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ABSTRACT

This thesis concerns itself with the specification of digital systems.
The specific focus of the work described here has been on understanding
system specifications written in natural language. The long term goals of
the research are to provide methods and software to assure that the

specifications are consistent, correct, and complete.

The research described here differs from previous research in several
ways. First, the natural language input is used to construct an internal
design representation, rather than just to query about existing design data.
Second, using natural language allows a generality of expression not found

in formal models. Finally, the natural language is not overly restricted.

A major part of the research described here involves formally
modeling the information found in system specifications. An extension of
the USC Design Data Structure is described, with emphasis on timing and
control flow. Then, this extension is used to model various concepts found
in system specifications, such as unidirectional value transfers and temporal

constraints. These models then provide a basis for the templates against

which input specifications are matched.

A semantic parser, PHRAN, is used as the basis for the actual
interface software. PHRAN contains a knowledge base of sentence patterns
along with associated concepts. PHRAN inputs Epglish sentences and looks
for patterns in the sentences. When it finds a pattern match, the concept

associated with the pattern is particularized with the information found in
the sentence.
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After PHRAN has parsed the input, the SPAN (SPeciﬁcation

ANalysis) package constructs fragments of the design data structure

described above, and informs the user what design information has been

found.

PHRAN-SPAN currently contains 13 concepts, 100+ nouns, and 25
verbs. It can handle ambiguity, nouns used as modifiers, and verbs used as

nouns. It has processed a number of sentences which come from actual

specifications.
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Chapter 1

Introduction

1.1. The Problem

The general digital system specification problem is that of capturing
and formally representing the necessary and sufficient information to
implement hardware, firmware and software which perform a prescribed
function in a well-behaved and predictable manner while satisfying any
constraints and achieving acceptable performance. The input to the
specification process is a set of requirements that describe the real world
functions to be carried out by the system. The digital system specifier
translates these into the domain of digital systems and adds required details
as pecessary to insure that the system’s behavior is correct. In practice,
specification of digital systems is generally done in an informa! manner,
relying heavily on written prose and various types of diagrams, e.g., timing
diagrams and flowcharts. Informal specifications are subject to a number
of recurring flaws, including but not limited to missing information,
incorrect information, overspecification and inconsistencies. Since these

four subproblems seem to be the most prominent, we address them

individually here.

1.1.1. Missing information

The primary problem with informal system specifications is that there
is no method for determining whether the information provided is complete.
By complete we mean that it is possible to produce a correct

implementation from the specification information. However, no general
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model of abstract behavior suitable for system specification exists in the

published literature; therefore, there is no framework on which to base

definitions of the necessary or required information for completely

specifying a system's behavior. The functional model of behavior has been

used in some cases, but this simply requires that the proper inputs and

outputs and the desired transformations be defined. Though this is trivial,
it has proven useful in various semi-formal specification systems [Heninger

80], [Tiechroew 77] and will be incorporated in the techniques proposed
here.

1.1.2. Incorrect information

Correctness of the information is a more difficult problem than
completeness. In general, correctness requires either an alternate or high-
level specification to compare against, additional information (e.g.,
assertions), or some other form of redundant information like typing of
variables. Alternate specifications may contain the same flaw(s) as the
original of primary specification, or different styles associated with the
specifications may make comparison difficult. Furthermore, there is no
complete formal behavioral representation which can be used in the
verification process. Limited aspects of the specification may be verified
independently by using techniques such as Petri Net simulation or temporal
logic theorems to prove certain properties of the system, but these

techniques are not easily extensible to the full range of behavior required.

1.1.3. Overspecification

Overspecification implies that the designer has restricted the range of
implementation unnecessarily. As in the case of missing information, the
ability to detect overspecification is critically dependent on the existence of

a general model of behavior. This model is required to generate the criteria
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for nonessential information. Frequently, the overspecification results

because the designer specifies an implementation, s.e., the how to do st
rather than the what to do. This problem is exacerbated by lack of the
proper constructs in the language for specifying the desired behavior and/or
by language constructs which force the specifier to use an implementation
style or level of description that is inappropriate.

1.1.4. Inconsistencies

There are two aspects of consistency that must be considered
[Winchester 80], one of which can be considered syntactic and one
semantic. The first is exemplified by checking for the numbers of inputs
and outputs, and ensuring that such things as item names, and description
formats are the same throughout the specification. Semantic conflicts of
information, such as expecting different behaviors from different states

which actually are identical, are more difficult to detect.

1.1.5. Other deficiencies

Though some formal specification languages attempt to address some
aspects of the four problems cited, the resulting specifications often lack

clarity and are incomprehensible to all but the language experts.

Finally, existing specification languages do not allow the expression of
causality except as a side effect of an actual implementation. The ability to
express causal behavior without forcing an implementation is essential when

specifying control information.



1.1.8. Lack of an adequate behavioral model

To understand the discussion in this section and Section 1.4, a
definition of a process is provided.

Definition 1.1: A process is an independently executing activity.

In system specifications, a process can: be started asynchronously (whenever
specified conditions become true); execute indefinitely; start, suspend and
terminate other processes asynchronously; exclude other processes from
executing; communicate with other processes; and be asynchronously
terminated or suspended itself when some specified conditions become true.
The (clock) rates at which these processes run may be different from
process to process (i.e., not a multiple of any common fundamental clock).
Processes communicate via shared data, synchronize at eritjcal points, or
compete for shared resources. This behavior is described in more detail in
Section 1.4. The problem with specifying system behavior is that the
behavior of multiple communicating and competing asynchronous processes
is not well characterized by existing models. This is even true when the
communication is across parallel branches in a single process and the events
are not completely ordered. Most existing techniques for describing or
specifying these types of processes overly restrict the solution, resulting in a
structured, more costly hardware design; they simply cannot be used to
specify the behavior of complex systems composed of large numbers of

components and many levels of hierarchies.

Having defined the general digital system specification problem, we
will now identify the specific aspects of the problem to be addressed by this
research. This work will demonstrate that an informal description of the
behavior of a digital system written in English using a restricted vocabulary

can be used to produce a formal representation of that system’s behavior.
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We will show that the formal representation produced in this way will allow
us to check for certain missing information. Prior research [Parker 83] has
shown that this formal representation of the system's behavior can be
checked for the correctness of temporal storage and the transfer of values.
This work will also demonstrate that certain forms of ambiguity that arise
in natural language descriptions can be detected using a few simple

beuristics and corrected through interaction with the user.

The remainder of this chapter is organized as follows. Section 1.2
presents the proposed goals of this research. Section 1.3 discusses the
overall approach to this research. Section 1.4 identifies four classes of
asynchronous behavior and describes each class in detail as well as giving
examples of the kinds of sentences that are used in describing this behavior.
Section 1.5 discusses the representation and mapping issues associated with
the problem and how they influenced our approach. Finally, Section 1.6

provides an outline to the remainder of this thesis.

1.2. Proposed Goals of this Research

In this section, we will first present our long term goal which forms
the framework for this research. Then we will describe a set of subgoals

corresponding to the results presented in this thesis.

The long term goal of this research is to produce a system with the

capability to accept and analyze an informal specification for a digital

system.



6

The system will be capable of analyzing the specification to detect the four
properties:

e incompleteness,
¢ ambiguity,
e inconsistency, and

e redundancy.

Ideally, the system would be interactive and would sassist the user in the
construction of the specification. Before a system of this type can be built,
several open research problems must be solved. They include research into

1. man-machine dialogues,

2. formal models of digital system behavior,
3. knowledge representation, and

4. system specification.

Because of the broad scope of these problems, subgoals were formulated for

the immediate research. The subgoals are

1. to produce a system that accepts a large number and variety of
single sentences that are characteristic of informal specifications,

2. to provide a system that is capable of analyzing the input for
completeness and ambiguity, and

3. to construct a system that maps the natural language input into
a formal model of digital system behavior.

The approach outlined in Section 1.3 is intended to produce a system

satisfying these subgoals. The future problems not included in the subgoals

or approach will be discussed in Chapter 7.



1.3. The Approach

The goal of this research is to model, using a small set of system-level
concepts and the design data structure, the information to be found in a
system specification. This research is based on the premise that informal
specifications are useful (albeit error-ridden) and that natural language will
continue to be the primary representation tool of the system designer.
Therefore, our approach is to provide the system designer with an
automated tool that accepts restricted English text as input and uses this
input to construct a formal model of the behavior specified. This formal
model may then serve as an input to other tools which perform design
synthesis, and analysis, including validation and verification. If the formal
model is neutral! and complete, the information contained in the model can
be transformed into other formal models to allow the full power of
techniques like data flow analysis, Petri nets and temporal logic to be used
when appropriate. Even if a formal system specification model were desired

the research performed here would be a prerequisite to such a model.

To be effective, this interface tool must mot corrupt the specifier's
input in any way. However, it must resolve potential ambiguities as well as

assisting the user to produce a correct, complete, consistent and

comprehensible specification.

The following steps were followed in developing this specification

technique:

1. characterize the system specification problem,

2. classify the information contained in specifications into a small
set of concepts,

lBy neutral, we mean that there is no implementation-bias (e.g., a preferred
synchronization scheme like monitors or a scheme that requires the user to explicitly denote
potentially parallel processes).



3. determine how to apply past or related research to the current
problem,

4. develop a model of abstract system behavior,

5. use existing parsing software to conmstruct a prototype natural
language interface, and

6. validate the specification technique via a set of well-chosen
examples.

1.4. Classes of Behavior

Behavior of a digital system may be synchronous or asynchronous.
The model of behavior and the specification technique investigated in this
research support the specification of both kinds of behavior. However, since
synchronous behavior is better understood, this research has focused on

asynchronous behavior, particularly asynchronous concurrent behavior.

1.4.1. Four Classes of Asynchronous Behavior

Asynchronous concurrent behavior is prevalent in 1/O interfaces and
other internal interfaces between two separate, independently clocked

systems. This asynchronous concurrent behavior may be further classified

into one of four categories:

1. asynchronous branching,
2. interprocess control and subprocesses,
3. communicating sequential processes, and

4. competing processes initiated asynchronously.



1.4.1.1. Asynchronous branching

The asynchronous branching class includes all dynamic escape
mechanisms, 1.e., the process may enter a different state at any instant of
time. Hardware resets are a common example, as well as the timeout

mechanism used in displays, terminals, pocket calculators, bus and network
controllers and certain fault-tolerant systems.

1.4.1.2. Interprocess control and subprocesses

The interprocess control and subprocess class illustrates the various
mechanisms required by one process to control another subordinate process,
i.c. subprocess. These mechanisms are: initialize, start, wakeup or enable,
suspend or inhibit, and terminate. These mechanisms are thought to be a
complete set. An example of this is a network controller process which

initiates 8 subprocess which performs a selective receipt of messages sent in
a broadcast mode.

1.4.1.3. Communicating sequential processes

The class of communicating sequential processes involves at least two
processes which are proceeding concurrently and are required to share
access to data or exchange messages as an integral part of their activity.
This situation is common to operating system theory, which contains a rich
set of examples. A UART (Universal Asynchronous Receiver/Transmitter)
device which contains one process reading data at one rate and a second
process accessing this data and writing it out at a different rate is an

example of this class of behavior.
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1.4.1.4. Competing processes initiated asynchronously

The class of competing processes initiated asynchronously is the result
of asynchronous branching by two or more concurrent processes to two
processes or states that require mutual exclusion in time. This class occurs
when handling concurrent exceptions that are never expected to occur
concurrently. Conflicts over the flow of control or over resource sharing
can occur when unexpected concurrent execution occurs. For example, an
error condition in an arithmetic pipeline stage which occurs concurrently
with a cache page fault may interact in an unpredictable or undesirable
fashion. Several independent studies have shown this to be a major source

of errors in production systems [Parker 83), [Suzuki 84].

1.4.2. Kinds of Sentences

Sentences describing systems with these four classes of behavior were
taken from actual specifications [USN 73], [[BM 74], [DEC 79,
[AdvancedMicroDevices 80), [Intel 84]).  The ability to accept these
sentences demonstrates the potential practical utility of this specification

technique. Examples of these sentences are provided in the following list:

1. A block of data bytes ts transferred by a sequence of data
cycles.

2. The peripheral equipment shall sample the EF code word which
18 on the OD lines.

3. Each requestor communicates with the arbiter via two lines, a
request line and a grant line.

4. When a requestor needs the shared resource, 1t asserts its own
request signal to the arbiter.

5. Upon receipt of the assertion of INTR, the arbitrator ceases to
~ 18sue BGs.

6. Select shall be dropped 100 ns after the write 18 begun.
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7. Reset terminates any operation in progress, and clears the
slatus register to zero.

8. When read of an Ezternal Register begins, the EB Read/Write
line shall be raised.

9. The data handshake cycle 18 controlled by the TX and TYA lines
with the line CX=0.

10. During the request phase, the requesting agent places address
and control in formation onto the bus.

11. Agents will assert the BUSERR* line whenever they detect a
problem with data, address, or control tn formation.

Having characterized the classes of behavior and the kinds of

sentences we expect the system to process, we now examine the

representation issues raised in Section 1.3.

1.5. Representation and Mapping Issues

To process a specification written in natural language requires at least
a target representation and a procedure to map the text into the target
representation. We partitioned the problem of mapping the restricted

English input into the final representation of the design data into two
parts:

1. Mapping from English sentences into a semantic model of the
domain of discourse, and

2. Mapping from the semantic model of the domain of discourse to
the internal model of digital system behavior.

This partition has two advantages:

1. It reduces the problem of mapping across a large semantic gap
into two simpler mapping problems.

2. It permits the mapping from English to the intermediate
representation to be done on one sentence at a time.
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The disadvantage is that two representations and two mapping procedures

are required to solve the problem. The interrelationship of the two
representations is discussed in Chapter 4.

introduced individually here.

Each representation will be

1.5.1. Model of the Domain of Discourse and Mapping

Various representation schemes wused by natural language
understanding [Schank 73], [Schank 75], [Schank 81], [Tennant 81}, [Dyer
83, [Hayes 83], [Sowa 86] and other areas of artificial intelligence [Minsky
68], [Bobrow 75), [Findler 79), [Schank 77], [Sowa 84) were reviewed in
developing the underlying representation used to model the domsin of
discourse. The style of representation developed was modeled on Schank's
Conceptual Dependency (CD) formalism. This style was chosen because it is

o declarative,

o easily extended to a new domain,

e based on common action verbs,

¢ based on the notion of causality, and

e used by a large number of parsers.

For the mapping process from English to the semantic model, PHRAN
(PHRasal ANalysis) [Arens 86] was chosen because:

e it is a knowledge-based natural language parser,
e its knowledge representation is based on CDs, and

e it is documented and available.
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1.5.2. Model of Digital System Behavior and Mapping

The choice of a model for digital system behavior was based on the
following criteria:

[y

- a formal definition of the semantics,
2. neutrality, 1.e. no implementation bias,
3. the ability to capture causal relationships,

4. a complete timing model for both synchrony and asynchrony,
5. the ability to support incomplete designs,

6. the ability to support hierarchy, and

7. the ability to represent other types of design information (in
addition to behavior).

As with the model for the domain of discourse many models were
reviewed. Several candidates satisfied five or six of the seven criteria;
however, no representation satisfied all seven. Many of the models suffered
from implementation bias or only supported synchronous behavior or
asynchronous behavior. Most of the alternatives are discussed in Chapter 2
as related research. Additional information and pointers to the literature
can be found in several texts on concurrent and distributed computation,

programs and modelling [Cohen 86), [Gebani 86), [Filman 84], [Paker 83|,
[Kabn 79).

The mapping procedure from the semantic model of the domain of
discourse to the model of digital system behavior is performed by a separate
program called SPAN for SPecification ANalysis. The problem addressed
by SPAN is greatly simplified by the tight coupling between the semantic

model of the domain of discourse and the model of behavior. SPAN
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identifies major structures in the model of behavior and their missing
components. SPAN also identifies ambiguity and can alert the specifier as
to the source of the ambiguity. SPAN's final task will be to combine the
pieces of the specification created on a sentence by sentence basis into a

single representation. This synthesis task is discussed in Chapter 7 under
future research.

1.5.3. The Semantics of the Design Data Structure

The DDS was designed for representing digital designs in a synthesis
system like the USC Advanced Design Automation System (ADAM)
[Granacki 85]. However, the semantics of the DDS—in particular, the
semantics of the representation of timing and sequencing information-—were
not fully defined. Therefore, as part of this research we defined the
semantics of both the data flow subspace and the timing and sequencing
subspace as discussed in Chapter 3. We also extended the timing and
sequencing model to cover causal relationships, constraints and delays by
refining the basic representation. The refinements and extensions to the
model led to a better understanding of asynchronous behavior. With these
improvements the model could satisfy the criteria for representing digital

system behavior enumerated in Section 1.5.2.

1.5.4. Extensions to PHRAN

PHRAN's basic capability for "parsing” natural language input are
quite extensive and most of the basic words, phrases and sentences only
required additions to PHRAN's database. However, some problems arose in
parsing noun phrases and also nouns and verbs with the same lexical stem

(e.g., address, clock, interrupt, process, transfer).
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In both these cases, modifications were required to PHRAN's control

routine and also generalized syntactic patterns were required to support the

parsing. The details of these extensions are discussed in Chapter 5.
1.6. Thesis Outline

Chapter 2 describes related research. This research touches on a
number of different areas: computer hardware description languages,
programming languages, mathematical models for hardware and software,
graphical techniques, specification of programs and software systems, and
informal techniques. Based on this review, the deficiencies in existing

representations and techniques are identified.

Chapter 3 describes the DDS, which was selected as a formal model
of abstract system behavior. This description focuses on the semantics of
the Data Flow Subspace and the Timing and Sequencing Subspace and the
bindings between these two subspaces. The other two subspaces, the
Structural Subspace and Physical Subspace, are described only when they

are required to complete a behavioral description.

Chapter 4 presents the relationships between the natural language
input and the various representations used by PHRAN-SPAN in processing
this input. PHRAN's output is the input to SPAN, the analysis program.
Example sentences are given for each type of abstract system behavior and

its corresponding DDS template. The natural language basis for the DDS

templates is also described.

Chapter 5 describes the components of the natural language interface:
the corpus (a collection of writings), PHRAN and the additions to PHRAN
and its knowledge base to process system specifications. Also, an input

format based on the IEEE standard for Software Specifications is presented.
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Chapter 6 presents results of running test cases. The results consist of
both successful and unsuccessful attempts at understanding sentences. The
unsuccessful attempts are analyzed and discussed in detail along with

possible future approaches to the problem.

Chapter 7 summarizes the conclusions reached in performing this

research and future research problems to be considered.
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Chapter 2
Related Research

2.1. Introduction

There is a large body of research which has addressed the problem of
describing digital hardware systems, commonly known as CHDLs
(Computer Hardware Description Languages). In addition, various areas in
computer science research have focused on the problems of specifying
software systems and programs and describing concurrent behavior. These

techniques may be divided into two distinct categories, formal and informal
specifications.

2.2. Formal Languages

Most formal languages for hardware description involve register-

transfer behavior. Only a few have intended to capture concurrent
asynchronous behavior.

2.2.1. SLIDE

SLIDE (Structured Language for Interface Description and
Evaluation) [Parker 81] is a language designed for the description of input,
output, interfaces, and interconnections. It is based on the concept of a
process and allows the description of asynchronous concurrent processes
which can communicate with, compete with, and initiate and terminate
other processes. SLIDE provides mechanisms for delay and timeout and

other I/O specific functions, e.g., formatting and FIFO buffers.
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SLIDE also allows the designer to specify technology-relative behavior of
the hardware lines and registers.

SLIDE addresses a level of abstraction which is slightly broader in
scope than a register-transfer level language. In fact, the SLIDE syntax is a
superset of the ISPS (Instruction Set Processor Specification) syntax;
therefore SLIDE is partially constrained by ISPS’ capabilities and also
suffers from some of the same problems, e.g., mixing behavioral and
structural information. In addition, the process interactions must be

described at least partially in terms of their hardware implementation.

Despite these shortcomings, SLIDE is one of the few CHDLs which
permits description of communicating asynchronous concurrent processes.
Parker and Wallace identify some important primitives for modeling this
type of hardware. The research proposed here is aimed at levels of
abstraction above the one available in SLIDE and also may propose
extensions to SLIDE such as those in SLIDE+ [Parker 84).

2.2.2. Other HDLs

In a tutorial on CHDLs, Shiva [Shiva 79] listed forty-three languages.
Since then more than 20 new languages have appeared in Ph.D.
dissertations [Matty 83], [Huang 81], [Kumar 82], [Moore 82, [Singh 81],
[Dudani 80] and other publications [Uehara 83], [Koomen 85}, [Barbacci
85). Some of these languages are low level and address only logic-level
descriptions, while others represent only incremental enhancements or
successors to already powerful languages. There are a few exceptions like
VHDL (VHISC Hardware Description Language) which doesn’t belong to

either of these two categories and will be discussed in Section 2.2.2.4.
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Most of these languages have been developed to support simulators
[Lipovski 78], and some are just variants of programming languages.
Those which will be discussed here were selected as being representative of

a particular class of languages and demonstrate important concepts in
describing or specifying hardware.

2.2.2.1. ISPS

Instruction Set Processor Specification (ISPS) [Barbacci 79a] is one of
the most widely used CHDLs. ISPS is a procedural language for describing
the behavior of computer hardware at the register-transfer level. It has
been used extensively for description and evaluation of different
architectures in the Military Computer Family effort [Barbacci
77] [Barbacci 79b]. ISPS is also the input language for describing the
behavior of complex digital systems to the CMUDA system [Parker
79a] which synthesizes hardware. Other uses have involved the generation

[Nagle 81] and verification [van-Mierop 78] of microcode, and educational
uses [Parker 79b).

The lack of constructs for expressing timing and the lack of process
level constructs, particularly those required for cooperating processes as
described in Section 1.4, make ISPS a good but incomplete model of
behavior at the register-transfer level. Therefore, ISPS cannot be used

directly as a specification language or model of behavior for this research.

2.2.2.2. DDL

DDL (Digital system Design Language) [Duley 68], [Uehara 81] is an
example of a block-oriented nonprocedural language. More importantly,
DDL requires some units of hardware to exist and be named [Dietmeyer 74).
There is some ability to describe timing but it is at a very detailed level and

does not support clock variables. The general underlying description of
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sequencing within a block is described by a finite sutomaton. Some

hierarchy can be accommodated by linking the state machines from one
level to another through a control variable.

Though its nonprocedural nature is very powerful and allows
description of asynchronous branching, it requires the specification of too

much implementation-oriented detail to serve as a specification language.
2.2.2.3. ADLIB

ADLIB (A Design Language for Indicating Behavior) [Hill 79] is an
example of a multilevel language. It is intended to model the architectural
level, the register-transfer level, gate level and circuit level. ADLIB is
strongly linked to SDL (Structural Description Language) [vanCleemput
77] and is only used to represent the behavior of the components whose
interconnection is specified by SDL. As a superset of Pascal, ADLIB allows
the very powerful recursion constructs of Pascal and essentially mixes the
description of software and hardware in these components. ADLIB is a
very powerful language for describing a system to a simulator but requires

the sequencing be described in detail through timing relations.

ADLIB introduces some useful control structures like UPON and
TRANSMIT, but its use of generalized programming constructs make it
difficult to determine what hardware is specified and what software is
specified. This is likely to result in inefficient solutions to both parts of the
problem. The reflection of the structure of the modules in the behavior will

tend to produce overspecified desigas.
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2.2.2.4. VHDL

VHDL (VHSIC Hardware Description Language) [Dewey 84),

[Shahdad 85], [Saunders 85), [Intermetrics 85, [Nash 86] represents a

significant advance in state-of-the-art hardware description languages.

VHDL was strongly influenced by two requirements:

1. to use Ada constructs whenever possible, and

2. to only include features in the language that can be realized in
hardware.

These requirements resulted in VHDL being the first hardware description
language to employ the package concept originating in Ada which provides
a mechanism for encapsulating definitions and utility functions. This
feature can be used to encapsulate technology dependencies into one
location. Another result was the incorporation of strong typing and user-
defined data types, a feature that gives the engineer the capability of
defining convenient abstractions (such as "instruction" or "address") and

the operations associated with abstractions [Dewey 84).

VHDL does not support a simulation process model, t.e., it cannot
suspend (wait) sequential statement execution and then continue based on
passage of time or occurrence of some condition. VHDL does not support
wire delays or global time and it prohibits the use of global variables,
making it difficult to describe and model clocking schemes. Other
controversial aspects are discussed in the VHDL critique of Nash and
Saunders [Nash 86]. Furthermore, they state that "Some of these issues
have been discussed by VHDL developers; however, no semantically

consistent solution was found satisfactory during VHDL's design.”

With a formal language as complex as VHDL, some language design
decisions may arbitrarily exclude the ability to describe behavior in a

neutral way, thus resulting in an implementation bias.
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2.2.3. Specification Languages for Software

There have been several attempts to develop specification techniques

for software development [Gehani 86]. Two of the most notable are Clear

[Burstall 81] and Gist [Goldman 82]. Clear is based on algebraic theory;
namely, the work of Goguen et al. |[Goguen 77}, [Goguen 79). Gist is a
formal language with an ALGOL-like syntax which permits expressibility by
the provision of many of the constructs found in natural language

specification of processes. Each of these languages will now be discussed in
the context of this research.

2.2.3.1. Clear

In Burstall’s own words "...the primitive operations of Clear are very
close to the underlying mathematical theory and they are not as powerful
as one might desire for convenience of expression. Perhaps Clear could be
thought of as an assembly language, though one with procedures and user
definable types. We hope at some future time to provide higher level

languages based on the same semantic ideas, which will be of greater

practical value in software engineering."

This summary demonstrates the two main deficiencies of the algebraic
specification method --- the difficulty of conmstruction and the lack of
comprehensibility. Another deficiency in adapting or building on these
techniques for hardware specification is their current lack of concurrent

description techniques and their inability to specify performance [Liskov
79).
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2.2.3.2. Gist

Gist, on the other hand, aims at solving many of the same problems
addressed by this research; however, it differs in two important ways. The
first is scope; Gist makes no assumptions about what is being specified and
hence, requires a closed specification that includes the environment.
London and Feather [London 82] point out that "Dealing with the
distinction between system (the portion of the specification to be
implemented) and environment (the remaining portions of the specification
which establish the framework which the system will operate) is very
difficult." This is very important in that the end use of our specification is
synthesis and we are not going to synthesize the environment. The second
difference is the ability to represent both synchronous and asynchronous
behavior. In trying for generality, Gist is built on the asynchronous notion
of demons, making it relatively poor at synchronization [Cohen 84). Also
its concept of histories would not support the level of detail necessary to

specify timing for the hardware in a digital system.

Onpe of the features of Gist reflected in this work is the declarative
representation of constraints. No examples of Gist available in the

literature are applicable to the domain of this research.

2.2.4. Programming Languages

Using programming languages for describing hardware limits the
choice to those languages which can describe concurrent behavior. Some
possible candidates are Concurrent Pascal, MODULA 2 and Ada. All are
modern languages with modularity, powerful data abstraction mechanisms
and structured programming environments. The basic difference between
them is their mechanism for process interaction [Andrews 83]. C-Pascal

and MODULA 2 are procedure-oriented, monitor-based languages, whereas
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Ada is an operation-oriented language which uses remote procedure calls.

Ada’s form of interaction is related to procedure-oriented process

interaction as well as message-oriented languages like Communicating

Sequential Processes? [Hoare 78]. Therefore Ada enjoys the advantages of

both types. Each of the languages mentjoned restricts the user to describe

the problem in a different way, but all can be shown to be equivalent
descriptions.

