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Abstract

Module selection is one of the many functions which have to
be performed during behavioral synthesis of pipelined de-
signs. Module selection is the process of choosing the types
of modules (e.g. carry-look-ahead adder) to implement each
operation (e.g. addition). In this paper, we give a limited
solution to the module selection problem for pipelined de-
signs. A model for estimating area-time tradeoffs 3] for
pipelined designs is used to formulate the module selection
problem, and an overview of the solution technique is given.
Complexities introduced by non-optimal designs and user
constraints are also addressed. The results have been val-
idated using designs generated by an.automated pipeline
synthesis program.

1 Introduction

There are a number of tasks to be performed to carry out
data path synthesis, including scheduling, operator alloca-
tion and module selection. Ideally, simultaneous solution
to all these tasks is required to guarantee that optimal de-
signs will be found. However, since each of the tasks in
isolation is probably NP-complete, a simultaneous solution
to all the tasks to achieve near-optimal designs seems to be
computationally infeasible. In practice, the tasks must be
ordered to reduce the complexity of the problem.

In the past, selection of module styles or types had been
viewed as a function to be performed after data path
scheduling and allocation had been completed. The syn-
thesis programs determined how many of each operator
were required, but the specific operator implementation
(e.g. carry-look-ahead vs. ripple-carry) was not decided
until after scheduling and operator allocation were com-
pleted. This assumption did not restrict the design space
severely, since most synthesis programs assumed that each
operation took one time step, regardless of the function be-
ing performed or implementation of that function. Thus,
scheduling of operations could proceed independently of
module selection.
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In the last several years, however, data path synthesis pro-
grams have removed the simplifying assumption about op-
erations taking a single time step (see [1,9,10,11]). To-
day, state-of-the-art programs schedule multiple operations
chained together into single time steps, and achieve designs
which are faster and more area efficient. However, in order
to perform this more complex scheduling, some information
about actual module delays is now required. In addition,
many synthesis programs use more sophisticated cost mea-
sures during data path synthesis, such as chip area, which
requires actual cell area and interconnect costs.

In order to provide the information described above to the
scheduler, module selection should be performed prior to
scheduling. BUD [9] was one of the earliest synthesis pro-
grams to accomplish this, and uses a straightforward heuris-
tic which selects the module with minimum area — time"®
product, where n is a variable set by the user.

This paper presents a rigorous technique for module style
selection for pipelined designs. This technique is based on
the ability to predict the location in the design space of
the area-time tradeoff curve for a given design and given
module set. This predictive ability, in turn, is based on the
straightforward optimization criteria for digital design that
all modules are utilized as many cycles as possible.

Many future systems will use module generation to cre-
ate modules which meet certain area or performance con-
straints. The techniques presented here can also be applied
not only to select existing modules but also to specify the
required characteristics of modules to be generated.

1.1 Motivation

The savings in processing time using module selection prior
to synthesis is a major motivation for this work. For exam-
ple, Sehwa [10], a pipeline data path synthesis program, is
a part of the USC ADAM (Advanced Design AutoMation)
system. The input to Sehwa is a data flow graph (in a data
flow graph, a node is an operation and arcs are values) and
a module set. Sehwa determines the quantity of each type
of operator required and the scheduling of the data flow
graph. These tasks are performed using a single module
set. If the user wishes to explore a different portion of the
design space, then the design process is repeated using a
new module set. With automated module selection, this
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repetitive processing can be eliminated.

An example data flow graph is shown in Figure 1. The
design space for this data flow graph using three different
module sets is shown in Figure 2. There are three design
curves for three module sets. Every design point on a curve
corresponds to an actual design produced by Schwa with
different values of latency!. The design space covered by
Sehwa for design exploration for a good design is 834400
mil? to 8300 mil? in area and 375 nS to 117920 n.S in time.
On the other hand if only one module set (say module set
1) were used for searching the design space, Sehwa would
cover a much smaller design space. The module selection
program explores the larger design space and selects an
optimal module set meeting the user constraints.

1.2 Assumptions

Our solution to the module selection problem is a limited
one in that we have made the following assumptions. The
third assumption is what differentiates this work from pre-
vious module selection research.

1. It is assumed that resynchronization (flushing the
pipeline) does not occur. The two main reasons for
resynchronization are exception conditions and con-
ditional branches. Signal processing applications sel-
dom have conditional branches, and hence resynchro-
nization due to conditional branching is rare. Fur-
thermore, as the data is normalized to meet the
pipeline’s arithmetic precision capabilities, exception
conditions due to arithmetic errors are reduced. (See
[6] for examples.)

