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Abstract

Optics has become an appealing alternative to wired interconnection on several
levels of communication hierarchy within computing systems. Optical chip inter-
connections, unlike electrical, are insensitive to mutual interference effects, are
free from capacitive loading and planar constraints, and can be reprogrammable.
A major goal of this thesis is to understand the computational limits in using
optical communication technology in VLSI parallel processing systems. Estab-
lished methodologies for studying computational complexity are applied to obtain
measures that reflect true implementation costs.

The computational lower bounds derived using the VLSI model of computa-
tion indicate that solution to communication-intensive problems requires either
a large amount of chip area or time, both of which are costly. The first part of
the thesis introduces an Optical Model of Computation (OMC) that uses free
space optics as a means of interprocessor communication; thus reducing chip
costs. The model allows unit cost communications, and can simulate one step
of PRAM with no loss in time when the number of memory locations is equal
to the number of processors. Reducing the number of processors by a factor of
O(log N), simple algorithms are presented that run in O(log Nloglog N) time

with a high probability, and in O(log® N) time deterministically.



Since OMC uses the space above and around chips for interconnects, OMC can
be compared with three dimensional VLSI models in computational complexity.
Any computation performed by a three dimensional VLSI organization having N
processors with degree d, in time T', and volume V can be performed on OMC in
volume v, and time ¢, where dT/N < ¢ < T , and Nd < v. The thesis presents
various parallel architectures as possible efficient upper bounds for v. Each one
is designed to reflect the capabilities and limitations of the device technologies
used for the redirection of optical beams. For example, an acousto-optic device,
for which the redirecting capability is usually limited to only one dimension, is
used to interconnect a linear array of processors. Holograms are used to realize a
unit delay electro-optical crossbar. The crossbar’s switching speed is in the order
of nano-seconds.

Having developed the computational models, the thesis next focuses on ap-
plications in image processing and the implementation of AI problem solving
techniques. A set of O(log N) pointer based algorithms for finding geometric
properties of digitized images on an electro-optical mesh is introduced. The algo-
rithms include optimal solutions for identifying and labeling figures, computing
convexity properties, determining distances, etc. Another application is in the
implementation of neural networks using a general purpose electro-optical cross-
bar which has the potential to interconnect each of the neurons to all the others.
This architecture can be modified to operate asynchronously and to realize the

data-flow model.
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Chapter 1

Introduction

Speedups due to technological advances in solid state electronic design are reach-
ing theoretical limits. To get around these limits, researchers have considered
concurrent processing of data as a promising alternative for achieving speedups
proportional to the level of concurrency. During the past decade, many multipro-
cessor architectures have been proposed to obtain such speedups. However, the
desired speedups have not been realized because of a limited understanding of
issues in designing efficient parallel algorithms and in designing interconnection
networks and their interactions. Recently, many parallel algorithms have been
designed based on a theoretical shared memory model, the Parallel Random Ac-
cess Machine (PRAM) [124], in which a unit-delay interconnection network is
assumed.

In practice, interconnection networks introduce a delay factor in the imple-
mentation of parallel algorithms. The main issues in the design of such intercon-

nection networks have been routing delay, communication bandwidth, hardware



cost, and ease of control. Traditionally electronic interconnects have been used.
However, with advances in optical technology, it is likely that photonics will play
an important role in parallel computation. This thesis focuses on possible real-

izations of unit-time interconnection network using free space optics.

1.1 VLSI Interconnection topologies

Research in the design of interconnection networks can be divided into two topo-
logical classes: static and dynamic[34]. In a static network, links between any
two processors are passive and direct connections cannot be reconfigured between
processors. In a dynamic network, links can be reconfigured by setting the switch-
ing elements in the network. Among many static topologies, those having small
diameter are most attractive since the diameter of an architecture represents a
lower bound on worst case communication delay between any two processors.
A fully connected network has unit diameter. However, when implemented in
electronic technology such as VLSI, its diameter becomes (log N) due to pin-
out limitations of processors. Also, the VLSI layout area becomes too large to
be practically implemented. Therefore, an appropriate alternative is to consider
area efficient architectures which have O(log N) communication delay. Pyramid
and Mesh of Trees are examples of such architectures [84, 71, 74]. Because of

communication bandwidth constraints, simulation of some PRAM algorithms on

?A function f(n) is said to be 02(g(n)) if there exist positive constants no and ¢ such that
f(n) > cg(n), for all n > ne.

A function f(n) is said to be O(g(n)) if there exist positive constants ¢ and ng such that
for all n > ng, f(n) < c'g(n).



these two architectures can lead to significant loss in time performance.

Dynamic networks are categorized in three topological classes: single-stage,
multistage, and crossbar[34]. The switches in an N x N crossbar can be set in
O(log N) time so that every input port can be connected to a free output port.
However, an N input crossbar requires Q(N?) VLSI area, using the usual two
dimensional VLSI model [113]. Several N input N output multistage networks
are known which require O(N log N) switching elements; significantly fewer than
a crossbar network [107]. Multistage networks can be divided into two major
classes: rearrangeable and non-rearrangeable [10]. Non-rearrangeable networks
can realize only a proper subset of all permutations. A Butterfly network is a
widely used non-rearrangeable network. It has been shown that an arbitrary
permutation can be realized by the butterfly network in O(log V) time, with a
high probability [118].

Rearrangeable networks support any arbitrary permutation u'sing. appropri-
ate switch settings. However, finding a switch setting to realize a permutation
on a rearrangeable network can be time consuming; for example it can take as
much as O(log* N) time using cube connected computer or a perfect shuffle com-
puter with N processors [79]. Also, their layout area in the two-dimensional
VLSI model, is not significantly superior compared to the area requirement of
the N input crossbar. In fact, the well known omega network which is a non-
rearrangeble multistage network and has O(N log V) switching elements, requires

Q(N?/log? N) VLSI area [71]. Therefore, realizing multistage interconnection

networks in O(N log N) area does not seem possible unless one assumes that

wires do not occupy any area, or if free space optical beams are used as a means



of interconnection.

In this thesis, we study parallel architectures that use free space optics as a
means of interprocessor communications. Replacing electrical interconnects with
optical beams has a significant impact on the performance of VLSI architectures
[19, 47]. This fact arises from the following two important properties of free
space optics. First, free space optical beams can cross each other without any
interference. Secondly, the connections need not be fixed and can be redirected
[12]. Therefore, using optical interconnects, one can design bounded degree VLSI

architectures that can simulate a unit delay interconnection network.

1.2 Optical Interconnection Networks

A considerable amount of research has been done on replacing wires with optical
waveguides on a VLSI chip [36, 48]. Since such an approach does not change the
computational power of the classical VLSI model, it is outside the focus of our
thesis. However, it is worthwhile to know that these techniques can be used in a
finer level of integration, such as in the design of processing elements. Some of
engineering merits of this approach are discussed in tile following chapter.
Unique qualities of the optical medium are its abilities to be directed for
propagation in free space and to have two optical channels cross in space with
out interaction. These properties allow optical interconnects to utilize all three
dimensions of space. The ultimate goal of reconfigurable interconnects is to
be able to change the interconnect matrix as quickly and as freely as neeed.

Such a capability will allow optical interconnection to improve upon many of



the functions presently implemented on a limited scale with electronics, such as
routing data between processing elements: based on data dependent decisions,
and multiplexing and demultiplexing information.

One of the first attempts in using free space optics as a means of data-
communications was [43]. In their hybrid GaAs/Si approach to data commu-
nication, a GaAs chip with optical sources was connected in a hybrid fashion
(with conventional wire bond techniques) to a Si chip such that light was gener-
ated only along the edges of the Si chip. The sources were of the edge-emitting
or surface emitting type. The optical signals were routed to the appropriate loca-
tions on the Si chip using conventional and or holographic optical elements. The
Si chip contained detectors to receive the optical data streams generated by the
sources. Since the detector-amplifier combina.tioﬁs were fabricated in Si, every
computational component on the Si chip was capable of receiving data.

To explore this promising concept, it was extended to support efficient inter-
connection networks for massively parallel computing. One of the most recent
contributions was [101]. In that, Sawchuck et al. described several possible
bulk optical systems for implementing crossbar networks. Unlike the electrical
crossbar, these crossbars provided unit time interconnectivity and had a slow
switching rate. In this thesis, we propose a class of free space interconnection
networks with unit time delay. The proposed crossbar has a switching time in an

order of nanoseconds and is implementable with current technology.



