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Abstract

In the new partial scan methodology presented in this paper, the scan path is
constructed such that the rest of the circuit belongs to a class of circuits called balanced
sequential structures. Test patterns for this structure are generated by treating it as
being combinational. To test the circuit, each test pattern is applied to the circuit
by shifting it into the scan path, holding it in the scan path for a fixed number of
clock cycles, loading the test result into the scan path and then shifting it out. This
technique achieves full coverage of all detectable faults with a minimal number of
scannable storage elements and using only combinational test pattern generation.
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1 Introduction

Test pattern generation (TPG) for sequential circuits is usually a computationally intensive
task [1]. Full scan design techniques attempt to reduce the complexity of this problem
by connecting all storage elements into a scan path that is externally controllable and
observable [2]. Thus in a circuit designed using full scan the portion of the circuit excluding
the scan path, which we shall refer to as the kernel of the circuit, is fully combinational.
Since all inputs and outputs of the kernel must be connected either to scan path elements
or to circuit primary I/O, tests can be generated using combinational TPG techniques.
The scan design concept is illustrated in Figure 1(a), and the kernel is indicated using
broken lines. Scan design involves a logic overhead for modifying the storage elements
and configuring them into a scan path. Partial scan techniques have been proposed for
reducing this overhead [3]. The general concept of partial scan is illustrated in Figure 1(b),
in which not all storage elements are included in the scan path. In this case the kernel is
itself a sequential circuit.

In the partial scan technique proposed by Agrawal et al. [4], each test for the kernel
consists of a single pattern shifted into the scan path and applied to the kernel for one clock
cycle. The combinational portion of the kernel is used for TPG, and the storage elements
inside it are considered to be inaccessible with unknown states. Complete fault coverage
cannot be obtained using this technique; in fact, initial functional tests are required for it
to be effective.

A recently proposed partial scan technique attempts to rectify this limitation by us-
ing multiple-pattern test sequences [5]. Given a fault to be detected, the technique uses
sequential TPG combined with a judicious selection of scannable storage elements to bring
the circuit to a desirable initial state from which the rest of the test sequence can be
easily determined. Thus full coverage of kernel faults is obtained at the cost of high TPG
complexity.

In this paper an alternative partial scan methodology, BALLAST (BALAnced struc-
ture Scan Test), is presented. In our approach each test consists of a single input pattern
applied to a sequential kernel; however, the pattern is held constant in the scan path at
the inputs of the kernel for a fixed number of clock cycles before the output pattern of
the kernel is sampled and shifted out. The test patterns for the kernel are obtained by
treating it as being combinational, with registers replaced by delayless wires. If the storage
elements that are to be included in the scan path are selected appropriately, this technique
achieves full coverage of all detectable faults in the kernel, and only combinational TPG
is required.

An example of a circuit employing the BALLAST methodology is shown in Figure 2.
The circuit has six registers and three combinational blocks. Registers R1, R2, R4 and R5
are constructed using D-flip-flops. The only registers in the scan path are R3 and R6, and
they must have the ability to hold data across consecutive clock cycles. The set of test



patterns for the kernel is obtained simply by replacing the registers within it by wires, and
running combinational TPG on the resulting combinational circuit. In order to test the
kernel, each test pattern is shifted into the scan path and held in the scan path for two
clock cycles before the kernel output is loaded back into the scan path and shifted out. We
will prove that using this approach we can detect all faults in the kernel that can cause
errors in the logical operation of the circuit.

Now consider a variation on this example. Assume that the register R5 is also capable
of holding data according to an externally controllable HOLD signal. In this case the simple
test scheme described earlier does not work. The BALLAST methodology would require
that etther one of R1, R2, R4 and R5 be also removed from the kernel and included in the
scan path along with R3 and R6. This statement, along with other claims about the fault
coverage in the kernel, will be proved in a later section.

We shall describe the BALLAST methodology by focussing on two issues.

1. What circuit structures are acceptable as kernels, i.e., can be fully tested for all
detectable faults using the test method described above?

2. Given an arbitrary sequential circuit with no scan path, how should a scan path
be constructed such that the resulting kernel, which is that portion of the original
circuit with the scan path removed, has the desired structure?

In Section 2 we shall formally define a class of sequential structures called B-structures
that answer the first question above. Based on this definition, an outline of the BALLAST
methodology will be presented in Section 3. The fact that B-structures get fully tested by
the proposed test method will be proved in Section 4. Section 5 will answer the second
question posed above by describing a procedure for constructing a scan path. Implemen-
tation aspects of the BALLAST methodology are discussed in Section 6. Section 7 deals
with testing the functional modes of internal registers. The results of applying BALLAST
to an actual circuit are described in Section 8. Finally, concluding remarks are presented
in Section 9.

