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Detectability of CMOS Stuck-Open Faults Using
Random and Pseudorandom Test Sequences

SARMA SASTRY, MEMBER, IEEE. AND MELVIN BREUER, FELLOW, IEEE

Abstract—In this paper we present an analysis of CMOS stuck-open
faults when tested with a pseudorandom test sequence, l.e., a test se-
quence conslsting of some or all of the 2" test patterns generated by a
modified N-bit LFSR. Such a scheme is viewed as testing without re-
placement, When all 2" test patterns are applied, then such a test se-
quence is called a pseudorandom exhaustive test sequence (PRETS). The
alternative scheme is called random testing, which corresponds to sam-
pling the population of test vectors with replacement. We first show that
some stuck-open faults require a single test vector for their detection,
while most require an ordered pair of test vectors. A PRETS will detect
all stuck-open faults that require a single test vector, but may not nec-
essarily detect all faults that require an ordered pair of test vectors.
The results obtained under pseudorandom testing are compared with
results obtained under random testing, '

We present exact and asymptotic formulas for the prohability of
detecting a stuck-open fault when testing with and without replace-
ment, We then derive expressions for the expected fest length under the
two testing schemes. Finally, we address the problem of estimating the

fault govemge for the two different testing schemes. For this problem

we present lower bounds on the expected fault coverage. Numerical
evaluations of the analytical results for the above problems are also
presented,

I. INTRODUCTION

UILT-IN SELF TEST (BIST) [5]-[7] is a testing

methodology where some or all of the test circuitry is
included on the chip. One class of BIST schemes gener-
ates pseudorandom test vectors on-line, i.¢., as they are
being applied.

Random testing involves generating a random sample
of test vectors and applying them to the circuit under test.
One common technique to generate such vectors is via a
linear feedback shift register (LFSR), which consists of a
string of D flip-flops and one or more feedback lines pass-
ing through XOR gates [6], (7], [15], [16]. An N-bit LESR
has a period of at most 2% — 1 and can easily be modified
to generate all 2% input patterns in order to exhaustively
test an N-input combinational circuit, although such a
modified circuit is. no longer linear. Exhaustive testing
often has the advantage of not requiring expensive fault
simulation. The modified LFSR - technique used for per-
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forming exhaustive testing is an attractive BIST scheme
as it provides for 100 percent fault coverage of all detect-
able stuck-at (s-a) faults in combinational circuits which
do not produce sequential behavior under the presence of
a fault, R

The situation where a combinational circuit behaves like
a sequential circuit in the presence of a fault causes unique
testing problems. CMOS circuits, being a three-state logic
technology, exhibit this unique failure mode for certain
faults such as stuck-open (s-op) faults, which can be
caused by missing connections at the gate, drain, or source
terminal of a FET [2], [8], [14]. Some of the s-op faults
require only a single test vector to be detected, while oth-
ers require an ordered pair of test vectors. If exhaustive
testing is performed, then all s-op faults that require only
a single test vector can be detected. However, this is not
the case for s-op faults that require an ordered pair of test
vectors. CE o

Exhaustive testing techniques are practical for circuits
with 20 inputs or less. As with any testing procedure, the
objective is to achieve a very high fault coverage. For
example, some military projects now require tests which
detect at least 99 percent of the s-a faults and 75 percent
of the CMOS s-op faults. For large test sets and circuits,
it is time consuming to determine fault coverage via sim-
ulation. Hence there is a need for developing analytical
results to aid in predicting fault coverage for CMOS s-op
faults when exhaustive test sequences are used. -

II. OUTLINE AND SUMMARY OF RESULTS

In this paper we focus our attention on the probabilistic
analysis of s-op faults when tested with a pseudorandom
test sequence of length m, i.e.; a test sequence consisting
of m of the 2" patterns generated by ‘a modified N-bit
LFSR. Such a scheme is referred to as pseudorandom
semiexhaustive testing or pseudorandom exhaustive test-
ing, depending on whether m < 2% or m =2¥, respec-
tively. A given pseudorandom exhaustive test sequence
will be called a PRETS. Pseudorandom testing (either
semiexhaustive or exhaustive) is viewed as sampling the
population of input vectors without replacement. When
sampling the population of input vectors is done with re-
placement, then such a scheme will be referred to simply
as random testing. The results obtained using pseudo-

random testing are compared with results obtained using
random testing,
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In Section II the nature of stuck-open faults in CMOS
circuits are briefly described. Two types of subnetworks,
referred to as series rype (s-type) and parallel type (p-
type) are identified and it is shown that s-op faults in an
s-type network require a single test vector for their detec-
tion, while s-op faults in a p-type network require an or-
dered pair of test vectors for their detectjon.

In Section IV the detectability of s-op faults in p-type
networks under random and pseudorandom testing is ana-
lyzed. Exact and asymptotic expressions for the probabil-
ity of detecting a s-op fault are derived. Additionally,
bounds on the probability of detecting a s-op fault are de-
rived. Finally, in support of the theory, numerical results
are presented.

In Section V we define a quantity called rau tesr length,
(denoted by 7;), which is a random variable that repre-
sents the number of vectors that have to be applied in or-
der to detect a given s-op fault f for the first time. The
distribution and expected value of 7, under random and
pseudorandom testing are derived.

In Section VI the problems of estimating the fault cov-
erage for the two testing schemes are addressed. Estimat-
ing the s-op fault coverage under pseudorandom testing is
an extremely difficult combinatorial problem. Hence con-
servative approximations for the fault coverage are pre-
sented. In particular, lower bounds on the fault coverage
under random testing are derived.

For the sake of clarity the proofs of all theorems are
omitted from the main body of the text; they are presented
in the Appendix.

I STucK-OPEN FAULTS IN CMOS Circuits

“Consider the CMOS inverter shown in Fig. 1. Assume
that the pFET is permanently s-op (fault £). The truth
table for this circuit is shown in Table I, where Z denotes
a high impedance state and F~' indicates that the present
output is the same as the previous output.