1.3 Summary of Results

Part II concentrates on the proposed com}puta.tiona.l models. In chapter 3, an
Optical Model of Computation (OMC) is presented along with its computational
lower bounds for solving problems. This model uses the space above and around
chips for interconnects, which makes it comparable to three dimensional VLSI
models. Any computation performed by a three dimensional VLSI organization
having N processors with degree d, in time 7', and volume V can be performed
on OMC in volume v, and time ¢, where dT'/N 5 t<T,and Nd < wv. Various
parallel architectures are presented as possible efficient upper bounds for v. Each
one is designed to reflect the capabilities and limitations of the device technologies
used for the redirection of optical beams. A direct implementation of OMC is
possible with an optical mesh using mirrors. A faster architecture will be found
in an optical array using acoustic optic devices with broadcasting capability. A
considerably less expensive and currently implementable design is the electro
optical crossbar, which has a reconfiguration time in the order of nanoseconds.
The relationships to shared memory models and simulation algorithms are
shown in chapter 4. A model of parallel computation motivated by the properties
of free space optical interconnects is studied. In this model unit cost communi-
cation is possible, however there is a bottleneck in accessing. mf;mory modules.
We will present a simple deterministic algorithm for efficient accessing of these
memory modules. This algorithm simulates one step of an N processor EREW
PRAM in O(log® N) time, and its probabilistic version has O(log NV log log N) ex-

pected running time. The loosely synchronized point based techniques presented
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can act as general subroutines in simulating PRAM algorithms.

The proposed model can be used to implement parallel solutions to a variety
of problems in signal and image processing and non numerical problems arising in
Al Some examples are given in part III. In chapter 5, a set of optimal algorithms
for finding geometric properties of digitized images is derived for fine grain electro-
optical arrays. An efficient electro optical implementation of iterative solutions
to sparse linear systems using holographic interconnects is also shown.

Another application of the proposed model is in providing efficient communi-
cation for non-Von Neumann types of computations. Implementation of non-Von
Neuman computations such as the data flow mode of computation, and neural
computing is the topic of chapter 6. Implementation of neural networks using a
general purpose electro-optical crossbar which has the potential to interconnect
each of the neurons to all the others will be shown. We will also show that similar
architecture can be modified to operate asynchronously for realization of a data
flow model. Our results substantiate the preference of optical interconnections

over an electronic medium as a means of interprocessor communication.



Chapter 2

Optics and VLSI

Initial research on integrated optical devices and circuits was stimulated because
of a perceived need for compact, rugged, and economical fiber-optic repeaters
which are insensitive to external thermal and mechanical variations, and immune
to electromagnetic interference from surrounding electric fields [8]. It was pre-
dicted that significantly higher usable bandwidths could be achieved by using
optical frequencies for all data transmission functions. Batch fabrication tech-
nology would provide high reliability and small size. These advantages clearly
define the great potential of integrated optics.

Since the early experimental attempts at integration of optical devices for data
transmission, in late 1960’s, the field has evolved slowly, with a few niche appli-
cations in higher speed data processing. Today, optically simple and functionally
complex circuits are being manufactured for signal processing applications. These

circuits usually offer the system designer a compact, economical, high-bandwidth
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device for Fourier transform and correlation operations that would normally re-
quire complex electronic circuits ranging in size from several circuit boards to
main frame computers.

In this chapter, we first review some of the fundamentals of integrated op-
tics. We then continue with a discussion of merits and components of optical

interconnections in VLSI.

2.1 Preliminaries

The physics of light is a very interesting subject. Even people with no background
in physics have probably heard about the dual né.turc of light: on one hand it is
composed of elementary particle-like quanta, called photons, and on the other it
may be regarded as a wave [32]. For our purposes it will suffice to resolve the
ambiguity by considering each photon to be a small wave packet. The light wave
is then the sum of many photons. In the context of optical computers, we are
usually interested only in the wave-like properties of light. The fact that this
wave is the sum of many photons is usually irrelevant. We therefore turn to a
discussion of the properties of waves in general, and electro-magnetic waves in
particular [31].

Frequency is the most basic property of a wave. Frequency is the number of
cycles a wave completes in one second. Electro magnetic waves come in a wide
range of frequencies. Visible light occupies a rather narrow band between 10'*

cps (red ) and 10'® cps (violet). The reason both nature and optical computers

10



use this range is that many materials transmit and absorb radiation in these fre-
quencies better than in other frequencies, through means of interactions between
photons of radiation and the electrons in the material.

Another parameter of interest when talking about light is its wave length. This
is the distance the light propagates during one cycle. Therefore the wavelength
for a given frequency depends upon the speed of propagation. Speed in turn
depends upon the medium through which the radiation is propagating. The
index of refraction is a characteristic of the medium that governs the speed of
light as it passes through. The refractive index of the vacuum is 1, and the speed
of the light through it is approximately 300,000 Km per second. Other materials
have a higher refractive index, and the speed of light in therﬁ is proportionately
lower. When light passes from one medium to another, its change of speed causes
a change of direction, called refraction. Lenses and other optical devices use this
phenomenon to change the direction of rays of light. Such devices are actually
just specially shaped transparent objects with refractive indexes that are different
from their surroundings.

Two additional parameters are needed in order to describe a wave. The first
is its amplitude, which is the height of the wave. The square of the amplitude
is called the intensity of the wave, and conveys the number of photons in the
wave. Since each photon is a quantum of energy, the light intensity also indicates
how much energy is propagating with the wave. The second parameter is the
wave’s phase, which stands for the part of the cycle that the wave is in. Absolute
phases are of no interest; only the phase of one wave relative to another is of

consequence. When we describe a wave by harmonic functions, e.g. sinusoid, the

11



cycleis 2. A phase difference of 7/2 between two waves then means that one of
them lags behind the other by one quarter.of a cycle.

When two waves combine, they are said to interfere. If the waves have the
same frequency, the result depends on their relative amplitudes and phases. If
the crests in one wave coincide with the crests in the other, each wave cancels out
the other This is called constructive interference. If the crests in one match the
troughs in the other, the waves tend to cancel out. This is destructive interference
(Figure 2.1).

The photons in Figure 2.1-b (constructive interference) are in phase with each
other. Therefore their sum is a wave that can be described by a harmonic function
such as sin(z). We call such waves coherent light. In many situations the phase
of the photons, and thus of the light wave, changes in a random manner. When

this happens, we say the light is incoherent.

2.2 Photonic Fundamentals

The properties of the photons explained in the previous section are key design
issues in optical computing. The ultimate limit on optical computingrspeed is
the velocity of light in the material, which may be on the order of 10!° per
second. Photons may or may not interfere depending on the coherence properties
of the photons in the individual beams. Two light beams can intersect in free
space or in a dielectric waveguide with no interference occurring. At the same
time, photons from coherent sources can interfere constructively or destructively

when combined after traveling different paths. Both constructive and destructive

12



Constructive Interference
A v v

Destructive Interference

/\/\

Figure 2.1: Interference between two waves

behaviors are advantageous in optical computing and signal processing devices.
In contrast, electrons interact with each other through their electric fields and
repel or attract other charged particles.

A third fundamental property of the photon used extensively in optical devices
is that the energy of the photon is related to its frequency through Planck’s
constant. This energy for the photon is generated by the transition of an electron
or molecule between energy states in a material which has been excited. Thus, the
designer can select the frequency of the photon by choosing the proper material
(e.g., semiconductor materials).

Transmission of information via photons requires no conducting materials and

relies solely on low-loss dielectrics or free space. Over short distances ( < 1 meter),

13
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the bandwidth of either the optical waveguide or the free space path is limited
only by optical modulator technology, whereas the bandwidth of an electronic
system is limited by the inductance and capacitance of the metallic transmission
path. Although this bandwidth advantage may be exciting, there is a price to
pay in larger device dimensions. Waveguide dimensions will be on the order of
an optical wavelength (1 micron), and most devices are a factor of 10 or more
larger. Aside from the above factors, meaningful size and speed comparisons
between electronic circuits and integrated optical circuits must be made on the
basis of functional operations (i.e., correlation, convolution, etc.) rather than on
individual circuit elements. The speed and parallelism of optical components may
lead to smaller packaged circuits even though individual components are larger
than submicron VLSI devices.

Finally, photons can be refracted by a lens or diffracted by a slit or pinhole.
They may also be scattered by impurity particles and absorbed or refracted by
certain materials. The fact that some of these properties can be explained by
electromagnetic wave theory, while others cannot, led to the field of quantum
mechanics and, in particular, to quantum optics. While more detailed discussion
of the properties of photons is beyond the scope of this thesis, it is sufficient to
point out that photons exhibit a number of properties different from electrons
and provide many new and entirely different possibilities for optical computing.
Thus, photon computing should not be viewed simply as another method for
duplicating existing computer architectures and operations. It should be looked

upon as a unique technology with new potential for computing.
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2.3 Why Optics in VLSI

0

It has been demonstrated that optical techniques provide a much higher density
for a given bandwidth than electronic techniques. Using free space or wave-
length propagation, it is possible to take advantage of the high density band-
width product available in the optical domain. In addition, using integration
of opto-electronic devices, it is possible to communicate with the interior of the
chip rather than confining the I/Os to the chip boundary. Following are some
of the main limitations of electrical interconnects which are absent from optical
integrated links [19, 67].