2 B-Structures and their Properties

In this paper we consider only synchronous sequential circuits in which every cyclic path
contains at least one clocked storage element. Further, the storage elements are assumed
to be edge-triggered flip-flops (FFs). The circuit may have any number of clocks. However,
the FF clock signals must all be controlled by primary inputs, and no clock signal may
feed the data input of any FF either directly or through combinational logic. The FF's
may have Reset and Load Enable control signals, with similar restrictions as for the clock
signals.
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Circuit Model

In general a synchronous sequential circuit S consists of blocks of combinational logic
connected with each other either directly or through registers, as illustrated in Figure
3(a). A register is essentially a collection of one or more FFs. All FFs in a register must
be driven by the same clock signal and must be controlled by the same mode control
signals, if any exist. Any subset of the FFs in a register forms a valid register.

The set of registers in the circuit can be partitioned into two subsets based on the
presence or absence of explicit Load Enable controls on the FFs comprising them. We
define the load set L as the set of registers in the circuit whose FFs have no explicit load
enable control; these registers always operate in the LOAD mode (in which data is read
from the data input during every clock cycle). Similarly, we define the hold set H as the
set of registers whose FFs have an explicit Load Enable control signal; these registers have
two modes of operation: a HOLD mode (in which they retain their value across consecutive
clock cycles) as well as a LOAD mode.

The combinational logic in S can be partitioned into maximal regions of connected
combinational logic, known as clouds [6]. The inputs to these regions are either primary
inputs or outputs of FFs; the outputs of these regions are either primary outputs or inputs
to FFs. Clouds can be constructed by clustering combinational logic blocks in a bottom-
up fashion based on the following rule: Two combinational blocks A and B belong to the
same cloud if either (1) one of them directly feeds the other, (2) they have a common input
signal that fans out to both, or (3) one is fed by the output of a flip-flop (@) and the other
is fed by the inverted output of the same flip-flop (Q). The clouds of S; determined using
this rule are indicated using dotted lines in Figure 3(a). Also shown is a special vacuous
cloud which consists of wires with no logic. A group of wires is considered to form a
vacuous cloud if either (1) it connects the output of one register directly to the input of
another, (2) it represents a circuit primary input feeding the input of a register, or (3) it
represents the output of a register that is a circuit primary output.

From the way in which clouds are defined, it follows that no two clouds can be directly
connected together; they must be separated by one or more registers. Further, each FF
in a register must receive data from exactly one cloud and must feed exactly one cloud.
We can therefore constrain the grouping of FFs into registers (by splitting registers where
necessary) such that each register receives data from exactly one cloud and feeds exactly
one cloud. Under this constraint the topology of the circuit can be modeled by a directed
topology graph G = (V, A, H,w) in which nodes in V represent clouds, each arc in 4
represents a connection between two clouds through a register, arcs in H C A represent
HOLD registers, and w : A — Z% (positive integers) defines the number of FFs in each
register. w(a) also represents the cost of converting the register a into a scan path register.
Note that the topology graph differs from the classical concept of the directed graph in
that it may have multiple arcs between the same pair of nodes. Figure 3(b) shows the
topology graph G, of the circuit Sj.



B-Structures

Let S be an arbitrary synchronous sequential circuit with topology graph G = (V,A, H,w).

Definition: S is said to be a balanced sequential structure (B-structure) if:

1. G is acyclic;
2. Yvy1,v3 €V, all directed paths (if any) from v; to v, are of equal length!; and

3. Vh € H, if h is removed from G, the resulting graph is disconnected. O

Figure 4 shows an example of a topology graph that is a B-structure. Bold arcs
represent HOLD registers and others represent LOAD registers.

Given a balanced sequential structure S2, we define its combinational equivalent,
C?® as the combinational circuit formed by replacing each FF in every register in S2 by a
wire (if the output of the register uses the Q output of the FF) or an inverter (if its uses
the Q output of the FF). Define the depth, d, of S? as the longest directed path in its
topology graph. Also, given an input vector I applied to SZ, define the single-pattern
output of SB for I as the steady-state output of SZ when I is held constant at the inputs
to S® and all its registers are operated in LOAD mode for at least d clock cycles. Further,
given some fault f in S2, if the single-pattern outputs for I of the good and the faulty
circuits are different, then I is a single-pattern test vector for f.

B-structures have two interesting properties which allow them to be used as kernels in
a BALLAST partial scan design: (1) they are single-pattern testable, and (2) a complete
single-pattern test vector set can be derived using combinational test generation techniques.
Both properties will be proved in Section 4. Next we present an overview of the proposed
BALLAST methodology.

3 Scan Design Using B-Structures

When any register in a sequential circuit is included in a scan path, it serves as a control
and observation point for the rest of the circuit. In effect it becomes a primary output
of the cloud feeding it and as a primary input of the cloud it drives. Thus in our circuit
model, the inclusion of a register in the circuit scan path corresponds to its removal from
the topology graph of the circuit; and the reduced topology graph represents the kernel,
i.e., the portion of the circuit to be tested using the scan path.

1Condition 2 actually includes condition 1.
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BALLAST selects a minimal number of FFs to be made scannable such that the
remainder of the circuit is a B-structure. As will be proved later, this guarantees that
full coverage of all detectable faults in the kernel can be obtained using single-pattern test
vectors shifted in through the scan path. The following is an outline of the BALLAST
methodology.

