
interconnected. Unlike MS designs, the channel widths are not fi#ed and during
routing, tracks are added according to demand to enmsure 100% routing

completion.

The PolyCell design style emjoys a number of advantages over MS designms.
These are
1. Individual functional units can be fine tuned to consume less power
and operate faster.
2. Chips are smaller as it is no longer mecessary to provide extra
access points for cells. In addition componments can be made to

abutt horizontally, decreasing the amount of wiring.

3. Very high device utilization can be achieved.



4. 100% routing completion can be achieved as the tracks are allocated
to channels according to demand.

1.4 Custom Design

Custom design is the next logical step from poly-cells. Here an additional
degree of freedom is given to the designer allowing components to be of
arbitrary size and shape. Custom tailoring the compoments according to the
designer's mneeds has the obvious advantages of faster circuits, higher
component density, smaller area, etc. In fact, since VLSI provides for the
possibility of very high component demsity, custom design has become the main
focus of research. The principal problem faced by designers of custom circuits
is that the solution space of the placement and routing problems is
prohibitively large. In addition, as no pre-fabrication up to any level is
done, the entire set of processing steps has to be carried out at each
iteration. Thus custom design without any restrictions to the structure
results in prohibitively long design cycle times. Currently, it is cost

effective only for small, special purpose, high volume designs.

1.5 Motivation

Recognizing that in all these design styles the solution space for the
placement and routing problems is exponential in mnature, the search for
optimal solutions is, in practice, not possible. It seems natural them to ask
how ome could obtain estimates of the measures used for assessing the quality
of the solutions a priori. This would emable designers to eliminate many of

the feasible points of the solution space before actually carrying out the
algorithms,

As mentioned earlier, area and wire length have been the two most common
measures of placement and routing. It has long been recognized that the space
consumed by wii:ing is a very significant factor in determining the area of the

IC. Therefore in assessing a given placement, the question as to how much



wiring space is needed is crucial, This estimate, if too large, can be used to
select another placement and the process repeated. Once the designer is

satisfied with the estimate of the wiring space for a given placement, actual

routing can be carried out.

1.6 Previous Work

In the past two decades a vast amount of effort has been directed toward
the placement and routing problems. However, until recently, little has been

done regarding the estimation of their measures.

Perhaps the earliest reported work on wiring space estimation was that of
Sutherland and Oestricher [20], in which simple guidelines were provided for
selecting the dimensions of a printed circuit board independent of the
circuits to be placed om the board., The theory assumes that components are
placed randomly on the board, an assumption appropriate for boards with
control logic in which there is little or no regularity and where signals are

distributed to widely separated gates.

Assuming a random placement model, their theory shows that the number of
wires crossing the midsection of the board is approximately 1/4 the number of
active pins. Using this with the knowledge of wire dimensions and the number
of wires blocked by pads, an estimate for the board area is obtained as a
function of the number of rows and columns of components. In summary, their
theory predicts the minimum board area required for a given number of rows and
columns of components. In addition, their theory shows that the area per
component increases as the number of components increases. Finally they

conclude that the minimum area for any pin configuration is achieved by square

boards.

Wiring space estimation for ome dimensional layouts of integrated circuits

has been considered by Heller et al, [12], in which the probability of



successfully wiring a single row of cells as a function of the number of
tracks is determined. Their model assumes knowledge of the average wire length
and that the number of wires emerging from a cell is a Poisson distributed
random variable with parameter . Estimates of A and the average wire
length were derived separately in [5], [8]. The results of the ome—dimensional
model were applied to a two dimensional array of cells by transforming the
latter to two one dimensional problems. This transformation consisted of
collapsing some number of cells in a column and row into a single cell
resulting in two linear arrays of cells. Values of the number of ports, the
average wire length and the number of tracks were modified to reflect the

effect of this transformation.

The one-dimensional stochastic model of interconnections described above
was extended to two-dimensional layouts of master slice integrated circuits by
Gamal [9]. A master slice integrated circuit is viewed as an NxN lattice of
points, with each point representing a logic cell. The space between the rows
and columns of lattice points are the horizontal and vertical channels through

which wires are routed. The assumptions regarding the wiring process are

1. The number of wires emerging from a lattice point is a Poisson
distributed random variable with parameter N.

2. A wire emerging from a point (i,j) has length L, j with probability
PLi i and mean R. '

3. Wires may follow ome of four equally probable rectilinear
trajectories.

Based on these assumptions it was shown that the random variables Tl;’j ’
which represent the number of wires inm a horizontal channel segment between
points (i,j) and (i+1,j), are Poisson distributed. Since the random variables
Tlil’j and TI.I are not independenf, joint distlributions could not be obtained.
Instead, bounds on ‘the expected value of the maximum channel width were

derived.