Several characteristics of present hardware techniques limit the density of
electrical interconnects. One limitation is that the edge of the chip is reserved for
I/O functions. Another is that electrical interconnects are confined to pseudo-
planar structures (e.g., printed wiring boards, backplanes). The phenomenon
of crosstalk is a Fundamental limitation on spacing between individual inter-
connects. This density issue is aggravated with increases in speed in individual
devices. As speeds increase, sensitivity to crosstalk through the electrical inter-
connect also increases and the required distance between devices decreases to
ensure that the signal propagation time is less than the clock period.

Obviously, as density increases, the spacing between lines decreases and it is
necessary to reduce the cross-sectional area of the conductors in order to place
more interconnections in a given volume. Since the dc series resistance of a
conductor is directly proportional to its cross-sectional area, this scaling down

will result in a larger voltage drop across the interconnect and an increase in

15



the power required to drive the line. This problem is compounded at higher fre-
quencies because the skin effect reduces the effective conductor area even further.
Therefore, as the bandwidth, density, and length of the lines increase, the amount

of available power becomes a limiting factor in system performance.

2.4 Transmitting Channels

There are two approaches to defining the optical interconnect transmission medium:
guided-wave interconnect and free space coupling. In guided wave interconnect
the optical data are transmitted and distributed via a medium that localizes the
optical energy and distributes it to the required destination points. Examples are
optical fibers, light pipes, and planar waveguides. Free space coupling involves
point to point or broadcast transmission of the optical energy through space.
Both guided wave and free space coupling have trade offs that will affect the
design of the system interconnect topology.

Several design methods have been investigated. All promise use of the space
above and around chips for interconnects. With this added space and the high
density potential of optical interconnects, it is possible to increase the number
and bandwidth of interconnects within a computing architecture, resulting in

faster systems.

2.4.1 Fiber Optics

An optical fiber is a conductor, or waveguide, for light. The propagation of light

in (bent) optical fibers is explained by the phenomenon of total internal reflection

16
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Figure 2.2: Refraction of rays

(see Figure 2.2). The fiber’s cross-section has two parts: a core and a cladding.
The difference between them is that the core has a larger index of refraction. We
denote these indices by n; (core) and n, (cladding). A beam of light that hits
the core/cladding interface at an angle 6; ( from the core side ) is refracted, and

- emerges at an angle 6, ( on the cladding side ). These angles satisfy the relation
q sin 91 = Ny sin 92

Since nl > n2, the 6; > 6, ( all angles are in the first quadrant). If 8, is larger
than the critical value of arcsin (n2/n1), the formula cannot be valid, because it
would require that sin 6 > 1. Indeed, for these aﬁgles the beam is not refracted.
Instead it is reflected back into the core. When a beam of light propagates along
an optical fiber, it actually follows the zig-zag path that results from internal
reflection each time it hits the core/cladding interface (see Figure 2.3)[66].

The fiber medium is a low loss, low dispersion channel. Over the short links
discussed here (inches or less), the channel is virtually bandwidth unlimited. The

transport of baseband information over a fiber can be accurately thought of as
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Figure 2.3: Light advance within an optical fiber

the modulation of a carrier oscillating at approximately 2 x 10'* Hz.

Fiber optic transmission techniques are now well developed and provide a
medium for high bandwidth, long haul data transmission [48, 47]. Crosstalk
and electrical interference problems, which are expected to increase with circuit
densities and speeds of future digital circuits are absent with optical fibers. The
loss and drive power are independent of the length of the fiber for distances of
interest. The optical approach does not require high speed ground planes, can
make circuit layout more flexible, and should be less sensitive to reflection.

Although fiber optics is one important subset of the set of photonic solutions,

it is by no means the only (or necessarily the best) solution.

2.4.2 Free Space Interconnects

Guided waves have handicaps that severely limit their use, in particular, high

attenuation, high bending loss, and constraint to a plane if fabricated in an
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integrated optics form. A unique quality of the optical medium is its ability to
be directed for propagation in free space and to have two optical channels cross in
space without interaction. These properties allow optical interconnects to utilize
all three dimensions of space.

The ultimate goal of reconfigurable interconnects is to be able to change
the interconnect matrix as quickly and as freely as needed. Such a capabil-
ity will allow optical interconnection to improve upon many of the functions
presently implemented on a limited scale with electronics, such as routing data
between processing elements based on data dependent decisions, and multiplexing
and demultiplexing information. Potential applications for reconfigurable holo-
graphic optical elements are so compelling that iﬁvestigation of alternatives for
programmable interconnections will be of great interest in the future.

This thesis presents various programmable interconnection networks. Pro-
grammable inter.conncction networks are not yet developed enough to form an in-
tegrated environment. Alternatively, bulk realization of reconfigurable free space
optical interconnects have been studied [101]. What is common to both integrated
and bulk implementations is the use of gratings. In current integrated circuits
the gratings are fixed and cannot be reconfigured. In bulk systems design, they

can be reconfigured using various available spatial light modulators.

2.5 Grating

A (thin) grating is a set of fine, straight parallel lines on a transparency [63].

Like mirrors, gratings may be used to change the direction of a beam of light.
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However with a grating, the beam is also split into a number of beams that go in
different directions. In each of the beams, the exact change in direction depends
on the wavelength of the light. Thus a grating may be used to obtain spectral
analysis of polychromatic light.

When a coherent beam of light impinges upon a grating, it can be considered
as equivalent to a set of coherent, long, linear light sources. The light from these
sources interferes. In certain directions, on the path differences for light coming
from adjacent sources (i.e. adjacent lines)is an integer multiple of the wavelength,
and constructive interference occurs. These are the directions in which we get
beams of light. In other directions destructive interference occurs, and the waves
tend to cancel out. Generally, the directions in which constructive interference

takes place must satisfy (see figure 2.4).
dsin f = nA (Bragg’s Law)

where d is the grating spacing, A is the wavelength, n is an integer, called the
diffraction order.

Note that this assumes the incident light beam is perpendicular to the grating
so that all the lines oscillate in phase.

If the grating is thick, i.e. it is a set of parallel plane surfaces, the situation is
slightly different. A light beam impinging on such a grating is reflected by each
surface individually. If the angle between the beam and the surfaces is just right,
constructive interference will occur between the reflections. The result will be a
very strong diffraction. At other angles the diffraction will be very weak. The

angle at which strong diffraction occurs is called the Bragg angle, and it satisfies
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Figure 2.4: Bragg Diffraction

sin @ = (nA/2d). This phenomenon is of major importance in volume holography
and some acousto-optical devices, as well as in the diffraction of x-rays from

crystals.

2.5.1 Acousto-Optical Elements

Gratings need not be stable and tangible like most other devices; in fact it is quite
common to use an acoustic wave as a grating. An acoustic wave propagating in
a crystal causes a periodic deformation of the crystal. This deformation usually
results in a periodic change of the refractive index of the crystal. The velocity of
the acoustic wave is always much lower than that of light waves. Therefore we

may say that to a good approximation a light wave passing through the crystal
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feels a standing periodic change of the medium- that is, a grating. This grating
causes diffraction of the light, just like any other grating would. Such phenomena
in which light is scattered by interaction with acoustic waves are called Brillouin

scattering.

2.5.2 Holographic Optical Elements

Holograms can be written on silicon in the following way. The photographic film
hologram is contact printed onto a layer of photoresist on a silicon substrate.
The photoresist is developed and the silicon is etched by chemical means. After
removal of the remaining photoresist, a reflective surface-relief hologram is present
in the surface of the silicon. Diffraction efficiencies of 18 to 20 silicon surface-relief
holograms is possible.

Assume a single source of light. A simple hologram, similar to a diffraction
grating, can deflect its light in any desired direction (depending on the orientation
of grating), and focus it on a sink. A more complicated hologram can create
multiple images of the source, each on a different sink. In the general case we
have a set of sources, a set of sinks, and an arbitrary mapping of sources to sinks.
In order to implement this mapping, the hologram can be divided into sub-
holograms, one for each source [103, 59, 58]. Each sub-hologram is illuminated
by one source only, and it images that source on the appropriate sinks. (see
figure 2.5).

Free space interconnections utilize three-dimensional space [12]. There are
various ways in which to set up the sources, sinks and hologram [43]. The most

compact scheme is to have the sources and sinks arranged in a plane, with a
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Figure 2.5: A holographic interconnection element

reflection hologram suspended above them (see figure 2.6). Other schemes use
transmission holograms instead of reflection ones, and then redirect the light with
mirrors. If the hologram is implemented by an Spatial Light Modulator (SLM),
rather than being fixed, the interconnection pattern may be changed dynamically
(69, 43].