1. Construct G, the topology graph of the circuit, as defined in Section 2.

2. Select a minimal cost set of arcs, R, to be removed from G such that the remaining
topology graph is balanced. Arcs in R represent the registers that must be included
in the scan path. Let S? be the B-structure corresponding to the resulting topology
graph which represents the kernel of the circuit. Algorithms for implementing this
step are presented in Section 5.

3. Determine the combinational equivalent C? of the kernel SB. Using traditional
combinational test pattern generation techniques, determine a complete test vector
set for CP. This will constitute a complete single-pattern test vector set for the
kernel SB. (See Section 4 for proof of correctness of this statement.)

4. Construct a scan path containing the registers in R so that they are capable of (a)
shifting test patterns in/out, (b) holding a pattern constant at the kernel inputs for d
clock cycles (where d is the depth of the B-structure comprising the kernel), and (c)
loading in the test results from the kernel. The circuit modifications will be discussed
further in Section 6.

Given a circuit designed in the above manner, the test plan for applying a sequence
of single-pattern test vectors to the circuit is as follows. N is the number of test vectors
to be applied and [ is the total number of FFs in the scan path.

1. Operate all scan registers in the SHIFT mode for | clock cycles. (Scan in the first
test vector.)

2. Repeat N times:

(a) Place all scan registers in the HOLD mode and all non-scan registers in the
LOAD mode for d clock cycles. (This allows test data to propagate through the
circuit.)

(b) Operate all scan registers in the LOAD mode for 1 clock cycle. (This loads the
test result into the scan registers.)

(c) Operate all scan registers in the SHIFT mode for | clock cycles. (Scan out the
test result and scan in the next test vector.) O



In general, the total test time for a BALLAST circuit may be higher than that for the
corresponding full scan circuit. This may be attributed to two factors: first, the higher
number of test vectors required for full fault coverage of the kernel, caused by the size
of the combinational equivalent circuit as well as fewer controllable inputs and observable
outputs of the kernel; and second, the need to hold each test pattern for d clock cycles in
step 2a above.

In the following section the testability properties of B-structures are studied with
the objective of proving that any B-structure is a valid kernel in the BALLAST test
methodology.

4 Proof of Correctness

We shall now focus on the kernel of the circuit under consideration in isolation from the
scan path. We shall treat all connections of the kernel from/to scan path registers as
primary I/O lines of the kernel. The BALLAST methodology ensures that the kernel is a
B-structure. In this section two important properties of B-structures will be proved: that
they are single-pattern testable, and that complete single-pattern test sequences can be
determined using combinational test generation techniques.

In the following discussions, S? represents an arbitrary B-structure and CP represents
its combinational equivalent. The set of faults of a B-structure refers to the union of the
sets of faults of the individual clouds. Stuck-at faults in a register can be considered to be
equivalent to a stuck-at fault in one of the clouds adjacent to it. A detectable fault is one
for which some sequence of test patterns exists.

Lemma 1 For any input vector I, the output of C® and the single-pattern output of SP
are tdentical.

Proof: By induction on the depth of SB.
Let G be the topology graph of S? and let its depth be d.
d=0:1If dis 0, S® is combinational, and the statement is trivially true.

d > 0 : Assume that the statement is true for 0 < d < n — 1, and consider d = n.
Remove from G all “first-level” nodes, i.e., nodes that have no incoming arcs, and all
corresponding first-level arcs. There must be at least one first-level node because G is
acyclic. Let the resulting graph be G, representing a corresponding balanced structure
SP of depth n — 1 with combinational equivalent CZ. When the input vector I is applied
to SB, all clouds corresponding to first-level nodes must settle at constant values within
the first clock cycle; hence the values loaded in by the first-level registers must in fact



be their final steady-state values. Thus after the first clock cycle, SP receives a constant
input pattern. Since the depth of SP is n — 1, and both CPZ and SP receive the same
input pattern after the first clock cycle, therefore the output of C2 and the single-pattern

output of SP must be identical, by assumption. Thus the statement of the lemma is true
for d = n.

Thus the lemma holds for all d > 0. 0

Note that the only property of B-structures used in the above lemma is the fact that
the topology graph is acyclic, hence it is true of all acyclic structures.

Lemma 2 Let fs be a fault in SP and let fo be the corresponding fault in CB. Then any
test pattern t for fc in CB is a single-pattern test for fs in SE.

Proof: Let C7 and S7 be the faulty circuits produced by fc and fs respectively. Since
t detects fc, the outputs of C® and C7 must differ for input ¢. Hence due to Lemma 1,
the single-pattern outputs of S? and SF must differ for input . Thus ¢ is a single-pattern
test for fs in SB. d

Note that the above lemma does not prove that there is a single-pattern test for every
detectable fault in SB.

Theorem 1 Every B-structure is fully testable for all detectable faults using single-pattern
test vectors.

Proof: It is sufficient to prove that given any detectable fault f in the balanced structure
SB | there exists a single-pattern test vector for f. We first present a formal proof and then
illustrate the proof using an example.

