AN ASYNCHRONOUS ALL PAIRS
SHORTEST PATH ALGORITHM
FOR MULITPROCESSORS

TECHNICAL REPORT NO. CENG 89-16

AYDIN URESIN MICHEL DUBOIS

JUNE 1989

This work was performed under a grant from AT&T

An Asynchronous All Pairs Shortest Path Algorithm for

Multiproces&;ors.Jr

Aydin Uresin Michel Dubois

Department of Electrical Engineering-Systems .
University of Southern California

Los Angeles, CA 90089-0781

Abstract

Three asychronous versions of Floyd’s algorithm for multiprocessors are presented. Their
difference from already existing counterparts is that they require no barrier synchronization.
Therefore, they perform better for large numbers of processors. In the last part of the paper, the

technique used for removing synchronization on the all pairs shortest path problem is identified

and generalized.

1- INTRODUCTION

The class of shortest-path problems is one of the most important ones in the area of trans-
portation and communication networks. Uniprocessor algorithms for this class are well studied and
documented [1] , [4]. There have also been many parallel shortest-path algorithms studied in the
literature [5], (8], (3], [10], [9]. Most of these algorithms assume an SIMD computational model
which is not compatible with most existing machines. Some of them are indeed for Joosely-coupled
[6] or tightly-coupled [5] [10] multiprocessors, but they still have the drawback that the extensive
use of some form of synchronization primitives degrades their performance, especially when the
number of processors is large. At synchronization points processors are blocked: they either re-
linquish control to the operating system, spin on a single shared variable, or wait for access to a
global queue.

In this paper, we propose a variation of Floyd’s algorithm for the all-pairs shortest path problem.
In the proposed scheme, no explicit synchronization is necessary. The processors are not blocked
during the execution of the algorithm and there is no serial bottleneck. Cooperation among pro-
cessors is restricted to shared data accesses. The cost of the scheme is the extra shared memory
space requirement and the penalty due to accesses to this extra memory. Although we have only
considered Floyd’s algorithm, the technique we used for removing synchronization is more general

and we will introduce it in Section 7.

2- SYNCHRONIZED PARALLEL FLOYD’S ALGORITHM

Given a directed graph in which each arc has a nonnegative cost, the problem of all-pairs
shortest path is to find for each ordered pair of vertices (i, j) the smallest length of any path from

t to 7, where the length of a path is defined as the sum of the costs of the arcs on that path [1].

Floyd’s Algorithm is a popular one for the solution of this problem and a parallel version of it is

given in Figure 1 [5]. In this algorithm, n is the number of nodes in the graph and initially A[f, 7]

for ROUND :=1to n do
forall1 <i{,7<ndo

Alt, 7] = min{A[f, 5], A[{, ROUN D] + A[ROUND, j] }

Figure 1: Synchronized parallel Floyd’s algorithm

is the cost of the arc from ¢ to j for all 1 # j; if there is no arc from 1 to 7, Alt, 7] is set to co. Each
diagonal element, A[7, 1], is set to 0. The keyword forall indicates that the Alt, 7]’s are computed in
parallel. To distinguish the shared writable variables from the other ones we adopt the convention
of using uppercase names for such variables (4, ROUN D). The read/only shared variables (such
as n) can be considered as local variables, because each processor can keep a copy of these in its
local store and can efficiently access them. In the synchronized Floyd’s algorithm, at the end of
the k-th iteration (round), for all 1,7 : (i) A[f, 5] is the length of a path fl:Om i to g, (ii) Alf,J]
1s not greater than the length of any path from i to j passing through nodes labelled k or less.
Therefore, after the execution of the loop, matrix A contains the lengths of the mimimum paths
for each ordered pair.

In the synchronized parallel version of Floyd’s algorithm the computations of all components
of A must be synchronized after each iteration. Therefore, a barrier synchronization is needed
after each iteration of the loop. A barrier is a logical point in the control flow of an algorithm
at which all the processors must arrive before any of them are allowed to proceed further, and it

is the most deleterious form of synchronization [2]. Let p be the number of processors such that

p < nl.