Optical noise in the interconnectipns will arise from two aspects of the Holo-
grams. First, to whatever extent the hologram is not perfectly efficient, the
undiffracted light produces a diffuse unfocused background light level at the de-
tectors. Second, all holograms produce some amount of stray light, resulting from
stochastic effects in the recording process and, in the case of computer generated
holograms, from quantization effects in the encoding. To maximize the signal
reaching the detectors and to minimize optical effects on surrounding circuitry,

the spot size should closely match the size of the detectors, i.e. about 10 by 10
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2.6 Sources

The properties of an optical system depend to a large degree upon the source of
the light that is being used. Today, two sources dominate: LEDs and LASERs.
Their operations, depend on certain changes in the energy states of the electrons
in the light-source material. Specifically, electrons in high-energy (so called “ex-
cited”) states go down to their ground states. In doing so they release an energy
quantum in the form of a photon.

A LASER (Light Amplification by Stimulated Emission of Radiation) outputs
an infense, monochromatic (having a single frequency), coherent and very direc-
tional beam of light [104]. A LED ( Light Emitting Diode) can provide narrow

band (having relatively small range of frequency), incoherent light [11, 77].

2.6.1 Laser Diodes

Light sources are required to convert electrical signals to optical form. Laser
based optical interconnects represent the most obvious choice of links. The com-
pact size and low electric power requirements of laser diodes will ease the prob-
lems associated with the assembly and integration. One significant advantage
of the laser diode is its potential for high modulation frequency, which has been
demonstrated as high as 18 GHz.

With direct drive, the laser diode can be full on/off modulated at multi-Gb/s

rates. Small signal modulation has been reported beyond 10 GHz. The total
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average current required to drive the laser diode ranges from 15 mA to 45 mA.
Total average power dissipation for a laser diode, then will range from 40 mW to

180 mW. Typical dimensions of a laser diode is 200 by 200 by 75 um [48, 47].

2.6.2 Light Emitting Diodes

LEDs are highly reliable devices with no threshold requirements, are relatively
simple to fabricate, and can be easily fabricated as edge or surface emitters.
Performance limitations include low quantum efficiency, a high drive power re-
quirement and low speed [48, 47]|. Semiconductor laser diodes although similar in
structure to LEDs are highly efficient. When they are operated above threshold
the internal quantum efficiency approaches 100% for the most efficient class of

laser sources developed.

2.7 Detectors

Unlike a light wave telecommunications receiver, an optical interconnect receiver
is basically a high speed opto-electronic transducer. For optical interconnect
applications, the main object is to receive the incoming optical data stream,
transform it to electronics, amplify ( and filter ) it, and redigitize it.

The diameter of a detector is approximately 40pum. GaAs detectors with
rise times on the order of 30 to 40 ps have been made [67]. There are several
alternatives for GaAs detectors: the p-i-n diode, the avalanche photodetector

(APF), and the Schottky barrier photodiode.
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2.8 Semiconductor Integration

Monolithically integrated opto-electronic circuits that incorporate electronic and
optical devices on the sam substrate have potentially important advantages over
conventional hybrid circuits. The monolithic integration eliminates the excess
capacitance and inductance associated with bonding pads and wires. The result-
ing circuit operates faster than its hybrid counterpart, with lower noise and less
power. Integration also eliminates the need for broad band impedance matches.
It is expected that integrated lasers and detectors can be realized in high density
form with dimensions of 50 to 200 pm for laser cavities and photodetectors. Cur-
rent monolithic implementations of optical interconnect technology involve either
sources and detectors integrated with electronic circuits on GaAs or GaAs grown

on Si. Both of these approaches are difficult to implement at present [36, 18].

2.8.1 Silicon Substrate

Silicon based integrated optics are nearly monolithic: only the source is in GaAs,
and all the rest is in Si. Silicon offers a stable base for electronic circuitry;
silicon VLSI technology is well established and has a large established industry
[36]. State of art MOS circuits are quite fast, with cycle times up to 3 GHz
reported in the literature. Long wavelength optics require epitaxial techniques
on either silicon or gallium arsenide. Where is desirable to interface directly with
long distance optical fibers (such as in telecommunication environment which
operates at long wavelengths), this means that the processing required to build

monolithically integrated optical components is as difficult in GaAs as in silicon.
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Finally, silicon provides a lower-cost substrate for components that do not need

extreme speed. These components form the vast majority of most systems.

2.8.2 Gallium Arsenide

Monolithic Gallium-Arsenide (or rather various alloys of GaAl-As) is probably
on its way to becoming the preferred choice. The reason is that this is the only
system of materials that enables all the necessary active devices-lasers, modula-
tors, switches and detectors- to be fabricated together. In particular, the most
efficient and useful light source today for fiber optics and integrated optics is the
GaAs double heterostructure injection laser [110, 99]. However differences in the
detailed requirements for the laser versus the waveguide applications remain to
be resolved before a true monolithic technology emerges.

GaAs ICs and GaAs opto-electronic devices, such as diode lasers and pho-
todiode detectors are needed to construct multigigahertz optical transmitters,

receivers, transceiver, repeater, and switches.

2.8.3 Hybrid Integration

Eventually, the sources must be brought onto the electronic chip either through
fabrication of the electronics on GaAs or by fabrication of GaAs sources on Si
substrates [18]. The best waveguide active devices, eg. modulators and switches,
are those fabricated on Lithium Niobate substrates. However the sources used
are usually based on GaAs, while the detectors employ Si. Hence the hybrid

nature of this system, as an example.
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2.9 Limitations

Whereas in VLSI the minimal feature size is determined by the technology and
by the microscopic characteristic of the materials, in optics the minimal feature
size corresponds to the wavelength of the light [68]. The size of optical elements
must be at least a few wavelengths: light simply cannot be confined to a cross
section of much less than a wavelength, i.e. approximately 1 um. At the moment
it so happens that VLSI technology produces features that are about of this size
too, however it is already obvious that it will be impossible to miniaturize optical
devices to the same degree that is possible in electronics, as it is expected that
electronic devices will be reduced by at least another order of magnitude before

reaching their limit [106].
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Chapter 3

Optical Models of Computation

The relation between the speed and size of VLSI circuits was explored using the
methodology of complexity theory in [113]. As the first step of this methodology,
an accurate and precisely-defined model of a VLSI chip was devised. This model
captures the two-dimensionality of VLSI, in that transistors are laid out on the
surface of a piece of silicon, and there are only a few layers of metal available
for interconnections. The fundamental result that clearly defines the limits of
VLSI is due to the fact that the amount of time (T') required to solve a problem
on a VLSI chip is at least equal to the number of cycles required to pass the
minimum required information (I) over the available bandwidth across the mid
line of a VLSI design having area (A). This leads to AT? = Q(I?). In this chap-
ter, we introduce an abstract optical model of computation to explore speed size
relationship in using free space optical beams, as opposed to wires, for means of

intercommunications. This model accurately represents currently implementable
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optical network of processors. Hence, the derived lower .bounds on its compu-
tational efficiency gives us a tool to analyze the optimality of various physical
implementations of OMC, in solving problems. In the first section lower bounds
for computation power are derived, and in the following section three architec-
tures representing upper bounds on the volume requirements of the model are

shown.

3.1 Lower bounds

In this section, we define an Optical model of computation which is an abstraction
of currently implementable optical and electro-optical computers. Similar to the
VLSI model of computation [115], this model can be used to understand the
limits on computational efficiency in using optical technology. We show that
minimum volume requirement of an optical model of computation is same as the
minimum VLSI area in the VLSI model. Using information transfer argument,
we also show a methodology to determine the minimum volume requirement of

an electro-optical system for solving a problem.

3.1.1 An Optical Model

An optical model is shown in Figure 3.1. More formally this model is defined as
follows:

Definition 1 An optical model of computation represents a network of N pro-
cessors each associated with a memory module, and a deflecting unit capable of
establishing direct optical connection to another processor. The interprocessor
commaunication is performed satisfying the following rules similar to [4]:

1. At any time a processor can send at most one message. Its destination is
another processor.
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2. The message will succeed in reaching the processor if it is the only message
with that processor as its destination, at that time step. .
3. All messages succeed or fail (and thus are discarded) in unit time.

To insure that every processor knows when its message succeeds we assume
that the OMC is run in two phases. In the first phase, read/write messages are
sent, and in the second, values are returned to successful readers and acknowl-
edgements are returned to successful writers. We assume that the operation
mode is synchronous, and all processors are connected to a central control unit.
The above definition is supplemented with the following set of assumptions for
accurate analysis.

1 1. Processors are embedded in the Euclidean plane. This is referred
£ to as the processing layer.

2. Each of the processing/memory elements occupies unit area.

3. Deflectors are embedded in the Euclidean plane. This is referred
to as the deflecting layer.

] 4. Each deflecting unit occupies at least one unit area.