3



The stochastic model of interconmections has been extended to custom ICs by
Syed [21]. The earlier assumptions regarding the wire generation and wire
length distributions are retained. Additionally, to handle the non-mniform
channel topology of custom ICs, a channel graph is constructed to generate
estimates of the individual channel dimensions specific to the given topology.
The nodes of the channel graph represent the channel intersections and the
arcs represent the channels. The width of a chamnel (arc) is estimated as a
function of the number of wires that enter the chanmel and the number of wires
that emerge within the channel and terminate either within the channel or
outside the channel. Assuming that a good initial placement is available,
channel dimensions are computed and used during the routing phase of chip
design. When the estimated channel size is too small, additional tracks are
added to complete the routing. It is assumed that the resulting perturbation
in the placement due to the addition of tracks is sufficiently small so as to

not alter the structure of the channel graph.

The stochastic models of interconnections described so far ignore a number
of aspects of the wiring process. In both [9] and [21] a wire emerging from a
point (i,j) and terminating at (k,1) contributes equally to all the
intermediate channels between (i, j) and (k,1). A more realistic model would be
to assume that a wire from (i,j) to (k,1) would use a given intermediate
channel according to the probability of such a wire being incident on that
channel. Additionally, the model in [9] treats all channels identically,
resulting in bounds on the channel dimensions that are very pessimistic. To
support this, let us consider how the bounds on the expected value of the

width of the widest channel are computed in [9].

Let TN denote the width of the widest channel segmeant. Let si.j denote the
joint event {Tli"j( t, T{,j< t} and 3;..j its complement. Then
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The above inequality was derived using the simple fact that

P(UA)SS Pw

i=o igo

Clearly, bounds derived using this nunion of events boundn will be quite

loose. Finally, no attempt is made to generate estimates of the individual

channel capacities.

In [21] procedures for generating individual channel dimension estimates
for custom ICs are provided. However, the width and heights of the channels
were inaccurately derived, under-estimating the dimensions of the channels., To
support this, let us see how the estimate for the width of a channmel (i,j),
denoted by 'i.j' is derived. Let this channel be of length li,j' Let t denote

some point along the length of this channel, i.e. 0 £ty 11“1 and 'i.j(t)

denote the number of wires crossing the point t within this channel. Then the
width of this channel is given by
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W, = Max ( W, )

wi,j(t) is a stochastic Process. For each value of ¢, Wi'j(t) ropresents a

random variable and not a deterministic time function of t. To find E (W

1,3l
one must find the distribution of the

maximum and then compute the expected

value. Instead, the maximum of the expected value of wi,j(t) was computed. In

the following lemma we prove that Max( E{W(t)} ) ¢« E{Max( W(t) )} and

show that the resumlts in [21] significantly underestimate the channel
capacities,

Lemma 1: Let X, ¢« .., X, be n non-negative random variables
having a joint distribution funotion F(Xyo o 0o, X,). Then

E{ MAX (xi)’> MAX E{x.}
1 =i=sn 1sisn !

Proof

E{l §M?x§ n(xi)} =]; éM?Xé n(xi).dF(xlxz...xn)
2 -[xidF(xi...xn) vi

E MAX  (x,)] 2 MAX X dF(x,...x ). = Max E{x.}.
lsisn ! l1sisn : e isis

= ! =N

Note : In the above lemma eqnaliity holds in the degenerate case where all

the random variables are identical with probability one.
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Some other limitations of earlier models are :

1. Paths with limited vias

In [9] the model of interconnections was modified to comsider wires
with at most one via. An immediate extension would be to consider

wires with at most v vias, where v ) 1.
2. Minimal length paths

All the models discussed so far assumed wires follow minimal length
rectilinear paths. However, most routing schemes recognize that
quite oftem it is not possible to achieve 100% routing using
minimal length paths and allow nets to deviate a certain amount
from the minimal path. In [1] a procedure for generating all paths
between two points with a deviation 8 is presenmted. The problem of
how the channel dimension estimates vary with 8 has not been

addressed so far.

1.7 Summary of Report

In this report we develop models for estimating the amount of wiring space
needed for master slice ICs. As described earlier several authors, [9], [12],
[5], have addressed simpler versions of this problem but were unmable to
obtain estimates of individual channel capacities. The model described in this

report enables us to efficiently compute estimates of individual channel

sizes.