Let G = (V, A, H,w) be the topology graph of SZ. During any clock cycle ¢, let the
state of SP be defined by the tuple G* = (G, I', k!, z*), where I*(v),v € V represents the
input pattern applied at the circuit primary inputs (if any) of the cloud v during clock
cycle t; ht(a),a € H represents the mode signal of the HOLD register a during clock cycle
t; and z* : A — {0,1,D,D, x} is an assignment of logic values to all registers in the
circuit. In this 5-valued logic (1], D and D represent erroneous states due to a fault, and
X represents an unspecified or don’t-care value. Assume (without loss of generality) that
for a HOLD register a, h*(a) = O represents the LOAD mode and h‘(a) = 1 represents the
HOLD mode.

Since f is detectable, some test sequence T for f must exist. Let I' consist of a
sequence of patterns applied to the circuit primary inputs feeding the clouds and to the
control signals feeding the HOLD registers. Let the first pattern be applied at clock cycle



1 and let the fault be first observed at a circuit primary output at clock cycle m. The
application of T' to S? can be fully described by the sequence of states (G}, @, vy G™)
that the circuit experiences.

We shall now show that based on T it is possible to derive a single-pattern test for f.
The following procedure transforms T into a single-pattern test 7.

procedure transform (T = (G%,...G™)):

1. Pick a node vy € V such that the corresponding cloud in SZ has one or more outputs
that are circuit primary outputs and at least one primary output has value D or D
in state G™.

2. Define a relation called activation time, o : V — {1,2,...,m} where a(v) represents
the clock cycle during which the cloud v is is actively involved in sensitizing or
propagating the effect of the fault f; i.e., there is a functional dependency between
the output of cloud v during clock cycle a(v) and the output of vy during clock cycle
m.

(It will be shown that every cloud has a unique activation time.)
Set a(vg) «— m.

3. Construct a set ¥, representing a frontier of nodes being processed, and set 7 « {vg}.

4. Repeat the following until ¥ = ¢:

(a) Pick some v € F having the highest activation time a(v), and remove it from
7.

k — a(v).
(b) For all arcs a incident onto v, do the following:

i. u + source node of g;
Add u to F, with a(u) « k — 1.
ii. If a € H and h*(a) = 1 then
A. t «+ min. j such that hi*}(a) = hi*%(a) = ... = h*(a) = 1;
If there is no such 7, skip steps B and C.
t represents the clock cycle during which cloud u is active, and register
a loads the active data, in the original test plan.
B. 7 +— k —t = number of HOLD cycles of a in the current sequence.
The next step eliminates the HOLD cycles while keeping the test valid.
C. The removal of a from G must disconnect G into separate components,
by definition of balanced structures. Let G, be the component that
contains u. Modify the test by delaying all electrical activity within G,
by 7 clock cycles as follows.
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YweV in Gy, I'(v) « I~"(v), 7 < j < k;

Vh € H in Gy, Wi (h) — hi~"(h), 7 < j < k;

Va € A in Gy, z'(a) < @’ "(a), 7 < 7 < k;

hE(a) « 0.

It can easily be seen that the sequence of modified states (G!,...,G™)
is still a valid test for f.

The preceding portion of the procedure transforms the test sequence such that in the
final state sequence every register is in the LOAD mode at the time when the cloud
driving it becomes active, and adjacent clouds are active during adjacent clock cycles.
Note that the activation time «(v) of each cloud v depends only on its distance from
the output node vy. Since G is balanced, this implies that for each cloud, there is a
unique clock cycle during which it 1s active.

5. Let to + min, [a(v)] = earliest activation time among clouds that have been assigned
an activation time.
Then T' = (G*,...,G™) is a valid test for f.

6. Any circuit primary input feeding a cloud v must have the value determined by
I*)(y) during the activation time a(v) of v; at other times its values do not affect
the test. Hence we can transform the input patterns as follows to obtain a valid test:

Yv eV, I'(v) « I*®)(v), to <t < m.

In other words, the input pattern consisting of the pattern I“(”)(v) applied to each
cloud v is a single-pattern test for f in SB.

7. Return I*°(v), Vv € V; this represents the single-pattern test vector T".

The above procedure demonstrates that every fault in S has a single-pattern test;
this proves the theorem. O

Example

Figure 5(a) shows a typical B-structure with three clouds and three registers. For simplicity
in this example, each register consists of a single FF. R3 is a HOLD register while R1 and
R2 are LOAD registers. The lines a, b, ¢, d are circuit primary inputs to the various clouds
and g is a circuit primary output. h controls the HOLD mode of R3 such that if A =0
during clock cycle ¢, then R3 loads new data between clock cycles t and t+1,and if h =1,
it holds the data present during clock cycle ¢ for an additional cycle.

Consider the fault f which makes the line e stuck at 1. f is detectable, and Figure 5(a)
shows a test sequence T', consisting of three test patterns, that detects f. The patterns
shown at the primary inputs and at A must be applied in order from left to right over

B



consecutive clock cycles. The states of the internal signals during this time are also shown.
Note that the fault is first detected at primary output g in clock cycle 3.

We shall now show that based on T it is possible to derive a single-pattern test for f.
We first transform the test so that all HOLD registers (i.e., R3) operate only in the LOAD
mode, and then further transform it so that the value applied to each primary input is
constant throughout the test.