5. The deflecting layer is collinear to the processing layer.

6. I/0 is performed at I/O pads. Each I/O pad occupies unit area.

7. The total volume is the sum of the volume occupied by the

processing layer, the deflecting layer, and the space for optical
beams.

8. The intercommunication is done through free space optical beams.

]
]
]

9. Time is measured in terms of number of units of clock cycles.

i :i" .
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10. An optical beam carries a constant amount of information in one
unit of time, independent of the distance to be covered.

11. A deflector is capable of redirecting an incident beam in one unit
of time.

12. A processor can perform a simple arithmetic/logic operation in
one unit of time.

13. The time, T for computation is the time between the arrival of
the first input to the departure of the last output.

To be able to compare our results with those on VLSI model of computation
[113], without loss of generality, assume that there are N processors placed on
a N'/% x N*/? grid called the processing layer. Similarly, there are N deflecting
modules on a layer above the processing layer, called the deflection layer. The
interconnection beams are established in the free space between these two layers,
as shown in Figure 3.1. Hence, the amount of data that can be exchanged in a
cycle between two sets of processors (two way information transfer rate) is M.
The time (T') required to solve a problem is the number of cycles required to

exchange the minimum required information (I). This leads to :
AT = Q(I)

where A is the area occupied by the processing layer.

A related model is VLSIO [7], which is a three dimensional generalization
of the wire model of the two dimensional VLSI with optical beams replacing
the wires as communication channels. Compared to the three dimensional VLSI
model of computation [95], our model is more resource efficient. The simulation

of many parallel organizations using the OMC requires considerably less amount
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Figure 3.1: Optical Model of Computation

of volume than their layout in the three dimensional VLSI model. For example,
the layout volume of a IV processor hypercube can be reduced from O(N?®/?) to
O(Nlog N) when using OMC with mirrors as deflectors. The following result
can be stated:

Proposition 1 Any computation performed by a three dimensional VLSI orga-

nization having N processors with degree d, in time T, and volume V can be
performed on OMC in volume v, and time t, where dT/N <t < T, and Nd < v.

The upper bound on ¢ is obvious. Its lower bound also can be simply obtained
by multiplying T' by d/N which is the maximum speed up factor that can be

obtained due to its unit time interconnection medium. The lower bound on v is
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obtained by the minimum area requirement for having d deflectors for each of the
processing elements. In the next sections three different parallel architectures are

presented as possible efficient upper bounds for v.

3.1.2 Optical Volume, VLSI Area and 1-way Information

Transfer

The minimum VLSI area requirement for computing a problem is related to the
lower bound on the I-way information transfer [126, 82]. In this section, we briefly
discuss the 1-way information transfer for computing single output function and
then extend the argument to multiple output functions. We also relate this 1-
way information transfer to the Optical volume requirement of an electro-optical
implementation of OMC to solve a problem.

The following abstract setting has beeﬁ shown to be useful in estimating the

minimum VLSI chip area [82, 112]. Two sets of processors P1 and P2 each

n

> bits of an n input function f to be computed. The input partition

receive
can be denoted by (i, i) where i(n}) are the inputs known to P1(P2) and
m N7y = ¢. Also |rj| = |r3| = 2. The rectangle corresponding to this partition
is defined as M x N where M(N) = set of all values known to P1(P2). It is clear
that |M| = |[N| = 23. In the 1-way information transfer model, P2 computes f
and outputs the result. Hence, given an input partition, some information based
on the input bits of 7} are transferred to P2 in order to complete the computation.

The minimum information transfer from P1 to P2 to compute f over all possible

input partitions is denoted by I;(f) and is defined as follows:
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Mzn worst case information transfer
L(f) =
input partition from Pl to P2

Two rows 21,1, € M in the computational rectangle are said to be distinct if
Ja j € N such that f(¢1,7) # f(i2,7). If d(f) is the minimum number of such
distinct rows over all possible input partitions, then I;(f) is equal to log d(f)
[125]). The area requirement A of any chip computing f is Q(L1(f)) [126, 82].

The above 1-way protocol for single output function can be easily extended to
multiple output functions by introducing a suitable output partition over the out-
put functions. Let F' = {fi, fa,..., fi} be the set of output functions. The output
partition, similar to the input partition, can be denoted by (7¢,73). The output
partition satisfies the conditions 7{ N 73 = ¢ and 7 Ung = {fi, f2,--., fi}. Both
processors P1 and P2 are allowed to compute the output functions belonging to
their respective subsets. Before proceeding further, we state some definitions and
restate some earlier results.

Since the l-way communication link is from P1 to P2, it is not possible to
transfer data from P2 to P1 to compute a function belonging to 7. Hence, an
output partition requiring transfer of data from P2 to P1 is not feasible. This

leads to the following definition of a feasible output partition:

Definition 2 An output partition is feasible iff on any input partition, all func-
tions in w7 can be computed at P1 using only the input bits of 3.

The I-way information transfer for multiple output functions can depend on

the output partition. Hence, I;(F), the 1-way complexity of computing a set of

8All logarithms in this thesis are to base 2.
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output functions is defined as follows:

Min worst case
Min
L(F) = feasible output information transfer
input partition
partition from Pl to P2

The relationship between I; and the minimum area requirement A of a chip
stated earlier for single output function holds good for multiple output functions

too.

Theorem 1 The volume V, of any electro- optzcal system computing F' satisfies
Vo, = Q(Ii(F)).
Proof: Consider an electro-optical system as shown in figure 3.2. P1 can be
viewed as the electro-optical system and P2 as the memory. Consider the state
of the system after reading 7 input bits. These bits can be looked upon as bits
belonging to 7i. Based on this input, the system would have computed some set
of output functions. Denote these functions as w5. If the volume of the system is
V,, then the system would not have memorized more than V, bits of information.
It is easy to design a l-way protocol with V, bits of information transfer from
P1 to P2 to compute the rest of the output functions. Hence, the system should
have at least I;(F') memory elements. Thus, the volume of the system must be
QL(F)). O
The computation of F' over an input and output partition can be represented
in the form of a computational parallelepiped P as shown in figure 3.3. M(N) are
the set of possible values of the input bits known to P1(P2). For a fixed value of

input bits, the output functions in set F' are represented by a vector of length !
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Figure 3.2: 1-way information transfer

= in the third dimension of P. Given an input partition, the output functions can
1 be divided into the following subsets:

i

7 Fiy - The subset of the output functions which can be computed at
- P1 (on every input) using the input bits of =} only

"

_J Fy; - The subset of the output functions which can be computed at

P2 (on every input) using the input bits of w3 only

Fia - The rest of the output functions.

The computation of the output functions belonging to the subsets Fi, and Fj,

require data from wj. According to the definition of a feasible output partition,
these functions can not be computed at P1 and, hence, to be computed at P2.

Therefore, for a given input partition (7}, 7}), the output partition is feasible iff

o 39




B {
[ ow——

'i I Z2es i

0 I

00 1

00 1

00 1

01 N 1
000..000
000..001 ‘\\K\

) M

111..111 |

Figure 3.3: The computational parallelepiped P

Fi, C 7§ and Fh, C 7r'2’l.

Since the output functions Fj; and F3; are computed at P1 and P2 respec-
tively using exclusively the input bits assigned to them, there is no information
transfer associated with these computations. The computation of Fj, only re-
quires information transfer from P1 to P2. This information transfer I;(F) is
determined from the number of distinct planes in P.

Definition 3 Two planes 11,13 € M in P are distinct iff there exists a 5 € N
and a function fi € F such that fi(31,7) # fe(i2,7).

Based on the above definition of distinct planes, I;(F') can be estimated in a
similar spirit as in [;(f) [125]. This leads to:

Proposition 2 For a fized input partition (ni,73) and a fized output partition

(7$,7%) , the minimum number of bils of information transfer from P1 to P2 to
compute F' is log d(F), where d(F') is the number of distinct planes in P. Also,
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the 1-way complezity I,(F') is equal to log d, where d is the minimum d(F) over
all possible input and feasible output partitions.

In the following section, we use image convolution to illustrate our ideas.

3.1.3 Lower bounds On Optical Volume For Image Con-

volution

The techniques of last section can be used to obtain lower bound on the optical
volume, for image convolution under several input formats. For a » xn image, the
convolution operation produces O(n?) output. The information transfer I;(F),
for such operation can be analyzed based on the multiple output function model
discussed above. |

Due to the computationally intensive nature of the convolution operation,
most of the designs in the literature perform several computations per input pixel
fetch to achieve high throughput and reduced memory bandwidth. Figure 3.4
shows the computing environment to carry out convolution using an Electro-
optical system.