As in the case of ADLIB, these languages will probably result in
overspecified designs. As Andler [Andler 79] indicates, this level of
description still involves implementation details and does not support
specification of a design. Though these three languages are not directly
applicable to the hardware specification problem, they offer valuable insight
into the general specification problem. A good example of this insight
comes from another programming language for distributed systems, NIL
[Strom 83]. This language uses an interesting mechanism for data security
by an extension to strong typing called typestate checking. Each operation
of a data type is assigned a pre-typestate and for each possible outcome a
post-typestate. This allows checking across communication interfaces as
well as a uniform method for handling exception outcomes. This
mechanism, together with some other restrictions on branching, is used to

verify program correctness without theorem proving.

2CSP is certainly an example of a programming technique but does not qualify, based on
Hoare’s original paper, as a modern language with a supported environment.
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2.3. Graphical Techniques

Graphical techniques which employ states or control flow are useful
but result in a combinatoric explosion of nodes and ares when describing
concurrent processes for all but trivial cases. These techniques are better
suited for analysis of certain specific problems with a small number of

states. They are not suited to specification of systems because of the
combinatoric explosion.

2.3.1. Petri Nets

A Petri net [Agerwala 79), [Peterson 77] is an abstract formal model
of information flow. This model is capable of modeling asynchronous and
concurrent activities. Instead of the full details of the theory, two examples
from the literature will be given. The first, by Agerwala (Figure 2-1)
indicates the usefulness of a Petri net in modeling concurrency and conflict.
The model in Figure 2-1 represents a single processor devoted to servicing
two devices that are gathering data from the outside world. The cycle on
the left of the figure represents device D, and the cycle on the right device
D,. Device D, obtains new data (firing of ¢,) only when the previous data
has been transmitted (token in p,). Completion of this activity is signalled
by a token in p,. Under these conditions, if the processor is available it
executes the service routine for I, and signals that the transmission is
complete by placing a token in p,. The whole cycle for I, can then repeat.
The cycle for D, is quite similar. The second, used by Sorensen [Sorensen
78] (Figure 2-2), demonstrates the difficulty in partitioning Petri nets to
reflect the structure of the problem. Sorensen shows his model where the
interface between P1, P2, and P3 is clean, and independent processes or
groups of processes can be isolated. This is often difficult in a Petri net

model as shown in Figure 2-2 where the bus is represented by the place M.
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Figure 2-1: A Petri Net model of a processor
servicing two devices.

2.3.2. UCLA Graphs—--Graph Model of Behavior

A system is described in the UCLA Graph Model of Behavior by a
data graph, a control graph and an interpretation. The Graph Model of
Control (GMC) was shown to be equivalent to Petri nets [Gostelow 77,
[Shapiro 83). Since 1971, many extensions have been added to increase its
modeling power; however, as pointed out by Shapiro most of these
restrictions must be relaxed to verify system behavior using these graphs.

Most of the current techniques for verifying the behavior of systems using
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3y ..

- P1

Figure 2-2: The use of a place in a Petri Net
to model a common bus connecting the three processes.
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this graphical technique involve exhaustive simulation and, therefore, offer

little advantage over other representations which are based on or are
extensions to Petri nets.

The GMB was developed for use in SARA.®> The fact that SARA also
depends heavily on building block models implies an implementation early
in the design and hence a possible overspecification. The objective of the
specification research proposed here is to follow the principle of least

commitment and not to rely on implementation-oriented building blocks.
2.4. Mathematical Models

Three characteristics associated with mathematical models [Dijkstra
81] are relevant to the problem of specification. These characteristics are

e generality,
e precision, and

e provable properties.

Four mathematical models are explored in detail here: behavior expressions,

predicate path expressions, temporal logic and the CCS (Calculus of

Communicating Systems.

2.4.1. Behavior Expressions

Since Behavior Expressions (BEs) [McFarland 81] are an abstract
model of behavior, we first introduce a less abstract behavioral
representation, ISPB, which will be used as an aid in explaining BEs. ISPB
is a subset of ISPS discussed in Section 2.2.2.1. The actions defined for

ISPB are contained in Table 2-1. The atomic actions control the internal

3sARA (System ARchitect Apprentice) is a system developed at UCLA for computer-
aided design of computer systems.
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working of the machine by changing local variables and altering control
flow. They also cause interactions with the external environment by
reading and writing global variables. In ISPB a special naming convention
is introduced to differentiate global or external variables from local
variables. Lower case letters u,v and w, sometimes with primes and
subscripts, stand for local variables. The lower case x is reserved for global
or external variables. Programs in ISPB constitute a low-level behavioral
description. All interaction with the environment is through the global
variables. The local variables determine the state of the machine. The

following definitions are quoted directly from McFarland.

Definition 2.1: An event ¢ in ISPB is a triplet of the form <read, x;,
¢> or <write, X;, ¢> or \the empty event) where X; is a global variable
and c is a constant value in the domain of X;- An event is a fully

interpreted interaction with the environment.

Definition 2.2: A history n is a sequence of events. It may be finite
or infinite.

Definition 2.3: A behavior is a set of histories.

Definition 2.4: If M is a machine description in ISPB, Bh(M) is the
behavior of M, t.e., the set of histories generated by M.

Based on these four definitions, McFarland constructed BEs by
augmenting regular expressions with predicates to show data dependencies.
These predicates allow each event in an expression to be dependent on the
past history of inputs to the program and the number of times any loops in
which it is embedded have been erecuted. The latter dependency is made
possible by assigning to each loop in the expression a loop counter, which is
an integer variable different from any program variable. Since a machine

can have a large set of histories, some of which are repetitive, it is
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Definition

leave fk

restart fk

skip

Complex Actions

if b then A,

else A2
ApA,

Al next A2

call fk

evaluate expression e and place in u
evaluate expression e and place in X;
read x; and place in u

exit procedure f, and return to calling
point

return to beginning of procedure f, and
continue execution

skip to the next action

if the Boolean expression b is true
execute Al
otherwise execute A2

the execution of actions A, and A,
is order-independent

complete action A, before beginning A,

call procedure f,

Table 2-1: ISPB Actions.
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convenient to use regular expressions [Shaw 80] to represent its behavior.
An event schema E is a string of the form 4, R(x;) or W(x,) (¢.e. null, read
or write) for X; ¢ X, the set of global variables. An atomic BE is a pair of

the form E:P where E is an event schema and P is a predicate. An example
of an atomic BE is

wr(xl):(xl =08 Xy = 1)

Its meaning is that "the value 0 is output to x, and the last value input at
Xo wWas 1."

Three functions designated T, L and R can be used to transform a
precondition and an ISPB atomic action into an atomic BE. To apply these
functions, we take an ISPB program and compute preconditions and
postcondition for every action in the program, following basically the
method of Floyd [Floyd 67] adapted to the peculiarities of ISPB. The
precondition of an action is a logical formula which states what must be
true of the internal variables, the external variables and the loop counters
just before the action is executed. The postcondition is a similar formula
describing the state of the system and its history just after the action has
been executed. The function T, takes an action A and a precondition P for
that action and produces a postcondition. The T function is shown in
Table 2-2. Then these atomic BEs can be easily transformed into complex
BEs which show sequencing, parallelism, choice or looping.  This
composition of BEs is facilitated by the fact that ISPB complex actions
translate one-to-one into BE operators. A conditional statement translates
into "+"(OR), 2 "next" to a "." (concatenation or sequence), a ";" to a

*||* (order independence) and a procedure "call" to a loop.

The purpose of the other two functions L and R is to compute

"leave" and "restart” conditions respectively. Behavior expressions are one
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T[AJP

Atomic Actions

uee
X; +e
u*x
leave fk

restart fk

skip

Complex Actions

if b then A,
else A,

AyiA,

Al next A2

call fk

JVP<ucu>Au=e<ueru>
P

3v, ) P<ue«u, ei>

Aj= Tl A u = x(§)

false

false

P

TIAl(P A D) + T[A,)(P A ~b)

aﬂ’pﬂ’g(TlAI]((PAE1=E‘1)<E2 *+ E'2>)
A TIAY)(PAR, = w'p)<w; « W' >))

T[A,)(T[A,](P))
31 {L[A £, )P (P.D) + T[A)(P,(P,}))}

Table 2-2: Definition of T, taken from [McFarland 81].
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of the most abstract forms available for expressing a machine's behavior.
However, they are limited to the description of a single process behavior
and cannot support explicit description of reading and writing of variables

across parallel branches, i.e., cooperating processes with different clocks or
asynchronous branching as described in Section 1.4.

2.4.2. Predicate Path Expressions

Predicate Path Expressions (PPE) [Andler 79) are a high-level
synchronization construct that is used to specify synchronization as part of
the type definition of a variable. The data abstraction will therefore
contain the representation of that data type as well as definitions of all
operators that can be applied to objects of that type. The PPE then

specifies the allowable sequences of operations on an object of that type.

An example of a type definition follows:

The dats representation: message

The operations: write(buffer, message) and
read(buffer) --> message

The synchronization: path (write.read)s

The dot "." expresses sequencing, i.e. write has to be performed before
read. The Kleene star ("s") expresses repetition of the entire sequence, 1.e.,

we can perform another write once a read operation has consumed the

previous message.

Note that since the definition occurs where the shared object is
defined and not where it is used this enhances the readability of the
description much like the procedure abstraction mechanism. Also by

adding predicates to path expressions, Andler has avoided bhaving to
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introduce a large number of special purpose operators [Brinch Hansen
73] for the different types of synchronization problems.

Another example taken from Andler's thesis is the shared bounded
stack. The PPE is:

type stack [int maz) =
def ttemas = term(push) - term(pop)
path (push(items < mazx) | (pop|top) [steme > 0))»

where the | represents selection. The path expression describes the mutual
exclusion of the push, pop, and top operators. It also specifies that push
can only be applied when items (the number of elements currently in the
stack ) is less than the maximum size maz, and pop and top can only be

applied when there are elements in the stack, i.e., stems is greater than
zero.

Although PPEs are limited to the class of Communicating Sequential
Processes, the close relationship between the concepts of history and the
different nature of the predicates indicates that a significant increase in

expressive power might be achieved by combining this representation with
that of BEs.

2.4.3. Temporal Logic

Temporal logic [Rescher 71] is an extension of standard logic to time-
related propositions. Temporal logic has been used by several researchers
[Pnueli 77}, [Hailpern 80], [Bochmann 82, [Lamport 83], [Moszkowski 83],
[Fujita 85] to reason about temporal issues associated with programs,
network protocols, and most recently hardware. The general level of
abstraction presented by Bochmann, Moszkowski and Fujita was at a level
where the individual states of the device had to be identified and much of
the reasoning had to be done in terms of signals and their levels. Also the

description of the behavior mixes structural, data flow and sequencing and
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timing information in a way which makes it difficult to reason about any
one of these individually. Other work by Schwartz et al. [Schwartz
83] which could be applied to this research has introduced intervals and

used temporal logic to reason about these intervals

2.4.4. Representation of Temporal Information

In addition, to the classic view of temporal logic described in the
previous section, other work on representing temporal information has been
done in the area of artificial intelligence [Bolour 82]. The work of Allen
[Allen 83] is closest to the research done in extending the DDS timing and
sequencing representation. The basic similarities are the notion of the
temporal interval as a primitive and the characterization of the
relationships between temporal intervals in a hierarchical manner using
constraint propagation techniques. Our research differs in that we have
added a different notion of points and have extended the semantics of the

relationships to reflect causality. This is discussed in detail in Chapter 3.

2.4.5. Calculus of Communicating Systems

Milner’s original work [Milner 80] describes a mathematical semantics
for concurrent computation and communication. The main concern of this
work is proving the semantics of the model and that the communication
operations provided by the calculus form an algebra with the right
properties. The original work also focused on asynchronous behavior and
did not describe synchronous behavior. In a later work [Milner 83], a more
general theory of synchronous behavior was developed and a asynchronous
behavior is treated as a subclass of the synchronous calculus. The primary
primitive concepts that give the Calculus of Communicating Systems (CCS)
its modeling power are value-transmission and message passing, the notion

of a port, and rules governing how processes connect and interact. As with
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other models discussed in this chapter, CCS's primary deficiency is an

inability to deal with detailed timing considerations. Lamport [Lamport

83] also questions the capability of this type of approach to support
hierarchical specification.

CCS has been used successfully by Milne as a basis for CIRCAL
(CIRCUIT CALCULUS) [Milne 83] and Gordon who extended the CCS
model to handle register transfer systems [Gordon 81a), [Gordon 81b).
CIRCAL is suitable for low-level elements such as nMOS and CMOS

transistors, inverters, gates and storage elements. Both of these models

reflect the structure of the hardware at each level of description, making it
difficult to construct an abstract specification without implementation bias.

Furthermore, Gordon’s model only supports fully synchronous designs with
a single clock.

2.5. Informal Techniques

System specification is currently done almost exclusively using

informal techniques.

2.5.1. Timing Diagrams

Timing diagrams are the primary representation used by designers in
specifying production hardware systems. They represent a register-transfer,
logic and/or circuit level of design. Since the semantics of these diagrams
are not completely defined but certain ad hoc notions are fairly common, a
large amount of information is usually represented in one of these diagrams.
It is likely that half the information is contained in notes associated with

various events and edges and even the connotations associated with the

signal names.
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Some of the ambiguous interpretations which might be associated
with an interval between two transitions on an uninterpreted graph are:
minimum delay, maximum delay, measured delay or causality (e.g., one

edge may or may not have caused the other transition).

However, due to their ubiquity and popularity among designers,
timing diagrams may represent a useful graphical representation to display
information from a more forma! internal representation at the user interface

[Booth 81]. If so, the semantics of timing diagrams must be much more
clearly defined.

2.5.2. The Previous Design Data Structure

The previous DDS has been characterized as informal for the purpose
of this discussion because the semantics, especially those of the timing and
sequencing subspace, had not been fully defined when this research was
initiated. Only a brief overview of the DDS will be presented here, since
the semantics of the Design Data Structure (DDS) are described in detail in
Chapter 3. The DDS is a unified representation of design data. It has been
designed to support and facilitate the synthesis of digital hardware systems.
It is composed of four subspaces, each of which may be divided
hierarchically as desired to decompose or compose abstractions or

implementations in the design spaces. The subspaces are

1. Data Flow: which covers data dependencies and functional
definitions. It is represented as a bipartite acyclic graph where
one type of node represents the operations and the other type of
node represents the values. The arcs which connect these nodes
indicate the sources and sinks of the values. These graphs may
be viewed as a single assignment programming language.

2. Timing and Sequencing: which covers timing, sequence of
events and conditional branching. It is represented by a
directed acyclic graph, which consists of nodes corresponding to



38

events, and arcs which represent intervals and connect these
nodes. To capture as much semantic information about the
design as possible, four types of arcs and seven types of nodes
are used to model various aspects of timing and control (for
example, concurrency, choice and constraints)

3. Structural: which covers the logical decomposition of a circuit.
This subspace is similar to a schematic or block diagram. It
consist of modules which are interconnected by carriers.

4. Physical: which covers the physical hierarchy of components
and the physical properties of these components. In this
subspace there are two primitive object types: blocks and nets.

The relationships between these various spaces are made explicit by means
of bindings. These bindings and the information in the four subspaces are
believed to fully characterize the design. The complete syntax is presented
in Knapp and Parker’s report and some of the important semantic notions
are also operationally defined. In this research, we are primarily concerned
only with the "behavioral" subspaces, the Data Flow subspace (DFss) and
the Timing and Sequencing subspace (TSss). Though the semantics are not
formally defined, the DDS satisfies the other criteria required for a

representation of digital design information.

2.5.3. Natural Language Processing

In this section, we will review only the closely related work among

recent research in the field of natural language processing.

Previous work done on processing natural language specifications has
been concerned primarily with software systems [Balzer 85, [Mander 79),
programs [Abbott 83), [Ginsparg 77] and data types [Comer 79]. This work
falls into two categories. The first is characterized by virtually unrestricted
application domains and therefore requires enormous vocabularies and the

ability to deal with tremendous variability in the input. The second covers
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8 very limited domain; namely, the manipulation of the objects which are
created from the specification, e.g. CREATE A STACK, DELETE A SET.

etc. Also, it should be noted that Mander was only concerned with
syntactic analysis.

One prior endeavor involved the application of natural language
processing as an input to a design system for digital electronjes [Grinberg
80], but this work actually focused on the construction of a cireuit given
predefined components and was focused on implementation rather than
specification. Furthermore, it used certain byphenated verb forms, e.g. IS-
CAPTURED-IN, and noun phrases like NUMBER-OF-WORDS to aid in

the processing making it more like an application-oriented programming
language.

Other recent works, like the UNIX Consultant (UC), [Wilensky 84).
and CLEOPATRA (Comfortable Linguistic Environment that
Obstensibly Permits Arbitrary Textual Requests and Assertions)
(Samad86), answer questions concerning a given body of knowledge, the

former the UNIX operating system, the latter the results of a digital
simulation.

The research described here differs from UC and CLEOPATRA in
that it is creating an entity, 1.e., a formal, neutral representation of the
behavior being specified. To create this representation, semantic knowledge

about system behavior has been encoded in the parser’s knbwledge base.

The work by Fink, Sigmon and Biermann [Fink 85), on a limited
natural language control of a machine in a task-oriented situation should be
mentioned. They concluded that "...often-mentioned concerns related to

the lack of precision of natural language were not a problem in the domain

of our experiments."
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2.6. Deficiencies in Existing Techniques

The most common deficiences associated with existing techniques for
specifying digital designs are

1. lack of a formal abstract model of behavior,

2. inability to represent asynchronous behavior of concurrent
processes,

3. unsuitability for large problems,

4. lack of constructs for specifying performance — especially
timing,

5. lack of high-level specification constructs,

6. inability to produce comprehensible descriptions, and

7. lack of tools for constructing the specifications

Even though considerable work has been done in the many areas of
related research described in this chapter, no language, method or technique
has explicitly and systematically addressed these deficiencies. The approach
taken in this research has been based on a set of requirements that
explicitly address all of these deficiencies. In addition, this research tried to
incorporate and build on the results of this related research wherever
appropriate. Specifically, the PHRAN parser, a component of the Unix
Consultant was used to conmstruct the prototype system, the DDS was
selected as the underlying representation for system behavior and Allen'’s
work on temporal representation was used as a basis for extending the

timing and sequencing model of the DDS.
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Chapter 3

The Design Data Structure:
A Specification Tool

3.1. Introduction

This chapter will discuss the use of the USC Design Data Structure
(DDS) as an abstract representation for the specification of digital system
behavior. The USC DDS was introduced in 1983 [Knapp 83], and is further
described in other USC publications [Knapp 84, Knapp 85]. However,
previously published material has concentrated on the overall DDS concepts
and usage. Here, we focus on the semantics of DDS constructs, as required
for system specifications. Since a specification of system behavior involves
the what to do as contrasted with the how to do 1t, this discussion will focus
primarily on only two of the DDS subspaces; namely, the data flow
subspace (DFss) and the timing and sequencing subspace (TSss). The other
two subspaces, the Structural subspace (Sss) and the Physical subspace
(Pss) will be introduced as required to handle aspects of the specification
that are not expressed in the DFss and TSss. In addition, the Structural
and Physical subspaces may be used in specifying a system if there is a
strong desire or need to constrain the implementation details. The DDS
also includes several types of relations among the various subspaces. These '
relations are termed bindings and will be defined when they are introduced.
Finally, additional information or ancillary data may occur in a
specification and not be represented or representable in the DDS. The topic

of ancillary data will be covered in Chapter 4.
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All the subspaces in the DDS are hierarchical; however, the semantics
of the DFss and TSss will first be described as a one-level space and any
effects associated with hierarchy will be introduced after the basic

constructs have been defined. While there is mno certainty that this

extension to the DDS makes the behavior complete, it is sufficient to
capture the semantics of ISPS and SLIDE.

3.2. The Data Flow Subspace

The DFss may be formally described by a bipartite directed acyclic
graph (bi-DAG). The two types of nodes are data flow operation nodes
and data flow value nodes. The nodes are connected by data link
arcs, which associate the data flow operations with the values. The bi-dag
allows this representation to serve as a single-assignment data flow
programming language [Tesler 68] and avoids the confusion associated with
the naming of values. (Others, notably Dennis [Dennis 74], introduced
tokens and splitter nodes to solve this problem.) The values may be
treated symbolically; that is, a value may be referenced as A or foo. Such a
symbol may be associated with a numeric value, for example, four or r or
some particular sequence of bits. This is in contrast to the common notion
of a variable that may have more than one value associated with it during
its lifetime. Instead, this temporal behavior is modeled by binding the
values to intervals in the TSss and also binding to carriers in the Structural
subspace. Since a value can be bound to a carrier during an interval of
time, a variable can be represented in the DDS by a sequence of values,
each bound to a different interval but a single carrier. An example of the
DF'ss is shown in Figure 3-1. The primary information represented in the
DFss is the number and type of operations required, the number and type

of inputs and outputs to the various operations, and the data dependence

associated with the operations.
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‘“‘value" ‘‘operation"’
node de
no ‘‘data link"
arc
a a+b 2a
b a-b 2b

Figure 3-1: A Data Flow Subspace Example.
This example, called crisscross is taken from [Hafer 81).

The Dfss operations may be highly abstract (e.g., Kalman filter) and
defined at a later time in terms of the primitive DFss operations for which

truth tables are defined in the library (the hierarchy permits this
abstraction/decomposition).
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Examples of primitive operations are
e the Boolean operations not, and, or, nor, nand, and xor;
o the relational operations >, <, =, >, <,
o the arithmetic operations add, and subtract; and

e the control operations select and distribute.

The select and distribute operations will be described later.

The basic representation has been augmented with subscripts for both

the data flow operations and the values. Two types of subscripts are

associated with the values: The first is a subscript for describing values that
are actually composed of groups of bits; e.g., an 8-bit wide input for an 8
bit adder would be written a[7..0] where a[7] would be the leftmost bit in a
left-to-right representation and a[0] would be the rightmost bit. Note the

use of square brackets to signify a spatial arrangement of values.

A second type of subscript indicates a temporal sequence of values;
e.g., 8 stream of bits would be written as b(0..N) where b(0) would precede
bit b(N) in a sequence. These two types of subscripts may be transformed
by providing storage, serial-to-parallel converters or parallel-to-serial
converters. Both subscripts may be used together. No syntactic convention
or semantic significance is associated with the order of the type of
subscripts, e.g., 8(5..9)[3..0] and a[3..0](5..9) are equivalent.

3.3. Timing and Sequencing Subspace

The Timing and Sequencing subspace (TSss) is formally represented
by a directed acyclic graph (DAG) model. There are four types of arcs in
this model. The four types are based on the semantic use of the arcs in

representing timing and sequencing information.



45

There are also seven types of nodes in this model. First, the types of arcs

will be defined. Next, the various types of nodes will be described. Finally,

the various combinations of nodes and arcs allowed in this mode] will be
discussed.

3.3.1. TSss arc types

The four types of arcs are sigma (o) arcs, theta arcs (8), chi
and delta (&) arcs.

(x) ares,

A sigma arc represents an interval of time (or range [Knapp 83]) in
the TSss. A sigma arc may also be viewed as a sequence of events or
points. However, since a point has no actual dimensjon (like 2 geometrical
point on 2 line), the points serve only as labels used for reference to specific
events. The duration or length of the interval is associated with the ares
joining the nodes. Since the ultimate objective is a physically realizable
implementation, one cannot bind an operation or a value to a node or
point; bindings are only permitted to arcs. Finally, sigma arcs may be
assigned a specific length that indicates a particular amount of time (units
are established as required by the design) as shown in Figure 3-2. The ends
of the sigma interval in this figure are referenced as 7, and arz.‘ Note, this
length is defined in terms of a value and a relation. The relation may be
any of the following: >, <, =, >, <. There is no restriction that the
length of a TSss arc be positive; however, time proceeds in only one
direction and negative lengths can be transformed to positive lengths by

reversing the direction of the arc.

4 this representation a pi point is a simple event and will be explained in Section
3.3.2.
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A theta arc represents a temporal constraint. For example, if the
beginning of one interval is specified to occur at 100ns after another

interval ends, a theta arc is used to represent this information. An example
of this is shown in Figure 3-3.
A chi arc represents a causal relationship. An example of this type

of arc is where the end of interval o, is causally related to the beginning of

oy, 1.€., o, ending causes oy to start (shown in Figure 3-4).

O™
o (100 ns)

Figure 3-2: A sigma arc in the TSss and it length in nanoseconds.

Figure 3-3: A theta arc used to specify that one interval
begins 100 ns after the end of the other.

A delta arc represents inertial delay [Breuer 76].5 In the research
presented here, a simplified model is used that lumps the various delays

associated with a physical component. The lumped delay, é,» as shown in

Slnertial delay is not equal to propagation delay.
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Figure 3-4: A chi arc representing a causal relationship.

Fig 3-5 is associated with the interval, o,, that begins with the arrival of
the last input and ends with the beginning of the output being valid, Oout:
The end of the interval, o,, is constrained by the arc labelled, r > 0 to
precede the beginning of the interval labelled 6,- This constraint simply
stated is that the input value must not end before the operation begins.
The analogy in a physical implementation would be to measure the output

after the signal was removed and the input was floating.

Note that the DDS can be used to construct a detailed timing model
at the transistor level, if required. Obviously, such a model is not required
for system specifications.

3.3.1.1. Notational convention

The symbol phi (¢) is so often associated with a clock in digital
designs that this symbol will be reserved for that purpose; semantically, a
clock interval is not fundamentally different from an arbitrary regular

repetition of sigma arcs.
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Also, the symbol tau (r) will be used to refer to the fundamental unjt
of time chosen as a quantum unit for a particular interpretation. No

interval of smaller duration than this may be distinguished under that

interpretation.

Figure 3-5: A DDS representation showing the use of a delta arc
to model the delay associated with an implementation.



49
3.3.2. TSss node types

There are seven types of modes in the TSss: Pi (r) nodes, beta (g)
nodes, gamma (4) nodes, mu () nodes, rho (¢) nodes, alpha (a) nodes, and
omega (w) nodes. The first type is a simple node that may Jotn two arcs,
providing a label for the meets® relationship [Allen 83] or providing a label

for an event. This is a pi node or point. Some examples are shown in
Figure 3-6.

4 09

Figure 3-6: Three pi points joined by two sigma arecs.

The location of m is within the interval between m, and m, but is not further
specified.

The remaining six types of nodes are only useful to establish the
temporal relationship between three or more arcs. First, the types of nodes
will be described with respect to sigma ares only. The various combinations

of nodes and arcs are defined in Section 3.3.4.

A beta node represents a point at which the end of one interval is
synchronously associated with the beginning of two or more other intervals.

This may also be referred to as an and fork point [Conway 63] or a cobegin

Meets is one of the thirteen unambiguous relationships that Allen defines between any

two intervals in time. It is a graphical relation in which the end of one interval abuts the
beginning of the following interval.
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[Dijkstra 68]. The two branches begin together but no additjonal
information is implied in Figure 3-7 (Note: Allen [Allen 83] uses the label

starts, which seems to imply some causality; the model described here
separates the causal information by using the chi arc construct.)

69

TN

Figure 3-7: A two branch and fork example.

A gamma node represents a point at which the end of one interval is
associated with one of a set of subsequent intervals, thereby representing an
n-way branch. Each branch exiting from this node is an exclusive selection.
The choice of branch is based on the value of a predicate that is attached
to each arc emanating from the gamma node. The predicates will be
discussed further in the next section with respect to their use in describing
asynchrony and in the section on DDS canonical templates. A gamma

node, two branch example is depicted in Figure 3-8.