Given the test sequence T', we say that a cloud C is active during a clock cycle k
if it is actively involved in sensitizing or propagating the effect of the fault during clock
cycle k. In other words, there is a functional dependency between the output of cloud C3,
at whose output the fault is first detected at clock cycle 3, and the output of C at clock
cycle k. The cycles during which the various clouds in Figure 5 are active are indicated
by underlining the corresponding logic values in the state sequences. Clearly, C3 is active
at clock cycle 3. C1 must be active at clock cycle 2, since it feeds C3 through the LOAD
register R1 which has a constant delay of 1 clock cycle. Note that every path between C1
and C3 must have exactly the same number of LOAD registers, because this structure is
balanced; hence C1 must be active at clock cycle 2 and at no other time. The other cloud
feeding C3 is C2, and in this case the connection is via a HOLD register, which introduces
a variable delay. The control sequence applied to R3 in test sequence T is ‘01x’, which
means that R3 is actually in the HOLD mode at the time (clock cycle 2) just before C3
becomes active. The most recent clock cycle at which new data was loaded into R3 is 1;
hence the erroneous output of C3 actually depends on the output of C2 in clock cycle 1.
Thus C2 is active in clock cycle 1.

Figure 5(b) shows a transformed test in which C2 is active in clock cycle 2 instead of
1, and the HOLD operation of R3 is eliminated. In effect, all logical activity in C2 and
in all clouds feeding C2 (directly or indirectly) is delayed by one clock cycle, so that the
HOLD cycle of R3 can be eliminated. Note that by delaying the activity in the portion
of the circuit feeding C2, the activity in the rest of the circuit is unaffected. This follows
from the fact that all paths between this portion of the circuit and the rest of the circuit
must pass through the HOLD register R3. Thus the sequence of states shown in Figure
5(b) is a valid test for f in which the error is first observed at clock cycle 3.

The transformation above ensures that every cloud feeding C3 (which is active at clock
cycle 3) is active at clock cycle 2. The transformation process must be repeated for all
clouds feeding C1 and C2, respectively (none in this case), until (i) the clock cycles during
which the various clouds are active have been determined, and (ii) every HOLD register
operates in the LOAD mode in the transformed test. From the preceding arguments it
follows that every cloud is active during some unique clock cycle; further, no cloud can be
active earlier than clock cycle 2, since adjacent clouds are active during consecutive clock
cycles and C3 is active at clock cycle 3 and the depth of the B-structure is 1. Hence the
test can be further transformed such that (a) it consists of only two vectors, applicd at
clock cycles 2 and 3; and (b) the input pattern required at the primary inputs of each cloud
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C during its active cycle are actually applied during both cycles 2 and 3. The resulting
single-pattern test vector 7' for fise=1,b=0,c=0and d = 1.

The above example illustrates the procedure for transforming an arbitrary test into a
single-pattern test, and demonstrates that every detectable fault is single-pattern testable.

Corollary to Theorem 1 The mazimum required duration of any single-pattern test is
d clock cycles, where d is the depth of the B-structure.

Proof: This follows from the fact that adjacent clouds are active during adjacent clock
cycles in the transformed test. O

We now proceed to show that a complete single-pattern test set for a B-structure can
be obtained by combinational test pattern generation techniques.

Lemma 3 Let fs be a fault in SB and let fo be the corresponding fault in CB. If fg is
detectable in SB then fc is detectable in CZ.

Proof: Let Cf and Sf be the faulty circuits. Since fs is detectable in S#, by Theorem
1 there must be a single-pattern test vector ¢ for this fault. Hence SZ and S}B must have
different single-pattern outputs for ¢. This implies, by Lemma 1, that C® and C’f? must
have different outputs for . Thus ¢t is a test for f¢ in CB. O

Theorem 2 Given a balanced structure SB, any complete test set for all detectable faults
in its combinational equivalent C® is a complete single-pattern test set for all detectable

faults in SB.

Proof: Let T be a test set for all detectable faults in CB. We need to show that T is a
single-pattern test set for all detectable faults in S5.

Let fs be a detectable fault in SZ and fc the corresponding fault in C2. Since fs is
detectable, by Lemma 3 fo must also be detectable. Since T" detects all detectable faults
in C2, it must contain some vector ¢ that detects fo. Hence, by Lemma 2, ¢ must detect
fs. Thus T detects all detectable faults in S&. O

The two theorems reduce the problem of test generation for B-structures to the simpler
problem of combinational logic test pattern generation, and from which a complete single-
pattern test set can be obtained. The single-pattern nature of the test sequences makes
it possible, in a partial scan circuit, to easily test a kernel that is a B-structure. Each
single-pattern vector can be shifted into the scan path and held constant for the required
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number of clock cycles before the test results are loaded into the scan path and shifted out.
The implementation issues related to the scan path will be discussed briefly in Section 6.

5 Algorithm for Scan Register Selection

Given an arbitrary sequential circuit to which partial scan is to be applied, BALLAST
selects a set of registers to be made scannable such that the kernel is a B-structure and the
cost of modifying the circuit is minimized. The selection is carried out using the algorithms
presented in this section.