The input to the system is a n X n image and a w x w kernel. The electro-
optical system must be able to compute the image convolution on any input n x n
image and any w X w kernel. The host is responsible for acquiring the input data
and feeding it to the system which contains processing units for computation and
memory elements for storing intermediate results. Though, most of the practical
designs organize cells to input the image pixels from the host in a rasterscan
t.e. scanline fashion, designs are possible to input data in arbitrary sequence of

rows/columns or arbitrary pixel manner.
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Figure 3.4: Environment for computing image convolution
Scanline Input Case

In this case, the input partition corresponds to P1 receiving the upper half of the
image and P2 receiving the lower half as shown in figure 3.5 (a). Let the kernel
K of size w X w be as shown in figure 3.5 (b). All kernel weights are zero except

for K(1,1) and K(w,w) entries. With the given kernel K, the output C(z,j) of

the convolution becomes:
C(i,7) = I(4,7) + IG+w—-1,7+w—1) for 1<4,j<n—w+1.

Lemma 1 [24] The volume V, of any electro-optical design using scanline input
format for image convolution satisfies V, = Q(nw).

The General Input Case

In this case, we consider designs, where the input is received by the electro-optical

system from the host in arbitrary sequence of pixels. We first determine a bound
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Figure 3.5: (a)The input and output partition for scanline case. (b)A kernel

for a special case of this, where the input is restricted to arbitrary row(column)
major sequence. Later we derive the bound for the general case by reducing it to
the arbitrary row('columﬁ) major input format.

Theorem 2 [24] The volume V, of any electro-optical design for convolving a
w X w kernel with a n X n image satisfies V, = Q(nw).

3.2 Upper bounds

In this section, we present a class of optical interconnection networks as a realiza-
tion of the OMC presented in the previous section. Each of the proposed designs
uses a different optical device technology for redirection of the optical beams to
establish a new topology at any clock cycle, and represents an upper bound on

the volume requirement of OMC.
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3.2.1 Optical Mesh Using Mirrors

In this design, there are V processors on the processing layer of area /V. Similarly,
the deflecting layer has area N and holds N mirrors. These layers are aligned
so that each of the mirrors is located directly above its associated processor
(see Figure 3.6). Each processor has two lasers. One of these is directed up
towards the arithmetic unit of the mirror and the other is directed towards the
mirror’s surface. A connection phase would consist of two cycles. In the first
cycle, each processor sends the address of its desired destination processor to the
arithmetic unit of its associated mirror using its dedicated laser. The arithmetic
unit of the mirror computes a rotation degree such that both the origin and
destination processors have equal angle with the line perpendicular to the surface
of the mirror in the plane formed by the mirror, the source processor, and the
destination processor. Once the angle is computed, the mirror is rotated to point
to the desired destination. In the second cycle, connection is established by the
laser beam carrying the data from the source to the mirror and from the mirror
being reflected towards the destination. Since the connection is done through a
mechanical movement of the mirror, with the current technology this leads to an
order of milli-second reconfiguration time. Therefore this architecture is suitable
for applications where the interconnection topology does not have to be changed
frequently. In [70], the design of various topologies have been studied to minimize
the time complexity of several problems for fixed period of computation.

The space requirement of this architecture is O(N) under the following as-

sumption. Each mirror is attached to a simple electro-mechanical device which
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takes one unit of space and can rotate to any position in one unit of time. With
current technological advancements, the above assumption may not be the most
accurate one but we do not see any technological limitations preventing us from
making our assumptions. In fact, our assumptions are as valid as those in VLSI;
the constant propagation delay assumption regardless of wire’s length. Other
assumptions can also be made based on the following arguments. Many mirrors
have a reconfiguration delay proportional to their rotation angle, O(N). More
complex mirrors on the other hand, can rotate faster for a larger angle (unit time

rotation delay ) but their size can grow proportional to the number of angles they

can realize ( O(N) ).
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Figure 3.6: An Optical mesh using mirrors
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3.2.2 Reconfiguration Using Acousto-Optic Devices

In this organization, N processors are a,rra:nged to form a one-dimensional pro-
cessing layer and the corresponding acousto-optics devices are similarly located
on a one-dimensional deflecting layer (see Figure 3.7). The size of each of the
acousto-optic devices is proportional to the size of the processing array, leading
to an O(IN?) area deflection layer. Similar to the design using the mirrors, every
processor has two lasers, and each connection phase is made up of two cycles. In
the first cycle, each processor sends the address of its desired destination proces-
sor to the arithmetic unit of its associated acousto-optic unit using its dedicated
laser beam. The acousto-optic cell’s arithmetic unit computes the frequency of
the wave to be applied to the crystal for redirection of the incoming optical beam
to the destination processor. The acousto-optic device then redirects the incident
beam from the source to the destination processor. One of the advantages of this
architecture over the previous design is its order of micro-seconds reconfiguration
time, which is dominated by the speed of sound waves. The other advantage is
its broadcasting capability, which is due to the possibility of generating multiple
waves through a crystal at a given time. Furthermore, the above can be extended
to interconnect a two dimensional grid of processors as follows.
Proposition 3 Using a (N'/2 x N'/?) processing layer, and (N*/? x N*/?) array
of acousto-optic devices as the deflecting layer, one step of OMC can be realized
in O(log? N) time and O(N?) area.

The area is obtained with similar arguments as in the one dimensional case.
The time complexity is due to the movement of data using the standard divide

and conquer techniques. At the :** step a block size 2° is divided into two blocks
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of half the size. Each subblock only contains the data ellements destined to its

memory locations. To route up O(i) elements residing in the queue of each of the

processors, the i* step is simulated by O(z) iterations.
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Figure 3.7: Reconfiguration using acousto-optic Devices

3.2.3 Electro Optical Crossbar

This design uses a hybrid reconfiguration technique for interconnecting proces-
sors. There are N processors each located in a distinct row and column of the
N x N processing layer. For each processor, there is a hologram module having
N units, such that the ¢** unit has a grating plate with a frequency leading to
a deflection angle corresponding to the processor located at the grid point (z,1).
In addition, each unit has a simple controller, and a laser beam. To establish or

reconfigure to a new connection pattern, each processor broadcasts the address of
the desired destination processor to the controller of each of IV units of its holo-
gram module using an electrical bus (see Figure 3.8). The controller activates a
laser (for conversion of the electrical input to optical signal), if its ID matches
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the broadcast address of the destination processor. The connection is made when
the laser beams are passed through the predefined gratings. Therefore, since the
grating angles are predefined, the reconfiguration time of this design is bounded
by the laser switching time which is in the order of nano-seconds using Gallium
Arsenide (GaAs) technology [56].

This architecture is faster than the previous designs and further it compares
well with the clock cycle of the current supercomputers. One of the advantages
of this simple design is in its implementability in VLSI, using GaAs technology.
Unlike the previous designs, this can be fabricated with very low cost and is highly
suitable for applications where full connectivity is required. In such applications,
the processor layer area can be fully utilized by placing V optical beam receivers
in each of the vacant areas to simultaneously interconnect with all the other
processors. This design can be easily adopted to implement a neural network of

processes with optical interconnects [28].

3.3 Performance Issues

In this section, we discuss the performance characteristics of the architectures
proposed in section 3.2. We concentrate on five issues of connectivity, size, speed,
power and energy, and cost. This order of presentation reflects its relevance to

the focus of this thesis.
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3.3.1 Connectivity

The optical mesh, optical linear array, and electro optical crossbar can realize
any permutation in unit time. However, each differs in its broadcasting capa-
bility. Unlike a mirror, an acousto optic device can be used as a deflector with
broadcasting capability. There is no theoretical limit on the maximum number
of acoustic waves that can be propagated simultaneously. But due to the res-
olution offered by the state of art technology is in the order of few thousands
[101], this is limited to a constant fan out. The electro-optical crossbar on the
other hand can provide full broadcasting capability. We also showed that even
the weaker modified versions of these models lead to efficient solutions to meet
the connectivity needs. As an example a 2-dimensional array with AO devices
was shown to simulate the its 1-dimensional version in O(log? N) time. Other
possible variations are also interesting to be studied. This study should include

the proposal of more practical designs reflecting the state of art technology.

3.3.2 Size

To compare the sizes of these devices, we have to consider several factors such as
the number of devices, size of each device, functionality of each device, and the
total space occupied by their arrangements. The optical mesh and optical linear
array use linear number of deflectors while the electro optical crossbar uses linear
number of deflecting units each having linear number of cells. On the other hand,
the size of each AO deflectors is linear to the number of processors. Hence, based

on the assumptions we made earlier for optical mesh, its space requirement is
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superior to both the optical linear array and electro optical crossbar by a linear
factor. It is also not right to evaluate the space requirement of the optical linear
array and electro optical crossbar to be equivalent, since one is a one dimensional
organization and the other falls under a higher dimension. From a practical point
of view however, the results are exactly opposite of above; electro optical being
the smallest, and optical mesh the largest. The space requirement of the electro
optical mesh is dominated by the area requirement of mirrors. Integrated GaAs
laser diodes are available at the size of 30 microns each [56]. This is smaller than
a mirror or an AQO device by a factor of one thousand, and can be well used at the
gate level. The size of a mirror and an AO device is compa.t_ible with a powerful

VLSI processor so can be used for interprocessor communication.