A mu node represents an and join point, t.e., the termination of two
parallel branches. This node is analogous to a coend [Dijkstra 68);
appropriate delay is inserted in either branch to insure concurrent

termination. An example of an coend is depicted in Figure 3-9.
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Figure 3-8: A two branch or fork example.

Figure 3-9: An example of coend in the TSss.

A rho node represents an exclusive-or join point. The arecs that
terminate at this point represent all possible branches that could be the
predecessor of the arc emanating from the join. Only one branch (arc) will
actually be active in a properly specified behavior. An example of a rho

node joining three sigma arcs is shown in Figure 3-10.
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9

[ —
6%

Figure 3-10: An example of xor join in the TSss.

Alpha nodes and omega nodes occur in pairs and will be described
together. An alpha node represents the beginning of a repetitive interval
or loop. The arc or sequence of arcs that emanates from this point will
eventually terminate in an omega node that represents the normal
termination of the repetitive interval. The basic concept is shown in Figure
3-11 where the details of the TSss loop body are shown schematically. The
alpha node and omega node are given symbolic subscripts. These subscripts
are used in distinguishing values and operations in different iterations of
the loop. When values are bound to a loop in the TSss, a correspondence
between the value subscripts that are in parentheses () and the subscript of
the loop is established. In effect, this loop could be considered to be
unrolled in the DDS and is simply a sequence of subgraphs delimited by
subscripted alpha and omega nodes as indicated in Figure 3-12. Unfixed
loops, 1.e., those loops with an unknown number of repetitions and infinite
loops cannot be unrolled. Also, since the arcs inside the loop are

subscripted there may be a different length of time associated with every

execution of the loop.
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TSss
loop body

Figure 3-11: An iterative loop in the TSss.

time between end of one iteration

and beginning of the next

Figure 3-12: An iterative loop unrolled.

3.3.3. TSss predicates

The two types of predicates attached to timing arcs are

e synchronous predicates, and

e asynchronous predicates.

A synchronous predicate is attached to each of the arcs emanating from a
gamma node. This predicate indicates the branch to be chosen at the time

of ezecution. This corresponds to the familiar ¢f-then conditional

statement of most programming languages.
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For example, the statement

IF (foo = True) THEN bar ELSE bdaz;

indicates that the action associated with opar Will occur only if foo has the

value true when this statement is encountered:; otherwise, the action

associated with Opa; Occurs. In other words, Oha, IS associated with

NOT-foo (foo = False). An example of this in the TSss is shown in Figure
3-13.

Figure 3-13: A gamma node representing a synchronous predicate.

Note, this predicate must be valid during a time interval which occurs at or
before the gamma node for this construct to represent correct behavior.
Undefined predicates must be handled explicitly by the specifier of the

behavior by including an appropriate branch for the undefined predicate.

Each predicate is a Boolean expression. An n-way branch from the
gamma point would create a contro} structure like a CASE statement (Since
one branch and only one branch may be selected at a gamma node, the

OTHERWISE condition must be explicitly modeled).
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The synchrony described by this first type of predicate is with respect
to the gamma point. The gamma point may or may not be precisely fixed
in time with respect to other components of the behavior. However, this
type of predicate will frequently be defined in terms of indexed values
which will be associated with alpha-omega loops; therefore, its temporal
partial order will be established with respect to the loop.

An asynchronous predicate is composed of an expression with a
Boolean value that defines the conditions under which ap asynchronous
action will occur. In addition, the binding between the asynchronous
predicate and an interval and the binding between the asynchronous
predicate and a carrier must be specified and the destination point in time
that defines the start of the subsequent behavior must also be specified.
The asynchronous predicate makes use of the basic gamma node and its
synchronous predicate and the property of nodes that makes them like
dimensionless points. Therefore, a sigma arc with attached asynchronous
predicate may be modeled as consisting of an infinite number of gamma
nodes. By assigning the same predicate’ to each of these gamma nodes and
by terminating the one arc emanating from each gamma node at a single
rho node and the other at the next gamma node, a model of asynchrony
can be constructed as shown in Figure 3-14. . Whenever the predicate

becomes true the alternate branch at the particular gamma point is taken.

There are three additional constraints that are placed on this model:
First, the arcs emanating from each gamma node and terminating on the
rho node must be chi arcs (i.e. causal arcs). This constraint is imposed

since the condition at the gamma node is causing a different sequence to be

7Though the basic behavior associated with the predicate with respect to the gamma
node is the same as in the synchronous case the predicate is defined quite differently. This
is explained in the remainder of this section.
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followed. Secondly, a carrier from the Sss must be introduced to provide a
mechanism for the predicate to change from false to true within the arc for
which the predicate is defined (Since a value in the DFss has a single-
assignment, there is no mechanism for changing a value--even if the value is
symbolic. Thus it is the structural carrier which changes values). Finally,
unlike the synchronous predicate, the asynchronous predicate is based on
the bindings between the desired value in the DFss, the sigma arc in the
TSss, and the carrier in the Sss. When the value which makes the

predicate true is the active value on the carrier, the alternate branch is

taken.

{B(carrier, pred=T, "1); PA}

Figure 3-14: An example of asynchronous behavior in the TSss.

For notational convenience, the gamma nodes and chi arcs are not drawn

but are implied by the presence of an asynchronous predicate associated
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destination node

3

{B(carrier, pred=T, ;1); Pa}
"0.‘.

not s.hown

Figure 3-15: An example of asynchronous behavior
using the abbreviated notation.

with a sigma arc. The form of the predicate is shown in Figure 3-15, where
B signifies the binding relation from value to carrier to sigma arc and the

destination node is the termination point of all the chi arcs.

This is the first example of a gamma node used with more than one
type of arc. The incoming arc is generally a sigma arc and the outgoing
arcs are of type sigma and type chi. The other arc combinations of type
sigma-sigma and type sigma-theta may occur in the DDS, but are

considered invalid combinations when used with an asynchronous predicate

because they do not capture causality.



58

3.3.4. TSss arc/node combinations

In the following section, only sigma, chi and theta arcs will be
discussed. Phi arcs are considered as special cases of sigma arcs and
therefore possess the same semantics in combination with other arcs. The
semantics of the remaining arc type, delta arcs, can be defined as a subset
of the sigma arc cases associated only with physical implementation. In
order to combine three or more arcs at a node, the node type must be
permitted to have degree three or higher. There are four distinct node

types that may have degree three or higher: gamma nodes, beta nodes, rho
nodes and mu nodes.

First, the seventy-two cases associated with all combinations of three
arcs and one node will be described, then the obvious extensions to n-way
combinations will be noted. In general, the behavior of concurrent
asynchronous digital systems can be composed using the seventy-two cases
and appropriate constraints. The completeness of these seventy-two cases
has not been verified as a part of this research; however, no description of

system timing and sequencing has required additional construects.

A potation will be introduced to sllow a tabular presentation of the
Arc/Node combinations.

90903
This notation is equivalent to the graphical notation in Figure 3-7.

Having described the primitive object types in the TSss and DFss,
interspace bindings, node semantics, control operations in the DFss,
hierarchies and inheritance will be introduced and used for some examples

of behavioral representation in the DDS.



59

InNode Out10ut?2 Description
0,8 0404 o) terminates/meets o, and og which both initiate
concurently - cobegin
0,8 o5x, o) terminates/meets o, and xy Which both initiate

concurrently with a causal action propagated by
x; - UNIX(TM) -like "fork*"

0,8 098, o, terminates/meets o, and ¢; simply a constraint

with respect to event -- "event" semantics do not
allow a x node

018 X6, o, terminates/meets x; and é, -causal action and
constraint - event-based control

38 X;Xo o, terminates/meets x; and x, which both
initiate concurrently - multiple causation

)8 6,6, o) terminates/meets 6, and 6, multiple
constraints on o, -8 reference event

x18 010, X, causes o, and oy which both initiate
concurrently - x, causes a cobegin

x18 o91xg x; causes o, and X9 Which both initiate
concurrently - x, and xo form a causal chain

Table 3-1: Semantics of Degree Three Beta Nodes.



InNode Out10ut2 Description
x;8 o6, X, causes ¢, and 6, constrains the event
xlﬂ x281 INCOMPLETE
X318 XoX3 Xy causes x, and x3 one causal action results in

two concurrent causal actions

x;8 66,  INCOMPLETE

6,8 0,0, 6, constrains o, and o, which both initiate
concurrently - 8, constrains a cobegin

6,8 0,x, 8, constrains o, and x; Which both initiate
concurrently
6,8 0,6, 6, constrains initiation of o, With respect to

its predecessor and 8, constrains o, with respect
to its successor

8,8 xy6, ¢, constrains initiation of X with respect to
its predecessor and 6, constrains x, with respect
to its successor

8,8 xxg 8, constrains x, and Xo, 8 single constraint on
the initiation of two concurrent causal actions

6,8 8565 A composite constraint -links multiple successors

Table 3-1, concluded
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InNode Out10ut?2 Description

017 0y o, terminates; o9 OF oy is initiated
- a conditional branch with a mutually exclusive
selection - (Note: the predicates are not shown.)

)7 99X, o, terminates; o, OF x, is initiated
- a branch point: continue sequence or cause
another action - used in model of asynchrony

017 098} o, terminates; o, is initiated or 6, constrains
the termination of oy

037 x19, o, terminates; X, causes another action or 6,
constrains the termination of o,

937 X} Xg o) terminates; x, or x, is initiated
- "control" - selection of a coroutine

0,7 6,6, o, terminates; 6, or 6, constrain
o, - exclusion of a region in time

X17 039, X) CBUSES o, OF o, initiation -select coroutine
X17 01X Xy causes x, to continue causal chain or causes
sequence o,

Table 3-2: Semantics of Degree Three Gamma Nodes.
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InNode Out10ut?2 Description

X17 9,6, X) causes o), or 6, constrains the termination
of x, - an "inserted process delay” or wait

X7 Xof, X) causes x, to continue the causal chain, or A
- constrains the termination of x, - wait/delay

X17 XoX3 X) C8USES x, Or x5 one causal action results in
selection of one of two causal actions

x;76%  INCOMPLETE

- No successor (i.e. ¢ or x arc) ==> No causality
617 0,0, 4, constrains 0, Or o, the alternative sequences
8,7 0,x; 6, constrains o) Or x, the alternative sequences
8,7 0,6, 8, constrains initiation of o, With respect to

its predecessor or forms constraint chain with 6,

6,7 xy 69 6, constrains initiation of x; With respect to

its predecessor or forms constraint chain with 0y
6,7 XXo 6, constrains x, or xo the causal action branches
8,7 6963 Either ¢, and 6y form a constraint chain

or 6, and 05 form a constraint chain

Table 3-2, concluded



In1In2Node Out

Description

0y0gn 04

Upon cotermination of o, and 0y oy is
initiated -a delay or wait in o) OF 0, may be
required to achieve cotermination

91x1k o

x; and cotermination of o, enables the
initiation of o, - i.e. o, "waits" for xy - or
if x; precedes o, initiation is enabled and
begins on termination of o,

’1’1" )

4, constrains termination of ) and initiation of
L% the 8, constraint must be satisfied

Xy6yh oy

¢, constrains the initiation of o, caused by Xy5
the 6, constraint must be satisfied

XjXoh 03

x; 8nd x, cause initiation of 0, - 0, Waits
for both causal actions - or - if x; precedes x,
or x, precedes x; - predecessor enables successor

0102;4 o

o, initiation is constrained by ¢, and ¢,
- both constraints must be satisfied

9192k X}

o, and o, coterminate; initiating a causal action
- cotermination is ensured by inserted delays

71X1H Xo

X, and o coterminate and cause the initiation of
the causal action Xg

0184 X,

6, constrains the termination of o, and the
initiation of x, -constraint 8, must be satisfied

Table 3-3: Semantics of Degree Three Mu Nodes.
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In1In2Node Out

Description

X118 Xo INCOMPLETE
X1XgH X3 x; and X coterminate - initiating X3
- conjunctive causation - "wait" / delay for both
8,01 x, 6, and 6, constrain the initiation of Xy
- both constraints must be satisfied
ay0qu 6 Cotermination of o, and o, is constrained by 6,
o1x3# 6, Cotermination of o, and x, is constrained by 6,
SUTEN ¢, constrains inititation of o, With respect to
its predecessor and 8, constrains o, with respect
to its successor
X6k Oy 8, constrains inititation of x; With respect to
its predecessor and 6, constrains x, with respect
to its successor
X1 XgH 6, INCOMPLETE
8,05m 64 Conjoined constraints; ¢, and é, constrain 05

Table 3-3, concluded
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InlIn2Node Out

Description

0109 03

Either ¢, terminates or o, terminates -
(exclusive or) therefore sequence is 0103 OF 0404

O1X1P 99

Either o, terminates or x, terminates -
(exclusive or) therefore sequence is 0104 OF X0y

alﬂlp o9

Either o terminates or 6, constrains the
initiation of o, - (exclusive or) therefore o,0,
occurs or 6, constrains initiation of oy

x16yp o,

Either x, causes initiation of o, or 6,
constrains the initiation of o, - (exclusive or)
therefore the sequence x,e, occurs or 6,0,

X1Xof 9)

Either x, causes initiation of o, or
X, causes initiation of o, - (exclusive or)

9102p o

Either ¢, constrains initiation of o, or 6,
constrains the initiation of o, -(exclusive or)

7192° X)

Either o, terminates or o, terminates, initiating
a causal action x, (exclusive or) therefore
sequence is 0)X; OF 09X,

731X1P X2

Either o, terminates initiating Xg OF x; causes
initiation of the causal action x, (exclusive or)

Table 3-4: Semantics of Degree Three Rho Nodes.
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In1In2Node Out

Description

0,6, X, Either o, terminates initiating X Or 8,

constrains the initiation of x, -(exclusive or)
x19;P Xo Either x, causes initiation of Xq OF 6,

constrains the initiation of x, -(exclusive or)
X1XoP X Either x, causes initiation of x, or x,, causes

1427 A3 1 3 2

- initiation of x4 -disjunctive causation
8,050 X, Either 4, constrains the initiation of x, or

- 6, constrains the initiation of X}
0,900 6, Either o, terminates or o, terminates -

8, constrains the termination of o, OF 0,
o1x,P 6} Either o, terminates or x; terminates -

6, constrains the termination of ¢, or x

1 1 1

0,6,/ by Either ¢, constrains the termination of ¢, or 6,

forms a constraint chain with ¢

2

oyx;P 6, Either o, terminates or x, terminates -

6 constrains the termination of 0, OF X,
X1XgP 01 INCOMPLETE
8,6op 64 Disjoint constraints; 6, or ¢, constrain 63

Table 3-4, concluded



3.4. Types of Interspace Bindings

There are two basic types of bindings:®

1. operation bindings, which relate dataflow elements to
structural elements and time ranges, and

2. realization bindings, which relate structural elements to
physical elements.

These bindings may be further classified based by the type of elements that

they relate. There are two subtypes of operation bindings:

1. value-carrier-range (vcr) bindings that denote the association
of value nodes in the DFss to time ranges in the TSss and also

the association of these values to carriers in the Structural
subspace (Sss), and

2. operation-module-range (omr) bindings that denote the
association of operation nodes in the DFss to time ranges in the

TSss and also the association of these operations to modules in
the Sss.

There are two subtypes of realization bindings:

1. module-block (mb) bindings that establish a correspondence

between a module in the Sss and a block in the Physical
subspace (Pss), and

2. carrier-net (cn) bindings that establish a correspondence
between a carrier in the Sss and a net in the Pss.

8 These naming conventions follow the naming . convention used in other work
[Arfarmanesh 85]; however, refinements to the semantics of the DFss and TSss make some
details of the bindings inconsistent between this thesis and previous work.
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3.5. Control in the DFss

In Section 3.2 the data flow operations of select and distribute [Davis

82) were mentioned but not described. These operations allow us to

describe complex sequencing operations in the DF'ss; essentially, these are
the control operations in our data flow model. The select operation
accepts three inputs and produces one output. One of the inputs is the
control input and only accepts a boolean value. If this value is true (T)
then the data value corresponding to the T-input appears at the output as
shown in Figure 3-16. If this value is false (F) then the alternate input, i.e.
the one corresponding to the F-input, appears at the output. Thus the
value node in the DFss associated with the output of a select operation is
not determined until the control input and the selected data input are both
known. The distribute operation accepts two inputs, a data input and a
control input, and produces two outputs, one which corresponds to the
input value and an undefined value on the alternate output. Again the

control input is Boolean as shown in Figure 3-17.

Generalizations of the selector and distributor are easily devised:

e selection (or distribution) may be based on an integer control
value, or

o the inputs and outputs may be replaced by groups of inputs and
outputs instead of a single value.

Another possibility is to define degenerate cases of the select
operation; namely, the T-gate and F-gate. These are select operations
with one of their inputs being the undefined value, bottom. For example a
T-gate only passes a value when the control input is true; when the cqntrol

input is false the value at the output is bottom.



Figure 3-16: A data flow select operation.

data

Figure 3-17:

A data flow distribution operation.
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3.5.1. A DDS representation of "while"

Figure 3-18 shows the representation of the Pascal while construct
[Jensen 85]. In the DDS representation of the while construct, the

BoolcanEzpresaion is represented as Bool and the Statement is replaced by
the operation labelled fooft).

The EBNF (Extended Backus Naur Format) is

WhileStatement = *while® BooleanEzxpression *do* Statement

The statement is repeatedly executed until the expression becomes

false. If its value is false at the beginning, the statement is not executed at
all.

The DDS representation describes this construct using an alpha-omega
loop in the TSss together with a select operation and T-gate in the DFss.
By "walking the graphs" in the TSss and DF'ss, we can simulate the
behavior of the while construct. On the first iteration 1=1, and the value
¢(1) is the same value as b(0). Note b(0) only exists on the interval %
before the main body of the "while" (a-w loop). Since t=1, the nodes are
ayy s wy and L and if Bool is false then the lower branch in the figure,
o3, is taken at 4, and the final value for b(I) is the value of b(0). On the
other hand, if Bool is true then the upper branch, 0y, is taken, the
operation foo is executed and ¢(1) is transformed into the new value b(1).
At this time the value b(i-1) is b(1) and 1=2 so ¢(2) is the same value as
b(1). Let us assume the value of Bool is now false, and that the lower

branch is taken from +,, the value of b(I) is the value of b(1).



e DF'ss

Figure 3-18: A DDS template of the behavior of the
Pascal while construct.
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Bool = F |=F
value range operation range
b(0) % Select(1) %
c(1) % T-Gate(1) 911 041 Ogy
Bool = T =T
value range operation range
b(0) % Select(1) % %13
c(1) oy T-gate(1) 09y
c(n>1) o T-gate(n>1) L
b(n>1) Lo foo(n>1) L
| =F
value range
b(n>2) ’lnv 03n
c(n>2) %10

Table 3-5: Bindings for the while construct
shown in Figure 3-18.

3.5.2. A DDS representation of "repeat"

Figure 3-19 and Table 3-6 shows the representation of the Pascal
repeat construct [Jensen 85]. In the DDS representation of the repeat
construct, the DBooleanEzpression is replaced by Bool and the

StatementSequence is replaced by the operation labelled Joo(i). The EBNF
is

RepeatStatement = *repeat® StatementSequence
*until® BooleanEzpression.
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(0
T .
' F c(i)
b(i-1)
| W—
1(i)
i
DF'ss
)|

Figure 3-19: A DDS template of the behavior of the
Pascal repeat construct.
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|=F Bool =F
value range operation range
b(0) %0 I-Select(1) %
c(1) o)1 T-Gate(1) 11 9111 O3y
Bool-Select(1) 911 O3)
Bool =T Bool =T
value range operation range
b(0) % I-Select(1) % %13
c(1) 1 Bool-Select(1) %110 %91
b(1) o9, foo(1) %11 %91
c(n>1) %n I-Select(n>1) %10’ %9
b(n>1) L foo(n>1) LN
Bool = F
value range
b(n> l) %1n’ %3p
c(n>1) %n

Table 3-8: Bindings for the repeat construct
shown in Figure 3-19.

The statement sequence is repeatedly executed (and at least once)

until the expression becomes true.

The DDS representation describes this construct using an alpha-omega
loop in the TSss together with two select operations. By "walking the
graphs" as we did for the "while" construct, we can show that this DDS
representation has the same behavior as the "repeat" comstruct. Starting

with i=1, we see that the value ¢(1) is the same value as b(0) and the
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operation foo(1) produces a new value, b(1). If Bool is true then the loop is
exited at 4, on the first iteration and b(I) bas the same value as b(1). If
Bool is false, then b(1) is undefined on the upper branch, and the loop is
executed again with c(2) assuming the value of b(1) and the operation foo

produces a new value b(2). This would continue until the predicate is false
and the lower branch of the 4 node would be taken.

3.6. Hierarchy in the DDS

Each subspace in the DDS supports the notion of hierarchy, i.e. every

object in any of the spaces may be either primitive or structured with one
important exception, points in the TSss.

Points or events in the TSss are dimensionless and therefore cannot be
decomposed. Ranges are not subject to this restriction because they

represent the passage of time which clearly can be decomposed into
sequences of ranges.

3.6.1. Rules of composition for the DFss, Sss and Pss Hierarchies

Some important rules of the various hierarchies are the following:

1. Recursion is not permitted. Some bound recursion can be
described in terms of multiple hardware units or iteration, but
hardware in general does not support recursion.

2. Data flow operations may be composed of data link arcs, data
flow values, and other data flow operations.

3. Data flow values and their associated data link arcs may be
composed of other data link ares and data flow values. For
example a complex floating point number can be represented as
a real and an tmaginary part, 1.e. two data flow values and two
sets of data flow arcs. The real and imaginary parts can be
further decomposed into an ezponent and a mantissa.

Structured data flow values do not contain data flow operations
or data link arcs.
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4. Modules in the structural subspace may be composed of carriers
and other modules.

. Carriers in the structural subspace may be composed of other
carriers.

6. Blocks in the physical subspace may be composed of nets and
other blocks.

7. Nets in the physical subspace may be composed of other pets.

3.6.2. Rules of composition for the TSss

The hierarchical description of the TSss is much more complicated
than the other subspaces because of the many different node types, arc
types and their associated predicates. This situation is compounded by the

fact that points (i.e. events) are not composite objects and therefore cannot
be decomposed.

3.6.2.1. Pseudo composite events

Not allowing events to be composite objects creates problems in the
hierarchical interpretation of the TSss as well as difficulty in describing
some chains of events at a single level in the TSss. For example, when the
asynchronous predicate branches to a destination point this must be s rho
node. This rho node has only one outgoing arc and cannot mode] the start
of two concurrent ranges.9 To model this sequence of events, the events are
connected by constraint arcs that have a length equal to zero as shown in
Figure 3-20. The interpretation of a sequence of events connected only by
constraint arcs that have a length equal to zero is that one cannot resolve

the amount of time between any two events or among the events in a

%A pew node type might be defined but as these chains get more complex the number of

node types would grow and make it difficult 1o develop tools to check the validity of the
structures created.
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Figure 3-20: An example of using constraint arcs to extend
the destination node of an asynchronous branch.
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longer chain. This allows us to construct arbitrarily complex nodes by
using only nodes of degree less than or equal to three. For example, a beta
node that requires five output arcs can be modeled as shown in Figure 3-21.
The interpretation of this graph in the TSss is that the the time range
associated with thé incoming arc to the first beta node meets the outgoing
arcs labelled o, through os. Hence, all types of complex events can be
modeled as a sequence of nodes of degree three or less joined by constraint
arcs that have a length equal to zero. These arcs, as used here, serve the
same purpose as the dummy arcs introduced by Knapp [Knapp 83].

However, there are no other similarities and the semantics of these
constraint arcs are quite different.

3.6.2.2. Composite ranges and TSss-links

If a composite range is decomposed into two sequential ranges, the
end points of the composite range have to be related to the component
ranges. Unlike the other subspaces. the timing subspace is not self
descriptive when hierarchy is introduced. A special TSss-link must be
introduced that defines this intraspatial-hierarchical relationship. The
TSss-link can only link a single event at one level of the TSss hierarchy
with a single event at the next level above or below in the TSss hierarchy.
The event on the higher level of the hierarchy must be either the same type
of event as the event at the lower level or a pi event. Although this may
appear to be an overly restrictive constraint, it is necessary to avoid
creating complex events. Two events that are linked by a TSss-link are
identical in time. Any range may be divided into subranges; however, no

attempt is made in the current model to link ranges and subranges at

different levels of the hierarchy.



Figure 3-21:

Model of a degree five beta node
constructed using constraint arcs
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3.8.3. Inheritance of predicates in the TSss

Since a synchronous predicate must be true prior to reaching the
gamma node at which the predicate determines the action, there is no need

to define inheritance for a synchronous predicate. In fact, a synchronous

predicate could be reinstated with the opposite value on the chronological
successor to the arc following the choice. This is not the case for an
asynchronous predicate, which is specifically defined for a given range. For
the asynchronous case, all subranges that are part of the range defined in
the asynchronous predicate inherit the predicate.  Therefore, if the
asynchronous predicate is to be disabled in some subrange, an enabling
condition must be included in the asynchronous predicate and must be false
over the desired subrange. This approach allows multiple predicates to be

turned on and off selectively for any set of subranges.

These additions to DDS reflect semantics of ISPS, SLIDE and system-
level specifications studied as part of this research. The use of these

semantics is described in Chapter 4.
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Chapter 4

System Behavior
and Its Representation

4.1. Introduction

To understand the specification of digital systems in restricted English
text requires

1. a corpus (a collection of writings, in this case examples) for the
domain of these specifications,

2. a representation for the knowledge expressed, in the corpus,
3. a formal representation for the behavior of a digital system, and

4. a parsing technique to map the natural language into the formal
"behavioral" representation.

This chapter will first discuss the corpus, the knowledge about system
specifications contained in the corpus and the parsing technique. Next we
will discuss the representations used in this research by analyzing example
sentences taken from the corpus for the domain of digital specifications.
The knowledge in the corpus is represented in two forms. The first
representation is called abstract behavior; it is a generalization of system
behavior based on groups of sentences taken from natural language
specifications.  The second representation is the concept from the
pattern-concept pair used by PHRAN. In this chapter, only PHRAN's
concepts will be discussed in relationship to the other representations. The
formal representation of the behavior is templates in the DDS. Each type

of abstract behavior and in some cases PHRAN concepts are formally
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described by a DDS template. A DDS template is composed of a data flow
subgraph and a timing and sequencing subgraph and their interspatial
bindings. A specification is formed by combining the various subgraphs
where appropriate to form a single graphical representation in the DSS.
Prior to discussing the detailed examples, the relationship of the multiple
representations will be presented. Next, each type of abstract behavior or
PHRAN concept and its related DDS template will be described along with

example sentences taken from actual specifications.

4.2. The corpus

The corpus for this natural language interface was developed by
acquiring actual specifications, having students write specifications and
constructing additional examples. Examples of sentences taken from this
corpus are described in this chapter and Chapter 1. The corpus was also
used to develop the 2000+ word lexicon used in this research. (The list of

vocabulary words is contained in Appendix A.)

4.3. The corpus’ knowledge and the parsing technique

The representation of the knowledge expressed in this corpus was
constrained by the choice of a pre-existing parsing technique, which was

implemented by Arens in PHRAN, a PHRasal ANalysis program [Arens 86).