From the truth table we see that it is impossible to set
F = 1 in the faulty circuit; hence this fault can be mod-
eled as F s-a-0. We assume here that the output F was
once set to 0.

Now consider the CMOS gate shown in Fig. 2, which
is assumed to be embedded in some larger network C. For
the input condition ABCD = 1x00 both the series path
A-B and the pull-down network are open. The series path
C-Diis closed. Hence F = 1. If the fault fis present then

F=Zor F = F~" because both the pull-up and pull-down

networks are open. To test for this fault, the oiutput F must
first be set to 0 and then followed by a test vector that sets
F = 1 by closing only the path C-D and leaving the path
A-B open. _ ‘

Thus to detect f requires an ordered pair of test vectors
(to; #,) satisfying the following conditions:

1) tysets F =0

2) (a) 1, sets F = |
(b) ¢, closes the path C-D
(c) 7, opens the path A-B

Fig. 1. CMOS inverter.
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Fig. 2. CMOS gate.

TABLEI.

TRUTH TABLE For CMOS INVERTER
Input F S
A | Fault Free | Fault f
0 1 Zor F!

1 0 o .

(d) 1 sets up a sensitized_path from F to a primary
output in the circuit C. Gl

Condition 2) states that 1, is a test for F s-a-0 and 1, sets
up the condition such-that if the fault exists then the pull-
up network is open. Hence #; must set up the condition
which results in all paths being closed in the pull-up net-
wark between ¥, and F which pass through the p-FET
being tested. The test vectors 7, and ¢, are referred to as
the initialization and sensitization vectors, respectively.
Tests invalidated by hazard conditions are not considered
in this paper. ' -

A general CMOS gate consists of the structure shown
in Fig. 3. The pull-up network provides a closed path from
Vaa (logic 1) to the output F for all input vectors £, where
F(£) = 1. Similarly, the pull-down network provides a
closed path from the output F to Vs (logic 0) for all input
vectors £, where F(%) = 0.
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Fig. 3. General structure of a CMOS gate.
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Fig. 4. CMOS NAND gate with three inputs,

F

Definition 1: A two-terminal pull-up or pull-down net-
work is said to contain a parallel subnetwork, referred to
as a p-type network, if there is more than one path be-
tween the two terminals going through the subnetwork. A
network which is not a p-type network is referred to as an
s-type network. :

-Referring to Fig. 4, the pull-up network is a p-type and
the pull-down is an s-type.

From the preceding two examples we see that a s-op
fault in an s-type network can be modeled by the s-a model
and requires only a single test vector for detection [14].
On the other hand, a s-op fault in a p-type network re-
quires an ordered pair of test vectors for detection. We
summarize these observations below.

In an s-type. subnetwork within a pull-up network a
s-op fault in a p-FET can be modeled by F s-a-0. Simi-
larly, in an s-type subnetwork within a pull-down network
a s-op fault in an n-FET can be modeled as F s-a-1. Thus
any s-op fault in an s-type CMOS subnetwork can be
modeled by a s-a gate fault,

To test for a s-op fault in a p-type pull-up (pull-down)
network associated with a gate F within some circuit C.
a two-vector sequence Iy, ¢, is required, where f, initial-
izes the output of the gate F to 0(1) and f; is a test for F
s-a-0 (s-a-1) and sensitizes a path from the site of the fault
to F. :
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IV. PROBABILISTIC ANALYSIS OF DETECTION OF S-OP
FauLTts

A. Introduction

[n this section we analyze the detectability of s-op faults
in p-type CMOS combinational networks under pseudo-
random testing. As stated earlier, pseudorandom testing
may be viewed as sampling without replacement, i.e., se-
lecting one of 2" possible test vectors of an N-input cir-
cuit at random and applying it to the circuit under test,
never repeating the selection.

To see the basic differences between random and pseu-
dorandom testing, consider an N-input combinational net-
work and assume that anz one of k test vectors detects a
given fault f. Let n = 2", There are (C%~*)! ways that
none of the k vectors will be selected in m trials under
pseudorandom testing. Thus the probability of detecting f

is given by
(JI = )
m

w/o = o e 5
PE*(k, n, m) 1 7n
m
Under random testing the probability of not selecting

any of the k vectors in m trials is (1 — k/n)™. Thus the
probability of detecting fin m trials under random testing

is given by
k m
L ==] . 2
‘) @)

Note that in the latter case it is possible to generate more
than n test vectors and not detect f. The probability of this
is (1 = k/n)". For large m these two formulas will be
almost identical. Equations (1) and (2) were also derived
in [16], where an analysis of random testing for stuck-at
faults is presented. : '

If m = n'in (1) (e.g., a PRETS), then P}/°(k, n, n) =
1. Thus if a PRETS is applied to detect a s-op fault in an
s-type network, then the probability of detection is 1.
However, this is nor the case when testing for a s-op fault
in a p-type network. : .

As an example, consider the CMOS circuit shown in
Fig. 4 and the fault f; defined by n-FET #4 being s-op. It
is assumed that F was set to one at some time and has not
discharged. Under fault f;, F can never be zero. Hence f;
is equivalent to F s-a-1, which is detected by the test vec-
tor (ABC) = (111). To detect this fault, suppose a ran-
dom sample of size m (with replacement) is taken and
applied. Then the probability of detecting f is 1 — (1 —
1/8)™. If m = 8 then this evaluates to 0.344 and the
probability of requiring more than eight test vectors to
detect f; is 0.656. If testing is done using a PRETS, then
the probability of detecting f; is 1.