The new aﬁproaches to wiring space estimation of master slice chips

considered in this report are as follows. Wires at the intersection of a

3 ___ 3

-3 __3

3 __3

3 _3 __13 3 3

—3 3 3 3

3 __3
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horizontal and vertical channel are classified as belonging to ome of six
classes. Unlike earlier models, [9], [12], the probability of a wire belonging
to one of these classes at each channel intersection is accounted for.
Distributions of the number of each type at a channel intersection can be
derived. As the dimensions of a channel intersection are functions of the
number of wires belonging to each class, expected values of these quantities

will be obtained. Based on these, the dimensions of each channel can be

computed.

Preliminary results on extending the model to allow wires with a fixed
number vias are presented. This problem is interesting for the following
reasons. First, each addition of a via decreases the amount of space for
routing the wires. Secondly, during fabrication it is possible for the masks
with vias and the masks with wires to be misaligned resulting in a faulty
circuit. Finally, any possible relationship between v and the congestion in

the channels needs to be studied, hence the necessity for the via restriction.

1.8 Outline of report

In the next section our model for intercomnnections on an MS chip is
described. Each wire segment at a channel intersection is classified into one
of six classes and both the marginal and joint distributions of these
quantities are derived. In addition, each wire uses a chanmel intersection
according to a probability of such a wire being incident at that channel
intersection. Using these weighted paths and knowledge of the distributioms of
the various classes of wire segments, exact expressions for the width and
height of a channel are derived. Finally, some initial results on paths with

fixed numbers of vias are also presented.
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2 Channel Capacity Estimation of MS IC's

In this section we opresent a refinement over earlier models of
interconnections on a master-slice integrated circuit to obtain accurate

estimates of individual channel capacities.

A master-slice chip is an NxN array of equal size logic cells (see figure
la) which is represented as a two-dimensional lattice of points, where each

point corresponds to the intersection of a horizontal and vertical channel

(see figure 1b).

Vertical Channel

N

l ' Channel d . T 1 “.

Intersection

Horizontal
Channel —Z1 " ' # +

Figare 1: View of a MS chip

2.1 Assumptions

The model assumes :

1. The number of wires X, ; emerging from location (i,j) is a Poisson
distributed random varfd’ble with parameter ‘A.

2. VWires emergo and torminate at channel intersoctions and follow
minimal rectilinear paths between source ‘and destination points,

3. All minimal paths between points (i,j) and (k,1) do not contribute
equally to an intermediate channel intersection (r,s), but rather

the contribution depends on the relative locatioms of (i,§), (k,1)
and (r,s).

3 3

3 3 3 1
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2.2 Notation and Definitions

1. A comnection between two points (i,j) and (k,1) can belong to onme
of two classes. We define a forward wire to be on where i { k and j

£ 1, Similarly, a backward wire is ome where i £ k and j > 1. These
two classes are depicted in figure 2.

A wire between (i,j) and (k,1) can behave in a number of ways
within a channel intersection (r,s). These are depicted in figure
3 and labelled as class 1, class 2, etc.

Ve define

k’l
Pi,j.t

W(r,s)
H(r,s)

Ty (r,s)

number of wires emerging from location (i,j).

= number of wires emerging from location (i,j) and
terminating at (k,1).

= number of wire segments that belong to class t,
(¢t =1, 2, ..., 6), at (r,s) contributed by wires
emerging at (i, j) and terminating at (k,1).

= number of minimal length rectilinear paths
between (i,j) and (k,1).

= probability that a wire emerging from (i, j)
terminates at (k,1).

= probability that a wire from (i,j) to (k,1) falls
into class t, (t = 1, 2, ..., 6), at channel
intersection (r,s).

= width or horizontal dimension of channel
intersection (r,s).

= height or vertical dimension of channel
intersection (r,s).

= total number of wire segments in channel
intersection (r,s) that belong to class t.
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2.3 Estimation Width and Height

Consider the channel intersection at (r,s) shown in figare 3. Within such
a channel intersection a class 1 wire segment may not use the same vertical
track as a class 2 wire segment. Similarly, class 3 and class 4 wire segments
need distinct vertical track segments. However, class 1 and class 3 (or class

2 and class 4) wire segments can share the same vertical track. Thus, it is

easily seen that

W(zr,s)

"

Max { Tl(r,s)+Té(r,s), T3(r.s)+Th(r.s) } + T5(r,s) (1)

H(r,s)

Max { Tl(r's)+T3(r.'s)’ T2(2.3)+T4(r33) } + T6(rss)

Let Y?:}.t(r,s) be the random variable that represents the number of wire
segments that belong to class t, (t =1, 2, ..., 6), at (r,s) contributed by
the wires emerging at (i,j) and terminating at (k,1). To obtain expected
values of W(r,s) and H(r,s) we need to determine the distribution of the

k,1
Yipj:t.