PHRAN is a knowledge-based approach to mnatural language
processing. The knowledge is stored in the form of pattern-concept pairs.
A pattern is a phrasal construct which can be a word, a literal string (e.g.

Digital Equipment Corporation), a general phrase such as

< abstract component > <sends> < data>to<abstract component>
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or may be based on parts of speech, for example,

<noun-phrase> <verb>.

Associated with each phrasal pattern is a concept. The pattern-concept

pair encodes the lexical, syntactic and semantic knowledge of the language.
For example, associated with the pattern:
<abstract component> <sends> <data>to<abstract component >

is the UVT concept (Section 4.2) that denotes a transfer of data from one
component to another component.

The concepts in PHRAN used in this research are expressed in SRL
(Specification Representation Language), a representation based on
Conceptual Dependencies (CDs) as developed by Schank [Schank 75]. CDs
are a declarative representation of meaning which are based on general
concepts of human action, human interaction and other generalizations
about physical objects. SRL was created to capture the information
associated with the specification of digital systems. SRL does not conflict
in any known way with Schank’s original CDs or any extensions to them
used in PHRAN; hence they could be used in conjunction with any system

based on the original CD concept.

4.4. The parsing technique

PHRAN reads the sentence from left to right one word at a time. As
each word is examined, existing patterns and concepts are checked for a
match and retained, modified or discarded. The match may be based on
lexical criteria, semantic criteria and/or syntactic criteria. PHRAN also
provides some degree of look-ahead in the sentence to the next word and
the ability to look back at previously matched terms with some limited

ability to modify those previously matched terms.
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4.5. Multiple Representations: Abstract Behavior, DDS Templates,
and Concepts

The mapping of natural language sentences into the DDS is
accomplished by using an intermediate representation, namely, 8 concept
from a pattern-concept pair used by PHRAN. This intermediate
representation captures the meaning of a single natural-language sentence.
However, specifications of digital systems are composed of groups of
sentences, paragraphs, sections, etc. Therefore, a more general
representation than PHRAN's concepts is required to capture the
semantic content of these larger syntactic units. Abstract behavior is a
generalization derived from groups of sentences taken from natural
language specifications—it is the basis for the DDS template, as shown in
Figure 4-1. In some cases, a single natural language sentence simply
describes a DDS template directly; for these cases there is only a PHRAN

concept; no higher-level abstract behavior exists.

4.68. The Unidirectional Value Transfer

The abstract behavior of a UVT (Unidirectional Value Transfer)
consists of the transfer of a value from one operation to another operation
in the data flow subspace of the DDS and the associated timing and control

information. An example of a sentence that belongs to this category of

behavior is:

The cpu sends the data to the memory.



85

contain contain
conlain
Groups
of Single Phrases
Sentences are Sentences are
€OMposed o f f ompostd of
describe form orm,
PHRAN
describe Patterns
Abstract describe
Behavior
Jormalized as PHRAN
Concepts
PHRAN
.Concepts wotl . :
Partiay, co™ Ombine
s {0
DDS PHRAN
fOrmalized as Pattern-Concept
Templates Pairs
. i as
~1nstantiations ]ormﬂh zed
co”?é .
.DDS "Ze,,\ DS
Representation of]
mplates
Specification Temp

Figure 4-1: The relationship of natural language sentences,
abstract behavior, pattern-concept pairs, and DDS templates.
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4.6.1. The DDS template for the UVT

The DDS template for the UVT consists of two subgraphs and their
associated bindings, as shown in Figure 4-2 and Table 4-1.

This representation of the UVT in the data flow subspace and the

timing and sequencing subspace describes the behavior associated with this
concept.

4.6.1.1. Inclusion of data flow and control flow

The DDS template for the UVT shown in Figure 4-2 includes both
data flow information and control flow information in the data flow
subspace. The rationale for including three data flow operation nodes in
the DDS template for the UVT is that the source or the sink might be
different from the operation controlling the transfer. Furthermore, a model
that simply has a source and a sink is not capable of modelling a three
party transfer where the controlling agent is different from the source or
the sink. Additional reasons for including this control flow information

include

1. to capture implementation details, e.g., interface specifications,
which must be included in the specification, and

2. to provide the hooks for attaching the remaining control flow
information when the specification is implemented.

In Figure 4-2 the control operation (cntl), the source control value (src
cntl) and the sink control value (snk cntl) are all optional and may not
impact the completeness of a specification. The other abbreviations used in
Figure 4-2 are

1. src for the source of the data,
2. info for the data flow value transferred, and

3. snk for the sink for the data.
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TSss

Figure 4-2: The DDS template for a UVT.
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value range operation range
src cntl o, entl o,
snk cntl o, src o3

info o snk oy

Table 4-1: Bindings for the UVT concept
shown in Figure 4-2.

By including the control operation and both a source control value and a
sink control value in the DDS template all of the asynchronous control
configurations are described by a single DDS template. The four possible

one-way asynchronous control configurations and their interpretations are

1. uncontrolled or uncooperative--no control operation node and no
control values,

2. one-way source initiated control-the sink control value (DATA
READY) and the control operation node are used. (This
operation is called source initiated control because the source is
the controlling agent and it sends the control value to the
destination when it knows the data has been sent and is ready.)

[Hayes 78],

3. one-way destination initiated control--the source control value
(DATA REQUEST) and the control node are used. (This
operation is called destination initiated control because the
destination or sink request the data from the source by sending
the control value to the source when it is ready to receive the
data.) [Hayes 78}, and

4. third party control—-the source and sink are both sent control
information from a third party; e.g., a virtual address might be
sent to the source and sink nodes on a token ring by the ring
arbiter.

In addition to the control information included in the data flow subspace,
various timing constraints can be used independently or added to the four
basic control configurations to produce various synchronous or semi-

synchronous control schemes.
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4.6.2. The UVT Concept--a higher level of abstraction

The UVT concept used in PHRAN is derived from the abstract
behavior of a UVT as described in Section 4.2 and example sentences taken
from patural language specifications. The UVT concept focuses on the
principal element in the value transfer, namely, the data flow value. Since
actual sentences often mix information from the data flow, structural and
physical subspaces, operations, logical operators and physical
implementations of operators often cannot be distinguished. Thus, the
UVT concept replaces the data flow operations found in the abstract
behavior by abstract components. The actual DDS subspace that an
abstract component belongs to could be determined (perhaps during
postprocessing) by using additional semantic information found in
PHRAN's knowledge base, a previous declaration (ref. Section 4.10),
additional user input or some combination of this information.
Furthermore, this determination cannot usually be extracted directly by
PHRAN but would require postprocessing. The UVT concept may then be
viewed as a representation in a more abstract space which maps into the
DDS. A partial representation and a possible mapping to the DDS template
are shown in Figure 4-3. The hexagons in this figure represent the
abstract components and their potential mappings to DDS subspaces are
illustrated by the three dashed arrows and the curved figure used to group
them together. The timing is not indicated in the UVT concept, but
correct behavior requires the timing and sequencing subgraph shown in
Figure 4-2 for each UVT concept. In effect, each specific sentence about
value transfer is being isolated by the UVT concept from the details

associated with timing and sequencing.
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Figure 4-3: The UVT concept and mappings into the DDS template.

4.6.3. Example sentences for the UVT concept

The first example sentence for the UVT concept taken from an actual
specification [USN 73] is

The transmitting equipment shall send the word to receiving

equipment.

The main verb in this sentence, send, expresses the semantic concept of

two components, the transmitting equipment and the receiving
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equipment, interchanging information, the word. Some other verbs that
express a similar semantic concept are transmit, transfer, receive,
return, sample, signal, read, write and resend. Each of these verbs
denotes an action similar to the action denoted by send. When used in a
sentence, each of these verbs relates the control, a sink for the
information, and the information transferred. Note, this concept has been
formulated to reflect only the explicit semantic content of this sentence;
hence, we have not included any implied semantic information. An
example of implied semantic information is the source of the information
in the UVT. In most sentences, like the example using send, the source is
not usually expressed and might be erroneously assumed to be the control;
however, another example using the verb transfer will demonstrate the
necessity to have the source included in the concept for completeness. A

hypothetical sentence (t.e. not taken directly from an actual specification)

using transfer is:

The cpu transfers the block of data from main memory to the

peripheral device.

In this example the cpu is the controlling agent and the source is explicitly
stated as the main memory. The complete UVT concept is expressed in the

SRL as a frame-like data structure [Winston 84]:

(uni_dir_vtrans (source (a_component ?from))
-7 (sink (a_componment ?to))
(info (df_val ?df_val)
(control (a_component ?actor)))

The uni_dir_vtrans frame corresponds to a UVT, the slots in the frame
correspond to the objects in the DFss, namely, the source, sink, tnfo and
the control. Each slot has a facet associated with it that consists of two
elements a facet name and a facet value. The facet name a_ component

corresponds to an abstract component and the facet name df_val
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corresponds to a data flow value. The place holders for the facet values are
prefixed with a question mark. These place holders are replaced by their
specific values in the sentence when PHRAN analyzes the sentence (see the
sections discussing PHRAN). All the facet values in this frame are assigned
a default value of *unspecified® so that if a facet value does not appear

explicitly in the sentence SPAN will be able to detect the incomplete
information.

As discussed earlier, additional information is required to positively
identify the abstract component and the subspace referenced in this
sentence--for example, the transmitting equipment could be a module in the
structural subspace or a block in the physical subspace or possibly even a
data flow operation. Furthermore, if the transmitting equipment refers
to a library component, then representations in all four subspaces and their
associated bindings would be available to complete the speciﬁcation graph

describing the unidirectional value transfer.

The resulting concept produced by PHRAN for the example sentence

with the verb send is shown:

(uni_dir_vtrans (source (a__component #unspecifieds))
(sink (a_component receiving-equipmentl))
(info (af_val word)
(control (a_component transmitting-equipmenti)))

This uni__dir__vtrans is represented as a fragment of a graph or subgraph
in the data flow subspace and also as fragments of graphs in the structural
subspace or the physical subspace depending on additional information that
might be available from previous sentences concerning the abstract
components. These DDS fragments are shown in Figure 4-4. (See Figure
4-3 for possible mappings of the abstract component to the DDS subspaces.)

Since, some words have a restricted semantic meaning when used in a
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transmitting
equipment 1

info

word 1 receiving
equipment 1

Figure 4-4: The fragments of graphs in the DDS found
in the analysis of the example UVT sentence.

specification, it is possible to have a sentence result in a UVT concept that
maps directly into the DDS template. This type of sentence describes the
data flow behavior associated with the UVT. A hypothetical sentence that
describes behavior is shown in Figure 4-5, with its corresponding subgraph
in the data flow subspace of the DDS. It is difficult to include all the
information concerning the abstract behavior of a UVT in a single sentence;

hence, the UVT concept only focuses on the data flow information.
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Hypothetical sentence:

The arbitration process transfers the priority information from

the requesting process to the resolution process.

Data flow subgraph:

arbitration
process

. Ad * A .
*unspect fied * unspect fied *

requesting priority resolution
process in formation process

Figure 4-5: A complete dataflow subgraph for a UVT concept.

4.7. The Bidirectional Value Transfer

The abstract behavior of a BVT (Bidirectional Value Transfer) is the
interchange of values between two operations in the data flow subspace of
the DDS. The single assignment nature of the data flow graphs in the DDS

requires a pair of values and copies of the operations.
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4.7.1. The DDS template for the BVT

The DDS template for the BVT is shown in Figure 4-6. It consists of
two UVT representations that are interrelated.]® This interrelationship
arises from the semantics associated with a reciprocal exchange of
information. The interrelationship of the sources and sinks in this figure
can be better understood by referring to Figure 4-7. In the data flow
subgraph bound to com _cyclel, the data flow operation representing the
source of infol(i) is srcl(i), 1.e. the abstract component src/snkl acting as
the source node. Also, the abstract component src/snk2 is acting as the
destination or sink node, snk2(i). In the data flow subgraph bound to
com _cycle2 snk1(j) is src/snkl acting as the destination or sink node and
src2(j) is the abstract component src/snk2 acting as the source node. (Note,
the notion of full duplex communication is supported by this DDS template

since com _ cyclel and com _ cycle2 may be concurrent.)

4.7.2. The BVT concept--a higher level of abstraction

Like the UVT concept, this more abstract concept only requires a
value to be referenced in the sentence being analyzed. In sentences
associated with this concept the control is almost never mentioned, but the
dual role of source and sink for each abstract component is clearly
intended. The relationship between this concept and the DDS

representation of a BVT is shown in Figure 4-7.

107p, only identification of this reciprocal relationship of sources and sinks is through
the names of the operations in the DFss. When these operations are later bound to the
same module or block the relationship will be explicitly captured in the DDS.
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Figure 4-8: The DDS template for a BVT.
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Figure 4-7: The BVT concept and mappings into the DDS template.
(Mapping of the control is not shown to simplify
the diagram.)
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4.7.3. Example sentences for the BVT concept

In many cases, there is a reciprocal exchange of information between

various components in a digital system. The following sentence illustrates
this semantic concept:

Each requestor communicates with the arbiter via two lines, a

request line and a grant line.

The verb communicate and the adverbial phrase with the arbiter
indicates that each requestor acts as a source for information sent to the
arbiter and the arbiter acts as a source for each requestor. The phrase via
two lines and the appositive a request line and a grant line are also

processed by PHRAN-SPAN but are not essential to this concept and

therefore will not be included in this discussion. We focus on the part of

the sentence

Each requestor communicates with the arbiter

This concept is fundamentally different from the unidirectional value
-transfer because of the dual role of the components in the concept.
Without additional information the ordering of the value transfers that are
described by this concept cannot be determined. Other verbs that express a
similar semantic concept are interchange and exchange. The concept as
expressed in this example is very similar to the UVT concept with the
source and sink being replaced by src/snk. In fact, the BVT concept
could be represeﬁted as a pair of UVT concepts with the values in the
source and sink slots exchanged and the other information for the value and
control repeated. However, this requires information to be derived from the
interrelationship between the pair of UVT concepts to capture the notion of
communication. Also, the communication may be a sequence of alternating

unidirectional value transfers rather than an isolated pair—the bidirectional
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concept does mot make any assumption about the number of value

exchanges. The resulting concept is represented as:

(bi_dir_vtrans (src/snki (a_component ?actor))
(src/snk2 (a_component ?with))
(info (daf_val ?4af val))
(control (a_component ?a_component)))

After processing the example sentence, PHRAN replaces the slot-fillers like
?actor and ?with, and the resulting concept is

(bi_dir_vtrans (src/snk (a_component requestori))
(src/sok (a_component arbiter1))
(1nfo (df_val sunspecifieds))
(control (a_component sunspecifieds))

The data flow subgraph for a bidirectional transfer with no additional
information would be two unidirectional value transfers that have no data
precedence relations between them. As in the analysis of the UVT concept

no assumptions can be made about the semantic categories for the requestor
and arbiter, as shown in Figure 4-8.

¢
In addition to expressing a bididrectional value transfer,
communicate is unique in that it can also express a unidirectional value

transfer by using to in the place of with. An example of this use of

communicate is

The main process communicates the priority values to all the

subprocesses.

Other verbs which express unidirectional value transfers may also be used
with the phrase back and forth to express bidirectional value transfers

(e.g., the cpu passes data back and forth to the memory).
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requestor[k/(7)

requestor[k)(7) unspeci fied arbiter(i) ,% unspeci fied

arbiter(3)

oo*®

Figure 4-8: The fragments produced by PHRAN-SPAN for the BVT
- example sentence.

4.8. The Value-Carrier-Net-Range Binding

The Value-Carrier-Net-Range binding is another primitive in our
SRL. It was created to capture the semantics of natural language

constructs that map into a pair of DDS bindings, the value-carrier-range

binding and the carrier-net binding.

4.8.1. The DDS template for a VCNR

The DDS representation of the value-carrier-range binding and the

carrier net binding are identical to the DDS primitives described in Chapter
3.
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4.8.2. The VCNR concept--a higher level of abstraction

As previously noted, natural language expressions tend to mix
components from various DDS subspaces, e.g. data flow and structural
components. The notion of a binding in the DDS is a specific instance of
the desire to relate components in different subspaces, t.e. interspace
relationships. However, just as in the previous two concepts, the nature of
a structural or physical component can usually not be determined at the
single sentence level; hence, the abstract component is introduced. The

result is that the two DDS primitives are combined into a single concept,

t.e. 8 VCNR binding as shown in Figure 4-9.

4.8.3. Example sentences for the VCNR concept

The example sentence that introduced the bidirectional value transfer
in the previous section (shown below for reference) contained an additional
primitive concept often found in specifications, the VCNR concept. This

concept is associated with the phrase via two lines.

Each requestor communicates with the arbiter via two lines, a

request line and a grant line.

The VCNR concept is an extension of the value carrier range relation found
in the DDS. The VCNR concept simply relates an abstract component to a
data flow value and its range in the timing and sequencing subspace. This
is consistent with matching the semantics of the concepts with the natural

language representation. The concept for the example sentence is:

(v_c_n_r (df_val sunspecifieds)
(a_component linesi)
(ts_interval sunspecifieds)).

The SRL primitive ts__interval introduced here corresponds to the range,

(1.e., time range or i'nterval) in the VCNR concept.
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Figure 4-9: The VCNR concept and mappings into the DDS template
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When the example sentence is processed by PHRAN this concept is
appended to the BVT concept resulting in the following output:
(bi_dir_vtrans (src/snk (a_component requestori))
(src/snk (a_component arbiteri))
(info (df_val sunspecifieds))
(control (a_component sunspecifieds))
(v_c_n_r (4af_val sunspecifieds)

(a_component 11inesi)
(ts_interval sunspecifieds))).

In this example, the info is not specified in the BVT concept or the VCNR
concept because it did not occur in the sentence; at other times, the
presence in one slot or the other would permit the incompleteness in the

specification to be corrected. Another example of a sentence containing the
VCNR concept is

The peripheral equipment shall sample the !EF code word which
is on the !OD lines.

The concepts output by PHRAN for this sentence are:

(v_c_n_r (df_val !ef-code-wordl)
(a_component !od-1linesi)
(ts_interval sunspecifieds))

(uni_dir_vtrans (sourc (a_component *unspecifieds))
I (sink (a_component peripheral-equipment1))
(info (df_val tef-code-wordi))
(control (a_component sunspecifieds))).

In this example the concept is introduced by a relative clause; this results in
a similar VCNR concept but a slightly modified format which is ouput by
PHRAN.



104

Instead of appending the VCNR concept directly to the value transfer as in
the previous example the VCNR concept is added to a list of supplementary
concepts that would be combined with the UVT or BVT concept in SPAN’s
post processing. Note also that the info is identffied in the UVT concept as

a data flow value and the df_wvalue or data flow value is similarly
identified in the VCNR concept.

4.8.3.1. Another level of semantics

The example sentence from the previous section (shown below for

reference) seems to contain more information than the BVT concept
captures.

Each requestor communicates with the arbiter via two lines, a

request line and a grant line.

This additibnal information is associated with the semantics of individual
words. A human reader of the specification might make use of these
semantics to infer more about the value transfers being described. For
example, the direction of the value transfers might be inferred from the
word semantics: that a requestor makes requests which are placed on the
request line and that the arbiter would produce grants which are placed on
the grant line. The current version of PHRAN-SPAN cannot use the
semantics of the individual words arbiter, requestor, grant and request to

reason about the fragments of graphs in the DDS.

4.9. The Nondirectional Value Transfer

The abstract behavior of an NVT (Nondirectional Value Transfer) is
the input and output of data flow values to a single operation in the data

flow subspace and the associated timing and control information.
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4.9.1. The DDS template for an NVT

The DDS template for the NVT consists of two subgraphs and their
associated bindings as shown in Figure 4-10.

df _val2

binding\

Figure 4-10: The DDS template for an NVT.
As with the UVT and the BVT, this representation defines the behavior -

associated with an NVT. There is no theoretical limit to the number of
input or output data flow values associated with the data flow operation;
however, PHRAN-SPAN curently restricts these to two, three or four
depending on the particular NVT concept. Unlike the UVT and BVT, the

control information is not explicitly represented in this representation but

may be included as a value input to the data flow operation.
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4.9.2. The NVT concept--a higher level of abstraction

The NVT concept is derived from the abstract behavior of an NVT
and examples taken from natural language speci'_fications. The NVT focuses
on the input and output data flow values which are specified in the natural
language construct. Like the UVT and the BVT, the NVT deals with the
mixed behavior and structure present in natural language through the use
of abstract components. The mapping of an NVT concept into the NVT
DDS template is shown in Figure 4-11.

a component

input output

[
po{ential _
,' mappings

block

‘--

Figure 4-11: The NVT concept and mappings into the DDS template.
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4.9.3. Example Sentences for the NVT concept

An example of a hypothetical NVT sentence that PHRAN-SPAN can
analyze is

The cpu computes the difference of !a and !b.

For functions like subtraction and division where the inputs are not
commutable, a simple convention is established that the inputs are read
from left to right and the function inserted as for infix notation. Therefore
the above sentence has the value !b subtracted from the value !a. Another
approach could use appositives to identify the subtrahend, the divisor, etc.
In addition to compute, other verbs that express the NVT concept are
count, form, keep, maintain, preserve and retain. When used in a
sentence, these verbs relate inputs and outputs to a single abstract

component, resulting in an NVT concept:

(non_dir_vtrans (fnc_info ?fnc_info)
(o_m b r (af_opn ?df_opn)
(a_component ?actor)
(ts_interval ?ts_interval)))

The new SRL primitive o_m_b_r, introduced here, signifies a
operation-module-block-range binding or OMBR; like the VCNR
binding this abstract binding replaces two DDS bindings the
operation-module-range binding and the module-block binding. The
SRL primitives used for the remaining DDS objects are the same as the
VCNR binding in Section 4.8. Unlike the UVT and BVT the NVT concept
is not fully self contained. The SRL primitive fnc_tnfo determines the
arity of the function and thus allows the NVT concept to have a data flow
operation or abstract component with one, two or more inputs and also a

variable number of outputs.
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An example of this concept for a function with one output and two inputs
is
*(fnc_1info

(inputi (a_value ,(new-token (a_value)(value 4 word))))
(1nput2 (a_value , (new-token *(a_value) (value 6 word))))
(outputi (a_value sunspecifieds))

(operation (df_opn , (new-token ° (df_opn) (value 2 word)))
(arity 2)))))

Also, the SRL primitive a_value that represents an abstract value is
introduced here. The abstract value is necessary, because, at the sentence
level, the inputs !a and !b in our example may be data flow values or
structural carriers or physical nets. The operation part of this concept
identifies the particular operation, in this case, the difference operation, and
the arity of this function. The arity is specified to aid SPAN in analyzing
structures with variable number of slots in the frames rather than by trial
and error checking. Currently, the functions of sum and product accept up
to four inputs; however, this is only an implementation limitation.
Functions could also be defined with more than a single output. For
example, the quotient could specify a remainder and an underflow. In the
current implementation, it was assumed that SPAN could obtain this type
of implementation information from the component library and request

additional information from the specifier if necessary.

4.10. The Declaration Concept

The declaration is a concept created to capture the semantics of
natural language sentences that reference data flow operations or data flow
values, ranges of time or events, modules or carriers, and blocks or nets by
a user-supplied name. The user-supplied names are differentiated from
normal input in the current implementation by prefixing the name with an
!, e.g., cpu 'a, !cpua or !diskl. These sentences establish the existence of
objects in the DDS, associate DDS objects with library components, permit

the user to differentiate among multiple occurences of a similar component
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and can sometimes remove the ambiguity associated with an abstract

component or an abstract value. The SRL representation of a declaration is

(declaration

(pname *descriptor)

(ref ?ref) '
(class ?class)
(description ?nominative))

This concept links a user-defined pname with a class of DDS object, e.g.,
the pname !a with the class of object cpu. All of the meanings of cpu
would then be inherited by !a. This inheritance is accomplished in SPAN,
where the declaration concept is recognized and an appropriate entry is
generated in PHRAN's database. The SRL primitive ref determines
whether the reference is definite or indefinite. By examining the type of
reference, SPAN could decide to make a generic assignment to a class of
objects or a specific assignment linking this object to a another named
object or a specifically referenced object. Currently, SPAN only makes
assignments to classes of objects, but could be easily extended. The
description property would be used in conjuhction with the definite

reference to a specific object.

4.10.1. The DDS template for a Declaration

In most cases, the DDS template for a declaration is simply a named
object in the appropriate DDS subspace. More complicated cases generally
can be mapped into an OMBR concept or a VCNR concept by SPAN.

4.10.2. Example Sentences for Declarations

Declarations as defined here do not often appear explicitly in actual
natural language specifications but are implicit and usually must be
inferred by the designer. However, the solution proposed in this thesis

requires that there be a declaration section in each part of a specification to
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reduce the amount of implicit knowledge and make the specification more
complete and less ambiguous. The following examples are hypothetical

sentences that would be required by PHRAN-SPAN to process 2 natural
language specification.

la is a cpu.
b is a cpu.

This example allows the user to reference either of two identical cpus;
however, it does not allow us to disambiguate the use of cpu as a logical or

physical component.

The next example references specific physical devices and therefore
allows the named objects cpu 'a and cpu !b to be associated with a block

.in the physical subspace.

The cpu !a is an IBM 370.
The cpu 'b is a VAX 11/780.

In addition, if the physical block is a library component, its associated
behavior from the data flow and timing and sequencing subspaces and its
module(s) in the logical subspace can replace other references to the

abstract component.

The last example is characteristic of a global decalaration and could

be used by SPAN in post processing a group of sentences.

The following section describes the system’s logical architecture.

This statement might be characterized as a meta-specification statement

but is nevertheless classified as a declaration here and considered to aid in
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the disambiguation of a group of abstract component references. Since this
meta-specification type of declaration involves modifying multiple

sentences, it is not implemented in the prototype system.

4.11. Single Temporal Relation Concept

A STR (Single Temporal Relation) is a concept created to capture
the semantics of natural language sentences that establish the partial
ordering of various events in the timing and sequencing subspace. The
events may be part of other concepts like a UVT, BVT, NVT or more
complex temporal constructs, like the CTI (Causal Temporal Inititiation
or the CTT (Causal Temporal Termination) that will be described in
Section 4.13 and 4.14. Similar to the declaration concept, the STR
concept does not represent a higher level of abstraction but maps directly

into objects in the timing and sequencing subspace.

4.11.1. The DDS template for a STR concept

[

The DDS template for the STR concept is an arc in the timing and
sequencing subspace and the events it orders. The arc’s type, the events
that are associated with its head and its tail, the length of the arc, the
relation associated with the length of the arc and the units used for the
length are all part of the DDS template for this concept, as shown in Figure
4-12.

4.11.2. Example Sentences for the STR concept

Temporal relations are often found in natural language specifications.

The first example is

The computer shall clear the !ODA line before placing the next

word on the !OD lines.
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The adverbial phrase before placing the next word on the !OD lines is
ordered with respect to the event of the 'ODA line being cleared. This use
of adverbial phrases is typical for this concept and examples of the
beginning of adverbial phrases are: prior to, 20 ns before, immediately

following and after. Two additional example sentences are
1. !Select shall be dropped 100 ns after the write is begun.
2. After the exception lines go inactive the recovery phase begins.

The SRL form of the concept that is used in the analysis of these sentences

is

(single_temporal rel

(ts_arc_constraint (arc_type ,(default ‘sconstraints))
(arc_head ,(default °spreds))
(arc_tail ,(default °ssuccs))
(arc_rel ,(default °gt))
(arc_len ,(default 0))
(arc_units ,(default °seconds)))

(spred* ,(value 2 cd-form))))])

!
In the example sentences used to demonstrate an STR, there are usually
two or more concepts. For example, there is a concept associated with the

main part of the sentence,

!Select shall be dropped.
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Then there is the STR concept associated with the adverbial phrase,

100 ns after the write is begun.