Now consider the fault f; defined by p-FET #1 being
s-op. To detect f; requires an ordered pair of test vectors,

(1)

pitenm =1 (

'Binomial coefficient.
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(fo, 1), where # sets F = 0 and f; closes the path with
the faulty p-FET and opens all other paths in the pull-up
network. There is only one choice for o, namely (ABC)
= (111), and only one choice for {;, namely (ABC) =
(011). If a PRETS is applied then the probability of de-
tecting f; is 0.125. This is arrived at as follows: The pair
{p, t; must occur in one of the seven positions (i, i + 1),
for 1 < i < 7, and there are 6! permutations of the re-
maining six test vectors. Thus there are 7! PRETS that
can detect f;. Since the total number of PRETS is 8!, the
probability of detecting f, is 7! /8! = 0.125. Note that if
i has been detected, then £, and f; are undetectable since
there is only one choice for 1,.

Under random testing, testing can proceed indefinitely
and the detection of any one of f;, Jf2, or f does not pre-
vent the detection of another, However, if the number of
test vectors that are applied is eight, then the probability
of detecting f; is 0.106, which is smaller than the proba-
bility of detection using a PRETS. This is generally the
case; that is, the probability of detection using pseudo-
random testing will be greater than the probability of de-
tection using random testing for the same number of sam-
ples m where m < n. It can be shown that the expected
number of s-op faults detected in the pull-up network of
Fig. 4 using a PRETS is 0.375, while using random sam-
pling with m = n, it is 0.355. However, as m — oo the
expected number of faults detected using random sam-
pling is 3,

B. Notation

For the sake of conciseness and clarity the following
notation will be used throughout the remainder of this pa-
per:

N Number of inputs of a combinational circuit.
n Total number of input combinations = 2",
fi Denotes some s-op fault. When the fault being

considered is clearly identified, the subscript
will be dropped.

To: Nonempty set of initialization vectors associated
with fault f;.
Ty Nonempty set of sensitization vectors associated
- with fault f;.
koi, ky; Cardinality of sets Ty; and T,; with 2 < ko; +
k“ = n.

piie Probability expression under pseudorandom test-
-ing (w/o indicates sampling without replace-

ment),
PY ~ Probability expression under random testing (w
o indicates sampling with replacement).
£ Complement of some event &.
(x); =x(x=1)---(x=j+ 1)
[x]; =axlpd ) see (g = 1y ag <1 H0-g),,

C. Probability of Detection Using Pseudorandom
Testing

In the previous example there was only one candidate
for £y and 7;. This need not be true in general. The set of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 9. SEPTEMBER 198§

veetors satisfying the conditions for ¢, are those that result
in /= 0 and this set can be quite large. However, in
general, the set of vectors that satisfy the conditions for
ty is relatively much smaller since these vectors must re-
sult in F = 1 and sensitize a path involving the p-FET
being tested to the primary output. The following theo-
rems provide general formulas for the probability of de-
tecting a s-op fault in a P-type network under pseudo-
random testing. For simplicity we will consider pull-up
networks. Similar analysis holds for pull-down networks.
Theorem 1: Let f denote a s-op fault in an N-input
CMOS combinational network that requires an ordered
pair of vectors (f, #,) to be detected. Let m* = min (kq,
ki, [m/2]). Then the probability of detecting f using
m test vectors selected without replacement is given by

PG kn,m) = 1= 5 -1y (" )
. (kﬁ)j(kl)J

~ (3)

The parameters kg and k, are functions of the circuit
structure and the fault under consideration. For an arbi-
trary CMOS gate the space of test vectors is depicted in
Fig. 5, where X and Z are the initialization and sensiti-
zation sets of a s-op fault, respectively.

For m < n (3) does not have a simple closed form.

However, a tight lower bound on P}“/"(ko, ky, n, m) for

m. < n can be obtained. This is stated in the following
lémma.
Lemma 1: Let q = kok,/n®. Then

P§l*(ky, ki, 1, m) 2= 1 = gm(m=iaki/nta=)

=1 — e~(m=Da/a=1g (4)

The term g in the lower bound is the product of k/n
and k,/n, which represent the probabilities that a ran-
domly selected vector satisfies the conditions for an ini-
tialization and a sensitization vector, respectively. Hence
q measures the detectability of a s-op fault. Since k, + k,
= n, ¢ = 0.25. To examine the quality of the bound
given in (4), values of Pﬁ/"(ko, ky, n, m) and the lower
bound were computed for n = 64 and for various values
of g and m. Table II shows the exact values of P,‘,"/"(ko,
ki, n, m) and the relative error between PY/° (ky, ky, n,
m) and the lower bound given in (4). From the table we
see that the lower bound provides an accurate estimate of
Py (ky, Ky, 0, m), especially for faults that are hard to
detect (small values of g) or when the number of trials is
much smaller than .z. '

If testing is done exhaustively, i.e., m = n in the state-
ment of Theorem 1, then a simple closed-form expression
for Pj/° (ko ky, n, m) can be derived. This is stated in the
following corollary: :

Corollary 1: 1f testing is done using a PRETS, i.c., m
= n in the statement of Theorem 1, then
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X Y

@ Test Vectors

Universe of 27

Fig. 5. Spacc of test vectors.