2.4 Distridbution of Yi:}.t

Among the X, j wires that emerge from (i, j), Xg:} terminate at (k,1). For a
given channel intersection (r,s), some proportions of these Xﬁ:} wires fall

into the six classes mentioned earlier. These proportions are given by pk'1

i'j,t’

for t =1, 2, ..., 6. The joint probability that the six random variables
k,1 k,1 R S

( i:j,l ’ sees Yi.j.6 ) having values (yi. -ees» Yg) given xi.j' is equivalent

to the probability of observing six mutually exclusive events, El' cens EG’
with event E; occuring y; times in X?:} independent drawings. This probability

is given by the multinomial distribution. Thus we have :
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PYidrs) = vy o Vilgro) = v [ X' } = _x,,_n__ (P 1 ()2 .. ()8 (p, 17

Yol Yol ygly,!
(2.2)
where p"",(r s)=1- Zp“ s
t=1
" and = Xt 2 Y,

t=1

The following theorem shows that if k random variables Yl‘ cees Yk'
conditioned on N, are multinomially dist:ibqted with parameters N and
Pys +-s Py then tho joint wconditional distribution of (Y;, ..., Yy) is a

product of the marginals, each of which is Poisson distribnted with parameter
kpio

Theorem 2: Let Yl' Yz. eves Yk be k random variables having a
mul tinomial distribution with parameters N and P1s Pgs eces Dye If N=
Poisson(A) then

P{ Y} Hmr)-l—@—i

i1
Pxoof
k k
Let Yo,y =N-3 ¥y P,=1-3 P
i=1 i=1
-]
P (Y Yy Y )=3 P (Y Yp «|N)PoY
N=0

.3

.3

3 _3 _.3
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i=z1

We see that the joint distribution of Yl’ veos Yk' is a product of the
marginals. That is, when the number of trials is itself a random variable with
a Poisson distribution, the random variables denoting the numbers of each type

of event in a given cell become independent. It is this powerful property that

enables us to analyze the wiring process.

Lemma 3: Given xi' is Poisson distributed 1111: paranetekr 17\. then
xk 1 is Poisson distt‘lhuted with parameter Aqi’i .

i ’.whereq' is the
préfwability that a wire originating at (i,j) terminates at (’k.jl)

Proof

Let a wire originating at (i,j) and terminating at (k,1) correspond to a
success and one that does not termminmate at (k,1) correspond to a failure.
Then the probabilty that xf:} wires originate at (i,j) and terminate at (k,1)

is equal to the probability of observing x%:} successes in xi.j Bernoulli
trials. Thus
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P{ x"'=x|xm.} - (, .,)(q ) (1-al)Xijox

The above is a special case (N = 2) of theorem 1. Applying theorem 1 we
have

g K|
P { X = x } = e Mii (Agk)* = Poisson( Aq')
) l’ x! 1, l]

Since Xi j are Poisson distributed, we can apply theorem 1 again to the

Joint distribution of (Y j fr.8), t = 1, 2, ..., 6) and obtain the marginal

distribution. Thus we have

P { Y:;:‘{r.s)} = Poisson { Agie! - p) lt(.,s.)}

Now the total number of wire segments in cell (r,s) belonging to class t is
given by

Trs) = 3 Yirs)
(..(kD)

T, (r,8) is the sum of indepondent Poisson random variables. Thus Ty (r,8)
is Poisson distributed with paramoter

7 3

3

3

-3 13
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Agt'* pil(r.s)
X

2.5 Determination of Pi j t(r.s)
We defined pk'j t (£,8) to be the probability that a wire from (i,j) to

(k,1) belongs to class t, (t = 1, 2, «ees 6), in cell (r,s). Comsider the

lattice shown in figure 4.