3.3.3 Speed

Since the gratings are predefined in the electro optical crossbar, the reconfigura-
tion delay is dominated by the lasers’ switchiﬁg.time: Integrated GaAs diodes are
available with the switching time in an order of nanoseconds. The reconfiguration
time using AO devices is limited by the speed of sound and leads to an order of
micro-second using current size devices. However, when used as a systolic array
to resolve 1000 input/outputs at a time, can lead to nano-second reconfiguration
time, as the size of input scream goes to co. The slowest organization is the
optical mesh using mirrors. Using mechanical mirrors, its reconfiguration time is
in an order of milli-seconds. For such an organization, it is desired to not change
the configurations often. For example, in computing FFT the connections can be

set as a Shuffle exchange topology. In [70], they have studied to design topologies
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for various problems in order to minimize the communication overhead and the

need for reconfiguration.

3.3.4 Power and Energy

Replacing each electrical line with an optical equivalent would cause an increase
in complexity and system power. For a digital signal, a single optical intercon-
nect requires a voltage to current converter to drive the light emitting diode or
laser, optical coupling mechanisms to direct optical energy through free space, a
detector, preamplifier, filter, and thresholding circuit, and possibly an automatic
gain control circuit. Compared with an electrical interconnect, the complexity
of an optical interconnect is obviously larger, and the power is comparable for
an LED-driven interconnect or larger for a laser driven interconnect [48]. The
typical threshold current of the laser is 20 to 30 mA, the power consumption
when on is about 0.2 W, and the expected thermal power dissipation is about 0.2
W per millimeter square for lasers separated by 1 millimeter [12]. For the imple-
mentation of electro optical crossbar in a GaAs circuitry (enhancement mode),
the power dissipated in a single gate is approximately 0.2 mW gate at 500 M Hz,

with power (gate size) scaling approximately with required frequency.

3.3.5 Cost

At this early stage, it is difficult to predict the cost of the optical computer.
But with the larger powers of some of the devices, one cost that seems sure to

dominate is that of the laser power supply. Today’s large supercomputers use
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similar levels of power as an optical computer. But its high-quality electronic
power supply costs about one to two dollars per watt, while lasers cost thousands
of dollars per watt of high quality output [121]. Even the diode laser is between
$1000 and $10,000 per watt, if its price is divided by its small powe:f output.
Because cost at this level involves numerous factors, many not related to actual
construction of the computer, such as marketing issues, and volume of production,

it is impossible to determine a price.

3.3.6 Fault Tolerance

The proposed optical architectures are very suitable fault tolerant designs, since
the connections can be reconfigured to operate with out the faulty processors or
deflectors. In case of a processor failure, its data has to be distributed a.n;ong
other processors. These processors then reconfigure their connections to meet the
need of distributed data. However in case of a deflector failure a processor needs
to establish its desired connection through its nearest non-faulty processor. As
shown in Figure 3.9, the processor 7 accesses its nearest nonfaulty processor i + z
, and uses this deflector to connect to destination j. Where z is the Euclidean

distance between 7 and 7 + z. The sequence of events is shown as A, B, C.
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Chapter 4

Simulation of Shared memory

One of the widely used models of parallel computation is the ParaJlel Random
Access Machine (PRAM). The basic assumption in this model is that in unit
time each of NV processors can simultaneously access one memory location [124].
Unfortunately, it is unlikely that a PRAM model will ever faithfully represent
any “real” parallel machine. A real parallel computer will most likely consist
of a large number of simple processors, each connected to a small number of
other processors. Fach processor in this network has its own local memory, and
processors communicate by sending messages over links to neighboring processors.
To reconcile the convenience of a PRAM with the limitations of a real computer,
it is simulated on a real network.

One of the first randomized simulations is given in [118], where it is shown
that there exists an IN-processor realistic computer that can simulate an idealistic
N processor parallel computer with only a factor of O(log V) loss of run time

efficiency. In [93], this was improved by obtaining similar bounds but requiring
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only bounded queue size.

Recently, there has been an emerging interest in the design of models of paral-
lel computation which more closely simulates a realistic machine. In [45], a more
restricced PRAM model called Distributed Random Access Machine (DRAM) is
introduced, which reflects an assumption of limited communication bandwidth
in the underlying network. All memory in DRAM is local to the processors, and
is accessed by routing messages through a communication network. A stronger
model called local memory PRAM was introduced in [4]. Like the DRAM, the
memory is distributed. However, there is no restriction on the underlying com-
munication network and hence it is assumed to have a unit time delay. Such
a communication medium is feasible with fixed connection architectures of un-
bounded degree, or those with reconfigurable optical interconnects.

In this chapter, we present simple efficient algorithms for simulation of a N
processor EREW PRAM using an OMC with N/log N processors. Section 4.1
presents the algorithm w1th its deterministic analysis, while in section 4.2 the
running time of its randomized version is shown to lead to an sub-optimal solu-
tion. The input to these simulation algorithms is assumed to have the following
form. Every processor is responsible for routing the (log N) messages that reside
in its local memory. Each message has a destination tag attached to it. The
destination address is made up of two components z,y, where = denotes the ad-
dress of the memory module, z < N/log N , and y denotes its position within

the module, y < log N.
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4.1 Deterministic Simulation

An OMC with N processors can simulate, in real time, an Exclusive Read Ex-
clusive Write PRAM having P processors and M memory locations, where N=
maximum {P, M}. On the other hand, a P processor EREW PRAM can simu-
late in real time the computations of a P processor OMC. Thus, the interesting
cases are when the memory is “large”. In the following, the number of processors
in the OMC is less than the number of processors in the PRAM by a factor of

log N .

Lemma 2 One step of an N processor EREW PRAM can be simulated on an
OMC with N/log N processors in @(log® N) time. Further, there exists an input
sequence for which this is the best possible bound.

Proof:In this algorithm, all elements of each proc-essing element (PE) are sorted
based upon the position to which they will write within the memory module, with
duplicate positions being sent to a second queue. This prevents more than one
processor trying to write to the same module of memory, because there is only
one of each of the positions within each module. Next, each of the elements is
sent out one by one. After this the duplicates from the last iteration are brought
forward and the process is repeated. This algorithm works in O(log® N) time by
running through each O(log V) time iteration a total of log N times, to insure
that all elements are transferred to the correct memory locations. A sequence for
which this is the best possible bound is shown in Figure 4.1. The following is the
outline of the algorithm. The complete code can be found in Appendix I. O
for x, = 1 to log N ; each iteration is done log N times

call sort ; sorts by memory position in each module
call send ; sends the elements to their correct locations
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call q3-q; ; the duplicates are brought forward -
next x, ; another iteration
end ; end of complete process

4.2 Probabilistic Simulation

The following analysis shows that the O(log V) stages of a slightly modified ver-
sion of the algorithm in the proof of Lemma 2, leads to a randomized algorithm
with a running time of O(log N loglog N) with high probability, and a worst
case time complexity of O(log® N). Our routing algorithm differs from others in
the literature in the way randomization is used. Unlike the algorithms of [118]
and [116], it does not randomize with respect to paths taken by messages. For
example, Valiant’s classic scheme for routing on a hypercube sends each message
to a randomly chosen intermediate destination and, from there, to its true des-
tination. On OMC such a technique would lead to queues of size O(log? N). In
[45], instead of choosing random paths for messages to traverse, their algorithm
repeatedly attempts to deliver a randomly chosen subset of the messages. A by-
product of their strategy is that their algorithm requires no intermediate buffering
of messages, and hence works under the general situation where each processor
can send and receive polynomially many messages. In [93], the only use of ran-
domization is in selecting a hash function to distribute the shared address space
of the PRAM onto the nodes of the butterfly. (Note that the direct application
of the techniques of [93] to our problem will lead to O(log? N) running time, and
O(log® N) local memory requirement for each processor.) Similarly, we only use

randomization in assuming a random distribution for input data. This random
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distribution can also be obtained in selecting a hash function to distribute the
shared address space of the PRAM onto an OMC with N/log N processors, each
having log IV local memory. The routing itself is deterministic as explained in

the proof of Lemma 2, and has worst case running time of O(log® IV).

Theorem 3 The probability that the simulation of one step of an N processor
EREW PRAM using an OMC with N/log N processors would take more than

O(log N) time is given by Be 8 N8 for some constant B independent of N.