If we ignore the execution of the barrier, each round of the algorithm in Figure 1 takes
O(n?p~') time. However, in [2] it has been shown that the barrier introduces significant overhead
and a straightforward implementation of it, that uses a single semaphore, takes O(p t'(p)) time
where t'(p) is the time complexity for executing the semaphore. A faster scheme is also given
in [2] which uses O(p log p) memory and takes O(#'(p) logp) time. Here, we assume the second
implementation without further elaborating on its complexity. As a result, the synchronized parallel
-

Floyd’s algorithm takes O(n (n?p~"! + t/(p) logp)) time. When p is O(n?) then the second term

dominates and the complexity becomes O(n t'(n?) logn).
3- SIMPLE ASYNCHRONOUS FLOYD’S ALGORITHM

To remove the barrier, we first observe that the single variable ROU N D in the above algorithm
has the role of keeping track of the “progress” of the data A towards the solution. After all the
components of A are updated once, one unit of progress has been made and the next “round”
of computation is entered. In the first asynchronous version of the algorithm which is given in
Figure 2, on the other hand, each processor only keeps track of the progress of the component
it is assigned to. Therefore, instead of only one ROU N D number for the whole data, we have a
ROU N D number for each individual component. The idea is as follows. Suppose that at a certain
instance of the computations the component A[f,7] is in the k-th round (k = ROUNDJi,).
After A[t,j] is updated in this round, there is a unit progress in Alt, j] towards the solution if
its predecessors are at least in the same round. In this case, ROUN D|[i, j] can be incremented.
By predecessors, we mean the components on which A[z, 5] is dependent in the k-th round, i.e.,
Ali, 7], Ali, k+ 1], Alk + 1, 5],

Before further elaborating on the above idea, we need to describe the model of computations.

S1:

S2:

S3:

S4:

S5:

task(1, 7);
begin {task}
k_old := ROUNDIi, 7] ;
k:=kold+1;
ki :== ROUND[i, k| ; kj :== ROUNDI|k, 7] ;
Ali,j) == min{Ali, 5] , Al K+ Alk,]}
if (k-old < ki) and (k-old < kj) then
begin
ROUNDIi,j] ==k ;
if (k = n) then terminate
end ;
return

end {task}

Figure 2: Simple asynchronous Floyd’s algorithm

Figure 2 shows the program of the task that corresponds to a single update of the component Al 7).
In our point of view, a task is an indivisible unit of execution that is held by the same processor
from its start until the statement return or terminate is reached. There is a pool of tasks in the
system: initially n? of them, one for each component. There are also a number of processors, and
each available processor selects a task from the pool and executes it until the return statement. At
this point, it returns the task to the pool and makes another task selection, or possibly continues
-~
with the same task. The execution of the terminate statement in task(t, 7) discards this task from
the system for good, because A[t, 7] has reached the solution. It should also be mentioned that
ROUN D1,] is initially assigned to 0, for all {,7. We also assume a computational system that
supports atomic accesses (e.g. by hardware) to individual components of ROUN D and A. If not,
accesses to ROUN D and A should be performed in critical sections.

The implementation of the task allocation policy that determines the selection rule is not made
explicit here since a variety of schemes may be adopted. We only make two assumptions on the
allocation. The first one is that the processors have exclusive hold of the tasks, i.e., at a given
time instance task(t, j) can be executed by at most one processor. This restriction is natural when
each task is assigned statically to a fixed processor, throughout the computation. Static allocation
has the advantage that it does not require an explicit task pool in the system: each processor
repeatedly executes the task in its set with no need to access a global pool. If dynamic allocation
is adopted, the exclusive hold condition should be enforced by some means. Another condition
is that the allocation of tasks to processors is fair. In other words, in a finite period of time all
tasks execute their code at least once. We will refer to these assumptions as the ezclusive hold and

fairness conditions.

The proof of correctness of the above described algorithm is based on the truth of the following

property throughout the execution of the algorithm. Let ROU N D1, j] and A[i, j] be the values

of ROUN D[i, j] and Alf, 7] at time ¢.

Property 1 A.[i, 7] is the length of a path from i to j which is not greater than the length of any

path passing through the nodes labelled ROU N D1, j] or less.

Thus, A¢f,s] is the length of a minimum path when ROUN Dy[i,j] = n. The correctness

~
immediately follows from the following facts :

(1) At any time instance ¢ during the execution of the algorithm Property 1 holds for all 1, 7,
(2) ROUNDi, j]’s are nondecreasing,

(3) For all 1,7 and t there exists a finite period of time At such that ROUN Dy atlt, 7] is greater

than ROUN D¢, 7] .