TABLE 11
P23/ AND RELATIVE ERROR BETWEEN LOWFR BOUND WITH n = 64

m 4 8 16 32 64

¢ || 7™ Ecor | PY* Error | A7 Error | P77 Error | PY™  Error
0,002 |f 0,006 0.003 § 0.014 0.007 |{ 0.030 0,015 | 0.062 0.030 || 0.125 0.060
0.043 || 0.120 0.050 | 0.281 0.062 || 0.516 0.069 || 0.794 0.067 | 0.973 0.038
0.070 §| 0.210 0.080 | 0.433 0.092 | 0.720 0.087 || 0.944 0.056 § 0.990 0.010
0.098 || 0.280 0.108 | 0.567 0.117 || 0.854 0.094 j 0.990 0.037 || 1.000 0.002
0.125 || 0,365 0.133 §§ 0,673 0.125 || 0.919 0.074 || 0.996 0.016 || 1.000 0.000
0.164 || 0.473 0.168 || 0.800 0.139 || 0.974 0.058 || 1.000 0.00S || 1.000 0.000
0.203 || 0.577 0.200 § 0.894 0.146 [ 0.994 0.040 | 1.001 0.002 § 1.000 0.000
0.242 || 0.678 0.230 [ 0.960 0.144 | 1.000 0,025 | 0.992 0.000 fj 1.000 0.000

(&)
=1=(1-k/n" (5)

In general, the typical sizes of circuits being tested with

Pyl°(ky, ki, nym) = 1 —

PRETS will range from N = 10 to N = 20. For such large
.values of n (n = 2") with m = n, (5) provides a simple
. and excellent approximation to Pd" °(kg, ki, n, m). As an

example, consider the two-level NAND circuit shown in
Fig. 6. Gate g, is the same gate shown in Fig. 4.

. Let f denote the fault defined by p-FET #1 of gate g,
being s-op (see Fig. 4). The set T, consists of inputs £

~such that F(£) = 0. Thus ky = 8. Theset T) = {£|4 =

0,B=C=1,G=1}.Hencek, = 7. Finally, n = 2°
= 64. From (5) we find the probability of detecting f to

be
()
8
P:’/o(kOv kh n, n) =1- '(T

Using the approximation to PYj/°(ko, k;, n. m) given in
(5), we find

P¥/°(ky, ki, m,n) = 1 — (1 — 1/8)" = 0.6073.

‘A test for one of the s-op faults in the pull-up network
of gate g requires To = {£|H =0} and T, = {£| F =
0, G = 1}. Thus ky = 49 and k, = 7. Using (5) we obtain
P"/"(ko ky, n, n) = 0.99998, while the approximation
given by (5) yields 0.99996.

= 0.6266.

937
1‘\ e—
B — 1\~ F
C —
B ==
S (4] G
T I

Fig. 6. Two-Level NAND network.

Equation (4) or (5) can be used to determine the value
of m necessary for achieving a predefined probability of
detection under pseudorandom testing. Note that the pa-
rameters kg, k;, and n depend on the circuit structure and
the fault under consideration, and hence are fixed. Usmg
(4) we solve the inequality :

Pi’*(ko, ki, nym) = 1 = g~=D/n=Da 5 o ()

which yields

ma1+(" 1)1ln< . ) (7)

n q ] —a

The ratio ky/n represents the fraction of input vectors
that result in a O at the output. As stated earlier, this frac-
tion is quite large in practice. If an estimate of this is
known, then the number of sensitization vectors (k;) re-
quired to obtain a probability of detection of at least « can
be obtained from (6). Table III shows such values for «
= 0.99 when testing is exhaustive, i.e., a PRETS is ap-
plied. For example, if it is known that the proportion of
initialization vectors is approximately 0.5, then only nine
sensitization vectors are needed to detect the fault with a
probability of @ = 0.99, independent of the size of the
circuit. The quantity « is often called the test confidence
and (1 — «) is called the escape probability.

Now consider the more general structure of a p-input
NAND- gate O embedded in some large circuit shown in
Fig. 7. The cone of logic L shown in the figure ‘defines
the set of i inputs that affect the output of Q. Of the 27
possible input combinations to Q only one will produce
an output of 0. Assume now that this fraction is main-
tained at the i primary inputs of the cone L. Thus the num-
ber of primary input combinations that produce a 0 at the
output of Q is ko(Q) = 2*/77 = n277. A typical value
of p lies between 2 and 3. In general p < '5. Forp = 5
and n = 2% (i.e., a 20-input circuit), k5 (Q) = 2'°. Hence,
one may assume that there are numerous initialization
vectors. However, the number of sensitization vectors,
k; (@), will be far fewer. For the analysis here we have
assumed a rather pessimistic situation. An optimistic
model would assume that all lines are cqually likely to be
0 or 1, and hence ko (Q) = 271,

We can use (7) to obtain a conservative bound on the
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Fig. 7. Gate Q and its cone of logic L.

TABLE [II
VALUES OF ko /n AND k, FOR PROBABILITY OF DETECTION = 0.99 Using A
' PRETS
ko / n I k 1

01 | > 460
05 | > 92

| > 46

5 >9

7 > 6

number of sensitization vectors needed to achieve a prob-
ability of detection = o when applying a PRETS (m =
n). From (7) we find this value to be

1
1l —a/

Thus using a PRETS to achieve a fault coverage of =0.95
for a 20-input circuit with p < 5, the number of sensiti-
zation vectors for any fault need not be greater than 94,
which is a relatively small fraction of the total number of
input combinations.

mmazd{ (8)

D. Probability of Detection of S-OP Faults Under
Random Testing

In this section we present expressions for the probabil-
ity of detecting a s-op fault under random testing and pro-
vide a comparison with results obtained under pseudo-
random testing.
~ Theorem 2: Let g = (kok;)/n?. Under random testing
the probability of detecting f using m test vectors is given
by
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P:}'/”(kn. ky, n, m)

( L [f1 4T ag\e
II*J1~4q[ 2 )
_l - Ty ;
”( 2 ) } 7<%
m + 1 1
1_ 2m » q=z' (9)

Note: Equation (9) is equivalent to equation (1) de-
rived in [12], where the problem of random testing with
replacement of delay faults is considered, but the deri-
vation here is entirely different.

In (9), for ¢ < 0.25, the quantity (1 + V1 — 4q)/2
is the dominant term. This observation yields lower and
upper bounds on P (kg, k,, n, m). However, without any
significant loss in precision, an algebracially much sim-
pler lower bound can be obtained. This is stated in the
following lemma. '

Lemma 2: Forq < 0.25,

P:fv(kO- kh n, M) >1- e"(m—l.)q‘ (10)

Table IV shows values of P} (ky, k;, n, m) computed
using (3) and the relative error between these values and
the lower bound given in (10), with n = 64.