The STR concept is appended to the concept associated with the main part
of the sentence. Depending on the preposition used one of these concepts
describes the predecessor, denoted *pred* in the STR frame and the other
concept is the successor, denoted *succ* in the STR frame. Only the part
of the concept that is appended onto the main concept is discussed here.

The DDS template for this STR example is shown in Figure 4-12.

*pred*

\ ¢- *constraint ¥

\ gt (100 (10E-9) seconds)

\
\

*succ*

Figure 4-12: The DDS template for the STR concept
generated by the example sentence.

As with previous concepts all the facet values of the STR concept are filled
in by defaults; however, unspecified values aren’t requ‘xréd as defaults, since
the defaults are determined by the prepositions that are used in the
adverbial phrase. The defaults for arc_ type and arc_rel (arc relation)
correspond to the arc types and relations as discussed in Chapter 3 on the
DDS. The defaults *pred® and *succ® are the predecessor or preceding

interval in time and the successor in time, respectively. Since the adverbial
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phrase that creates this concept modifies an existing concept by appending
the STR concept to it, the slot values for the *pred* and *succ* are
determined by the meaning of the particular adverb. The adverb after fills
the *pred* facet slot with the part of the sentence that completes the
adverbial phrase and the *succ* is the other concept, whereas for the
adverb before the *succ* facet slot is filled and the *pred* is the other
concept. Additional information (e.g., the phrase 100 ns after) would
modify the default values in the facet slots for arc_rel, arc__len and

arc_units resulting in the following concept for example #1:

(single_temporal_rel

(ts_src_1 (arc_type sconstraints))
(arc_head *succs))
(arc_tail spreds))
(arc_rel gt))
(arc_len 100))
(arc_units 1E-09 seconds)))

(spreds  (uni_dir_vtrans :
(source (a__component sunspecifieds))
(sink (a_component sunspecifieds))
(info (df_val shighs))
(control (a_component sunspecifieds))

(venr ¢

(df_val shighs)
(a_component !select)
(ts_interval #*unspecified)))).

4.12. The Dual Temporal Relation Concept

A very important class of temporal constraints that are not described
by the STR concept is the DTR (Dual Temporal Relation) concept. The

prepositions during and while are typical examples of this class of

temporal relations.
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4.12.1. The DDS template for the DTR concept

The DDS template for the DTR is shown in Figure 4-13.

pred _init pred _term

"error
eported"

—

vdata .
gated"

init 1 term_1

Figure 4-13: The DDS template for a DTR concept.
Because it unambiguously establishes the timing and sequencing relationship
between two distinct intervals or ranges it consists of two constraint arcs
which are referenced to the intitiation of both intervals, labelled init 1 and

pred _init in the figure, and to the termination of both intervals labelled

term _1 and pred_ term.

4.12.2. Example sentences for the DTR concept

Two sentences expressing the DTR concept follow:

1. The error will be reported on the !PS !Parity !Error line
during the time the data is gated onto the !EC !Input
{Data !Bus.

2. The inputs are not latched while the outputs are
latched.
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The SRL representation of a DTR concept is

(dual_temporal _rel
(ts_event_init_1 (event name

.(or (value 2) (value 2 word)
(default -*sunspecifieds)))

(event_type ,(default °sbetas)))
(ts_event_term 1 (event name

. (or (value 2) (value 2 word)
(default ‘sunspecifieds)))
(event_type ,(default °smus)))
(ts_arc_1 (arc_typel ,(default °“sconstraints))
(arc_tail ,(default ‘'sbetas))
(arc_head , (default °spred-inits))
(arc_rel ,(default °gt))
(arc_len ,(default 0)))
(ts_arc_2 (arc_type ,(default 'sconstraints))
(arc_tail ,(default 'spred-terms))
(arc_head ,(default °smus))
(arc_rel ,(default °gt))
(arc_len ,(default 0)))))1)])

The SRL primitives are the same as those used in the STR concept;
however, there are more events and arcs. The two events
ts__event _init_1 and ts__event_term__ 1 correspond to the initiating
event and terminating event respectively of the,interval that bounds the
other interval temporally. That is if we say that an interval, A occurs
during an interval, B we mean that A starts sometime after B starts and
that A ends sometime before B ends, which means B bounds A. The default
values for arc types and relations correspond to the values discussed in
Chapter 3 on the DDS. The default values *pred-init* and *pred-term®
refer to the initiation and termination of the concept preceding the DTR,
1.e. the concept that the DTR is appended to by PHRAN.
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4.13. The Causal Temporal Initiation

A hypothetical example sentence for a CTI is
The cpu starts the memory data transfer activity.
A CTI (Causal Temporal Initiation) extends the coverage of the STR and
DTR concepts to allow direct reference to sequences of events and their
relationships as a single concept. This often occurs in natural language

specifications where relationships between subprocesses and process control

are being described.

4.13.1. The DDS template for the CTI concept

The DDS template for a CTI consists of two subgraphs in the timing

and sequencing subspace that are connected by a causal arc as shown in
Figure 4-14.

Iprocess

Isubprocess

Figure 4-14: The DDS template for a CTI concept.
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4.13.2. The CTI concept

The CTI concept focuses on the causal relation between two temporal
series of events. Usually only the top-level details describing the events are
included in the natural language sentences that correspond to the CTI
concept. The CTI concept defines the controlling process’ temporal activity
by an interval in the TSss that starts with an event, ts_event _init_ 1
which is followed by a second event, ts_event _caus__ 1 that is a beta-type
point and represents the initiation of the causal activity and the
continuation of the main process. The causal event is linked in time

through the causal arc with the start of the subprocess. This causal

relationship can be seen in Figure 4-14.

4.13.3. Example sentences for the CTI concept

The verb -start in the bypothetical example captures the semantic
concept of causality. Two other verbs that express a similar semantic

concept are begin and initiate. The complete CT1 is expressed in the SRL

as a frame-like data structure:

(causal_temporal_init
(ts_event_init_1 (event_name Pactor)
" - (event_type ?event_type init 1))
(ts_arc_1 (arc_type ?arc_type_1)
(arc_tail factor)
(arc head ?event_name_caus_1)
(arc_rel ?arc_rel 1)
(arc_len ?arc_len_1)
(arc_units ?arc_units_1))
(ts_event_caus_1 (event name ?event _Dhame_caus_1)
- - (event_type ?event_type_caus_1))
(ts_event_init_2 (event name ?a_component_2)
- - (event_type Pevent_type_init_2))
(ts_arc 2 (arc_type ?Parc_type_2)
o (arc_tail ?arc_tall 2)
(arc_head ?a_component_2)
(arc_rel ?arc_rel_2)
(arc_len ?arc_len_2)
(arc_units ?arc_units_2)))
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The SRL primitives used here are explained in the description of the
concept and in the description of the STR and DTR concepts.

4.13.3.1. The Single Temporal Event--a degenerate CTI

In certain cases, where there is no direct object in the sentence for a
CTI concept, the complete concept can be described simply by the first
event in the CTI, ts_ event _init_ 1. Since the rest of the concept is not

needed for this case a concept called a Single Temporal Event (STE) was

created. An example sentence for the STE concept is

After the propagation delay, the data transfer starts.

This simple concept corresponds to the point in the TSss where the interval

starts. The SRL form of the concept is

(single_temporal_event
(ts_event_init_1 (event_name ?actor)
' (event_type ?event_type)))

actor ‘?subject
event_type_1 (default ‘spis)]).

4.14. The Causal Temporal Termination Concept

A hypothetical example sentence for a CTT is

The cpu terminates the print server.

The CTT (Causal Temporal Termination) concept like the CTI concept
describes the causal relationship between a process and a subprocess. It
differs from the CTI in the way the causal links are established between the
process and the subprocess. In the CTT the causal link requires an
asynchronous predicate to be defined with respect to the subprocess because
the controlling process’ "termination signal" is asynchronous with respect

to the subprocess’ clock.
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4.14.1. The DDS template for the CTT concept

Like the CTI concept, the CTT concept consists of two subgraphs in
the timing and sequencing subspaces. These subgraphs are linked through a
bundle of causal arcs that correspond to the gamma points of the
asynchronous predicate. Since the gamma points of an arc with an
asynchronous predicate are not drawn for clarity, the bundle of causal arcs
are normally omitted from a CTT DDS template also for clarity. These

arcs are shown in Figure 4-15 to illustrate the causal relation in the CTT
concept.

VAN

VA AR
WETEIE
/ 2 BN
/ / | \,

Figure 4-15: The DDS template for a CTT concept.
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4.14.2. Example sentences for the CTT concept

The verb terminate in the hypothetical example captures the
semantic concept of causality expressed in a CTT. Two other verbs that
express a similar semantic concept are: stop and end. The CTT concept

is expressed in the SRL as a frame-like data structure:

(causal_temporal_term
(ts_event_init_1 (event_name ?Pactor)
(event _type Pevent_type_init 1))
"(ts_arc_1 (arc_type farc_type_1)
(arc_tail ?actor)
(arc_head ?event _hame_caus_1)
(arc_rel ?arc_rel 1)
(arc_len Parc_len 1)
(arc_units ?arc_units_1))
(ts_event_inter_1 (event_name ?actor)
(event_type ?Tevent_type inter _1))
(ts_event_init_2 (event_name ?a_component_2)
(event_ _type ?event_type_init_2))
(ts_arc_2 (arc_type ?arc_type_2)
(arc_tail ?a_component_2)
(arc_head ?a_component_2)
(arc_rel ?arc_rel_2)
(arc len ?arc len _2)
(arc units ?arc unips 2))
(ts_event_inter_2 (event_name ?a_component_2)
(event_type ?event_type_inter 2))
(asynch_pred (predicate sunspecifieds)
(a_component sunspecifieds)
(ts_interval ?ts _event_1init 1)
(ts destination (event name ?terminal)
(event_type *rhos))))

The SRL primitives are basically the same as in the CTI concept except
that there are more arcs and events and the asynchronous predicate has
been added. The asynchronous predicate, asynch__pred consists of the
Boolean expression, predicate which defines the condition which causes the
asynchronous branch, the a__component that is the carrier required for an
asynchronous predicate, the ts__tnterval that the predicate is bound to and

the ts__destination that defines the rho node that the activity branches to

when the predicate is true.
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4.15. Asynchronous Temporal Activity

The ATA (Asynchronous Temporal Activity) is used in conjunction
with other concepts like the UVT, BVT, NVT, CTI, CTT and STE. The
ATA associates an asynchronous predicate with these concepts. The ATA
is described by an adverbial clause and like the STR and DTR modifies

another concept. An example sentence that demonstrates this is

Upon receipt of the flag, the cpu sends the data to the device.

The basic sentence is a UVT. This UVT occurs as a result of the condition

associated with receiving the value associated with a certain flag. Another

example is

When the data ready line is dropped, the device starts the data
transfer process.

In this example, the basic sentence is a CTI concept, and the point at which
the device starts the process is determined by the predicate produced by the
ATA concept for the data ready line being dropped.

4.15.1. The DDS template for an ATA

The template for the ATA is simply the asynchronous predicate
derived from the information contained in the adverbial phrase. The ATA

concept is expressed in the SRL as a frame-like data structure:

(asynch_pred (predicate ?predicate)
(a_component ?a_component)
(ts_interval ?ts_interval)
(ts_destination (event_name ?terminal)
(event_type #rhos))))
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4.16. Summary

In this chapter we have defined a set of concepts that can be used to
describe the behavior of digital systems. In building a prototype system for
understanding natural language specifications, .t{hese concepts, along with
lower-level concepts associated with the meaning of phrases have proven to
be sufficient for a broad variety of sentences found in actual specifcations.
Test cases run on the prototype system are presented in Chapter 6. Some
of the lower-level concepts associated with phrases are discussed in the next
chapter on natural language processing. Additional examples of all the

concepts can be found in Appendix B.
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Chapter 5

Natural Language Processing

5.1. Introduction

This chapter will discuss the natural language processing issues which
arose in this research. It will begin by reviewing the components of the
natural language interface. The theory and operation of PHRAN will then
be summarized. Specific extensions and modifications to PHRAN for this

problem will be described. Finally, a format for writing specifications in
natural language will be outlined.

5.2. The Components of the Natural Language Interface

As discussed in the introduction to Chapter 4, the four components

necessary to understand the specification of digital systems in restricted
English text are

1. a corpus (a collection of writings, in this case examples) for the
domain of these specifications,

2. a representation for the knowledge expressed in the corpus,
3. a formal representation for the behavior of a digital system, and

4. a parsing technique to map the natural language into the formal
"behavioral" representation.
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5.3. Examples of PHRAN operation

Having presented the requirements necessary for the natural language
processing of a specification, some illustrative examples of the various

representations and their use in processing the natural language input will
be provided.

5.3.1. A simple sentence

A complete description of PHRAN and its operation can be found in

[Arens 86]. The following description is adapted from one of the examples
in Aren’s thesis.

The cpu sends the data to the peripheral device.

PHRAN first reads the word the and the pattern-suggesting routine
suggests patterns associated with the word the. PHRAN then forms a term
for the and adds it to a list called *PHRAN-BUF®*. When the second
word cpu is read, it matches the pattern consisting of the literal cpu and
the concept associated with this pattern causes a term to be formed that
represents a noun and a particular object, cpu. The pattern suggesting
routine instructs PHRAN to consider the "basic" pattern associated with
<article> <noun>. As these patterns are considered, if there were a
pattern that consisted of <article> <noun>, a new term corresponding to
a noun phrase would be created. Although, this is correct here, in other
cases, where the word cpu was followed by another noun and formed a
longer noun phrase, e.g., epu register, the match would be premature and
the parse would fail. To avoid this, the pattern for <article> <noun> is
extended to <article> <noun> <not-noun next>. The pattern <not-
noun next> allows PHRAN to look ahead at the next word following the
cpu to see if it is part of a longer noun phrase. In this example, since the

word is a verb, t.e. not a noun, the pattern matches and the concept
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associated with the pattern causes a new term to be formed that represents
a noun phrase and a particular object cpul. This new term replaces the

two terms that were in *PHRAN-BUF* with a single term corresponding to
the noun phrase the cpu.

Send is read next. It matches the literal send and an appropriate term
is formed. The pattern suggesting routine suggests the "basic" pattern

associated with the verb to send: There are two patterns for send:

[ (or (a_component) (df_opn)) (root send) (df_val))

[ (or (a_component) (df_opn)) (root send)
(or (a_component) (df_opn)) (af_val))

The disjunctive condition expressed in these patterns by or simply means
that the subject can be either an a_ component (abstract component) or a
df_opn (data flow operation).

The initial condition of the pattern for the verb is found to be
satisfied by the first term in *PHRAN-BUF* and this fact is stored under
that term. Succeeding ones will be checked to see if this partial match

continues. The term that was formed after send is now added to the list.
*PHRAN-BUF* now contains

<[cpui - a_component, np), [send - verd)>

Next, the data is processed and results in a noun phrase that satisfies the

last condition in the pattern for the verb send.
The first pattern for a sentence with the verb send is matched. All
the terms in *PHRAN-BUF* are replaced with a single term corresponding

to the concept associated with the matched pattern.

PHRAN continues processing the sentence and now reads the word to
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which it identifies as a preposition. The pattern suggesting routine suggests
several adverbial phrases beginning with the preposition to.!) When the
adverbial phrase to the peripheral device is finally matched, PHRAN
modifies the value associated with the sink to "peripheral device® in the

concept associated with the verb send.

The concept part of the pattern-concept pair for send matched in
processing the example sentence is

[concept °(uni_dir_vtrans

(source (a_component ?from))
(sink (a_component ?to))
(info  (af_val ?4f_val))

(control (a_component ?actor)))
actor ‘?subject

df _val (value 3)

actor (default °sunspecifieds)

to (default ’sunspecifieds)
from (default °‘sunspecifieds)

df val (default ‘sunspecifieds)]).

The prefix ? indicates variables which are associated with the facet values.
For example, during processing 'df_val is replaced by the value
associated with the third element of the pattern, the data and the Tactor is
replaced by the value associated with the subject of the sentence, the cpu.
The values are usually tokens created by PHRAN when the words are
encountered. For example a token is created for the cpu, cpul and tokens
are also created for the data, datal and the peripheral device,
peripheral-devicel. Note, if the phrase the cpu or the data had been
used in a previous sentence(s), then the token would have been cpu2 or

data3 or some other numbered token. When the sentence is completely

175 the documentation on PHRAN, patterns of this nature are generally handled by
making the adverbial phrase an optional part of the pattern for the verb send. The
processing of optional phrases, although very efficient, is also rather restrictive. The
optional patterns could not handle all of the constructions required for processing many
sentences taken from specifications; therefore, in this implementation, adverbial phrases are
always handled by a separate pattern-concept pair.
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matched to patterns in PHRAN's database a term representing the meaning
of the sentence is all that remains in *PHRAN-BUF* and all variables are

replaced by a token or a default value.

The result for processing this
example is

(uni_dir_vtrans
(source (a_component sunspecifieds))

(sink  (a_component peripheral-device1))
(info  (df_val datal))

(control (a_component cpui)))

Given the tokens for the source operation, the sink operation, the
control operation and the value transferred, the DDS template associated

with the UVT concept can be filled-in, resulting in a data flow graph

associated with the example sentence. In this example, no timing is

specified so the canonical timing and sequencing subgraph is assigned by
default.

Note that by not mapping directly from the English to the graphical
representation, the knowledge is stored in a form easy for SPAN, the
SPecification ANalysis program, to process for incomplete information.

The difficulties associated with mapping and many level representations are

cited as an open problem by [Weischedel 83].

5.3.2. Adding timing information

The addition of a single phrase to the end of the example sentence
used in the previous section demonstrates the capability of this technique to

handle timing information. We simply change the sentence to

The cpu sends the data to the peripheral device in less than
100 ns.

The information in less than 100 ns is easily handled as an adverbial
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phrase in PHRAN which modifies the basic UVT concept that it created

when parsing the first part of the sentence. The first part of the sentence is
processed and the basic UVT concept is formed, then the pattern associated
with the phrase in less than 100ns is matched. This second match results
in PHRAN testing the previous concept. When it finds uni__dir__vtrans,
the concept is modified by appending the timing information extracted
from the adverbial phrase to the existing UVT. The timing information is

described by an STR, which was described in Section 4.11.

(ts_arc_constraint (arc_type ,(default “‘sconstraints))
(arc_head ,(default ‘spreds))
(arc_tail , (default ‘ssuccs))
(arc_rel ,(default ‘'gt))
(arc_len ,(default 0))

(arc_units ,(default ‘seconds)))
(spreds ,(value 2 cd-fore))))])

The modified concept indicates that there is a timing interval, that it
has a constraint type arc associated with it and that the relation
associated with the constraint arc is It, for less than, the value is 100 and
the units are nano-secs. At this level of abstraction, no additional
information is available. The data flow value and the abstract components
are all bound to the entire ts_interval. The DDS representation which

incorporates the timing information is shown in Figure 5-1.

5.4. Extensions to PHRAN

Most of the extensions to PHRAN required to process specifications
were made by augmenting PHRAN'’s knowledge base with generalized
pattern-concept pairs. A few cases could not be accommodated by adding
additional pattern-concept pairs but required small modifications to
PHRAN's routines that performed the analysis; however, they simply added
capabilities and did not interfere with existing processing. These small

changes significantly enhanced PHRAN's basic capabilities for the domain
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TSss

6 < 100 ns

Figure 5-1: DDS representation of data flow and timing
information.
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of specification understanding. In the following sections, we will describe

the handling of noun phrases, temporal and relational modifiers, numbers
and naming.

5.4.1. Noun phrases

It is quite common for nouns to be used as modifiers of other nouns in
specifications. Some examples are

1. bus request cycle,

2. transfer block size,

3. segment trap request,

4. data trans fer operations,

5. segment descriptor number,

6. data transfer bus cycles,

7. interrupt vector transfer phase, and

8. arithmetic register reference tnstruction.

These phrases are often created by the specifier to reference a particular
entity, e.g., a piece of hardware, an activity, or a range of time. Therefore,
their meaning can usually be inferred from the last noun in the phrase.
However, the process of forming these groups of nouns into a specific noun
phrase is complicated by the fact that many of the words used in
specifications are syntactically ambiguous, i.e., the word may be either a
noun or a verb [Pavilovic-Lazetic 86]. Examples of these words are
interrupt, process, signal, start and transfer. For example, if transfer
is stored as a noun and as a verb, PHRAN will prefer the pattern suggested
first, all other things being equal. Thus it would parse the the process’

transfers the data incorrectly as <poun phrase: the process transfers>
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<noun phrase: the data>. However, it would parse the data transfer
register correctly, producing <noun phrase: the data transfer register>.

Therefore, PHRAN's inherent priority scheme, will result in a word,
that can be used as either a noun or a verb, being recognized as a noun if
the noun is indexed before the verb. PHRAN's access routine was modified
to look up all possible meanings of a word; therefore, the only problem left
to solve was when to use the word as a noun or as a verb. This is explained
in the following section on disambiguation.

5.4.1.1. Rules for disambiguation

Some potential rules for resolving the word’s use in a sentence are

1. check the agreement in number of the subject (potential noun
phrase) with the verb/noun,

2. check whether the word preceding the verb/noun is an active
agent, t.e. a possible subject of the sentence and/or

3. check whether the word following the verb/noun is a verb or a
noun or another verb/noun.

Evaluation of several examples led to a simple heuristic based on rule #1
and rule #3. This heuristic also required two new functions to be added to

PHRAN. The two functions added to PHRAN are

1. noun-and-verb that tests whether a word can be used as both
a noun and a verb, and

2. after-next that looks ahead two words to the right.

The modification to PHRAN to look ahead further or back up a little more
is consistent with other research on parsing (e.9.,, PARSIFAL [Marcus
80] has a three-place constituent buffer). Rule #2 is also useful for
resolving certain ambiguous cases but requires additional semantic
information to be encoded at the word level to indicate potential active

agents, whereas, the heuristic based on rule #1 and rule #3 is encoded in a
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small number of generalized pattern-concept pairs that handle noun
phrases.

5.4.1.2. The heuristic for noun phrases

The patterns in PHRAN that are used to differentiate ambiguous

noun phrases from those that are unambiguous are given below:

:The next pattern actually handles special noun noun cases but

;Bust be indexed under noun, to allow look ahead--the result
;18 an amdbiguous Bentence.

(index-under-pattern (noun)
[(n11

[ (or (p-o-s article) (p-o-s quantifier)); Heuristic 2
(+ (and (p-o-s noun) . & noun followed
(noun-and-verdb next) . by 8 noun-and-verd
(not (not-plural next)) . singular in number
(noun-and-verb after-next)))

. followed by a second
(p-o-8 noun) (p-o-s moun)) . noun-and-verd

[ p-o-s ‘ambiguous-sentence
do (add-to-sscs °‘(ambiguous-sentence (verbi ,(value 3 word))
(verd2 , (value 4 word))))))))

.The next pattern actually handles special noun noun cases but
.Bust be indexed under noun, to allow look ahead--the result
.15 & noun phrase that contains one noun.

(1ndex-under-pattern (noun)
[(n11
[ (or (p-o-s article) (p-o-s quantifier)) , Heuristic 1
(+ (and (p-o-s moun) (noun-and-verdb next) 2 noun next
(not(not-plural mext) ; and a verb
(not-verdb after-next °basic)))] ; with the
same Btem
and plural
in number
and there isn°'t
8 verdb after
this noun

o r ®e e me w

o e e e @ o

[ p-o-8 ‘noun-phrase
cd-form (old-token (value 2 description) (value 2 word))
description (value 2 description)
do (add-adjs-to-sscs (value 1 adjs)

. (terms cd-form))

do (copy-term 3)])])
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The and in these heuristic patterns indicate that all the conditions must be
true for the pattern to match. The basic structure of the patterns for noun
groups is similar to Winograd’s Noun Groups [Winograd 72] and these
heuristics are consistent with Gershman's rules used in the Noun Group
Parser (NGP) [Gershman 79). Our work differs from Winograd's research
in that he did not address the specific syntactic ambiguity problem in
forming the noun phrases, and from Gershman’s work in that our patterns
are more general and are not for specific classes of noun groups. (Even
though these patterns are more general, they are not used in the formation

of all noun phrases. For example, Gershman's patterns involving time are
handled by a special class of patterns.)

The following examples will demonstrate the ability of this heuristic

to detect this type of ambiguity in forming a noun phrase.

The input to PHRAN is

the cpu signals interrupt transfer activity.

This may be parsed as

1. <the cpu> <signals> <interrupt transfer activity>, or

2. <the cpu signals> <interrupt> <transfer activity>
When the example is parsed by PHRAN, the first two words are parsed as a

potential noun phrase, then the word signals is encountered. The word"
signals can be either a plural noun or a singular verb (i.e., it can be used
as a noun and also as a verb). The final condition is that the word after
signals has a use as a noun and as a verb. Interrupt satisfies the final
condition resulting in an ambiguous-sentence and SPAN informs the user

of the possible meanings.
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The ambiguity can often be removed by rewriting the sentence, for
example, the cpu shall signal interrupt transfer activity is not ambiguous
and corresponds to parse #1. Here the addition of the modal verb shall
has removed the ambiguity. An unambiguous sentence resulting in parse
#2 can be formed by inserting an article or quantifier between interrupt
and transfer activity, for example, the cpu signals tnterrupt all transfer
activity. A modal verb may also be used to remove the ambiguity in the

case of parse #2, for example, the cpu signals shall interrupt transfer

actiwvity.

Having solved this ambiguity detection problem, the second part of
the problem is to determine the meaning of the unambiguous noun phrases.
The solution for this was based on the typical use of these complex noun
phrases in specification documents. In general, these noun phrases are used
to reference specific items in the specification, for example, the data
transfer register refers to a specific register. Therefore, the nouns are
simply concatenated together to form a unique token and the string is
assigned the meaning of the last item. For the example, the token would be
the data-transfer-registerl and its meaning would be an

a__component.

5.4.2. Quantitative information and numbers

In specifications, quantitative data is usually present. Understanding
this data requires a knowledge of magnitude and units. PHRAN originally
understood decimal numbers that were typed in as figures, e.g., 97, 865 and
111111.
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PHRAN's knowledge base has been extended to understand some numbers
that are written as well (e.g., one, forty two, three million).12 PHRAN's
knowledge about numbers also includes ordinal numbers as well as decimal

fractions (e.g., tenths, hundredths).

In specifying behavior, time is the principal quantitative information
that PHRAN processes. Basic patterns were created that allow PHRAN to
form the meaning of temporal quantities, capturing the magnitude and

units and any qualifying relations (e.g., less than, more than, not more
than).

The basic units of time are seconds and PHRAN's knowledge base has
been extended to handle nanoseconds, microseconds, milliseconds and
seconds, uniformly. In addition, PHRAN recognizes the common
abbreviations associated with each of these units, e.g. ns, nanosecs or

panoseconds. PHRAN can also translate minutes and hours into seconds.

An example of the type of temporal phrase PHRAN encounters is
less than 24 ns.

PHRAN would first read the word less and recognize it to be an
adjective; next PHRAN reads the word than and matches the phrase less

than. The pattern-concept pair for this phrase is

[ less (* and than) ‘]
[p-o-8 ‘adv-Tel
description °‘(relation)
cd-fore °1t 1)1).

Next 24 is read and PHRAN associates this with the concept of a number.