We can show (1) by induction. It is obvious that initially Property 1 holds for all 7, ; (Recall
that initially ROUN D[z, 5] = 0 for all ¢,). After the initial state, the only events that would affect
the truth of (1) are the executions of statements S4 and S5 in Figure 2. Let us assume that Property
1 holds just before the execution of S4. Then, it will obviously be satisfied after the execution of
S4, as well, because the new value of A[f, ;] will not be greater than the old value. Now, let the
old value of A be A, and consider the time instance just before the execution of S4. If ki > k_old,
then A, (¢, k] is not greater than the length of any path passing through nodes labelled k_old or less.
The reason is that by induction hypothesis this is true at the time when k¢ is fetched and even if
Al¢, k] might have been changed since then, this change can only decrease A[z, k| without affecting
the truth of the above statement. Similarly, if kj > k_old, then Aok, 7] is not greater than the

length of any path passing through nodes labelled k_old or less. Therefore, A,[i k) + Aolk, 7] is

smaller than or equal to the length of any path passing through k once and not passing through
nodes with a label larger than k. Consequently, min{4,[t, 7], A,[1, k] + Aok, 7]} is the length of a
path which is not greater than the length of any path passing through nodes labelled k or less, and
Property 1 holds just after the execution of S5.

(2) is obvious from statement S5 which is the only statement that updates ROUNDIi, 5]. (3)
is not as obvious. Let ! be the minimum of all the components of ROUN D at time ¢ and ' , 7' be
the coordinates of this minimum, i.e., ROUN DI[i', j'| = I. From the fairness assum;tion in a finite
period of time task(i’, ') will execute its code. During this execution k_old = [and therefore the
condition of S5 is satisfied and ROU N D[, j'] is incremented. This means that min{ ROU N D[s, 5]}
is increased in a finite period of time and all the components are increased in a finite period of
time.

The time complexity of this asynchronous Floyd’s algorithm generally depends on the task
allocation scheme, which affects the number of executions of task(z,y), although the number of
useful executions of task(z, y) in which ROUN D[z, y| is incremented is always n. However, unless
the load balance is very poor, we can assume that the ratio between the useful and the wasted
task executions is a constant independent of n and p. Then, each task is executed O(n) times and
between two consecutive executions of a certain task, there are O(n® p~!) task executions by a single
processor where p is the number of processors which is less than n?. Section 6 discusses how the task
allocation policy can reduce the number of executions of each task. If accessing a shared variable
takes O(t(p)) time, then a single execution of a task takes O(t(p)) time. Also assume an allocation
scheme that does not take more than O(t(p)) to initiate the next task. Then the time complexity of
the algorithm is O(n® p~1¢(p)). In the case when we have sufficient number of processors such that

p is O(n?), the complexity will be O(n t(n?)), which is less than the synchronized case. Note that

the time complexity of executing a semaphore (O(t'(p))) is at least as large as the time complexity

of accessing a shared variable (O(t(p))).

4- ASYNCHRONOUS FLOYD’S ALGORITHM

FOR PARTITIONED DATA

The synchronized Floyd’s algorithm and the asynchronous Floyd’s algorithm in the previous
section are the two extreme cases with respect to the size of the ROUND data.“As mentioned
before, in the synchronized case only one ROUN D number is maintained for the whole matrix A
and in the simple asynchronous case, there is a ROU N D number for each component. Using an
additional memory for each component of A may be considered a waste, especially when there are
less processors available than the number of components and therefore partitioning is necessary.
Consequently, in the case of partitioning, we can utilize a ROUN D number for each partition,

instead of each component, and the result is the algorithm in Figure 3.

Here, the rows and the columns of matrix A are partitioned and a column partition z together
with a row partition y defines a submatrix of A, i.e., a rectangular domain of indices which is denoted
by s[z,y] (Figure 4). task(z, y) corresponds to a single update of the whole domain s[z, y| instead
of a single component update. The column partition that contains the k-th column is denoted‘
by Col_Partition(k) and similarly the row partition that contains the k-th row is denoted by
Row_Partition(k). The predecence relationships which existed among the individual components
in the previous algorithm are now among the partitions.