When testing with a PRETS the number of test vectors
is n. The number of test vectors under random testing is
m, and m can be less than, equal to, or greater than n. For
m < n, Py, ky, n, m) is always greater than
P (ky, k;, n, m). Furthermore, when n is large, there ap-
pears to be little or no difference between the two testing
schemes. The following theorem expresses the fact that
if, as n = oo the proportions ky/n and k, /n remain fixed,
then the probability of detection of a s-op fault when test-
ing without replacement approaches the probability of de-
tection when testing with replacement.

Theorem 3: Letlim,, ko/n = Ao and lim, . .k, /n =
Ai. Then _

lim P3/°(ko, ki, n, m) = PY(ko, ky, m, m)  (11)
n—*ce y
where Pj(ko, ki, n, m) is given by (9) with g = A\g\,.
One possible interpretation of Theorem 3 is as follows.
Consider a sequence of circuits, C,, G, - - - ,. having
correspondingly larger and larger numbers of inputs. In
each of the circuits, C;, we select a s-op fault f; and thereby
obtain a sequence of faults f;, f;, * - - . If the proportions
of the initialization and sensitization vectors associated
with this sequence of faults remain fixed, then their de-
tection probabilities under pseudorandom testing ap-
proach their detection probabilities under random testing.
To compare pseudorandom and random testing, con-
sider again the previous example of the .two-level NAND

-circuit shown in Fig. 6, where n = 64. Consider the faults

fi and f; defined by p-FET #1 associated with input A
being s-op and one of the p-FET’s in the pull-up network
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4
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4
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0.60 + <
o
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° X
o X
o X
o =
b o X | w: PY" (koky,n)=(32,32,64)
o B °: Py (koky,n)=(32,32,64)
? X % ;
£ °: Py o (Ko, ks ln)=(8l7l64)
9 X: Py (ko,ky,n)=(8,7,64)
sl n o : P1° (koky,n)=(49,7,64)
v ¢ 1 PP (ko,k1,n)=(49,7,64)
X: Number of Samples (m)
X Y : Prob. of detection
®
i — + t . } t t = X
0 8 16 24 32 40 48 56 64
Fig. 8. Probability of detection versus number of samples (m).
. TABLE IV V. ExPECTED TEST LENGTH
PZ AND RELATIVE ERROR BETWEEN LOWER BOUND WITH n = 64 : L ”, i S
Two common and useful measurés for comparing the
i 4 8 18 a2 L quality of different testing schemes are test lengrh and Sfault
q Py _Error| PF Error ]| PY Error | Py Error Py Error i

0.002 || 0.006 0.002 || 0.014 0.003 | 0.029 0.003 || 0.059 0.003 [ 0.116 0.003
0043 | 0.127 0.048 |f 0.274 0.052 || D.498 0.045 || 0.759 0.031 0.945 0.012
0.070 { 0.206 0.077 | 0.421 0.078 [ 0.693 0.050 0.913 0.029 | 0.003 0.005
0.008 | 0.283 0.104 || 0,550 0.090 [ 0.822 0.085 || 0.972 0.021 | 0999 0.001
0.125 || 0.35¢ 0.130 [| 0.660 0.116 || 0.904 0.064 | 0.992 0.013 || 1.000 0.000
0.164 (| 0.465 0.165 || 0.788 0.134 [ 0.967 0.054 | 0.999 0.005 | 1.000 0.000
0.203 || 0.568 0.197 || 0.885 0.143 || 0.992 0.040 [ 1.000 0.002 || 1.000 0.000
0.242 || 0.668 0.227 || 0.954 0.144 || 0.990 0.026 || 1.000 0.000 || 1.000 0.000

-~ of gate g, being s-op, respectively. For fault f, we find

koy = 8 and ky; =7, and for fault £, we find ko; = 49 and
ki = 7. The probability of detecting these two faults as
a function of the number of samples (m) under pseudo-
random testing (Pd‘”/"(ko,, ki1, n, m)) and under random
testing (P (koy, ki1, n, m)) is shown in Fig. 8. Fig. 8 also
shows similar plots for ky = k; = 32. These plots indicate
that Pﬁf"(km ki, n,m) = PJ(ky, k;, n, m). Further-
more, for a fixed m, the difference between the two testing
schemes becomes negligible for large values of kg and k,.
This is shown in Fig. 9, where P4/°(kq, k,, n, m) and
PG (ko, ki, n, m) are plotted as a function of ¢ for an ar-
bitrary circuit of six inputs and with various values of ko
and m = 64,

coverage. Test length is defined here to be the number of
test vectors that have to be applied to detect a.given fault
for the first time. The fault coverage of-a testing scheme
is dn indicator of thé fraction of all faults that can be de-
tected by the testing scheme. In this section we analyze
and evaluate the expected test length under pseudorandom
and random testing. o 5 ¢

Consider an N-input combinational network and let n
= 2", In the interest of detecting a s-op fault , suppose
a random sample of m test vectors is selected, either with
or without replacement, and applied to the circuit. If the
fault fis detected, then this detection would have occurred
for the first time after the application of the ¢th vector for
some 2 < r < m. Consequently, we define a random vari-
able 7, as follows: If, in the application of the m ‘vectors,
fault fis detected for the first time by the (+ — 1)th and
tth vector, for 2 < ¢ < m, then 7y is gssigned the value
f. On the other hand, if f is not detected, then.7; is as-
signed the value m. The random variable 7y is called the
7 test length of the fault f. In this section we determine
the distribution of 7, under random and pseudorandom
testing. -
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Fig. 9. Probability of detection versus q.