2. An operation must be completed within one clock cy-
cle. An operation cannot be scheduled into two or
more stages. Of course, any such partitioning can be
achieved by a priori division into two or more sub-
operations.

3. Module selection is performed priot to scheduling and
operator allocation.

4. If there are two modules which implement the same
operation, then the faster module is bigger than the
slower one.

5. It is assumed that every operation in the data flow-

graph can be implemented by at least one module
or combination of modules in the library. If it does
not exist, then an intelligent interface (like Fred [12])
can supply module parameters based on the existing
modules. For example, if the data flow graph has an
8-bit addition operation then an intelligent interface
can extrapolate 4-bit adder parameters (area and de-
lay) and provide the module selection program with
parameters for a 8-bit adder. A module generator
could be invoked to implement one.

1Latency is the number of clock cycles between initiations of two
successive data inputs, as used in [5].

Figure 1: AR Filter Data Flow Graph
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Figure 2: Designs Produced by Sehwa Using Several Mod-
ule Sets

1.3 Related Research

Of the many research papers on data path synthesis of dig-
ital systems, there are very few which address module se-
lection (e.g. [2,8]). In most synthesis research, the problem
of module selection has been simplified in that a fixed mod-
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ule set is predetermined for implementation [1]. We believe
this to be thefirst effort which formalizes and proposes a
solution to the module selection problem for pipelined de-
signs.

Leive (8] proposed a solution to the general module selection
problem for non-pipelined designs where module binding is
done after scheduling and operator allocation. Each module
is evaluated by an individual optimization function, from
which the best module is selected for implementation. It is
not known whether optimizing every operation type leads
to the globally optimal solution for the module selection
problem or not. As we shall see in Section 3, optimizing the
module type for every operation type individually does not
necessarily lead to a globally optimal result for pipelined
designs.

In [2], module binding and module selection problems are
solved concurrently for non-pipelined designs using a mixed
integer-linear programming (MILP) technique. The basic
drawback of this technique is that the solution entails enor-
mous computer runtime and is not practical for realistic
examples. Also, the module selection problem by itself is
not independently solved, thus forcing the user to solve the
whole problem of data path synthesis. However, the re-
sults obtained for module binding and module selection are
optimal.

2 Solution Approach

2.1 Overview of the Module Selection
System

The input to our module selection system is (i) a behav-
ioral description of the target design in terms of a data flow
graph, (ii) a library of modules which can perform the oper-
ations of the data flow graph, and (iii) a cost or performance
constraint (for example, the area of the design should not
exceed 200 mil®). The module selection system chooses
appropriate modules from the library for implementation.

The module selection system chooses a module set after
three processing stages. The first stage generates a set of
module sets, and rank orders the module sets according to
an objective function to be described below. If there are no
constraints, the module set which minimizes the objective
function is chosen, and the program terminates. Otherwise
processing stage two is begun. If there is an area constraint
on the design, then the program finds the module set which
meets the constraint and has the minimum objective func-
tion of all sets which meet the constraint. If there is a
performance constraint, then the program finds the mod-
ule set which meets the constraint and has minimum area.

Many times, the resources in a digital system are not fully
utilized every time step. In such cases, the design space is
not as well behaved, and local searching must be performed
in stage 3 to find the best module set meeting constraints.
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2.2  Choice of Objective Function

The objective function used to rank order the module sets
is the area-performance product of the target design, using
that module set. This objective function, taken from [3],
estimates a lower bound area-time curve for a given data
flow graph and a module set to be

A x T = constant (2.2.1)

A is the functional area of the design. A = 175 (a; x o;)
where a; is the area of module which implements operation
1, 0; is the quantity of these modules and m is the number
of different types of operations in the data flow graph. T
is the delay between two successive initiations of new data.
T = ¢ x I where ¢ is the clock cycle of the design and [ is
the latency.

2.3 Candidate Module Set Selection

Stage 1 consists of module generation and rank assignment.
Algorithm 1 given in Figure 3 generates several module
sets for every possible value of clock cycle which minimizes
Equation 2.2.1. We know from [3] that the best possible
clock cycle for a design is ¢ = mazimum(d;), where d; is
the delay of all the modules selected for the design. The
quantity of different values which clock cycle can take is
bounded by 373! p;, where p; is the number of modules
which implement operation type 1. Thus, the number of
module sets meeting the requirements of Equation 2.2.1 is
Tt pi in the worst case. This is a subset of the total num-
ber of possible module sets ([[5* p;). The set of different
delays which exist for all module types for all operations
forms the set of possible values of clock cycles. This set is
used in Step 1 of the algorithm. Each candidate clock cycle
is then selected for consideration. For the selected clock
cycle there will be several AT curves. The curve for the
selected clock cycle with minimum value of AT is the one
which minimizes Equation 2.2.1. This is easily achieved by
ensuring that the delay of every module selected does not
exceed the selected clock cycle and has minimum area. The
pruning of the search space for a selected clock cycle is done
in Step 3 of Algorithm 1.