The relationship between A and ROUN D is stated by Property 2 below, which is analogous to

Property 1.

Property 2 Ayi, ;] is the length of a path from i to j which is not greater than the length of any

task(z,y);

begin {task}

S1: k_old :== ROUND|z,y ;

S2: k:=kold+1;

S3: zz := Col_Partition(k) ; zy := Row_Partition(k) ;
S4: kz := ROUND|z, zy| ; ky := ROUN D|zz,y| ;

S5: for (i,7) € s[z,y] do

Ali,) == min{Ali, 7}, Ali, K] + A, 51} ;
S6: if (k_old < kz) and (k-old < ky) then
begin
ROUND|z,y| =k ;
if (k = n) then terminate
end
ST: return

end {task} ;

Figure 3: Asynchronous Floyd’s algorithm for partitioned data

Row_Partition(k)

column k

I

— T

74,

Y

%

vz,

|

Clol_Partition(k)

Figure 4: Partitioning A

10

-~

-——Tow k

s(z, y]

path passing through the nodes labelled ROU N D[z, y] or less, for all (i,) € 5[z, y].

The argument to show that the elements of ROU N D eventually increase in a finite period of
time till the solution, is the same as in the previous case; therefore, we will not repeat it here. The
proof that Property 2 holds for all 1, 7 and ¢ is also similar to the proof of Property 1. We only have
to notice that the only events that could affect the truth of Property 2 are the executions of S5 or
S6. As a result, after task(z,y) terminates the value of ROUN D[z, y| is n and from Property 2
Alz, y] contains the solution.

As in the previous case, the time complexity of this version can be obtained easily as O(n® p~1 t(p)).
Although the complexity is the same, the size of ROUN D, in this version, is smaller. Also, this

version is faster due to the less frequent accesses to ROUN D.
5- EARLY UPDATING OF ROUND

Notice that in the previous algorithm for partitioned data, ROUN D[z, y| is fetched at the
beginning of task(z,y) and it is updated at the end. This may cause the execution to slow down
unnecessarily. To see this consider the following scenario. Consider the first executions of the tasks
task(z,y) and task(z',y'). task(z,y) updates its partition and then updates ROUN Dz, y](=1).
After this, it starts the second execution: it fetches ROU N D|z, y|(= 1) and later ROU N D|z, zy|(=
0) (at S4). Let y' = zy. If task(z,y') is slower such that it updates ROUND|z,zy] in the
first execution after task(z,y) fetches it in the second execution, then in the second execution of
task(z,y) ROU N D|z, y|] will not be incremented, because task(z, y) will still see ROUN D[z, zy] =
0. In general, the worst case is that a task increments its ROUN D component in one of the two
consecutive executions.

One of the ways to reduce the slowdown due to the above effect is to update ROUN D|z, y] as

1d

early as possible in task(z,y). This is done in the algorithm in Figure 5.

The only difference between this version and the previous one is that task(z,y) updates ROU N Dz, y]
prematurely: task(z,y) first updates the points in s|z, y| either coordinate of which is k_nezt =
ROU N D[z, y| + 2, then ROU N Dz, y| is updated before the remaining components in sz, y| are

processed.

Property 3 Aulf, 5] is the length of a path which is not greater than the length of any path passing

through the nodes labelled ROU N Dy[z,y| or less, for all 1,7 such that
o (i,7) € s[z,y], and

o 1 = ROUND¢[z,y]+ 1 or j = ROUN Dy[z,y] + 1.

Since the only different part of the algorithm is between S7 and S9, the only possible cause of
incorrect behavior of the algorithm may be this part. Particularly, the only reason the algorithm
would not be correct could be as follows. task(z,y) might update ROUN D[z,y] and another
task(z,y) might fetch this premature data before task(z,y) finishes the execution of S8, and then
1t may use this premature data to produce incorrect data. On the other hand, task(Z,y) can
only fetch ROUN D(z,y] at S5. Therefore, after S5 of task(z,), either k= = ROUN D|z, y] or
ky = ROUND|z,y]. Without loss of generality, we assume the first case; from symmetry the
argument for the second case is the same. kz is used only in S7 and since the difference between

the premature and the old values of ROUN D|z,y| is 1, the correctness may be affected only when

k_old = kz, therefore k = ROUN D[z,y] + 1. On the other hand, the only elements of A that
task(Z,y) uses as inputs are the ones either coordinate of which is k = ROUN D[z, y]+1. Property
3 states that Property 2 is satisfied for such elements. Therefore, the early update of ROU N D|z, y]

does not make the algorithm incorrect.