Let 5, denote the event of fault f being detected for the
first time by the (¢ — 1)th and ¢th vectors. From the def-

inition of 7;, we have -
ey
{7, =1} =[ ,

The events 1, and U }.,7; can be expressed as

t -1

n=Uazq- Uy, (13)
i=2 =2
il
U 5 = { fis detected in ¢ trials } . (14)
=2

- -Combining (12), (13), and (14), we obtain
PY/°(1, = t|m)
P§lo(kos kiy 1y 1) = P31 (ko kyy my 1 = 1),

2<t=m-1
I—P,',"/"(Ico, ki, m,m = 1),

t =m. (15)

In (15) if the superscript w/o is.replaced by w, we ob-
tain P (7, = t|m). The expression for P;"/"(rf =t|m)
given in (15) and the analogous expression for P( T =

2<t=m-1

(12)

N U { fis not detected in m trials}, ¢ = m.

t|m) can be simplified by using the following recurrences

(see the Appendix):
Pi/°(ko. kis 1, m) = Pyl°(ko, Ky, m, m — 1)

Kok

‘ (ko— I,kl B l,n-—.z,m —‘2))
e (16)

(1= pyle

Pi(ko, ki, n, m) = Pj(ko, ki, n, m — 1)

k
+ 50 (1 = PY(ko, by m, m = 2)).

(17)
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Using (15), (16), and (17) we obtain
s

kok,
SO 6 Lo
p“‘/o(fj = [|m) = { ) (1 P’ (kg

n(n — 1
L — Py/°(ko, ki, ny, m —

nl

(1 = PY(ko,
L= Pk k. n,

PY(7; = t[m) =

Recall that m in (18) and (19) represents the number of
samples. Thus if a PRETS is applied to the circuit under
test; i.e., m = n, then the range of 77is 2 < 7, < n. The
expected value of 7, under pseudorandom testing is given
by

E"’/"(ff) = ':_%}2 P/ (7, = t|m = n) (20)

which can be computed using (18) and (3).

Now consider the case of random testing. Suppose that
the number of samples to be applied to the circuit is nor
fixed and we are interested in determining the expected
number of vectors that have to be applied to detect a given
s-op fault f for the first time. The range of 7,is 2 < 7 =
o, From (19) and (9) we have

1 + V1 —4gq

1),
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l,k,—l,:z—2‘1~2)), 2 <r=m-1
' (18)
= m.
kont-2))., 2stsm-1
(19)
m=1), t=m

ki =7, and ¢ = 0.0837. If ¢ = 0.01 then the right-hand
side of (24) evaluates to 50. Thus to detect a s-op fault in
the pull-up network of gate g, the probability that the test
length will exceed 50 will be less than 0.01.- '

To compare E“""’(rf) and E™(7y), the formulas ex-
pressed in (20) and (22) were plotted as a function of g
for n = 64 with various sizes of the initialization set. This
is shown in Fig. 10. From this plot we observe that the
expected test length when testing without replacement is
always smaller than when testing with replacement. That
is, analysis made assuming random testing provides a
conservative bound for pseudorandom testirig.- Referring
to Fig. 10, where n = 64 and ky = 8, if ¢ = 0.02, then
the expected number of test vectors needed to detect a
given fault is <30. From the earlier plots, we find that
the probability of detecting a fault for g = 0.02 is =0.80.

V1 — 4q

1

==
PY(1y=1) = I =4q . 2

t—1 1

2!-2’ q=Z'

From (21) one can easily obtain E*(7,), which is given
by
1

q
In (21), when ¢ < §, the first term, (1 + V1 —-.4q)/2,
is the dominant term. Using this, we determine the value
of ¢ such that P"(7; = 1) =< ¢, for any given ¢. For ¢ <
1, PY(7; = t) is given by

EW(TI) (22)

P“I(Tf = f) = ‘g; Pw(‘ff: l)

| =T s

VI. FauLt CoveraGE UNDER RANDOM TESTING

The effectiveness of any test procedure is measured by
the percentage of faults that are detected. When applying
random test vectors the number of faults detected is a ran-
dom variable and one is naturally interésted in the ex-
pected number of faults detected by the application of a
random sample of test vectors. Determining the fault cov-
erage under pseudorandom testing poses an extremely dif-

1 — V1 - 4q

1
T V1 - 44 [(
Disbarding the second term in (23), we find that if
In(evl — 4
t = (e 2) (24)

In((1+ V1 - 4q)/2)

then the inequality P"(7; = 1) < ¢ will be satisfied.
- As an example, consider a s-op fault in the pull-up net-
work of gate g3 shown in Fig. 6, where n = 64, k, = 49,

1 + 1 -4gq
5 ;

i/ i
) - ()] @)
ficult combinatorial problem. We are therefore led to the
task of obtaining conservative approximations: Before we
proceed with this task, however, it will be instructive to
understand the nature of the difficulty.

Consider the earlier example of the two-level NAND cir-
cuit shown in Fig. 6. Assume that we are interested only
in faults f; and f;, defined by p-FET’s corresponding to
input A of gate g and input F of gate g; being s-op. The

2
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Fig. 10. Expected 7 test length versus gq.

initialization and sensitization sets for these two faults are
given by? '

We can arrive at a simple lower bound on the expected
fault coverage under pseudorandom testing by first con-

Tor = {ABCRST} = {111xxx} = ky =
T = {ABCRST} = {0110xx, 011x0x, 011xx0} o k=1
Tor = {ABCRST} = {Oxx, x0x, xx0} ® {Oxx, x0x, xx0}-= kg = 49.
Ti; = {ABCRST} = {111xxx, xexl111} = ky = 15.

From these initialization and sensitization sets we see
that Ty C Ty; and Ty, C Tgs. In general, the initializa-
tion set of one fault and the sensitization of another fault
may have common elements or the initialization and sen-
sitization set of one fault may be subsets of the initial-
ization and sensitization of another fault. Hence the event
of one fault being detected may (and oftén does) depend
on the event of another fault being detected. This is the
main cause of difficulty in counting the number of ways
a randomly selected set of vectors (either with or without
replacement) can detect a fixed number (> 1) of faults.
This task is far more difficult considering that the set of
all possible s-op faults that require a ‘pair of test vectors
is usually >>2. In such a case, knowledge of all possible
pairwisé intersections of the initialization and sensitiza-
tion sets of each fault is required.