Let G = (V, A, H,w) be the topology graph of the circuit. Formally, we need to
determine a set of registers R C A such that the topology graph of the kernel, (V, A —
R,H — R,w), is balanced and ¥ ,cp w(a) is minimized. The solution can be obtained using
the following steps.

1. Transform G = (V, A, H,w) into an acyclic topology graph G4 by removing a set of
arcs R4 such that }°,cp, w(a) is minimized.

2. Transform G4 into a balanced topology graph Gp by removing a set of arcs Rp such
that 3-,ep, w(a) is minimized.

3. R = R4 U Rp is the desired set of arcs, and the resulting topology graph Gg = (V,
A— R, H— R, w) represents the kernel.

The first problem is known to be NP-complete [7]. An algorithm for solving this
problem has been presented in [8]. This algorithm first determines the set of all cycles
and then finds a minimal set of arcs that break all cycles. The reader is referred to [8] for
further details.

A simplified form of the second problem has also been shown to be computationally
intractable [9]. In this section we present a heuristic procedure, balance, for solving this
problem. balance uses a verification procedure, check, to verify that a given structure is
balanced.

Verification Procedure

Given the topology graph G of a sequential structure S, the following procedure checks
whether S is balanced. First the procedure checks whether the removal of each arc in the
hold set would disconnect the topology graph. Then, starting at each root node in turn,
it levelizes the portion of the graph reachable from the current root node. If every node is
found to be at a unique distance from each root, the graph is balanced.
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function check (G = (V, 4, H,w)): Returns SUCCESS if G is balanced, FAILURE oth-
erwise.

1. Construct the graph G' = (V, A — H, ¢, w), by removing all HOLD registers from G.
Determine the connected components {Cy,Cs,...,Cx} of G'.

2. Collapse each connected component C; of G' into a single node in G, the original
topology graph. Let the collapsed topology graph be G”. Note that the arc set of
G"is H.

3. Determine whether G" is a tree. If it is, condition 3 of the definition of B-structures
is satisfied; proceed to the next step. Otherwise return FAILURE.

4. Repeat for each C;:

(a) Determine the set ROOTS of root nodes of C;, where root nodes are defined
as nodes with no incoming arcs. If there are one or more root nodes, proceed
to the next step; otherwise return FAILURE since condition 1 in the definition
must be violated.

(b) Pick aroot node v; in ROOT'S. Starting at v;, carry out a breadth-first traversal
of all nodes in C; reachable from v; by a directed path, and assign each node
visited a level number equal to its distance from v;. If at any time a node v,
needs to be assigned a level number when it has been previously assigned a
different level number with respect to v;, stop the search and return FAILURE,
since C; must violate either condition 1 or condition 2. Continue the traversal
until no more nodes can be visited.

(c) Repeat step 4b for all root nodes in ROOT'S.

5. § is a B-structure; return SUCCESS. O

Figure 4 indicates the level number assigned by the procedure to each node. In the
above procedure, the time complexity of step 4b is O(m), where m = | A|. This is repeated
for all root nodes of all components C;, hence an upper bound on the complexity of step
4 and of this procedure is O(nm), where n = |V|.

Balancing Arbitrary Sequential Circuits

An acyclic topology graph G = (V, A, H,w) is balanced if and only if all paths between
any given pair of nodes are of equal length and the removal of any arc in H disconnects
G. A heuristic procedure, balance, for balancing G is presented below. It returns a set
of ares R C A such that the derived topology graph (V,4 — R, H — R,w) is balanced.
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The procedure works in a recursive manner by partitioning the topology graph into two
smaller topology graphs, balancing them independently, and then merging the solutions.
The partition is obtained by determining a minimum cost cutset (mincut) CS of the
topology graph. The idea behind using a mincut is to minimize the sensitivity of the
overall solution to the degree of optimality of the merging process (which is based on a
greedy heuristic). The mincut is determined by applying the maximum flow algorithm [10]
to the topology graph, with capacity of arc a € A defined by w(a).

A greedy algorithm is used for merging the two balanced sub-structures. First we
consider only registers without HOLD modes. Arcs in the mincut that represent such
registers are introduced one by one into the merged topology graph in order of decreasing
weight w. Arcs which cause an imbalance in the merged graph (verified using check)
are rejected, implying that the corresponding registers must be made scannable. The
“accepted” arcs represent a maximal set of LOAD registers that can join the two balanced
sub-structures while keeping the merged topology graph balanced.

From the definition of B-structures it follows that if any HOLD arc is used to connect
the two balanced sub-structures, no other arc should connect them. Thus an alternative
to using the set of LOAD arcs derived above is to use the maximum-weight HOLD arc in
the mincut.

Hence there are two ways of merging the two balanced subgraphs: one using only
LOAD arcs and the other using a single HOLD arc. The costs of these two solutions are
compared to determine the set of arcs to be actually used for merging.

function balance (G = (V, A, H,w) : acyclic topology graph): Returns R C A such
that (V,A— R,H — R, w) is balanced.