12

S1:

S2:

S3:

S4:

S5:

S6:

ST:

S8:

S9:

task(z,y);
begin {task}

k_old := ROUND|z,y| ;

k:=kold+1;

knext:=k+1;

zz := Partition_z(k) ; zy := Partition_y(k) ;

kz := ROUND|[z,zy] ; ky:= ROUND|zz,y] ;

for ((i,7) € s[z,y] and (i = k_nezt or j = k_nezt)) do
Alt, 7] := min{ A1, 5], A[¢, k] + A[k, 5]} ;

if (k.old < kz and k_old < ky) then
ROUNDIz,y] = k ;

for ((1,7) € s[z,y] and i # k_nezt and j # k_nezt do
Ali, 5] :== min{A[i, 7], A[{, k] + A[k, j]} ;

if ROUN D|z,y] = n then terminate else return ;

end {task}

Figure 5: Early updating of ROUND

13

Obviously, the complexity of this version of the asynchronous algorithm is the same as the
previous one. However, since the processors make the ROU N D data available to other processors
earlier than in the previous version, the components of ROUN D are incremented more frequently.

Therefore, this algorithm executes faster.

6- TASK ALLOCATION

In the above sections we have shown that the asynchronous Floyd’s algorithm is-always correct
when the exclusive hold and fairness conditions are satisfied. We also mentioned that the complexity
of the algorithm is the same for any task allocation scheme as long as each task is executed O(n)
times. However, it is clear that the actual execution time of the algorithm is directly related to the

number of executions of the tasks. Two possible allocation schemes are as follows:

1. Static allocation: the set of tasks is partitioned into disjoint subsets and each subset is
preassigned to a processor. Each processor executes the tasks in its subset in a round-robin

fashion.

2. Dynamic allocation: a given task is not executed by the same processor throughout its lifetime.

Static allocation has the advantage that it automatically satisfies the exclusive hold assumption,
therefore no extra overhead is necessary to enforce it. Its disadvantage is that if the processors are
not homogeneous or if the size of each partition cannot be made equal, slower tasks determine the
speed of the computations. Through dynamic allocation, on the other hand, a better distribution of
the total useful work among the processors is possible. In other words, efficiency of the processors
can be increased, and therefore, the execution time can be reduced. However, exclusive hold
condition must be enforced by some means. One way to accomplish this is to maintain a global

queue of tasks and let the available processors choose tasks for execution, according to a selection

14

rule. Ignoring the overhead associated with the implementation of the allocation, the selection rule
is optimum, i.e., the execution time is minimum, when each available processor selects the task with
minimum ROU N D value. This simply follows from the fact that the condition of incrementing the
ROU N D number of a task (S5 in Figure 2, S6 in Figure 3 and S7 in Figure 5) is always satisfied,
in this case. Therefore, each task increments its ROUND value, when executed, and is executed
exactly n times, which is the minimum number. However, strictly enforcing this rule introduces
an unnecessary overhead, because the minimum finding procedure adds to the tota.l/complexity. In
any case, the idea gives sufficient insight to propose the following scheme. An additional processor
is dedicated solely to check the queue and to keep it sorted with respect to ROU N D values as best
as possible. Even though this does not guarantee that each task increments its ROUN D value,
the chances are good. Therefore, wasted task executions are reduced.

A third allocation scheme that can be adopted is intermediate between the static and dynamic
allocations. In this scheme most of the tasks are partitioned into equal sized subsets and the
remaining tasks are allowed to float among the processors.

The most significant advantage of the asynchronous algorithm is that it has no barrier at which
the processors have to wait idle. Barrier synchronization is an important cause of performance
degradation, especially when the number of processors is high. On the other hand, the asyn-
chronous algorithm requires extra memory space for ROUN D and extra overhead for accessing
the elements of ROU N D. Extra contention for accessing ROU N D can be reduced by placing the

same components of ROUN D and A at consecutive locations in the shared memory and accessing

them together. Also, there is no serial bottleneck such as accessing a single shared variable.