*x represents a don't carc and ® represents the cross product,

‘sidering the expected fault coverage under random test-

- ing. To do this, assume that each trial consists of a ran-

“dom selection of a pair of test vectors- and ignore the

possibility that the second vector of some trial i and the
first vector of trial i + 1 may detect a fault. Let F = { £},
fori=1, - :+,r, denote the set of all possible s-op faults
and £ denote the event ‘that fault f; is detected on any
single trial. Thus on any trial, one of the r + 1 possible
events { £y, - -+, £,, £, ..} may occur, where £ . de-
notes the event that none of the r faults in F were detected.
Let I, denote the indicator function, that is,

£

In a sequence of m trials conducted with replacement, if
&; occurs one or more times, then the fault f; is detected.
Let ¥, denote the number of faults detected in a sequence

if &; occurs in m trials

otherwise.
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of m trials. Hence,

Y= 2 IE).

i=1

(26)

Let Z; denote the number of occurences of event £ in
m trials with replacement and g; be the probability of event
£, on any trial. Then

P{Z; = i;, -

m! i i s
Tal gl (27)

i|! T l,!lr+|.

where g; = koiky;/n’, gr+1=1-¢g = -+ — g, and
i,.+l=m-—t'|— et —i,..

From (27) it is easy to see that the marginal of Z; is
given by

=i} = ('f)q}'(t ~ )" (28)
J

The expected number of faults detected is given by

E(Y,)

% E((8) = Z P{z = 1)

M~

[t - P{z =0}] = Z] [1-(1=4a)"]

r

m

S :=2| (1-4q)". .(29)
This leads directly to the following theorem.

Theorem 4: The expected number of faults, ENF. de-
tected in a sequence of m trials under random testing sat-
isfies

ENF = r — 21 01 = g, (30)

o
Consider again the two-level NAND network shown in
Fig. 6. The total number of s-op faults in the pull-up net-
work is eight. For each such fault the values of g; were
computed and the bound, given by (30), on the expected
number of faults detected was found to be 4.72. Thus, the
expected fault coverage is =59 percent. As expected, this

" is a very conservative bound.

VII. SuMMARY AND CLOSING REMARKS

In this paper we have analyzed the detectability of
stuck-open faults in CMOS combinational networks when
tested with random and pseudorandom test sequences.
Under these two testing schemes we have addressed three
basic problems. First, we derived formulas for the prob-
ability of detection of s-op faults. Second, we presented
formulas for the expected test length under these two test-
ing schemes. Finally, we addressed the problem of deter-
mining the fault coverage. In the latter case we derived
simple conservative approximations.

All the formulas presented in this paper are functions
of the sizes of the initialization and sensitization sets. For
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a given s-op fault f; in a p-type pull-up network, the ini-
tialization set, T, is the set of input vectors.that result in
a 0 at the output of the faulty gate. The sensitization set,
Tyi. is the set of input vectors that result in a 1 at the
output of the faulty gate and sensitize a path from the site
of the fault to a primary output. The sizes of these sets
can be estimated by using one of several techniques, such
as the statistical fault coverage estimator known as STA-
FAN [4] or by computing approximations to.the signal
probabilities using the cutting algorithm [11].

By applying all possible pairs of vectors, of which there
are n*, one could theoretically detect all detectable s-op
faults. An efficient hardware implementation of a circuit
for generating all pairs of vectors (1, t,), where t and 1,
differ in exactly one bit position, has been reported in [1]..

Finally, the effect of hazards can invalidate some tests
for s-op faults [8]. This phenomenon implies that the ef-
fective value of g is actually less than kyk, /n* and there-
fore decreases the probability of detection.

APPENDIX

Proof of Theorem 1: Let (py, pa, ***", uy) be a
random selection of m test vectors, without replacement,
from the n possible test vectors. Let £; denote the event
that u€ Toand ;. €Ty forl < i < m — 1. We wish
to find the probability that there exists at least one index
i such that y; € Tg and p; 4 € T,. Thus the probability of
detection is given by

m=1
P’ (ko, ki n, m) = Pr[g E,}- (A1)

Consider the joint event { £, N &;,,}, which is, by defi-
nition, the event {p; € To Ny €Ty N1 € To N
Biv2€To}. Since To N Ty = ¢, {£& N &4y} = ¢. Thus
for any set of k indices iy, iy, = * , i, PlEi Bes =% 5
&i,) is zero if any two of the indices are consecutive,

Let C, ,, denote the set of r integers chosen from any m
consecutive integers such that no two integers in the se-
lection are consecutive. It is easy to show that

|Cr,m| = (m -7 +' 1).

" (A2)
By the principle of inclusion and exclusion we have

m=1 Llm/2] J1 j
Ue= %, Z he
i=1 J=l i ij€Crm=1 k=1
(A3)
For a given set of indices i), i, +* - , i € Cim—y,

| V%<1 &l can be determined as follows. In positions Iy
h, ***, Ij we have to place the j elements of T,. Since
To has kg elements, this can be done in (ko); ways. In
positions {; + 1,4, + 1, <+ -, i; + 1, we have to place
J elements of T,. This can be done in (k;, ); ways. Finally,
m — 2j elements have to selected from the remaining n
— 2j elements. This can be done in (n — 2j ) m—2; ways.
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Thus we obtain

J = (ko)}-(kl)}-(" - zj)m-zl
(ko), (k1),
" (n),,

Substituting the right-hand side of (A4) in (A3) and using
the identity given by (A2), we obtain

=[n—-m+ 1] (A4)