1. If (check(G) = SUCCESS) then return (R « @), else proceed.

2. CS = minimal cost cutset of G. Let G, and G, be the subgraphs of G induced by
CS.

3. Balance G, and Gy separately; R « balance(G,) U balance(G4) UCS.

4. Let CSg «+ CSNH, CS, +— CSN(A— H) be a partition of C'S into its HOLD and
LOAD registers.
Sort the arcs in C'Sy, in order of decreasing cost.

5. CSy + ¢, the set of LOAD arcs retained in the topology graph when merging G,
and Gy.

6. For all arcs a in CSy, in order of decreasing cost:
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Check whether the inclusion of @ makes the merged graph unbalanced:
If [check(V, (A— R)uCS,U{a}, H—- CS, w) = SUCCESS]
then CS} « CS} U {a}.

7. Let ag < highest-cost arc in CSyg.

8. Compare the solutions obtained in the previous two steps. In case of a tie, make the
HOLD register scannable.

If Yaopeosy wlar) > w(an)
then R «— R - CS}
else R — R — {ag}.

9. Return R, the set of arcs to be removed from G to make it balanced. O

The time complexity of the above algorithm is bounded by O(nm?), where n = V| and
m = | A|. This follows from the following observations: (i) in the worst case, the minimum
cutset may need to be computed O(m) times as the procedure calls itself recursively; (ii)
the size of each minimum cutset is bounded by m; and (iii) for each arc in the cutset, the
procedure check is invoked once with complexity O(nm). Note that this is a very loose
bound and the average performance is expected to be much better.

Figure 6(a) shows an arbitrary topology graph that is not balanced, and Figure 6(b)
shows the result of applying balance to it. The arcs removed are (e, f) and (g,7), and the
registers in the circuit that correspond to these arcs must be included in the scan path.

6 BALLAST Implementation

In Section 5 we described a procedure for determining a minimal set of registers to be
connected into a scan path. The resulting kernel is a B-structure, and therefore single-
pattern testable. Hence it can be tested by scanning in appropriate test vectors and holding
them constant for d clock cycles, where d is the depth of the B-structure. The exact test
plan is described in Section 3. The operations in steps 1, 2b and 2c¢ of the test plan are
the same as in traditional scan path techniques [2]. The operation in step 2a, however, is
peculiar to BALLAST and has several implications.

First, some scan registers which do not already have a HOLD mode must be provided
with this mode. Depending on the implementation, this may introduce a slightly higher
logic overhead for some scan registers. However, typically this overhead is likely to be
acceptable as a reduced number of FFs need to be made scannable.

Up to this point we have maintained in the interest of simplicity that a test pattern
must be held at all the inputs to the kernel for d clock cycles. This is not strictly true; for
example the scan path register R3 in Figure 2 does not actually need to hold its pattern
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during the test. The reader can easily verify that for a given test vector applied using the
scan path, the kernel outputs after the 2nd clock cycle are independent of whether or not
R3 holds its pattern after the first cycle. In general the registers that need to be provided
with the HOLD mode can be identified using the following rule:

Let G = (V, A, H,w) be the topology graph of the kernel with depth d. Let Vin
(Vour) be the set of clouds in V' whose inputs (outputs) are connected to scan registers or
to circuit primary I/O. If for cloud v; in Viy, any path from v; to any cloud v, in Voyr is
of length less than (but not equal to) d, then all scan registers feeding v; must have HOLD
modes.

A second implication of the BALLAST test procedure is that explicit control over
HOLD control signals, including those present in the original circuit, is necessary. These
controls must be externally accessible through circuit primary inputs. This requirement is
met by most circuits that are designed to have separate data path and control units. In cir-
cuits whose control signals are derived from within the data path logic, additional logic and
I/O pins are required to make these signals externally controllable. In BALLAST, while
a test pattern is being applied to the kernel, registers within the kernel continously load
their input data at each clock cycle. Therefore, it is essential that no signal simultaneously
control the HOLD modes of both a scan register and a non-scan register.

Circuit Modifications

The registers in the original circuit may be classified into four types depending on (1)
whether or not they have a HOLD capability, and (2) whether or not they are to be
included in the scan path. The modifications required for each type of register so that
they can perform the appropriate functions according to the test plan are listed below.

Non-Scan Registers Without HOLD Mode: These require no modification.

Non-Scan Registers With HOLD Mode: The individual HOLD controls of all such
registers should be externally controllable so that they can be operated in LOAD mode
while the kernel is being tested.

Scan Registers With HOLD Mode: These registers need to be converted into scan
path registers by the addition of SHIFT modes as in traditional scan design techniques [2].
Their HOLD mode signals must be externally controllable so that they can be made to
hold test patterns for the required number of clock cycles. No HOLD control signal for a
scan register may serve as a control signal for a non-scan register.
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Scan Registers Without Hold Mode: In addition to being augmented with SHIFT
modes, some of these registers need to be provided with HOLD modes as well. The HOLD
control signals for all such registers may be controlled by a single external pin.

These modifications may result in a small logic overhead and possibly additional I/O
pins for ensuring that the HOLD signals are appropriately configured.