Figure 4: Class 1 wire segment at cell (r,s)

The total numbgr of minimal rectilinear paths from (i,j) to (k,1) is given
by

M ()

Consgider p§:j.1(r.s) and a wire with idr <k, 14¢5s < 3. For such a

vire to belong to class 1 in cell (r,s) it must go through channel
intersections (r-1,s), (r,s) and (r,s-1). The probability of this event is
given by
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k| ri-1+jg ker +s-1-1
Pija® ( r-i1 ) ( ker )

(%)

iSrek, 1<s<]

On the other hand, if {(4,§) (x,1)} is a forward wire, i.e, i £ k,

igl1,
then it can never belong to class 1 at any point (r,s).

Thus we have

i = (") (M

()

0 otherwise

i<r<k 1<8¢]

Similarly, for a wire from (i,j) to (k,1) to belong to class 2 in (r,s) it

must be the case that i ¢ r ¢ k. j £ 8 <1 and it must go through channel

intersections (r-1,s), (r,8) and (r,s+1). Thus

we have
Kk - reis1 + 8§ K-t +1-8-1
Piid"s) ( rebe1 ) ( ker ) ,
i< <i
kel + 1§ FSkiss
ki
0 otherwise

By similar observations one can easily obtain the following expressions for

the probabilities of the romaining classes of wire sogmonts in (r,s).

dirn = (7))

()

0 otherwise

iSrek, j<s <t

3 3

~3 _3 _3

3

3
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D:(J'TJI',S)=( l’l+]31) ( k;::sl)

(%)

0 otherwise

iSrc<k, 1 <8<

k.l _f Fitelsl k-r-1 +|l.g}
PidS = (e ) (ke )

( k: Il )

i<r<k

rn+|s;| kr+llsl
e = (") (N

()

i<r<k

2.6 Detormination of qi j

We defined qf:} as the p:obability that a wire emerging at (i,j) termiantes
at (k,1). Due to the "statistical nature of the wireability analysis carried
out here, q?:j is the probability P;(d) that a wire has length equal to the
distance d between the points (1,j) and (k,1). q%:'il depends only on the
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distance d and not on the specific locations of the points (i,j) and (k,1).
Additionally, since placement of compoments is usually done to realize as few
long connections as possible, Py (d) must be a decreasing function of d. A
number of candidates for PL(d) exist., Somes examples are the exponential and

geometric distributions, both of which have been used in [9], [21] and [12].

The subject of wire length distributions has received extemsive attention
recently [21], [9], [12], [5], (8], [6]. In (8], [5] and [6] it was shown,
both theoretically and experimentally, that the length distribution is
intimately related to an empirical relation known as Rent’s Rule. This rule
predicts the number of external conmections that result from a given number of

components., Rent’s Rule is formualted as

T = AscP 0<{p<1 (2)

where T is the number of external connectioms, A is the average number of
connections per compoment, C is the number of components and p a positive
constant. In [6] it was shown that if Rent’'s Rule is assumed to hold then the
wire length distribution has the form

P (d) = A(a)*d™® «>0 (3)

The model assumes a hierarchical placement method which consists of
successively partitioning a square array of cells horizontally and vertically
into groups of 4. The model treats all the components as points on a lattice
and assumes all nets are two point nets. Additionally, it assumes that Remt’s

Rule holds at all levels of the partition hierarchy.

In [8] the same fomm as (3) for the wire length distribution is derived. A
partition function I(r), which is defined as the number of comnections
beginning in a region whose boundary is a distance r from the origin and
terminating outside the regiom, is derived. I(r) is shown to be a function of
the wire length distribution q(r). If q(r) has the fomm shown in equation
(3) above then X(r) is shown to have the form of Rent's Rule.

3

3

—3
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In this report we study, through simulation, various wire length
distributions. Specifically, we examine the results using the geometric
distribution as well as distributions of the form shown in equation (3). It
should be emphasized that Pp(d) is a design parameter and hence its parameters
will be empirically determined for the various chips that will be studied.

2.7 Dotermination of E{ W(r,s) } and E { H(r,s) }

Earlier we showed that Tt (r,s) is a Poisson distributed random variable,
From equation (1) we observe that to determine E { W(r,s) } we need to

determine the expected value of the mazmimum of two independent Poisson random

variables.

Theorem 4: Let X and Y be two independent Poisson random variables
with paramoters A and p rospoectively. Then

- -}
E{ Max(X,Y)} =A+p-F I Kk+1) I, k+1)

k=0

: A
where I(A, k+ 1) :_J_f etthat
k!
0

Proof

Max (X,Y) = X + Y - Min(X,Y)

E{ Min(X,Y)} =§ P(Min(X,Y))k): E P(X)k)P(Y)k)

ka0 k=0

© -] 0
=3 3 XNT ety
0 rak+1 ° s=k+1
0

k=
LetSAK) = 5 eRaf

r=k+1 rl

Then S(AK) =
- Kk

A

BN ¢
1 fetdt
o
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The above integral is the incomplete gamma function symbolized by r;\(kﬂ).
Thus

S(AK) = FA(k+1) = I(Ak+1)

k!