15

for k:=1tomdo
forall1 <i<ndo

X[i] := Fi(X, k)

Figure 6: A synchronized loop d

7- GENERALIZATION OF THE TECHNIQUE

The above described technique of mapping a synchronized loop to an asynchronous one can
readily be applied to transitive closure problems [1] and to the minimum spanning tree algorithm
given in [7]. Furthermore, the technique can be generalized. The generalization follows from the
observation that at a certain time instance, ROU N D¢, j] contains information about the range of
values that A[, 5] can take at this instance. In other words, Ali, j] takes values from the domain
that contains all the possible values of path lengths that are not greater than the length of any
path passing through 1,2,..., ROUN D¢, j|. As ROUN D[i, j]’s increase these domains shrink and
finally when ROUN D1, j] = n the domain contains a single element, the solution.

Suppose, we are given a synchronized loop as in Figure 6. Let there exist m + 1 domains,
D(0), D(1),...,D(m), such that the operator F = F1 x F2 x --- x Fn and D(k) satisfies the

following conditions:

[C1] D(k) = D1(k) x D2(k) x --- x Dn(k) ,
[C2] Xo € D(0) (the initial value of X),
(03] D(k+1) € D(K),

16

task(1) ;
begin {task}
k := min{ ROUN D[]} ;
X[f] :== Fi(X,k) ;
ROUNDI[i] :=k+1;
if (ROUN D[] = m) then terminate else return;

)

end {task}

Figure 7: Asynchronous loop
[C4] D(m) = {¢},
[C5]| Y € D(k) = F(Y,k)e D(k+1),
From the above conditions it is easy to see that the result of the loop in Figure 6, i.e., the
contents of X at the end of the execution is £&. By using a similar argument as in Section 3 we
can show that the result of the asynchronous loop in Figure 7 is £[t]. There are n tasks executing

asynchronously and they satisfy exclusive hold and fairness assumptions. ROUND values are

initially 0. Notice that,
1. At all times, and for all ¢, X[1] € Di(ROU N D[i]).
2. Therefore, at all times, X € D(min{ ROUN D[1]}) ,
8- CONCLUSION

As we approach the era of massively parallel computing, overheads due to the interaction of

processors such as synchronization and memory contention appear as important factors in the

17

design and analysis of algorithms. Motivated by this fact, we have presented three versions of an
asynchronous all pairs shortest path algorithm for shared-memory multiprocessor systems, free of
barrier synchronization. Since, no barrier synchronization is involved and memory contention is
minimized in these algorithms they perform better than previously announced ones, especially for
a large number of processors. We showed the performance improvement by a simple complexity

analysis. We finally generalized the idea used in the design of the asynchronous all pairs shortest

-

path algorithms.

References

[1] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[2] AXELROD, T. S. Effects of synchronization barriers on multiprocessor performance. Parallel

Computing 8 (1986), 129-140.

[3] DEKEL, E., D.NASSIMI, AND SAHNI, S. Parallel matrix and graph algorithms. SIAM J.

Computing (1981), 657-675.

[4] DEO, N., AND C.PANG. Shortest path algorithms: taxonomy and annotation. Networks

(1984), 275-323.

[5] DEO, N., PANG, C., AND LORD, R. Two parallel algorithms for shortest path problems.

In IEEE International Conference on Parallel Processing (1980), pp. 244-253.

[6] JENQ, J., AND SAHNI, S. All pairs shortest paths on a hypercube multiprocessor. In

International Conference on Parallel Processing (1987), pp. T13-716.

18

[7] MAGGS, B., AND PLOTKIN, S. Minimum cost spanning tree as a path finding problem.

Inf. Proc. Lett. 26 (1988), 291-293.

[8] PAIGE, R., AND KRUSKAL, C. Parallel algorithms for shortest path problems. In IEEE

International Conference on Parallel Processing (1985), pp. 14-20.

[9] QUINN, M. J. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill, 1987.

-~

[10] QUINN, M. J., AND Y00, Y. B. Data structures for the efficient solution of the graph
theoretic problems on tightly-coupled MIMD computers. In IEEE International Conference

on Parallel Processing (1984), pp. 431-438.

19