=[n-m+ 1]mjm§.I (-1

. (m —j) (ka), (K1),

i) Ty,

where m* = min (ko, ky, [ m/2 ] ). The total number of
outcomes is [# — m + 1],,. Therefore

Pr mJg. _ Sy (m i k), (k)
[,-,, '] (=1) ( )

(AS)

j= j (n)y;
—j\ (ko) (ky),
o B (m / ) —
j=0 ( ) J (n)u
(A6)
Equation (AG6) is the required result. O

Proof of Lemma I: Let H(ky, ky, n, m) = | —
1 (ko ki, n, m). Then using the following identity:

‘n\ n—1 n—1
"(k)=< k )+(k~I) (A7)
we get
kok,
H(ko, kyy n, m) = H(ky, kyy nym = 1) — aln —1)
“H(kp— 1,ky—1,n —2,m - 2)

H(ky, ki, n, 0) = H(kg, ky, n, 1) = 1. (A8)

Keeping ko, &, and n fixed, let h,, = In (H(kg, kywn, m)).
Then after taking logarithms, (A8) can be written as

hm = hm-—l + Ym-2

(A9)
where

| o koky

Ym-2 = In (l - ﬂ(ﬂ _ l)

Hkg =Lk —l,n=2,m—2)
H(kg, ky, n, m — 1) '

(A10)

Equation (A9) is a linear recurrence relation in m and
yields

m—2

hm = 2: Vi

i={Q

cm=2

Kok
i% ln(i _n(n—l)
CH(kp — 1,k —1,n—2,1i)
H(ko, ki n, i + 1) . )

m=2"
In[H (1— kok
i=0

n(n— 1)
Hlky— 1,k — 1,n -2, i)
‘ H(kg, ky, n, i + 1) )} (A11)

Using the fact thatIn (1 — x) <

I

Il

—x forx < 1, we obtain

_ Kk

—-(m -1)———. (A12)

n(n — 1) .
Combining (A12) with the definition of H(ky, k;, , m)
we get the final result. O

Proof of Corollary 1: Replacing m by n in (3), in the
statement of Theorem 1, we obtain

=y (), (R,
”%@k,nn)—l—}a( jf)_zsfﬂ
o (A13)

We now state some well-known identities [9] that are used
to obtain the final result:

1) (k), = (=1 [~k],
—i\  (~1)[-n]
n—=Jj\ _ 2j
) (7 )= (=1, 111,

(SO P=nf2], [ + 1)/2],
- ' [_n]j[llj

[=nly, = 29[~n/2],[(=n + 1)/2],

3) (n),; =
Thus we obtain

w ko], [ k],

w/o =1=- [=n].[1]. °
P4/ (ko, ky, 1, 1) =0 [=n];[1],

(A14)

The summation in (A14) is the generalized hypergeome-
tric series [9] of the form ,F,. Using the Chu-Vander-
monde identity [9] and rewriting the terms as binomial
coefficients yields the first part of the result. The approx-
imation given in (5) is easily obtained as follows:
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n — k,
(")
(&)
=k =k = 1) (n =k ky 4 1)
n(n—=1) -+ (n—ky+1)

o ) v
(1-=ts)

Replacing each term in the right-hand side of (A15) by
the largest term, (1 — k,/n), yields the final result. [J

Proof of Theorem 2: The probability of detection
using m test vectors is given by (A1) in the proof of Theo-
rem 1. When sampling with replacement,

(A15)

j g .
'ﬂ £, | = kdkinm =Y. (A16)
k=1

Substituting the right-hand side of (A16) into (A3) we ob-
ta_in : .
m=—1 Lm/2] : JnJ
j=1fm = j\ kgky
| =™ - = Al7
U= 2 o (") )

i=1

Since the total number of outcomes is n™, we have

mpl
Pl k)= %=1y (" )

i=1
Lem/2] . o
=l- 2 (-l)’(m. J)Q"
j=0 ]
(A18)

where g = (kok;/n*). The generating function for the
sum on the right-hand side of (A18) is given by

5. (A19)

By expanding F(x) in a power series and identifying the
coefficient of x™ the result is obtained. a

Proof of Lemma 2: The proof of this inequality is
identical to the proof of Lemma 1. Let G(ky, ky, n, m)
=1 - Pj(ko, k;, n; m). Then using the identity given
in (A7) and (A8), we obtain

G(ko, ky, n, m) = G(ko, ky, n, m — 1) - %
* Gk, by, n, m — 2) (A20)
G(ko, ky, n, 0) = G(ko, ky, n, 1) =1, (A21)

Keeping ko, k,, and n fixed, let g,, = In (G (k,. ky,n,m)).
Then following the same steps as in the proof of Lemma
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I, we obtain
. G(ko, ky, n, i)
8m = In [,-I}g (1 TGkor ko, i + 1) hA22)

where g = kok, /n?. Again, using the fact that In (1 — x)
= —x, we obtain

gn = —(m — 1)g (A23)

which results in

G(ko, ki, n, m) < e~(m=1q (A24)
Combining (A24) with the definition of G, we obtain the
final inequality. O

Proof of Theorem 3: P:,-"/"(ko, ki, n, m) is given by
(A17). Let Ag = kg/n and N\; = k,/n. Then

J
(k); =/ TL (N = i/n) -

J

(k), = "j,-]';'[o (N —i/n)

J

; :
2 I1 (1 —i/n)(1 = (G + i)/n).

(n)zf i=0
Substituting the above identities into (A17) we obtain
Pi’" (ko, ki, n, m) ;o .
l.mlzj . .j_l )\ -_— n l.
=1- 2 (-1yYII ("—’/—>

j=0 i=0 \ 1 —i/n

(L) () s

Let ¢ = NgA;. Then
lim Py/°(ko, ky, n, m)

n— o 2
(m/2] IR
=1- 2 (—1)’qf('" . ’). (A26)
j=0 J
The result now follows from Theorem 2. , O
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