Once the module sets are generated, they are sorted in in-
creasing order of their AT value. If there are no constraints,
the module set with smallest AT value is selected.

1. For every possible value of clock cycle {
/¥ i.e. for every unique value of dl;; */

2. For each operation type {

3. Choose the module with minimum area and
delay less than or equal to the clock cycle.
If one cannot be found, then this clock cycle
is rejected.

4. Compute estimated AT of the design from
Expression 2.2.1 using this module set.

} Figure 3: Algorithm 1




2.4 Locatign of Module Sets Meeting
Constraints

Every module set generates a number of design points de-
pending on the values of latency. However, the user may
specify a constraint which is not met by the design points
generated using the best module set. In this situation the
user may have to settle for an inferior solution which meets
the constraint. Thus we have the problem of finding the
best possible module set which does meet the user con-
straint.

Figure 4 shows an example of selecting the best possible
module set assuming that each design point is operator-
optimal. Different curves correspond to different module
sets and the design points on each curve are with different
latency. Suppose the user specifies an area constraint of 200
mil® (shown by a dotted horizontal line). Then, module
sets 1 and 2 cannot satisfy this constraint and are rejected.
Only module sets 3 and 4 can satisfy the constraint. Of
these two, module set 3 minimizes Equation 2.2.1 and is
selected as the best choice. The search procedure processes
the sorted module set list in order, and selects the first
module set whose cheapest design (longest latency) meets
the constraint. A similar approach is used when the user
specifies a performance constraint.

2.5 Local Searching with Non-Optimal
Designs

In reality there will be non-optimal design points since not
all operators will be utilized fully every cycle. To han-
dle this situation, a smaller region in the design space is
explored for the best possible solution. The procedure de-
termines whether a module set meets the constraint by de-
termining whether there is a best case design which meets
the constraint. If the constraint is on area then the end of
the curve which represents longest latency is checked.

Let the j** module set be selected in the procedure de-
scribed in Section 2.4.

1. The design points for the j* module set are
generated®. Let = be the design point which satisfies
the constraint and which has the minimum AT among
all the design points generated using this module set.

2. If any design point of either module set 7 —1 or 7 +1
has a smaller AT than the AT of point = and meets
the constraint, then this module set is conditionally
selected as module set 7 and Steps 1 and 2 repeated.

3 Experiments and Results

Several experiments were conducted to ensure that Algo-
rithm 1 did indeed generate the best module sefs and satisfy
the following two requirements: v

2This can be easily done by using the estimation procedure of 13].
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Figure 4: Constraint Example

1. the design space explored by considering all the
5! p; module sets contains the same optimal sur-

faces as that explored by the selected 373" p; (or
fewer) module sets, and

2. if a design point meeting some constraint can be gen-
erated by the unselected module sets, then the se-
lected module sets can also generate a design point
which can not only satisfy the same constraint but
better the cost-performance. This is because the
module sets which generate design curves closer to
the origin are selected over of the ones further from
the origin.

The results were verified using Sehwa. The library of mod-
ules, generated by an area estimation program PLEST (7],
consisted of three add modules, three subtract modules,
and three multiplication modules (Table 1). Three data
flow graphs taken from [3] were pipelined using Sehwa. The
AR filter data flow graph (Figure 1) consists of addition and
multiplication operation types. As the library has three add
modules and three multiplication modules, a total of nine
various combinations of module sets were formed for this
example. Sehwa was executed using these module sets for
the AR filter. The results shown in Figure 5 are plotted on
a normalized log-log scale for better readability.