-}
Thus E ( Max(X,Y) ) A+ pe 3 KK+ 1) Ik 1)
k=0

The width and height of the channel intersoction at (r,s) is given by

4 o 4 .
E ( w(r.s) ) =3 Alrs)- 3 I (rs)+ A (rs), k+1) IX,(r.s) + Afrs)k+1) + A (rs)
t=1 k=0

4 o
E ( H(r,s)) =3 A (r,s)-kzo I()\j(r.s)+2\3(r,s),k+1)I(Az(r,s)+)\4(r,s),k+1) + Aglrs)
t=1 =

Thus we have an expression for the expected value of the width and height

of each channel intersection as a function of the numbers of different types

of wires at the intersection.

The computation of the above sum does not pose any problems. First, the
infinite series converges sinoce the sequence of partial sums is monotonically

increasing and bounded. Secondly, only the first few terms of the series

contribute significantly, Finally, the incomplete gamma function has been

tabulated extensively and excellenmt approximations are available as canmed

subroutines on the computer.

—3 .3

3 -3 _13

.3

3

3

c—3
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2.8 Paths with fixed number of vias

In this section we derive an expression for the number of minimal iength

rectilinear paths between two points having at most v vias. We will use this
result later in estimating channel dimensions subject to this restrictiom. To

start with we solve a simple combinatorial problem which will directly yield a

solution to our problem.

Lemma 5: Given n ones and m zeros, (n > 0, m ) 0), and an integer

t > 0, the number of binary sequences with exactly t transitions is
given by

alnmp = 2° ( (’:11)/2 )((:::)/2 toad

::21)/2 ) ( :/; + ( :,': ) ( ;:;),2 ) ' teven

Proof

We first place the m zeros in a row and them distribute the n ones among them.

There are two cases to comsider.
Caso 1 : t is odd

Among the m zeros, there are m-1 intermediate places where the omes may
appear. Each intermediate place where we place ome or more ones results in two
trangitions. When t is odd, then the sequence must begin or end with a one but

not both. Otherwise if the sequence started and ended with ones or zeros then

we have can odd number of transitions to realize among the m1 intermediate

places. This is impossible since a one in any of the intermediate places

results in two transitions.
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The number of sequences that begin with a ome is the same as those that
terminate with a onme. Hence we need only count those that begin with a one.
Among the m-1 intermediate places, we select (t-1)/2 of them to place the
ones. Let X, denote the number of omes placed in intermediate place i, for
1<ig (t-1)/2 and let Yy denote the number of omes placed at the begining of

the sequence. Then the number of ways to distribute n ones among the (t+1)/2
places, (4, X, eees x(t_l,,z), is the number of integral solutions to
subject to Y, > g, Xj 21, 1 <4< (e-1)/2

This is given by ( ::)/2 |

Thus the number of sequences with t transitions, when t is odd is given by
m-1 n-1
2.
( (t-1)72 ) ( {t-1)72
Case 2: t is oven
When t is even, the sequences must 'bogin and end with ones or zeros. We

first count those that begin and end with zero. In this case we select t/2

intermediate places to distribute the n ones among them, each place receiving

at least one one. Thus the number of sequonces with an even number of

trangitions that begin and end with zeros is given by

(V2 ) {cae

similarly, the number of sequences that begin and end in ones is given by

.3

3

-3 -3 _.3 __3 _.3

.3

.3 .3 3 __.3 __3

3
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m-1 n-1

{"ﬂ {t-2)72 ( /2

This completes the proof of the 1emma. QED

We can use the above results to obtain the number of minimal length

rectilinear paths between two points (i,j) and (k,1) on a lattice with exactly

v vias., Let the horizontal segment on a path be represented by a ome and a

vertical segment by a zero. Thpn the number of such paths is equal to the

number of binary sequences having k-i zeros and 1-j ones with v transitions,
This is given by

NP =27 ) (e ) o vow
) (wave ) (o ) (02 ) (e

Now the number of paths with at most t vias is simply the sum of Nk'j (v),

from v =1, 2, . . ., t. Using this we obtain the probabilities pij t(r.s)

and q§'1 and carry out the analysis as before.
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