Finally, ns, the abbreviation for nanoseconds is read. The pattern for ns

12Manuals on style [Perrin 59], [McCrimmon 63] recommend that only numbers that can
be expressed in one word be written out and that figures be used otherwise.
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references the basic pattern for nanoseconds resulting in the following
concept:

cd-form 1E-9
description °(ts_units)

Now that the three primitive concepts have been formed PHRAN matches
the pattern
(relation pumber ts_units)

and completes the concept for the phrase less than 24 ns. The completed
concept is

( ts_measure (relation 1t)(amount 2.4E-08)
(units seconds)).

This concept called a ts_measure is then used in forming larger concepts
dealing with temporal descriptions.

5.4.3. Named objects

The first thing most parsers do is to check if the word it has scanned
is in its lexicon. PHRAN originally did this and then queried the user to
check for possible misspelling or mistyping. If the user indicated that the
word was correct as seen by PHRAN then PHRAN added the word to its
lexicon without storing a meaning for the word. This represented a
problem for processing specifications since users frequently name a device,
e.g., cpu A or a signal or line, e.g., the EF code word or the OD lines. A
simple convention of prefixing an exclamation point to these names allows
PHRAN to trap these names and assign them the special class of a pname,
t.e. a proper name for the object. For the previous examples the user
would enter cpu !A, 'EF code word and !OD lines. Each pname can be
given the properties of the object that it names in a subsequent
postprocessing phase like SPAN. This is accomplished explicitly with the

concept of a-declaration as introduced in Chapter 4.
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5.5. Format of the Specification

Application of natural language processing to the specification
problem can be greatly facilitated by structuring the specification
document. The IEEE Guide to Software Requirements
Specifications [I[EEE 84] has been selected as the basis for a model of &
specification document. In phrticular, we are concerned with the section of

the specification document identified as the Functional Requirements.

Our proposed format is closest to Qutline 3 for System Requirements
Specification on page 24 of ANSI/IEEE Std. 830-1084. The system is
described as a group of functional requirements. In each group of
requirements, the introduction section is replaced by a set of declarations

that define the objects referenced in the specification. Examples of this
type of decalaration might be

® A process is a data flow operation.

e The ALU is a logical unit.

o All references to peripheral equipment are to the physical
devices.

Next the inputs of the system are defined. Definition of the inputs

should include

1. the source of the input,

2. the quantity,

3. the units of measure,

4. the timing characteristics, and

5. the range of the valid inputs including accuracies and tolerances.

Examples of each of these types of statements are
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e The inputs !a, !b and !¢ are external inputs to the
system.

* The inputs !a, !b and !¢ arrive as a group.
¢ The inputs !a and !b are 32 bit words.
¢ The inputs shall be available for 100 ns.

e The inputs !a, !b and !c range from 0 to 255.

The next section is the processing section. This section should define
all of the operations to be performed on the input data including

intermediate values that must be generated to obtain the output. It should
include:

1. all the operations to be performed,
2. the exact sequence of operations, and

3. any response to abnormal situations.

For example:

¢ The system reads the input values !a, !'b and !c.
e The alu computes the sum of !a and !b.
e The cpu sends the result to the terminal.

e When the interrupt flag is raised, all memory transfers
stop.

In general, processing should be described in blocks of related
operations. If there is a loop or iteration, it should be described explicitly.

The place where the loop begins should be indicated by a statement such as

The loop !compute begins.
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This statement would be followed by the body of the specification

describing the activity in the loop. After all the processing was described, a
statement such as

The loop !compute ends.

should be included. This approach allows us to avoid the hard problem of

deciding where loops begin and end. We can then apply standard compiler

technology to this problem.

In the last section, the outputs should be defined in the same manner

as the inputs.
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Chapter 6

Prototype System and
Test Cases

6.1. Introduction

In this chapter we will discuss the prototype PHRAN-SPAN system
constructed to validate the representations and methodology proposed in

this research. The primary components of the prototype system are

1. the phrasal analyzer, PHRAN,
2. the specification analyzer, SPAN and

3. the knowledge base for PHRAN.

The knowledge base required by PHRAN for processing digital system
specifications will be discussed in Section 6.2. In Section 6.3 we will
describe the SRL form of PHRAN's output. Following that we discuss the
results of processing several sentences taken from actual specifications.
PHRAN has been described in Sections 4.4 and 5.3. The details of PHRAN
operation can be found in [Arens 86]. SPAN's function is currently limited
to recognizing the various concepts and reformatting PHRAN's output into
English. Examples of SPAN's current capabilites will be shown in Section

6.4. The ultimate capabilites of SPAN will be discussed in Chapter 7.
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6.2. The knowledge base

PHRAN's knowledge base consists of pattern-concept pairs which
were described in Section 5.3.1. An example of the input used to create the
knowledge base in the PHRAN-SPAN prototype can be found in Appendix
B. The pattern-concept pairs may be stored in a variety of ways. We will
first examine those that are stored as words corresponding to a particular

part of speech, the most prevalent ones being nouns and verbs.

6.2.1. The nouns

Nouns are stored or indexed!® in PHRAN's knowledge base by using
the function noun:. For example, the noun activity would be indexed in
PHRAN's knowledge base as follows:

(noun: activity activities (activity 4af_opn))

The arguments to the function noun: are the word, its plural form and a
list of concepts, 1.e., the semantic categories that might be associated with
the word. In this case, the word activity belongs to two categories, one
which indicates that the word itself represents a semantic category, as well
as being a word and the second entry assigns it to the semantic category
df _opn, i.c., a data flow operation. In addition to the category df _opn,
there are ten other semantic categories that have been created for nouns to
aid in the understanding of digital system specifications. Three of these
categories correspond to objects in the DDS, they are df _val, ts_event
and ts_interval. The df_val corresponds to a data flow value in the
data flow subspace of the DDS. The ts_ event corresponds to events or

points in the timing and sequencing subspace (TSss) and the ts_interval

13Su)red and indexed are used interchangeably in this thesis; however, index has a
special meaning and the interested reader should consult the PHRAN documentation.
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corresponds to ranges or intervals in the TSss. The a_component or
abstract component and the a_ value or abstract value form another
category. This category was created to cover the uncertainty associated
with the usage of a word (e.g., the word cpu might refer to a logical unit,
t.e., a module in the structural subspace, or to a particular piece of
hardware, t.c., a block in the physical subspace). Similarly, reference to a
signal by name may refer to the logical carrier or the physical net or
possibly even a data flow value. Other examples of the use of this category
are given in Chapter 4. Another semantic category was necessary for
dealing with structured objects such as blocks, strings, records, stacks, and
tables. This category was named struct__obj. The last semantic category
is related to describing functions. This category was created to handle
functions with different numbers of inputs uniformly. Currently there are
three members of this category a unary_fnc, a binary_fnc and an
nary _fnc for functions with one, two or more than two inputs,

respectively.

There is some art to deciding which semantic categories to assign to a
poun. Assigning more categories can impact processing time since a token
can be created for each semantic category and when doing pattern
matching each of the categories might have to be tried individually. The
usage of the word must also be considered—some words may have many
different uses. An example of this is the noun snterrupt which has the

following entry:

(noun: interrupt (interrupt temporary-halt break df _opn ts_ event df _val

a_ value))

The noun interrupt is assigned to seven semantic categories. The first
being the word itself, this represents a very specific usage, i.e., the concept

of interrupt would actually have to occur in the PHRAN pattern for this
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meaning to match. The second semantic category of a temporary-halt
might match a less specific pattern in PHRAN, e.g., one associated with the
word suspension. The last four semantic categories are more general and
would allow interrupt to match PHRAN's pattern in a large number of
cases. Now that patterns to handle nouns and verbs with the same lexical
stem bave been added to PHRAN and PHRAN's knowledge base, these
words may be stored like any other noun or verb. However, the entry for

the verb must follow the entry for the noun.

Though over 2000 words have been included in the vocabulary list
only about 100 of the nouns are indexed in the prototype system's
knowledge base. These nouns are shown in Table 6-1 and the patterns used
to index them can be found in Appendix B.

6.2.2. The verbs

Like nouns, verbs maybe indexed in PHRAN’s knowledge base by
using a special function verb:; however, this function only creates pattern-
concept pairs that correspond to the various forms of the verb. For
example, send and transfer would be indexed in their various forms by

including the following line in the LISP file used as PHRAN's knowledge

base.

(verdb: send sent sending)
(verd: transfer transferred transferring)

Irregular verb forms can be indexed with this function by supplying four
basic forms of the verb instead of three as indicated here. Also, in the
exceptional case when the verb has unusual forms, they must be defined
and indexed explicitly [Wilensky 80]. All the verbs used to date in the
prototype system’s knowledge base are regular (Appendix B).



access
acquisition
activity
address
agent

alu
arbiter
arbitration
arbitrator
bit

block
byte

bus

cache

call
channel
check
clock
code
command
condition
control
cosine
cotangent
count
cpu

cycle
data
delay
device
difference
end
equipment
event
fetch

fft

Table 6-1:

filter

flag

format
function
grant
handshake
index
information
input
interrupt
interval
line

map

mark
marker
match
measure
memory memories
multiplexer
operation
output
parity
pause
peripheral
phase

point
preset
priority
process
product
propagation
quotient
read
receipt
receiver
record
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register
report
request
requestor
reset
resolution
resource
root
sender
sequence
shift
shifter
signal
sine

sort
speed
square
stack
start
store
switch
subsystem
sum
system
tag
tangent
task

test
transfer
trap

unit

use
value
wire
word
write

Nouns in the prototype PHRAN-SPAN knowledge base.
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The function for indexing verbs, unlike the one for indexing nouns,
only forms patterns that cover the various forms of usage. It does not
index the meaning of the verb or an actual pattern-concept pair.
Therefore, the verb's meanings must be entered separately in the knowledge
base. The pattern-concept pair associated with a verb is indexed with
another special function name. For example, the following entry would be

included in the knowledge base to index the pattern-concept pair for the
verb tranasfer.

(name Xtransfer
((active passive)

[(or (a_component) (4f_opn)) (root tramsfer) (df val))
[concept *(uni_dir_vtrans

(source (a_component ?from))
(sink  (a_component ?to))
(1nfo  (df_val ?df_val))

(control (a_component ?actor)))
sctor ‘?subject

df_val (value 3)

to (default ‘sunspecifieds)
from  (default ‘sunspecifieds)
df_val (default °sunspecifieds))))

The first argument to the function name in this example is the root of the
verb prefixed with a percent sign. This allows all forms of the verb defined
by the function verb: to use this pattern. The next argument to name is a
list containing several arguments. The first argument in the list identifies
whether this pattern applies to the active voice, passive voice or both uses
of the verb. The next entry in square brackets is the pattern part of the
pattern-concept pair. The pattern here has three parts. The first part

(or (a_component) (df_opn))

indicates that the subject of the sentence formed by matching this pattern
belongs either to the semantic category of a_component or to the

semantic category of df _opn. The next part of the pattern

(root transfer)
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indicates that this is the verb which has the root trangfer. The last part of
the pattern

(af_val)

indicates that the object being transferred belongs to the semantic category
of data flow values. The last argument in the list is the concept
uni_dir_ vtrans associated with the pattern for transfer. This concept
called a unidirectional value transfer is described in detail in Chapter 4

along with all the other concepts that PHRAN uses in analyzing digital
system specifications.

Unlike nouns, where the word itself is the pattern, patterns must be
created for each verb that cover all the possible uses of the verb. This
requires that special patterns for only the active voice be separated from
the patterns that are used to cover both the active and passive voice. In
addition, verbs can require one or more adverbial phrases or patterns with
direct or indirect objects to support their use. The basic patterns needed to

support a UVT verb like send or transfer are discussed in Section 6.4.2.

There are 25 verbs whose meanings are currently stored in the

prototype system's knowledge base.
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8.2.3. Adverbial Phrases

Adverbial phrases are often used with verbs like send, transfer, and
communicate. These phrases are indexed by the preposition used in the

phrase. Schematic representations'? of two sentences that contain adverbial
phrases follow:

<component><sends><value><to><component>

<component><comzunicates><with><component>.

PHRAN's knowledge base contains adverbial phrases that use the following

prepositions:

{rom to by before after via during in

68.2.4. Numbers

In addition to the nouns, verbs and prepositions described in the
previous subsections, the system's knowledge base contains patterns for the
cardinal numbers!® from one through twenty as well as the numbers for
each decade, 1.e thirty, forty, etc. The system’s knowledge base also has
patterns for the numbers a thousand, a million and a billion. The
knowledge base also contains patterns that match decimal fractions such as
tenths, hundredths, thousandths, millionths and billionths. Also, the

knowledge base has patterns for the first ten ordinal numbers.

14These schematic representations use angle brackets to delimit the elements of a
sentence. The elements may refer to generic concepts like component or value, specific
words such as send and to in this example, or parts of speech like noun or verb.

I5PHRAN has a basic pattern which matches any string of digits and converts it to a
number internally.
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6.2.5. Units

Though PHRAN's morphological routines could be set up to handle
the metric prefixes like kilo, mega, giga, milli, micro, nano, pico and
femto, these prefixes are handled in context by using separate patterns for

each use of the prefix with a word. This also facilitates the use of

abbreviations for various concepts.
6.2.5.1. Time

For a measure of time like nanoseconds, the patterns ns, nanosecs and
nanoseconds are stored. A user could also specify a quantity of time by
using the cardinal number with the basic unit of measurement seconds or
its abbreviation sec. The patterns for millisec, microsec, nanosec, picosec,

and femtosec and their variants are stored in the prototype system.
6.2.5.2. Storage and data rates

The most frequent uses of the prefixes kilo, mega and giga are to
describe the quantity of storage required or the capacity of a channel to
transfer information. Therefore, the abbreviations KB, MB and GB are
stored along with the patterns for kilobytes, megabytes and gigabytes to
describe storage capacity. To avoid npotational confusion and
misinterpretation the patterns describing data rates are stored as complete
phrases. For example, kilobits per second or megabits per sec are typical

patterns stored in the prototype system's knowledge base.

6.2.8. Determiners and qualifiers

Pattern-concept pairs for the determiners a, an, the and each are all

indexed in the prototype system's knowledge base.
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6.2.7. Extending the knowledge base

In general, adding more nouns to the knowledge base is
straightforward and will probably produce no side effects. However, for
other more complex patterns, specifically, general or lengthy syntactic
patterns many problems can arise. The reason these problems arise is
because the patterns in PHRAN are context sensitive. Therefore, a pattern
may interact with a new pattern in an unanticipated way causing other
patterns that previously worked to fail. This problem can be minimized by
using a methodical approach to developing the knowledge base; however,
because of the combinatoric explosion of possible interactions this will not
guarantee a flawless knowledge base. Fortunately, the general failure
mechanism seems to be an inability to match the desired pattern. This
usually results in a failed parse rather than an incorrectly formed concept
and so SPAN could trap these errors; however, the user of the interface
would have to make modifications to the knowledge base that would require
knowledge of PHRAN and might not be obvious.

6.2.7.1. Incremental development and regression testing

The suggested method to minimize potential problems is to create a
file of test sentences. These sentences should each exercise as many features
of the knowledge base in combination as possible. Each test sentence

should also test different patterns when possible.

A small test knowledge base containing a minimum number of
patterns and words should be created and maintained separately. When a
new type of pattern-concept pair (PCP) is needed, it should be developed
using the small test knowledge base. When the new PCP appears to be
working properly, it can then be added to the main knowledge base. The

test sentences used to develop the new PCP should then be run against the
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main knowledge base. If the system passes this limited test, the full file of
test sentences should be run against the extended knowledge base. If the
system passes this full test then the test sentences for the new PCP should
be added to the file of test sentences.

Open research problems in this area include detecting possible
interaction between patterns and generating effective test patterns that

cover the interacting cases with a reasonable number of patterns.

6.3. PHRAN'’s output

The PHRAN-SPAN program can be run in three modes.

1. The default mode invokes SPAN, which describes the concepts it
recognizes in English. Any failure to understand the output of
PHRAN produces no English output.

2. The trace mode produces a full trace of PHRAN’s parsing
activity.

3. The output-only mode produces the SRL representation of the
meaning and additional internal data structures that PHRAN
has at the end of the parsing activity.

The output-only mode will be used in discussing the performance of the
prototype system because it is succinct and it can be used to explain failed

parses as well as successful parses.

Once the PHRAN-SPAN program has been loaded and initialized for
the output-only mode, the user simply types in a sentence from the
specification in response to PHRAN's prompt #. The following example

shows the user’s input and the system’s output in the output-only mode.

The user’s input:

The cpu sends the code word to the peripheral devices.
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System’s output:

((a_component (object peripheral-devicei))
(device (object peripheral-devicel))
(af_val (object code-wordi))
(ordered_bits (object code-wordi))

(word (odbject code-wordi))
(a_component (odject cpu2))
(cpu (odject cpu2)))

( group (object peripheral-devicei)
(zember peripheral-devices))

(uni_dir_vtrans (source (a_component sunspecifieds))

(sink (a_component peripheral-devicel))
(1nfo (df_val code-wordl))

(control (a_component cpu2)))

In this example, three sets of information are displayed. The first set of
information represents the semantic categories for nouns and noun phrases
created by PHRAN while parsing the sentence. The contents of this set are
in reverse order, 1.c. the entries at the beginning of the representation, the
top here, were created later than those at the end of the representation.
There are seven distinct associations contained in this representation, one
for each of the semantic categories associated with the nouns or noun

phrases recognized by PHRAN. For example, the representations

(a_component (object cpu2))
(cpu (object cpu2))

are created when PHRAN parses the noun phrase, the cpu. PHRAN uses
the information it has about the word cpu to create these representations.
The entry in PHRAN's knowledge base for cpu is

(noun: cpu (cpu a_component)).

We see that PHRAN creates a list for each semantic category associated
with each noun or noun-phrase. Also note, that PHRAN produces a token
for each object referenced. This token is simply the word with a number

appended to it, e.g., cpu2 and code-wordl. The number indicates the



153

occurrence of that particular. word during the present parsing session. We

can infer from this that the token cpul must exist and that it was created

in an earlier sentence during the current session. The token code-word1 is

the result of PHRAN processing the noun phrase the code word.

The output that follows the list of referenced objects and precedes the
concept is an optional output and only occurs under special circumstances.
It is a list of supplementary information associated with the meaning of a
concept. In this example, the supplementary information is associated with

the use of the plural form in the phrase peripheral devices. Other features

of this output will be discussed when they occur in the examples.

The last part of the output is the SRL form of the unidirectional
value transfer concept:

(uni_dir_vtrans (source (a_component sumspecifieds))

(sink (a_component peripheral-devicel))
(1nfo (df_val code-wordi))
(control (a_component cpu2)))

The concept, if one is recognized in the parse, will usually be output last.
The only exception to this ordering would be if some unrecognizable input
occurred in the sentence after the part of the sentence that produced the

concept. In that case, the value nil or a string of nils might occur at the

end of the output, after the concept.

6.4. Examples

Having described the vocabulary available in the prototype and the
system’s output, various UVT sentences will be used to demonstrate the

system’s ability to understand sentences that might occur in specifications.
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6.4.1. The Value Transfers

There are three basic value transfer concepts, the UVT, BVT and the

NVT. The UVT and the BVT concepts cover the behavior of

communicating processes and the NVT is a degenerate case where the focus

is on the operation being performed rather than the valye being transferred.
6.4.2. The UVT

The basic sentences that describe a UVT concept are
<component><UVT-verb><dats value>
<component><UVT-verb><component><data value>
<component><UVT-verb><data value>to<component>
<component><UVT-verbd><data value>from<component>

<component><UVT-verb><data value>from<component>
to<component>

<component><UVT-verb><data value>on<component>

<component><UVT-verb><data value>in<component>

where the <UVT-verb> maybe one of the following:

access check sample send transfer fetch

The <UVT-verb> based patterns described are all active voice
patterns; in many cases, the system will also understand the same sentence
in the passive voice. Also, additonal adverbial phrases may be added to the

basic patterns to indicate timing or sequencing information and structural
information.

Examples of English sentences containing <UVT-verbs> that the
system understands and the system’s output follow. These sentences were

all taken from actual specifications and are unaltered.
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6.4.2.1. UVT sentence #1

The first example sentence is in the passive voice and contains two
interesting phrasal constructions.

A block of data bytes is transferred by a sequence of data cycles.

In response to this sentence the system produces the following output:

((af_val (object block-of-data-of-bytesi))

(unit_grouping_of_bits (object block-of-data-of-bytesi))
(byte (odbject block-of-data-of-bytesi)))

(group (object nil) (member byte))
(group (object nil) (membder cycle))

(uni_dir_vtrans (source (a_component sunspecifieds))
(sink (a_component sunspecifieds))
(1nfo (df_val block-of-data-of-bytesi))
(control (a_component sunspecifieds))
(ts_loop sequence-of-data-cycles))

The first noun phrase, a block of data bytes matches a pattern
<structured-object >of <data-object> that describes a structured data
object. Unlike the ordinary noun phrase patterns, the concept associated
with this pattern contains this additional information. The information is
encoded in the token created for the moun phrase by concatenating the

word of into the string as well as the words describing the individual data
objects.

Many of the slots in the UVT concept remain unspecified because this
sentence only describes the temporal nature of the data transfer.
Additional sentences would have to describe the source, sink and the
control which are a__components or the existing sentence could be
modified to include this information. For example, the phrase by the

secondary storage device could be added to this sentence to indicate the
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controlling agent or the phrases from the peripheral device to the memory
unit to indicate the source and sink of the data.

The final phrase, by a sequence of data cycles is an adverbial phrase
describing how the transfer is accomplished. A pattern

sequence of <ts__interval>

matches this phrase and modifies the current concept if it is a UVT or BVT
concept. The modification is simply to append the timing information to
the UVT concept as seen in the systems output. This phrase is very specific
and will only match the word sequence followed by the word of and finally

any word which belongs to the semantic category ts__tnterval.

The supplementary information that the words bytes and cycles
referred to more than one object of this type is included in the output in
two separate data structures.

No use is currently made of the fact that the indefinite article, a,
modified block and sequence. The system makes no inference about the
possible intent but simply associates an unknown number of blocks with an
unknown number of sequences. It would be more desirable to use better
qualified nouns in describing a system’s behavior. For example, the word

every or each could be used in this sentence to improve the intent and

remove any ambiguity.
6.4.2.2. UVT sentence #2

The second UVT sentence demonstrates the system’s ability to handle
a noun phrase that contains a descriptive name embedded in the phrase

and a relative clause that also contains a descriptive name.



157

The peripheral equipment shall sample the 'EF code word which is on
the 10D lines.

In response to this sentence the system produces the following output:

((a_component (object tod-linesi))

(1ine (object !od-linesi))

(df_val (object !ef-code-wordi))
(ordered_bits (odbject !ef-code-wordi))

(vord (odbject !ef-code-wordi))

(a_component (object peripheral-equipmenti))
(equipment (object peripheral-equipmenti)))

(group (object nil) (member linme))

(v_c_n_r (df_val tef-code-wordi)
(a_component tod-lines1)
(ts_interval sunspecifieds))

(uni_dir_vtrans (source (a_component sunspecifieds))

(sink (a_component peripheral-equipmenti))
(1nfo (df_val !ef-code-wordi))

(control (a_component sunspecifieds)))

One of the problems in natural language processing is how to handle items

that are not present in the lexicon. This problem occurs frequently in

specifications where acronyms are often created to refer to specific entities.
Our solution to this problem was described in Chapter 5, t.e., we simply
require the user to preface any lexical item created to aid in describing the
system by an exclamation point, !. Otherwise, the system will request the

user to re-enter the word and store it as an undefined word. If PHRAN

encounters an undefined word, the parse is likely to fail. Other issues

associated with this approach and different approaches to the problem are

discussed in Chapter 7.

After the system has identified the user defined names !EF and 0D,
it prefixes them to the noun phrase that follows them. In the list of tokens
in the system output, we see the tokens 'od-linesl and 'ef-code-wordl.

These tokens can be examined by SPAN and when the exclamation point
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identifying the user defined name is detected, special processing can be done

to group this occurrence with other objects referenced by the same name.

Note, that in processing this sentence the system created a VCNR
concept in addition to the main UVT concept. SPAN can use the

information in the two concepts to link them together by identifying the
token !ef-code-word1 that occurs in both the VCNR and the UVT.

6.4.2.3. UVT sentence #3

The third example sentence illustrates the system’s response to an
unqualified noun, parity:

The !External register shall check parity on the !EDB during a write.

In response to this sentence the system produces the following output:

((ts_interval (object write2))

(df_opn (odbject write2))
(operation-of-writing (object write2))
(vrite (object write2))

(a_component (object !edb-1inel))

(1ine (object 'edb-linel))

(a_component (object !external-registeri))
(register (object texternal-registeri)))

(un1_dir_vtrans

(source (a_component sunspecifieds))

(sink (a_component !external-registeri))

(1nfo)

(control (a_component !external-registeri))

(v_c_n_r (df_val sunspecifieds)
(a_component !edb-linel)
(ts_interval sunspecifieds))
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(dual_temporal_rel
(ts_event_init_1 (event name write2)
(event_type sbetas))
(ts_event_term_1 (event_name write2)
(event_type smus))
(ts_arc_1 (arc_type sconstrainte)
(arc_tail sbetas)
(arc_head spred-inits)
(arc_rel gt)
(arc_len 0))
(ts_arc_2 (arc_type sconstraints)
(arc_tall spred-terms)
(arc_head smus)
(arc_rel gt)p
(arc_len 0))))

Note, that in the third line of the UVT concept, the slot for info is not
®unspecified® but is unfilled. This is because parity was unqualified and
therefore, not interpreted as a noun phrase or a df _val. This fact can be
confirmed by examining the list of tokens at the beginning or top of the
output and noticing that no token for parity is found. There are two ways
to fix this problem. The first is to fix the the parser to handle such
unqualified nouns and the second is to require the user to qualify all nouns
with a definite article or another quantifier like all, each or every. Here we
modify the sentence by adding the word the in front of the word parity

when re-entering the sentence.
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The first part of the new output is shown:

((ts_interval (object write3))

(af_opn (object write3))
(operation-of-writing (object write3))
(vrite (object write3d))

(a_component (object tedb-1ine2))

(af_val (odject parity2))

(code_bit (object parity2))

(parity (object parity2))

(a_component (object texternal-register2))
(register (object !external-register2)))

(uni_dir_vtrans (source (a_component sunspecifieds))

(sink (a_component texternal-register2))
' (info (df_val parity2))

(control (a_component texternal-registeri))
(v_c_n_r (af_val sunspecifieds)
(a_component tedb-1ine?2)
(ts_interval sunspecifieds))
(dual_temporal rel

(ts_event_init_1 (event_name write3)
(event_type sbetas))

In this example, the auxiliary verb shall is processed by PHRAN and does
not occur in the final concept; however, the verb shall can be used to avoid

producing an ambiguous sentence as discussed in Section 5.4.1.

6.5. The Prototype System’s Capabilities

One way to characterize the systems capability is to describe the

different types of phrases and sentences that it can parse successfully.

Since PHRAN recognizes the basic pattern of

<noun-phrase><verb>

any noun phrase followed by a UVT, BVT, NVT, CTI or CTT verb will be
parsed successfully by the system. Currently SPAN only understands the
UVT and BVT concepts and therefore, cannot produce English output for

the other verbs.
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The noun phrase may be arbitrarily complex; however, the system

currently recognizes only qualified noun phrases, that is a determiner or

qualifier must be the first word in the noun phrase.