Algorithm 1 was executed using the AR filter data flow
graph and the library. Algorithm 1 generated five module
sets which are listed in Table 2 (the entries are sorted in in-
creasing AT). Comparing the results in Figure 5 produced
by Sehwa with those produced by Algorithm 1 in Table 2,
it is seen that the five module sets produced by Algorithm 1
do encompass as much optimal surface in the design space
as all nine module sets. The selected five module sets cover
the unselected four module sets. By covering we mean that
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a design meeting a constraint which can be produced by Y

the unselected module set can also be generated by the se Ot my,a; .
lected ﬁ‘vc module sets; not only that, but the designs on r Ce B ®: m::a; .
the optimal surface generated using the selected module set 198 1 * ML, 8,8
have a better cost-performance than the designs generated T 5 :::'Z:
by the unselected module set, Algorithm 1 generates five 176 | Ce . A mg:a_, N
module sets for the AR filter data flow graph. The selected T S e O . t:my,a,
module set (my, a3) is a redundant module set which can 154 1 3 e
be covered by the other four selected module sets. T 20 % '$ X. " JET;
132 f . 5
Module [ Operation Area | Delay 1 < Y: log(A)
Name mil® ns 110 4 Ce g =4
al 4200 | 340 1 g é
a2 Addition | "2880 | 530 88| o é
a3 1200 | 151 | &
s 4200 | 340 66 4 & é
s2 Subtraction 2880 | 53 1 g é
53 1200 | 1510 sl £*1
m1 49000 | 375 1 <
m2 | Multiplication [ 9800 | 2950 ) g
m3 7100 | 7370 | | )y
Tilile 1= Modils e — 30 60 90 120 150 180 210 240 270
* indicates the module set selected by Algorithm 1
AR Lattice Conditional Random Data

Filter Data Flow Graph | Flow Graph

Figure 5: Area Time Curves For AR-Lattice Filter j

(m:, Gi)' (m1, a1,51)'—; ‘
(my, a,) (a1,51)° (m1,a2,5,) | 7 3
(m2,as) (a2, s2) (m3, as, s3) ‘f 3
(ms, as) (as, s3) (my, as, ss) :_o ’g :1’:; * :

(m1, as) (ms, a3, 53) _—\ o s e

- = I i *:az,s
Module set with minimum AT ® . o: az.a; N g
120 1 o t ‘?: az, 83 i
e i az, s §
‘Table 2: Module Sets Generated Using Algorithm 1 1051 e @ : a3, 3 ‘;
1 ® Q:a3,83 ¢ 4
; = 1 3
Similar results for other data flow graphs were obtained. 90 + &2 ¥ 125%3 '
Figures 6 and 7 show results when non-optimal designs + @o oh - ;'{_:_2
were encountered and local search took place. In Figure 75+ * ¢ . ;:
6, module set (az,s;) was selected over (a1,m;) when the 4 o @ A 4
area constraint of 84 was specified. In F igure 7 module 60 + @ ‘? &
set (my,as,s;) was selected over (m1,a1,5;) when an area 1 - "“
constraint of 98 was specified. e " & ¢ &
We shall now give an example where selection of modules il o 4 ‘;
whose individual AT products are minimum does not result * j
in global optimization. Let us assume that module m; does T =
not exist. By selecting modules on the basis of optimiza- 151 < E
tion of individual modules, module set (m2,a;) would be T bt g e
chosen for the AR lattice filter example. Seeing the results 15 30 45 60 75 0 105 120 135 u

in Figure 5, we observe that this module set is not selected.
Instead, a better choice which would cover the same opti-
mal design space with better AT is the module set (my, a3). ¢ inditates the module set selected by Algorithm 1 i)
Thus, optimizing individual nodes in the data flow graph '
does not necessarily lead to a globally optimal solution for

pipelined design. Figure 6: Area Time Curves For Conditional Dataflow

Graph
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* indicates the module set selected by Algorithm 1

Figure 7: Area Time Curves For Random Dataflow Graph

4 Conclusions and Future Re-
search

The algorithms presented in this paper select an optimal
module set from a library for implementing a pipelined de-
sign with a design constraint. The model presented here
is general and is applicable to any pipelined synthesis tool
with the assumptions mentioned above. The algorithms
presented here are polynomial in time [4]. The algorithms
have been coded in C and have runtimes of seconds on a
SUN 3 workstation.

In the above analysis, only the operator cost was consid-
ered. The optimization can be further refined to include the
cost of multiplexers and registers. This can be achieved
by using an equation which includes the estimated regis-
ter and multiplexer cost in place of Equation 2.2.1 to start
with. The search procedure for the best module set given
the user constraint may have to be modified when this ad-
ditional cost becomes important as the latency increases.
Another possible method of including the effect of register,
multiplexer and wiring may be to consider a lumped model.
This would imply adding an estimate of global wiring, reg-
ister and multiplexer cost and delay to the module cost and
delay. The effect of resynchronization on module selection
has to be studied also.
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