7 Testing Register Functional Modes

As we have mentioned previously, a complete set of single-pattern test vectors can be
obtained for covering all detectable faults in the combinational logic. While exercising the
combinational logic, every FF must operate in the LOAD mode; hence other built-in modes
of operation of the FFs may not get exercised. In this section we deal with the problem
of testing the RESET (or CLEAR), PRESET and HOLD modes of operation, if present in
any FFs in the circuit. Further, we focus our attention on faults in non-scan FFs, i.e.,
FFs within the kernel. FF's in the scan path are either tested for free during tests for the
kernel or can be easily tested using special patterns shifted in and out of the scan path.

The three functional modes listed above give rise to six possible fault modes: stuck-
at-RESET, cannot-RESET, stuck-at-PRESET, cannot-PRESET, stuck-at-HOLD and cannot-
HoLD. We shall map faults in the functional operation of FFs on to structural faults on
the control lines for the FFs. Given the B-structure S? under test, we generate the
combinational equivalent C? using the functional combinational equivalent of each FF,
depending on its built-in functions, rather than simple wires and/or inverters.

Figure 7(a) shows a FF connecting two clouds C; and C,, and Figures 7(b) and (c)
show how the combinational equivalents of FFs having RESET and PRESET modes, re-
spectively are used. Each fault in these functional modes is functionally equivalent to a
stuck-at-0/1 fault on the corresponding control line. Thus it is sufficient to detect both
stuck-at-0 and stuck-at-1 faults on the control lines using the combinational equivalent.
Note that some of the faults may be tested for free while testing the clouds of the kernel.
The control lines may be treated as primary inputs for the purpose of test pattern gener-
ation. If a control line fans out to more than one FF, as shown in Figure 7, faults on all
the lines marked X (i.e., the fanout stem as well as the fanout branches) must be tested.
This ensures that all appropriate fault modes are covered.

Figure 7(d) shows the combinational equivalent of a HOLD FF. Unlike the faults
considered earlier, the manifestation of HOLD faults depends on the previous state of the
circuit. Two single-pattern test vectors are required to detect the cannot-HOLD fault.
While the first vector is applied all FFs operate in the LOAD mode, and while the second
vector is applied the FF under test (and possibly other FFs) operate in the HOLD mode.
Two copies of the combinational equivalent of the B-structure, viz. C£ and CP, are
required for generating a test. This is illustrated in Figure 8. Note that multiplexers are
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not required to model the HOLD FFs in CP since all FFs operate in the LOAD mode
while the first vector is applied. Test pattern generation on the combined combinational
structure yields two patterns ¢; and ¢, corresponding to Cf and C£, respectively. During
test, first ¢; is scanned in and applied to the kernel in the normal way with all FFs in
the LOAD mode. After the kernel outputs have stabilized the control signal under test is
switched to the HOLD mode. t; is now scanned in and applied to the kernel in the normal
way except for the control signal under test being in the HOLD mode. The output of the
kernel for the second pattern is used to detect the fault.

8 Case Study

The BALLAST technique was applied to a sequential module MCOMP, 32 copies of which
were used in a larger circuit VC. Each copy of MCOMP contained 14 FFs; hence with full
scan design, MCOMP would contribute a total of 448 FFs to the scan path of VC. By
using the BALLAST approach, the MCOMP circuit was reduced to a B-structure of depth
4 by converting only 8 FF's into scan path FFs; thus the total contribution of MCOMP to
the scan path of VC was reduced to 256 FFs. In order to satisfy the restrictions on FF
mode control the I/O pin overhead increased from 3 pins to 4 pins.

The number of test patterns for MCOMP increased from 13 (for the full scan version)
to 21 (for the BALLAST version). This would imply an increased test time (from 208
clock cycles to 280 clock cycles) if MCOMP were to be tested in isolation. However, the
scan FFs connected to MCOMP were a part of the scan path for the whole chip VC. Since
the length of the circuit scan path was reduced by 192 FFs by using BALLAST for the 32
MCOMP units, this implied a large saving in shifting time for each vector applied to the
chip as a whole, with a favorable impact on the overall test time.

Comparable results were obtained on other case studies.

9 Conclusion

In this paper we have described a class of synchronous sequential circuits called balanced
structures. They have the following properties which make them useful as kernels in a
partial scan circuit: (i) they are single-pattern testable for all detectable faults in the
combinational logic and nearly all faults in the storage elements; (ii) the FFs internal to
these networks need not be made scannable; and (iii) they can be treated as combinational
circuits for the purpose of test pattern generation.

The concept of balanced structures can be used to reduce various overheads in partial
scan design for arbitrary sequential circuits. By identifying the balanced sub-structure of
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the circuit that has the largest number of FF's, it is possible to minimize the test overhead
by configuring the balanced sub-structure as a kernel to be tested using a scan path without
any loss in fault coverage. Heuristic procedures for determining the minimal set of scan
FFs were presented. Based on these procedures the shortest required scan path can be
constructed. FFs in the scan path need to have a HOLD mode so that single-pattern test
vectors can be applied to the kernel. Case studies indicate that the logic overhead can
be reduced significantly using this partial scan technique, particularly in pipelined circuits
such as those which often occur in digital signal processing chips.
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