The remainder of the noun phrase may be a series of from one to five
nouns. These nouns maybe modified by an adjective or quantified by a

number. The following noun phrases demonstrate some of the types of
noun phrases that the system parses successfully:

1. the cpu,

2. the main cpu,

3. the slowest input output device,
4. the two inactive processes, and

5. each peripheral control processor.

Additional examples that contain only nouns can be found in Section
5.4.1.

Most of the UVT, BVT, NVT, CTI and CTT verbs also may have a
direct object. As with the subject of the sentence the direct object may be

an arbitrarily complex noun phrase like the ones described.

In addition to the basic sentence structure, other phrases and clauses
may be added to the basic structure to express additional facts about the
behavior being described. The following sentences are examples of the
types of sentences that the prototype system can process:

1. The cpu sends the data to the memory.

2. A block of data bytes is transferred by a sequence of data
cycles.



10.

11.

12.

. The peripheral equipment shall sample the EF code word which

18 on the OD lines.

. Each requestor communicates with the arbiter via two lines, a

request line and a grant line.

. Select shall be dropped 100 ns after the write 18 begun.

. The transmitting equipment shall send the word to receiving

equipment.

. The cpu computes the difference of !a and .

. lUnitA 18 a cpu.

. The computer shall clear the !ODA line before placing the next

word on the !0D lines.
The cpu starts the memory data transfer activity.

Upon receipt of the flag, the cpu sends the data to the device.

The !Ezternal register shall check parity on the IEDB during a
write.

162
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Chapter 7

Contributions, Conclusions
and Future Work

7.1. Summary of contributions and conclusions

In Chapter 2 on related research, we observed that none of the
current techniques for specifying or describing systems were adequate for
specifying the behavior of hardware at the system level for the purpose of
automated synthesis. We believe that an approach based on mapping a
natural language specification of a digital system into a formal model of

system behavior is viable and that the prototype system demonstrates the
concept.

This research has identified the principal concepts required to specify
the behavior of digital systems at a level above the register transfer level,
and we believe this to be the major contribution of this research. Such
concepts could be used in constructing graphical or formal language
interfaces as well as natural language interfaces. Although the model used
in our research can be used to describe RTL behavior or even detailed levels
of transistor behavior, we believe that current state of the art languages like
VHDL and CIRCAL can be used at the lower levels of detail.

In addition to the high level concepts of system behavior, the
underlying forma! model, the DDS, was refined and the semantics were
defined by examples of the various structures. In particular, the basic

constructs in the timing and sequencing subspace were extended to allow
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modelling of asynchronous and synchronous events, causal relationships

between events, constraints between events and various combinations of
these features.

We also explored the application of natural language processing to aid
the specifier in building a formal specification. We developed a prototype
system that analyzes single sentences and produces subgraphs in the DDS.
We have demonstrated that a knowledge based system for natural language
processing like PHRAN is an excellent tool for building a system prototype.
Furthermore, using PHRAN allowed us to focus on the more difficult

problems of parsing and to develop requirements for a parser in this
domain.

Other contributions were the development of a vocabulary for the
domain of digital system behavior, a taxonomy of concurent asynchronous
behavior, an approach to resolving ambiguity through interaction with the

user, and an approch to writing system specifications in English that could
be processed by a computer.

7.2. Directions for future research

Two extensions to this work are the expansion of PHRAN's lexicon to
encompass more of the vocabulary and a wider range of sentences and the
extension of PHRAN-SPAN to process connected text. Though we are
reasonably confident that the basic concepts introduced to describe system
.behavior are probably a complete set, only experimentation with a larger
vocabulary and more sentences can validate this claim. With regard to
processing connected text, a key research problem is the ability to
efficiently glue togetber the subgraphs and fragments of subgraphs
produced while processing individual sentences. The use of compiler

technology to handle the named objects and the tokens would be the first
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step. Other work of a similsr nature done by Sowa and at IBM on a

similar problem are encouraging and suggest that this problem may not be

as difficult as originally anticipated. The major concern is the
computational complexity of the task, which could be exponential. We
believe our modular, block-like approach suggested for writing the

specification will render this problem tractable by limiting the global
searches for value correspondence.

Another open problem is the habitability issue. Simply stated, this
problem arises from the fact that if the system will almost accept normal
English as input, the user of the system will have a difficult time
recognizing what the system will accept and what it fails to understand.
The result is that the user keeps straying over the boundary and the system
is to frustrating to use. The only way to determine the habitability is to
perform controlled experiments with a large number of users. No
experiments have been published on a state of the art natural language

system on a limited domain. A restricted input language would reduce this

problem.

Also, in the area of natural language processing it would be
interesting to use some of the other components of UC with PHRAN--the
context model, ellipsis and anophora routines and the text generator could
be used to produce a much more sophisticated prototype and to explore

some of the other research issues for a natural language specification

processor.

Since natural language processing of specifications will probably
require significantly more research, a more immediate solution to the
specification problem might be to build a formal language based on the

concepts of system behavior identified in this research.
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Appendix A

Vocabulary
A/D IR
ASCII NP
BCD 10
BILBO Illiac IV
Booth Intel
CAM JK
CCD Johnson counter
CDC K
CDL KH:z
CMOS Kalman
CORDIC LIFO
CPU LRU
CSA LSI
Cray LSSD
D/A M
DEC MH:
DMA MIMD
Data General MISD
EBCDIC MSI
EPROM Motorola
FIFO NMOS
FIR PLA -
GH:z PROM
Gray code RALU
HDL RAM
HOL RISC
Hamming ROM
Hewlett-Packard SECDED
Huffman SIMD
H: SISD
1/0 SLA
IAS Tl
IBM TI ASC
IC

Turing machine



UART

VAX

VLSI

Von Neumann
Winchester
abend

abort
absolute address
absolute value
accelerate
accelerator
accept

access
accessory
accompany
accomplish
account
accumulate
accumulator
accuracy
acknowledge
acknowledgement
action
activate
active

activity
acyclic

adapt

adapter

add

adder
additional
address
addressing mode
after
algorithm
alphabetic
alphanumeric
alias

align
alignment
alive
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allocate
allocation
allow

alter
alterable
alternate
amass
amplitude
analog
analysis
analyze
and

angle
append
arbiter
arbitrate
arbitration
architecture
arccosine
arcsine
arctangent
arithmetic
arithmetic expression
arithmetic instruction
array
arrival
arrive
ascending
assemble
assembler
assert
associate
associative memory
asynchronous
at

attach
attribute
auxiliary
available
availability
avoid
background



backup
balance
band
bandwidth
bank

base

batch
battery
baud
before
begin
beginning
bias
bidirectional
bifurcate
binary
bipolar
bistable
bit

bit density
bit sliced
block
block transfer
board
boolean
borrow
box

bpi

branch

bubble memory

bucket
buffer
bug
burst
bus
busses
byte
cache
calculate
call
cancel
capability
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capable
capacity
card

card cage
carrier

carry

carry save
cell

center

chain
channel
character
characteristic
characterize
charge

check
checkpoint
checker

chip

circuit
circular
classify
clobber

clock

close

cluster

code

collect
collection
collision
combination
combinational
combinatorial
combine
command
commit
commitment
communicate
communication
commutate
commute
compact



compaction
comparator
compare
comparison
compatibility
complement
complex
complexity
component
compose
composition
compress
compression
comprise
computation
compute
concatenate
concurrent
condition
conditional
configuration
configure
conflict
connect
connection
connector
consecutive
consequential
consist
console
constant
constraint
consume
contain
contend
content addressable memory
contention
contiguous
control
controller
conversion
convert
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converter
cooperate
coordinate
copy

core
correct
cosine

cost

count
counter
couple
critical
critical path
cross-bar
cross-point
current
current loop
cycle
daisy-chain
data

data flow
data link
data path
deactivate
dead
deadlock
deallocate
decay
decide
decipher
decimal
decision
decode
decoder
decompose
decompress
decrease
decrement
decrypt
dedicate
default
defect



define

delay

delete

deliver
demodulate
demodulator
demultiplex
demultiplexer
demux
depress
derive
describe
designate
destroy
destruction
detect
determine
device
diagnose
diagnostic
die

difference
digit

direct

direct access
direct address
direct mapping cache
direct mapping memory
direct memory access
directory
disassemble
discard
discrete
discriminate
disk

dispatch
dispense
displace
displacement
display
dispose
distinguish
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distribute
divide
dividend
divider
divisor
double
double-precision
doble word
down
download
drain
draw
drive

dual

due
duplex
duplicate
during
dyadic
dynamic
eavesdrop
eavesdropper
echo
effect
effective
effuse
elapse
elect
element
eliminate
emit
empty
emulate
emulator
enable
encapsulate
encipher
encode
encoder
encounter
encrypt
end



ending
energize
ensure

enter

entire
entrance
entry
enumerate
enumerative
environment
equal
equalize
equate
equivalent
eradicate
erasable
erase

erasing

error
error-correcting
error-detecting
escape
establish
establishment
estimate
even-numbered
even parity
event

evoke
examination
examine
exceed
except
exception
excess-three
excessive
exchange
exclude
exclusion
exclusive
exclusive nor
exclusive or

execute
execution
execution time
executive
exemplify
exempt
exemption
exhaust
exhibit
exist
existence
existent
exit

exit point
expand
expansion
expect
expectable
expectation
expedite
expire
explain
explanation
explicate
explicative
explicit
exploit
exponent
exponentiate
export
express
expression
expunge
extend
extension
external
extract
extraction
extrapolate
extrapolation
extricate
extrude



extrusion
exude
facilitate
factor

fade

fail
fail-safe
fail-soft
failure
failure rate
fall

fall off

fan

fan in

fan out
fashion
fasten

fatal

fault

fault coverage
feed
feedback
fetch

field

file

fill

filter

find

find out
finish
finite state machine
fire

firm
firmware
first

first in first out
first-fit

fix

fixed point
flag

flip

flip flop

float
floating point
flood

flow
flowchart
flush
follow
following
forbid
forbidden list
force
forget
fork

form
format
formulate
forward
fraction
fracture
fragment
frame

free
frequency
full adder
full duplex
full word
function

functional units

furnish
future growth
gain

gap
garble
gate
gather
generate
generator
get

give
global
glom

go
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grab

grant
graphics
group
grouping
guard
guardian
guide

half

half duplex
half word
halt

handle
handler
happen
hard disk
hard error
hardware
hardwire
hash
hazard
header
heap
hesitate
hex
hexadecimal
hide
hierarchical
hierarchy
high

high level
high level language
high order
high order bit
histogram
hit

hit ratio
hold
horizontal
housekeeping
identical
identifier

identify
idle

ignore
immediate

immediate addressing

impede
impend
implement

implementation

import
improve
inactivate
inactivity
include
inclusive or
increase
increment
incremental
independent
index
indicate
indicator
indication
indicative
indirect
individually
induce
inequality
infer
information
inherit
inhibit
initialization
initialize
initiate
initiation
input
input/output
insert
insertion
inspect
inspection



instantiate
instantiation
institute
institution
instruct
instruction

instruction set processor

instrument
integer
integral
integrate

integrated circuit

intend
intention
interchange
interchangeable

intercommunication

interface
interfere
interference
interlace
interleave
interlock
intermediate
intermix
internal
interpolate
interpret
interpretation
interrogate
interrupt
interrupt-based
interrupt vector
interval
interval timer
introduce
introduction
inundate
invalid
invalidate
invert
inverter

invoke
invocation
involve
isolate
isolation
item
itemize
iterate
iteration
jam

join

Joy stick
jump
Jjustification
Justify
keep

key
keyboard
kill
kludge
label

lack

lag

latch
latency
lay

lead
leading
learn
least significant
leave

left
leftjustify
left-to-right
leftmost
length
lengthen
lessen

let

level
liberate
library
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life

lift

light

like

limit

line

line noise
line printer
linear
linearize
lines per minute
lines per second
link
linked list
linker

list

listen
listing
literal

live

load

local
locate
location
locator
lock

log

logic
logical
look

look ahead
lookup
loop

low

low order
low order bit
lower
lowercase
lowest
machine
macro
macro

magnetic tape
magnitude
mail

main

main memory
mainframe
maintain
maintenance
major

make
manage
management
manipulate
manipulation
mantissa
map
mapping
mark

mask

mass

master
master-slave
match
matrix
maximize
maximum
may

measure
measurement
mechanize
meet
meeting
memory

memory address register

menu

merge

merger
message

meter
microcode
microprocessor
microprogram
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microstep
middle

mini
minimize
minimum
minor
minuend
misaddress
miss

missend
misset

mix
mnemonic
model
moderate
modify
modulate
modulator
monadic
monitor
most significaz:
mount

move
multiple
multiplex
multiplexer
multiplicand
multiplier
multiply
multiprogran.
munch
munge
mutual exclusion
mux

nand

narrow
natural
natural logari:hm
natural numtsr
necessitate
need

negate

negative
negotiate

nest

net

network
nibble

niche

nitpick

node
nonabrupt
nonconcurrent
nondestructive
nonlinear
nonrecurring
nonrestoring divide
nonrestoring division
nop

nor

normalize

not

notation

note

notice

null

nullify
number
numerate
numeric
numerical
oblige
observability
observe
obsolete
obstruct
occlude
occupy

occur

octal

odd

odd parity
odd-numbered
off-load



off-loading
off-the-shelf
offend

offer

omit
one-way
ones-complement
online

open
opening
operand
operate
operation
operator
optimize
optimum

or

order
organize
orient
orientation
origin
originate
orphan
oscillate
outflow
outline
output
outweigh
overcommit
overcomplicate
overcurrent
overflow
overlap
overlay
overlook
override
oversee
overshoot
overspend
overvoltage
owe
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pace

pack
package
packet
packetize
page

page table
paginate
paint

pair
parallel
parameter
parameterize
parcel
parity
parity bit
parity check
parity error
parse

part
participant
participate
partition
pass
passive
patch
pause

peak

peek
peephole
peg
perform
performance
period
peripheral
permit
permute
perpetual
perpetuate
persist
pertain
perturb



perturbation
petition
phase
pick
picture
piece

pile

pin

pipe
pipeline
pitch
pivot
place
placement
plan
playback
plot

plug
plumb
point
point out
pointer
poke
police
policy
poll
polling
pop
porch
port
portion
position
positional
possess
post
postbox
postfix notation
power
power down
power up
practical
precede
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precharge
precision
preclude
precondition
predestine
predetermine
predicate
predispose
preempt
preemption
prefabricate
preface
prefer
preference
prefetch
prefix

prefix notation
preliminary
prename
prep
prepare
preprocess
preprocessor
prerequisite
prescribe
preselect
present
preserve
preset
prestore
pretest
prevent
prevention
previous
primarily
primary
prime

print

print out
printed circuit
prior
priority



private
privelege
priveleged
probable
probe
procedure
proceed
process
processor
produce
product
program
program counter
programmable
programmable logic array
programmable read only memory
progress
progression
project
prompt
proof
proportion
proposal
propose
protect
protection
protocol
protract
prove
provide
provides for
provoke
prune
public

pull

pulse

pump
punctuate
punctuation
purchase
purge
purpose
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push

push button
put

pyramid
quadruple
qualify

quality
quantity
quantize
quench

question

queue

quicken

quit

quote

quotient

race

radiate

radix

raise

ramp

random

random access
random access memory
randomize
range

rank

raster

rate

reach

react

reaction
reactivate

read cycle

read only memory
read read reading
read write cycle
read write memory
read-write
readable

reader

readout



ready

real
real-time
reallocate
reason
recalculate
recall
recast
receipt
recejve
recharge
recipe
recirculate
recode
recognize
recommend
recommendation
reconfigurable
reconfiguration
reconfigure
reconnect
reconvert
record
recover
recoverable
recovery
recreate
rectifier
rectify
recur
recurrence
redefine
redefinition
redirect
redirection
redistribute
redistribution
redo

reduce
reduction
redundant
rentrant
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refer
reference
referent
referential
refine
refinement
reflect
reflection
reform
refresh
refuse
register
regression
regular
regularity
regularize
regulate
regulation
rehash
reject
relate
relational
relative
relax
release
reliability
reliable
relinquish
relocatable
relocate
remain
remainder
remark
remote
remount
removal
remove
renew
reorder
repair
repeat
repeater



replace
replacement
replenish
replicate
replication
reply

report
represent
representation
request
requestor
request-to-send
require
requirement
rescind
resend
reservation table
reserve
reset

reside
resident
resident
resolution
resolve
resort
resource
respective
respond
response
rest

restart
restore
restrain
restraint
restrict
restriction
restructure
result
resume
resumption
resupply
retain
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retard
retardation
retest
retrace
retract
retraction
retranslate
retranslation
retrial
retrieval
retrieved
retry

return

reuse
reverse
reverse Polish
revert
review
revise
revision
revocation
revoke
rewake
rewind
rewrite
ribbon
ribbon cable
ride

rig

right
right-to-left
rightmost
ring

ring bus
ring counter
ring network
ripple

rise

rival

roam

robust

roll



roll back
roll over
rollback
round
round-robin
route
routine
rove

rover

row

run

run away
run down
run through
runaway
rundown
runthrough
sample
satisfaction
satisfy
saturate
saturation
save

say

scalar
scale

scale up
scan
scatter
schedule
schematic
scheme
score
scratch
scratch pad

scratchpad memory

screen
scribe
scroll
scrounge
scrub
scrunch

scrutinize
scrutiny
seal
search
secondarily
secondary
section
sector
segment
seize
select
selectable
selection
selector
self-starting
send

sense
sensitize
separable
separate
separation
sequence
sequencer
sequential
serial
serialize
serializer
serve
server
service

set

set associative cache
set up
settle
setup
sever
severable
shadow
shadow cache
shake
shape
shall
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shaper
share

shed

shell

shelter
shield

shift

shift register
shift-and-subtract
shift-and-subtract
ship

short
shorten
shorting bar
shove

show

shrink
shrink tubing
shuffle
shunt

shut

shut down
shut off
shutdown
shutoff
shuttle

side

sieve

sift

sign

sign off

sign on
sign-magnitude
signal
significant
silence
silent
simple
simplify
simulate
simulation
simulator
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simultaneous
sine
single
single step
single-line
single-line interrupt
sink
siphon
size

skew

skim

skip

slack
slackening
slave
sleep

slew

slew rate
slice

slip

slop

slot
smash
smear
smooth
snatch
snuff
software
solder
solution
solve

sort
source
space
span
spare
speak
speaker
spec
special
special purpose
specification



specify
speed up
speedup
spend
spike
spindle
splice

split

spool
spooler
spot
spurious
square
square root
stability
stabilize
stable
stack

stage
stamp
stand by
stand for
standard
standardize
star

start
starvation
starve
stash

state

state vector
static
status
status register
steal

steer

step
stimulate
stimulation
stitch
stock

stop
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storage
store
straddle
straight through
straighten
strain

strap
stream
streamer
stress
stretch
string

strip

strobe
structure
stub

style
subject
submit
submittal
substitute
subsystem
subtask
subtract
subtracter
subtrahend
sum
summer
summon
super computer
super micro
super mini
superimpose
superimposition
superpose
superposition
supersede
supersession
supervise
supervisor
supervisory
supplant



supplement
supply
support
suppress
suppression
surge
suspend
sustain
sustenance
swap

swap in
swap out
swing
switch
symbolic
symmetric
symmetry
synchronize
synchronous
syndrome
synthesis
synthesize
syvstem
systematic

systematical .

systematize
systolic
table
tabulate
tag

tail

take

talk

tally
tangent
tap

tape
target
targetable
task
technique
tee

temporary
terminal
terminate
test
testability
testable
text

thin

think
thought
thrash
thread
through
tick

tickle

tie

tighten
time

time-multiplex
time-multiplexed

time-tag
time-tagged
timing
toggle

total

touch

tour

trace

track

trade

trade off
trade-off
trail

trailer
transact
transaction
transceiver
transduce
transducer
transfer
transform
transient
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transist
transistor
transistorize
transit
translate
translation
transmit
transmittance
transmutation
transmute
transparent
transport
transportation
transpose
transposition
transverse
trap
trap-door
trash

travel
traversal
traverse
treat
treatment
tree

trend

trial

trial and error
trick

trickery
trickle

tricky
trifurcate
trigger

trim

trip

triple
triplicate
tristatable
tristate

true
truncate
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trunk

trunk line
truth

truth set
truth table
truth-value
try

tunable
tunableness
tune

tune out
tuned-in
tunnel

tuple
turbocharge
turkey

turn

turn off

turn on
turnkey
turtle

turtle graphics
tweak
twiddle

twist

twisted pair
two-out-of-five
two-way
twos-complement
twos-complement
type

typical

typify

typo
typographic
ugly

unable
unacceptable
unbalanced
uncertain
uncertainty
unconditional



undefined
under
underbudgeted
underneath
unequal
uneven
uniform
unilateral
union
uniprocessor
unique
unison

unit

unite
unitialized
units digit
units place
universal
unknown
unlock
unpack
unthread

up
up-and-down
up-to-date

up-to-the-minute

upcoming
update
upgrade
upon
upper
upset
uptime
usable
use

user

user intervention

user oriented
utility

utilize
vacancy
vacant

vacate
valid
validate
validation
value
valve
vanish
vaporize
variability
variable
variance
variant
variation
variety
vary
vector
vector product
vector space
vector sum
vectorize
vendor
vendor supplied
verbose
verboten
verification
verify
vernier
version
vertical
veto

via

viable
victim

vie

virtual
virtual memory
visibility
visible
visit
vocabulary
void
volatile
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volatileness
volatility
volt
voltage
vote

voter
vulnerability
vulnerable
wag

wait

wake
waken
wakeup
walk
wander
want
warm
warm up
warn
warning
waste
watch
wave
waveform
wavefront
waveguide
wavelength
way
weaken
weakness
wear out
weave
wedge
weigh
weight
well formed
well-conditioned
when
while
whole
wide
widen
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width
wiggle

wind
window
wipe

wire
withdraw
withhold
word

work
workload
wraparound
wring
writable
write

write cycle
write through
wrong
X-axis
x-coordinate
x-intercept
xXnor

xor

y-axis
y-coordinate
y-intercept
vank

yield

yo-yo

z-axis
z-coordinate
z-intercept
zero
zero-address
zeroth

zone

zonk

zoom



Appendix B

Examples from Prototype System’s
PHRAN Database

.This a test file for developing new PCPs for use with PHRAN/SPAN

;John J. Granacki

...............................................................
cvnloool'oo'llatl0!l:t'lo0:1'0000'.:0:0'00"1000'!:'000!l00000;;l

(setq spairss °(stop* nil))

................................................................

.NOUNS

(noun: access (access use-of mentod))

(noun: acquisition (acquisition mentobd))

(noun: activity activities (activity df_opn))

(noun: address addresses (address df_val a_value))

(noun: agent (agent df_opn a_component))

(noun: alu (alu a_component))

(noun: arbiter (arbiter a_component))

(noun: arbitration (arbitration mentob))

(noun: arbitrator (arbitrator a_component))

(noun: bit (bit binary digit df_val a_value))

(noun: bdlock (block entity logical group_of bits struct_obj
df _val a_value))

(noun: byte (byte unit_grouping_of_bits df_val a_value))

(noun: bus (logical_group_of lines a_component))

(noun: cache (cache high-speed-memory a_componeént))

(noun: call (call request df_opn))

(noun: channel (channel line a_component))

(noun: check (check process df_opn))

(noun: clock (clock ts_generator a_component))

(noun: code (code system_symbols))

(noun: command (command causal_data df_val a_value mentob))

(noun: condition (condition logically-testable-state df val

a_value))
(noun: control (control diecting-process df_opn))
(noun: cosine (cosine result df_val unary_fnc df_opn))



(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:

(noun:
(noun:
(noun:

(noun:
(noun:
(noun:

(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
{noun:
(noun:

(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
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cotangent (cotangent result df_val unary_fnc df opn))

count (count result df_val binary_fnc af opn)) _

cpu (cpu a_component))

cycle (cycle time_interval ts interval))

data nil (data information df_val a_value))

delay (delay ts_interval a_deferring mentob))

device (device a_component))

difference (difference result df val

end (end the_end ts_event)) -

equipment nil (equipment a_component))

event (event ts_event))

fetch (fetch process df_opn))

f1t (11t result 4f_val binary_fnc df_opn))

filter (filter selective-process a_component))

flag (flag indicator-variable df_val a value))

format (format defined-arrangement mentob))

function (function operation df_opm))

grant (grant permission mentobd))

handshake (handshake protocol procedure))

index indicies (index table-of-locations subscript

mentod))

inforeation (information df_val a_value))

input (input df_val a_value))

interrupt (interrupt temporary-halt break daf_opn
ts_event df_val a_value))

interval (interval ts_interval))

line (line a_component))

pap (map correspondence mentodb df opn struct_obj

df _val a_value))

mark (eark indicator-of-begin-or-end df_val a_value))

marker (marker indicator mark df_val a_value))

match (match equal df_opn df_val a_value))

measure (measure mentobd))

memory memories (storage a_component))

multiplexer (multiplexer a_component))

operation (operation df_opn))

output (output 4f_val a_value))

parity nil (parity code_bit df_val a_value))

pause (pause delay balt ts_interval mentod))

peripberal (peripheral a_component))

phase (phase ts_interval))

point (point mark decimal-point character ts_event

mentod))

preset (preset process-of-presetting a_component))

priority priorities ( priority privelege mentod))

process processes (process df_opn))

product (product result df_val nary_fnc df_opn))

propagation (propagation spread mentobd))

quotient (quotient result df_val binary_fnc df_opn))

read (read process-of-reading df_opn ts_interval))

binary_fnc df_opn))



(noun:
(noun:
(noun:
(noun:
(noun:

(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
(noun:
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receipt (receipt act_of_recieving))

receiver (receiver a_component))

record (record entity logical struct_obdj df_val a value))

register (register a_component)) -

report (report collection-of-facts mentod struct obj
df_val a_value))

request (request ask_for df_val a_value mentob))

requestor (requestor a_component))

reset (reset process-of-resetting a_component))

resolution nil (resolution mentob))

resource (resource a_component))

root (root result df val &_value unary_fnc df_opn))

sender (sender a_component))

sequence (sequence series_of))

shift (shift df_opn))

shifter (shifter component-for-shifting a_component))

signal (signal df_val a_value))

sine (sine result df_val a_value unary_fnc df_opn))

sort (sort process-of-ordering df opn))

speed (speed magnitude_velocity))

square (square result df_val a_value unary_fnc df_opn))

stack (stack list-data-structure struct_obj a_component))
start (start ts_event))

store (store memory a_component))

svitch (switch branch_point a_component))

subsysten (subsystem part-of-system &_component))

sun (sum result df_val nary_fnc df_opn))

system (system a_component))

tag (tag label indicator df_val a_value))

tangent (tangent result df_val a_value unary_fnc df_opn))
task (task basic-work-unit activity df_opn))

test (test means-of-discrimination df_opn))

transfer (transfer vtrans process ts_event df_opn))
trap (trap special-interrupt interrupt df_opn))

unit (unit a_component))

use (use make-use-of mentod))

value (value df_val a_value))

wire (wire a_component))

word (word ordered_bits struct_obj df_val a_value))
write (write operation-of-writing df_opn ts_interval))



..........................................

(verd: accept accepted accepting)

(verdb: access accessed accessing)

(verd: accompany accompanied accompanying)
(verd: acknowledge acknowledged acknowledging)
(verd: activate activated activating)
(verdb: address addressed addressing)
(verb: assert asserted asserting)

(verb: begin began begun beginning)

(verd: bdlock blocked blocking)

(verd: cache cached caching)

(verd: call called calling)

(verb: channel channeled channeling)
(verdb: check checked checking)

(verd: clear cleared clearing)

(verd: close closed closing)

(verdb: communicate communicated commpunicating)
(verd: compute computed computing)

(verdb: condition conditioned conditioning)
(verd: control controlled controlling)
(verd: cycle cycled cycling)

(verd: drop dropped dropping)

(verdb: end ended ending)

(verdb: evoke evoked evoking)

(verb: exceed exceeded exceeding)

(verb: fetch fetched fetching)

(verd: flag flagged flagging)

(verdb: filter filtered filtering)

(verd: form formed forming)

(verdb: format forpatted formatting)

(verdb: gate gated gating)

(verdb: index indexed indexing)

(verdb: indicate indicated indicating)
(verdb: initiate initiated initiating)
(verd: 1input inputted inputting)

(verd: intend intended intending)

(verd: interrupt interrupted interrupting)
(verd: map mapped mapping)

(verdb: mark marked marking)

(verdb: match matched matching)

(verb: need needed needing)

(verd: occur occurred occurring)

(verb: pause paused pausing)

(verb: point pointed pointing)

(verb: preset preset presetting)
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(verdb: process processed processing)
(verd: read read reading)

(verd: receive received receiving)

(verdb: record recorded recording)

(verd: report reported reporting)

(verdb: request requested requesting)
(verd: reset reset resetting)

(verd: sample sampled sampling)

(verdb: send sent sending)

(verd: set set setting)

(verb: share shared sharing)

(verd: shift shifted shifting)

(verb: sort sorted sorting)

(verd: start started starting)

(verd: stop stopped stopping)

(verd: store stored storing)

(verd: switch switched switching)

(verd: tag tagged tagging)

(verd: terminate terminated terminating)
(verd: test tested testing)

(verdb: transfer transferred transferring)
(verdb: transition transitioned transitioning)
(verb: transmit transmitted transmitting)
(verd: trap trapped trapping)

(verd: use used using)

(verdb: write wrote written)

.................................

¢ 202 0000 0050000000008

...............................

.VERB patterns

’

(index-under-pattern (for)
((n11
[(» and for)(and (or (p-o-s sentence) (and (p-o-& noun-phrase)
(not-verd next °basic))) (df val)))
[p-o-s ‘adverd
modifies-if (memq (car concept) °(uni_dir_vtrans ))
modified-concept °( dsubst '(info (df_val ,(value 2)))
*(info (df_val sunspecifieds))
(01d concept))])))
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(1ndex-under-pattern (in)
[(n11

[ (» and 1n) (and (or (p-o-8 sentence) (and (p-o-s noun-phrase)
(not-verd next ‘basic))) (a_component)))

[p-o-s ‘adverd
modifies-1f (memq (car concept) *(uni_dir_vtrans ))

modified-concept ‘( dsubst ’(source (a_component , (value 2)))

"(source (a_component sunspecifieds))
(old concept))])])

(name %access
((active passive)
[(or (a_component) (df_opn)) (root access)
(or (a_component) (df_opn))])
[concept *(uni_dir_vtrans
(source (a_component ?a_component_1))

(sink  (a_component ?actor))
(1nfo  (df_val ?for))

(control (a_component ?actor)))
actor °‘?sudject

8_component_1 (value 3)

actor (default °sunspecifieds)

for (default °‘sunspecifieds)
a_component_1 (default °sunspecifieds)])

((active passive)
[(or (a_component) (df_opm)) (root access) (df_val))
[concept ‘(uni_dir_vtrans
(source (a_component ?1in))
(sink  (a_component ?actor))
(1nfo  (df_val 7df_val 1))

(control (a_component ?actor)))
actor "?subject

df_val_1 (value 3)

actor (default ‘sunspecifieds)

in (default °sunspecifieds)
df_val_1 (default ‘sunspecifieds)]))

(index-under-pattern accesses
[p-o-s ‘verd))
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(1ndex-under-pattern (accesses)
[(n11 _
[(* and accesses))
[p-o-s ‘verd
Toot ‘access
form ‘basic
number °‘singular
tense ‘present
voice ‘active])])

(name Hcommunicate
((active)
[(or (a_component) (df opn)) (root communicate) ]
[concept °(bi_dir vtrams
(src/snk_1 (a_component ?actor))
(src/snk_2 (a_component Pwith))
(info (df_val ?df_val))

(control (a_component ?a_component_1)))
actor °‘?subdbject

actor (default ‘sunspecifieds)

to (default ‘sunspecifieds)

with  (default 'sunspecifieds)

df_val (default °sunspecifieds)
a_component_1 (default °sunspecifieds)])

((active passive)
((or (a_component) (df_opn)) (root communicate) (df_val))
[concept *(bi_dir_vtrans
(src/snk_1 (a_component ?actor))
(src/snk_2 (a_component ?to))
(1nfo (af_val ?df_val))

(control (a_component ?a_component_1)))
actor °‘?subdbject

actor (default 'sunspecifieds)

to (default 'sunspecifieds)

with  (default ‘sunspecifieds)

df_val (default °sunspecifieds)
a_component_1 (default °sunspecifieds))))
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(index-under-pattern (unary_fnc)
[(n11
[ (p-o-8B article)
(» and (and (or (p-o-s moun) (p-o-s noun-phrase))
(unary_fnc))) of (pname))
[ p-o-8 ‘noun-phrase
description ‘(fnc_val)
number (value 2 number)
cda-form ‘(fnc_info
(inputi(a_value ,(new-token °(a_value)(value 4 word))))
(outputl (a_value sunspecifieds))
(operation(df_opn ,(nev-token °(df_opn)(value 2 word)))

(arity 1)0])
(n1l

[(p-o-8 article)
(* and (and (or (p-o-s moun) (p-o-s noun-phrase)) (unary_fnc)))
(pnane) of (pname))
[ p-o-s °noun-phrase
description ’(fnc_val)
number (value 2 number)
cd-form ‘(fnc_info
(inputi (a_value ,(new-token ‘(a_value)(value 5 word))))
(outputl (a_value , (new-token °(a_value)(value 3 word))))
(operation (df_opn , (new-token °(df _opn)(value 2 word)))
(arity 1))

(index-under-pattern (binary_fnc)
[(n11
[ (p-o-s article)
(* and (and (or (p-o-s noun) (p-o-8 noun-phrase))
(binary_fnc))) of (pname) and (pname)])
[ p-o-8 ’'moun-phrase
description ‘(fnc_val)
pumber (value 2 pumber)
cd-formn ‘(foc_info
(1nputi (a_value ,(new-token '(a_value)(value 4 word))))
(1nput2 (a_value ,(new-token °(a_value) (value 6 word))))
(outputi (a_value sunspecifieds))
(operation (df_opn ,(new-token ’(df_opn)(value 2 word)))
(arity 2))
D '
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(n11
[ (pname) §comma (p-o-s article)
(» and (and (or (p-o-s nmoun) (p-o-s noun-phrase))
(dinary_fnc))) of (pname) and (pname)’
[ p-o-s ‘poun-phrase
description '(fnc_val)
number (value 4 number)
cd-form ‘(fnc_info
(1nput1 (a_value , (new-token *(a_value) (value § word))))
(1pput2 (a_value , (new-token °(a_value)(value 7 vord))))
(outputi(a_value , (new-token *(a_value) (value 1 word))))
(operation (df_opn , (new-token *(df_opn) (value 4 word)))
(arity 2))
DD

(name %compute
((active passive)
[ (a_component) (root compute) (foc_val))

(concept °(non_dir_vtrans
(fnc_info ?fnc_info)
(m_b n_r (af_opn ?df_ opn)
(a_component ?actor)
(ts_interval ?ts_interval)))

actor ‘?subject
fnc_info (cdr (value 3 cd-form))

df opn (cadr (assoc ‘operation (cdr (value 3 cd-form))))
actor (default ‘sunspecifieds)

ts_interval (default ‘sunspecifieds)]))

(index-under-pattern (to)
[(n11
[(+ and to)(and (or (p-o-s sentence) (and (p-o-s noun-phrase)
(not-verdb mext °basic))) (or (a_component)
(af_opn))))
[p-o-s ‘adverd
modifies-1f (memq (car comcept) °(uni_dir_vtrans ))
modified-concept °( dsudbst '(sink (a_component ,(value 2)))
*(sink (a_component sunspecifieds))
(old concept))])])
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(index-under-pattern (from)
[(n11

((» and from)(and (or (p-o-5 sentence) (and (p-o-s noun-phrase)
(not-verd next °basic))) (or (a_component)
(df_opn))))
[p-o-s ‘adverd
modifies-1f (memq (car concept) *(uni_dir_vtrans ))
modified-concept ‘( dsubst ’(source (a_component , (value 2)))
*(source (a_component *unspecifieds))
(old concept))))))

(name ¥send
((active passive)
[ (or (a_component) (af_opn)) (root send) (df_val))
[concept *(uni_dir_vtrams
(source (a_component ?from))
(sink  (a_component ?to))
(1nfo  (df_val ?df_val))

(control (a_component ?Pactor)))
actor °?subject

df_val (value 3)

actor (default ‘sunspecifieds)

to  (default °sunspecifieds)
from (default °sunspecifieds)
df_val (default °sunspecifieds)])

((active )
[ (or (a_component) (df_opn)) (root send)
(or (a_component) (df_opn)) (df_val))
[concept *(uni_dir_vtrans
(source (a_component ?from))
(sink  (a_component ?to))
(info  (df_val ?df val))

(control (a_component ?actor)))
actor °?subject

df_val (value 4)

actor (default 'sunspecifieds)

to  (or (value 3) (default ‘sunspecifieds))
from (default ‘sunspecifieds)

af_val (default °sunspecifieds)]))



(name Ktransfer
((active passive)
((or (a_component) (df_opn)) (root transfer) (df val))
[concept ‘(uni_dir_vtrans -
(source (a_component ?from))
(sink  (a_component ?to))
(1nfo  (df_val ?daf_val))

(control (a_component ?actor)))
actor ‘?subject

df_val (value 3)

to (default ‘eunspecifieds)
from  (default ‘sunspecifieds)
df_val (default ‘sunspecifieds))))

(name %degin
((active)

[(or (a_component) (af_opn) (ts_interval))
(and (root begin) (not-moun mext) (mot-article next)))
[concept ‘(single_temporal_event
(ts_event_init_1 (event_name ?actor)

(event_type ?event_type)))

actor ‘?subject
event_type_1 (default °spis)))

((active passive)

[(or (a_component)(af_opn) (ts_interval)) (root begin)

(or (a_component) (df_opn) (ts_interval)))
{[concept °(causal_temporal_init

(ts_event_init_1 (event_name ?actor)
(event_type ?event_type init 1))
(ts_arc_1 (arc_type ®arc_type 1)
(arc_tail ?actor)
(arc_head ?event_name_caus_1)
(arc_rel ?arc_rel 1)
(arc_len ?arc_len_1)
(arc_units ?arc_units_1))
(ts_event_caus_1 (event_name ?event_name_caus_1)
(event_type Pevent_type_caus_1))
(ts_event_init_2 (event_name ?a_component_2)
(event_type ?event_type_init 2))
(ts_arc_2 (arc_type ?arc_type_2)
(arc_tail ?arc_tail_2)
(arc_head ?a_component_2)
(arc_rel ?arc_rel_2)
(arc_len <?arc_len_2)
(arc_units ?arc_units_2)))
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actor ‘?Psudbject

actor (default ‘sunspecifieds)
event_type_init_1 (default ‘spis)
arc_type_1 (default °*ssigmas)
arc_rel_1 (default ‘equal)
arc_len_1 (default ‘sunspecifieds)
arc_units_1i (default °seconds)
event_name_caus_1 (default ‘scauss)
event_type_caus_1 (default °sbetas)
event_type_init 2 (default ‘spis)
arc_type 2 (default ‘scausals)
arc_tail_2 (default ‘scauss)
arc_rel 2 (default ‘equal)
arc_len_2 (default 0)

arc_units_2 (default ‘seconds)
a_component_2 (value 3)
8_component_2 (default ‘sunspecifieds)]))

(name Kterminate
((active)
((or (a_component) (df_opn) (ts_interval))
(and (root terminate) (not-noun mext) (mot-article next)))
[concept '(single_temporal_event
(ts_event_term_1 (event_name ?actor)
(event_type Pevent_type)))

actor ‘?subject
event_type (default °spis)])
((active passive)
[(or (a_component) (df_opn) (ts_interval)) (root terminate)

(or (a_component) (df_opn) (ts_interval)))
[concept *(causal_temporal_term

(ts_event_init_1 (event_name ?actor)

(event_type ?event_type_init 1))
(ts_arc_1 (arc_type ?arc_type_1)

(arc_tail ?actor)

(arc_head ?event_name_caus_1)

(arc_rel ?arc_rel 1)

(arc_len ?arc_len_1)

(arc_units ?arc_units_1))
(ts_event_inter_1 (event_name ?actor)

(event_type ?event_type inter_1))
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(ts_event_init_2 (event name ?a_component_2)
(event_type fevent_type_init_2))

(ts_arc_2 (arc_type ?arc_type 2)
(arc_tail ?a_component 2)
(arc_head ?a_component_2)
(arc_rel ?arc_rel 2)
(arc_len ?arc_len_2)
(arc_units farc_units 2))
(ts_event_inter 2 (event name ?a_component_2)
(event_type Tevent_type_inter 2))
(asynch_pred (predicate »unspecifieds)
(a_component sunspecifieds)
(ts_interval ?ts_event_init 1)
(ts_destination (event_name Pterminal)

(event_type srhos))))
actor ‘?subject

actor (default 'sunspecifieds)
event_type_init_1 (default ‘spis)
arc_type_1 (default ‘ssigmas)
arc_rel_1 (default ‘equal)

arc_len_1 (default ‘sunspecifieds)
arc_units_1 (default °seconds)
event_name_inter_1 (default 'sunspecifieds)
event_type_inter_1 (default ‘spis)
event_type_init_2 (default °spis)
event_type_inter_2 (default °*spis)
arc_type_2 (default "esigmas)
arc_tail_2 (default ‘sunspecifieds)
arc_rel 2 (default ‘equal)

arc_len_2 (default ‘sunspecifieds)
arc_units_2 (default ‘seconds)
a_component_2 (value 3)

a_component_2 (default ‘sunspecifieds)
terminal (default ‘sunspecifieds)]))

(index-under-pattern before
(p-o-s ‘conjunction])

(index-under-pattern ( before)
((n11
[ (* and before) (or (p-o-s sentence)
(and (p-o-s noun-phrase)
(not-verdb next °basic)))
([(Rcomma))))

[p-o-s "adverd
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modifies-if (memg (car concept) °(uni_dir vtranms bi_dir_vtrans
single_temporal_event
causal_temporal_init

causal_temporal_term))
modified-concept ‘(append1 (old concept)

*(single_temporal event

(ts_arc_constraint (arc_type , (default ‘sconstraints))
(arc_head ,(default ‘ssuccs))
(arc_tail ,(default °spreds))
(arc_rel ,(default °'gt))
(arc_len ,(default 0))
(arc_units ,(default °seconds)))

(*succe , (value 2 cd-fore))))1)))

(index-under-pattern ( ts_measure before)
[(n11

[ (ts_measure) (s and before) (or (p-o-s sentence)
(and (p-o-s noun-phrase)

(not-verd next ‘basic)))
([ (%comma)])]

[p-o-s8 ‘adverd
podifies-1f (memq (car concept) °(uni_dir_vtrans bi_dir_vtrans
single_temporal_ event
causal_temporal imit
causal_temporal tere))
modified-concept °(appendi (old concept)
*(single_temporal_rel
(ts_arc_constraint (arc_type ,(default ‘sconstraints))
(arc_head , (default ‘ssuccs))
(arc_tail , (default ‘spreds))
(arc_rel ,(or (value 1 relation)
(default °gt)))
(arc_len ,(or (value 1 amount)
(default 0)))
(arc_units ,(or (value 1 units)
(default ‘seconds))))
(ssucce ,(value 3 cd-fore))))1)])

(index-under-pattern during
[p-o-s ‘conjunction))

(index-under-pattern (during)
((n11
{ (+ and during) (or (p-o-s sentence)
(and (p-o-s noun-phrase)
(not-verdb next °basic)))
({(%comma)]))
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[p-o-s °‘adverd
modifies-1f (memq (car concept) "(ti1_dir_vtrans bi_dir_

single_temporal_event
causal_temporal_inmit

Causal_temporal_term))
modified-concept ‘(appendi (old concept)

*(dual_temporal rel
(ts_event_init_1 (event name

.(or (value 2) (value 2 word)
(default ‘sunspecifieds)))
(event_type ,(default ‘sbetas)))
(ts_event_term 1 (event name
.(or (value 2) (value 2 word)
(default °*sunspecifieds)))
(event_type ,(default °smus)))
(ts_arc_1 (arc_type ,(default °sconstraints))
(arc_tail ,(default ‘sbetas))
(arc_head , (default ‘spred-inits))
(arc_rel ,(default °gt))
(arc_ler , (default 0)))
(ts_arc_2 (arc_type ,(default ‘sconstraints))
(arc_tail ,(default ‘spred-terns))
(arc_head ,(default ‘smus))
(arc_rel ,(default °gt))
(arc_len ,(default 0)))))1)])

virans

(index-under-pattern (on)
[(n11
[(» and on) ( a_component)]
[p-o-s ‘adverbd
modifies-1f (memq (car concept) °(uni_dir_vtrans bi_dir_vtrans
single_temporal_event
causal_temporal init

causal_temporal_term))
modified-concept °(append1l (old concept)

*(v_c_n_r (df_val sunspecifieds)
(a_component ,( or (value 2)(value 2 word)))
(ts_interval sunspecifieds)))])))
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(index-under-pattern
[(n11

[ R%comma (p-o-s moun-phrase)
and (* and (p-o-s noun-phrase)

(or (not-verd mext °basic) (e (eq next ‘%end%))))
([%comma)))
[p-o-5 ‘appositive

cd-form '(supplenentary-concepta appositive)
do (add-relation-to-sscs ‘ref (value 2 cd-form)

(value 2 description))
do (add-relation-to-sgsce ‘ref (value 4 cd-form)

(value 4 description)])])

(noun-phrase and noun-phrase)

(index-under-pattern (decl_pname)
[(n11
[ (+ and (p-o0-s noun)))
[p-o-5 'noun-phrase
description (value 1 description)
cd-form (value 1 cd-form)
do (copy-terr 1)])])

1Jg 14 sep 1086
, for use of

; unqualified pnames

; that are declared

. The next pattern actually handles special mnoun

noun cases but
;Dust be indexed under noun, to allow look ahead

-- the result
;18 a noun phrase that contains ome noun.
(index-under-pattern (noun)
[(n11
[ (or (p-o-s article) (p-o-s quantifier)) . Heuristic
(* and (and (p-o-s noun) . & poun
. next (or

(noun-and-verd next) ; a verb with the
(not (not-plural next)); same stem) and
(not-verd after-next °basic)))] ; plural in number
, and there isn’t
. 8 verb after

. this noun
[ p-o-8 ‘moun-phrase

ref (value 1 ref)
class (value 2 word)
cd-forn (old-token (value 2 description) (value 2 word))
description (value 2 description)
do (add-adjs-to-ssc* (value 1 adjs)
(terms cd-form))
do (copy-term 3)1)))
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. The next pattern actually handles special noun noun cases but
.Bust be indexed under moun, to allow look ahead -- the result
is an ambiguous sentence.

(1ndex-under-pattern (noun)
[(n11
[ (or (p-o-s article) (p-o-s quantifier)) . Heuristic 2
(* and (and (p-o-s noun) . @ noun-and-verb
(noun-and-verd next) ; followed by a
(not (not-plural mext)); second
(noun-and-verd after-next)))
(p-o-s noun) (p-o-s noun)) . noun-and-verb

[ p-o-s "ambiguous-sentence
do (add-to-sscs °(ambiguous-sentence (verbli , (value 3 word))
(verd2 , (value 4 word))))1)))

(index-under-pattern (adjective moun )
((n11
[ (or (p-o-s article) (p-o-s quantifier)) (p-o-s adjective)
(+ and (and ( p-o-s noun) (not-noun mext))))

[ p-o-5 "noun-phrase
cd-form
(old-token (value 3 description) (value 3 word))
description (value 3 description)
do (add-adjs-to-sscs (value 2 adjs)

(terms cd-form))

do (copy-term 4)])))

(index-under-pattern (verd noun )
((n11
[(or (p-o-s article) (p-o-s quantifier))
(and (p-o-s5 verd) (or (form perfective) (form progressive)))
(+ and (and ( p-o-s nmoun) (not-noun mext))))

[ p-o-s "noun-phrase
cd-form

(old-token (value 3 description)

(atcat (value 2 word) °\- (value 3 word)))

description (value 3 description)
do (copy-term 4)1)])
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cases but

. Bust be indexed under noun, to allow look ahead--the result

: 18 a noun phrase that contains one noun.

(index-under-pattern (adjective noun )
[(n11

[ (or (p-o-s article) (p-o-s quantifier)) (p-o-s ad)

(+ and (and (p-o-s noun) (not (mot-noun next));

(noun-and-verd mext) R
(not (nmot-plural next));

(not-verd after-next ‘dasic))))

e %o % e @ wo

[ p-o-s ‘noun-phrase
cd-form

(olda-token (value 3 description) (value 3 word))
description (value 3 description)
do (add-adjs-to-ssc* (value 2 adjs)

(terms cd-form))
do (copy-term 4)])1)

(index-under-pattern (number noun)
[(n11

[(p-o-5 number) (s number plural))

[p-o-& 'noun-phrase

cd-form (or (value 2)

(new-token (value 2 description)
(value 2 word)))

description (value 2 description)

do (add-to-*scs ‘(number (group ,(terms cd-form))
(number , (value 1))))1)1)

ective)
Heuristic

& noun next
(or a verd

. with the

same stenm)
and plural
in numbdber
and there
isn’'t s

verd after
this noun
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(1ndex-under-pattern ( number adjective noun )
((n11
[ (or (p-o-s article) (p-o-s quantifier))
(p-o-s number) (p-o-s adjective)
(» and (and ( p-o-s noun) (number plural)
(not-noun next))))
[ p-o-8 ‘noun-phrase
cd-form
(old-token (value 4 description)

(old-token (value 4 description)
(value 4 word)))
description (value 4 description)
do (add-to-*scs *(number (group ,(terms cd-form))
(number , (value 2))))
do (add-adjs-to-sscs (value 3 adjs)

(terms cd-form))
do (copy-term 5)])]1)

. The next pattern actually handles special noun noun cases but
. Bust be indexed under noun, to allow look ahead —- the result
. 15 a noun phrase that contains one noun.

(index-under-pattern ( number adjective noun )
[(n11
[ (or (p-o-s article) (p-o-s quantifier))
(p-o-s number) (p-o-s adjective

; Heuristic

(* and (and (p-o-s moun) (number plural)
(not (not-noun mext)); s noun mext
(noun-and-verd next) ; (or a verd

. with the
(not (not-plural next)); same stem)
and plural
(not-verd after-next °basic)))) : number and

there 1isn't
2 verb after
this noun

®e ®ms v s w

[ p-o-5 ’noun-phrase
cd-form
(old-token (value 4 description)
(old-token (value 4 description) (value 4 word)))
description (value 4 description)
do (add-to-sscs *(number (group ,(terms cd-form))
(number , (value 2))))
do (add-adjs-to-ssce (value 3 adjs)
(terms cd-form))
do (copy-term 5)])])
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(1ndex-under-pattern (noun noun)
((n11

[(or(p-o-s article)(p-o-s quantifier)) (p-o-s noun)

(» and (and ( p-o-s noun) (nmot-noun next)))]
[ p-o-s ‘noun-phrase

ref (value 1 ref)
class (value 3 word)
cd-form
(olda-token (value 3 description)
(atcat (value 2 word) °\- (value 3 word)))
description (value 3 description)
do (add-adjs-to-sscs (value 1 adjs)

(terms cd-form))
do (copy-term 3)])])

(index-under-pattern one
(p-o-s ‘number
cd-form 1))

(index-under-pattern (number one)
[(n11

[(p-o-s numder) (* and one))
[p-o-8 ’numbder
cd-form (eval (plus (value 1) (value 2)))])])

(index-under-pattern tenths
[p-o-s ‘number
cd-form .1))

(index-under-pattern (number tenths)
[(n11

[(p-o-5 number) (* and tenths))
[p-o-s ‘'number
cd-form (eval (times (value 1) (value 2)))]1)])
(ts_interval sunspecifieds)))])])

(index-under-pattern (for ts_measure)
[(n11

[ for (s ts_measure))
[p-o-s ‘adverd

modifies-if (memq (car concept) °(uni_dir_vtrans bi_dir_vtrans))
modified-concept ‘(appendi (old concept)

*(single_temporal_rel (ts_comstraint (value 2))))])])
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(index-under-pattern (number ts_units)
[(n11
[ (p-o-8 number) (» ts_units)])
[p-o-8 ‘noun-phrase
description ‘(ts_measure)
cd-fora ‘( ts_measure (relation Prelation) (amount ?amount)

(units Punits))
relstion (default ‘equal)

amount (eval (times (value 1) (value 2)))
units (default °seconds)])])

(index-under-pattern ( relation number ts_units)
((n11
[ (relation) (p-o-s number) (* ts_units))
[p-o-8 ‘moun-phrase
description ’(ts_measure)
cd-fore °( ts_measure (relation ?relation) (amount ?amount)

(units ®units))
relation (value 1)

relation (default ‘equal)
amount (eval (times (value 2) (value 3)))
units (default ‘seconds)])])

(name %nanoseconds
(n11
[(p-0-8 noun)]
[p-o-s ’'poun-phrase
cd-form 1E-9
description °(ts_units)
do (copy-term 1)]))

(index-under-pattern ns
[p-o-8 'moun])

(index-under-pattern nanoseconds
[p-o-s °moun])

(index-under-pattern nanosecs
[p-o-s8 °moun])

(index-under-pattern (ns)
%nanoseconds

((» and 1)))



(1ndex-under-pattern (nanoseconds)
%nanoseconds
((* and 1)))

(1ndex-under-pattern (mnanosecs)
%nanoseconds
((+ and 1)))

(index-under-pattern less
[p-o-8 ‘adjective))

(index-under-pattern than
[p-o-8 ‘preposition])

(index-under-pattern (less than)
[(n11
[ less (= and than) ]
[p-o-8 ‘adv-rel
description ‘(relation)
cd-fore ‘1t })])

(index-under-pattern first
[p-o-8 ‘adjective
cd-fore ’(ordered starting-ome)
adjs °((ordered starting-one))
state ‘ordered
val °starting-one])

(index-under-pattern (pname 18 noun-phrase)
((n11

[(pname) (root be) (» p-o-s moun-phrase]
[p-o-8 °sentence
cd-fore ‘(declaration
(pname ?descriptor)
(ref ?tref)
(class ?class)

(description Pnominative))
descriptor (value 1 word)

ref (value 3 ref)
class (value 3 class)
nominative (value 3 description)])])
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(index-under-pattern (verb) ; imperative —-- this pattern 1s
. 8180 necessary so that adverbs
(get (from-end 1 root)) . work correctly when the
[(+ anda 2 (beginning) (negative nil)) Xrest
. adverd occurs first
. JIg 24 gep 88
(and Xlast (e (neq mext °Xquestion-mark¥)))]
. doesn’t work when

. %last 18 optional!
(subject ‘eyous

cd-fors ‘?concept
imperative t
p-o-s ‘sentence) active)
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