In this algorithm, as opposed to the first one, we check each iteration for how
many elements are left to be sent, and if thgre are none, the algorithm exits. If
there is still work to be done, hoﬁever, the program will run again, but only go up
to the number of elements left to be sent. This leads to O(log N loglog V) running
time with a high probability. The following code summarizes the algorithm. For
complete code see Appendix I.

call init ; this initializes the pointers
do forever ; it loops forever until done
1 =log N ; the looping variable
call sort2 ; sorts by memory position using pointer jumps
call send2 ; send out the elements using pointer jumps
if p = 1 then end ; if done then exit
call g2-q;2 ; switch queues with pointer jumps
call point ; adds new pointer jumps as certain elements are
completely finished
1 = p ; renew looping variable
end ; do loop again

Proof:To show that the above algorithm with a high probability has a running
time of O(log Nloglog N), we have to show that at least one half of the messages
will be routed after each stage, with a high probability. We do this by showing

that at least one half of the messages at each module are distinct, at the beginning
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of each stage. To begin the algorithm, there are n = log N messages in each
queue, and we are interested in having at most k& = log N/2 identical labels
(duplicates), where the probability of having a given label is p = log N/N. The
probability of having exactly k identical labels can be estimated by using Bernoulli
trials, b(k,n,p). The probability (.Jf having more than & identical labels can be

approximated by using the Poisson distribution as follows [33]:
P[S, > k] < e *X¥/kl(kq/k — np)
where ¢ =1 — p . This can be approximated to

ﬁe“ log® N3

for some constant g, independent of N. Similar analysis can be applied to the
rest of the stages of the algorithm, where the queue size reduces by half each
time. The stated overall probability is an upper bound obtained by the product
of the probabilities from each of the log N stages. O

We have also verified the above results by computer simulations. This is
illustrated in Figure 4.2.

The above loosely synchronized point based techniques can be used as general
subroutines for solving many problems on the OMC. An immediate consequence
of our technique is to list ranking. The list ranking problem is: given a linked list
in memory, compute the distance that each cell is from the end of the list. The
problem is a fundamental data structure problem, and has many applications.
There are many problems that are reducible to list ranking such as, parallel tree

contraction [73, 39].
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The list ranking, problem has been studied extensively with the goal of getting
N/log N procesor, O(log N) time PRAM algorithms [21]. In [4], it is shown that
these bounds can be met on the local memory PRAM for a randomized algorithm.
Compared to their algorithm, our solution is more attractive since it guarantees
a worst case running time of O(log? N), as stated below.

Corollary 1 The list ranking problem of size N can be performed on an OMC

with N/log N processors, in O(log N loglog N) time with high probability and in
O(log® N) time otherwise.
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Part III

Applications
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Chapter 5

Signal and Image Processing

Recently, there has been an emerging interest in the design of parallel algorithms
that are efficient in solving image problems [23, 76, 84, 96, 98]. The performance of
these algorithms is very much dependent on the underlying parallel architecture.
Several mesh based architectures implementable in VLSI have been considered
for fine grain image computations, where each pixel is directly mapped onto a
processing element. Solving many image problems on a N x N mesh array of
processors takes as much as O(N) time [76]. To provide faster solutions, several
other architectures such as the pyramid, the mesh of trees, and the reconfigurable
mesh have also been considered [74, 84, 86]. Their hierarchical organization leads
to logarithmic time performance in solving some problems. But for solving more
communication intensive problems, they are not superior to a two dimensional
mesh.

The PRAM has also been considered for designing parallel algorithms for

problems in computational geometry and computer vision. Simulation of this
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model on the OMC was shown in the previous chapter. In this chapter, we
consider fine grain electro-optical arrays for optimal parallel solutions to several
problems in signal and image processing. We illustrate the use of OMC in fine
grain image computations for problems such as labeling figures in a image, deter-
mining the convex hull of all figures, and finding the nearest neighboring figure
to each figure. We also show how iterative methods for a class of problems in
image understanding can be performed efficiently on the OMC with holographic

interconnects.

5.1 Optical Mesh and EREW Algorithms

In the previous chapter, we studied the relationships between OMC and the
shared memory models. It is easy to see that an OMC with IV processors can
simulate, in real time, an Exclusive Read Exclusive Write PRAM having P pro-
cessors and M memory locations, where N = maximum {P, M}. In this section,
we formally define an optical mesh and illustrate its operation in simulating

EREW algorithms.

Definition 4 An optical mesh of size N? has a processor layer consisting of a
N x N array of processors which can intercommunicate in unit-time using their
corresponding optical device residing on the deflection layer of same size.

A simple implementation of optical mesh is possible using mirrors (under the
unit delay rotation assumption) which was discussed in the previous chapters.
The communication patterns needed for performing the following computations

can be easily realized using the optical mesh:
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Figure 5.1: Matrix transpose

1. The transpose of a IV x N matrix can be computed in O(1) time
using an optical mesh of size N X N (see Figure 5.1).

2. Two N x N matrices can be multiplied in O(log N) time using
O(N?/log N) processors, using an (N?/log N) x N optical mesh.

3. The polynomial evaluation of degree N can be performed in
O(log N) time, using (N/log N) x 1 optical mesh.

4. The FFT of N points can be computed in O(log V) time, using
N processors on the N x 1 optical mesh (see Figure 5.2).

5. N elements can be sorted in O(log? N) time, using N processors
on the N x 1 optical mesh.

To familiarize the reader with the above model and some of the basic parallel
techniques used in designing algorithms in this seétion, we describe the following
image template matching algorithm. Template matching is a basic operation in
image processing and computer vision [98]. It is used as a simple method for

filtering, edge detection, image registration and object detection [105]. Template
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Figure 5.2: Communication pattern for FFT computation
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matching can be described as comparing a template (window) with all possible
windows of the image. Each position of the image will store the result of the
window operation for which it is the top-left corner. Let IM AGE (1, j) represent
an N'/2 x N'/2 image where 0 < i,5 < N¥/2 — 1. Let W(s,t) represent the

template where 0 < s,¢ < k — 1. Then, the result C(7,7), is as given below:

k-1 k-1
C(3,5) = > > IMAGE((i + s)modN'/? (j + tymod N*/?) + W s, 1)

s=0 t=0

Note that the computation can be done in O(N X k?) time using a uniprocessor.

Using N/log N processors, the above computation can be done in O(k%log N)
time. This is simply done by first partioning the processors into groups of size
(k/log*? N) x (k/log*/? N). Each of these groups checks the template of size
k x k with the image of corresponding size. Since the number of processors
is less than the image size, each processor is assigned to check a region of size
log!/? N x log"/? N. In O(log N) time, the results are obtained for this particular

position of the template. This is repeated for all k? positions.

5.2 Optimal Geometric Algorithms

In this section, we present O(log V) algorithms for problems such as finding
connected components, determining the convex hull of all figures, and nearest
neighboring figure to each figure in a N x N image. The input to our algorithms
is a digitized picture with PE(i,j) storing the pixel (4,7), 0 < 7,5, < N —1 in
the plane.

We are concerned with black and white (binary) images, where the black pixels

are 1-valued, and white pixels are 0-valued. Connectivity among pixels can be
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defined in terms of their adjacency. Two black pixels (i1,71) and (i2,72) are 8-
neighbors if max{|iy — 22|, |1 — 72|} < 1, anid f-neighbors if |1y — ia| + |71 — J2| <
1. Two black pixels (%1,71) and (%, ji) are said to be connected by a 8-path(4-
path) if there exists a sequence of black pixels (7,,7,), 2 < p < k, such that each
pair of pixels (i,-1,7p—1) and (,,7,) are 8-neighbors(4-neighbors). A maximal
connected region of black pixels is called a connected component.

In a 0/1 picture the connected 1’s are said to form a figure. Thus, associated
with each PE is a label which is the unique ID of the figure to which the PE
belongs. The label associated with PE’s (¢, ) and (r, s) are the same iff (7, j) and
(r,s) are connected by a series of 1’s. For more details see [76].

Given a digitized 0/1 picture with PE(Z, j) storing the pixel (4, ), the convex
hull of the 1’s is the smallest convex polygon enclosing the 1’s. An algorithm to
mark the extreme points will store a value say 1 if the PE is an extreme point,
0 otherwise. Enumeration of extreme points corresponds to marking as well as
numbering the extreme points in some order, such as in clockwise order starting

from the top rightmost extreme point.

5.2.1 Labeling Digitized Images

An early step in image processing is identifying figures in the image. Figures
correspond to connected 1’s in the image. An N x N digitized picture may contain
more than one connected region of black pixels. The problem is to identify to

which figure (label) each ”1” belongs to.

Lemma 3 Given a N x N (/1 image, all figures can be labeled in O(log N) time
using an (N x N)-optical mesh.
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Proof: The basic idea of the algorithm is to identify the outer and inner bound-

aries of each figure, and then uniquely label all the connected ones surrounded
] by each of these boundaries [2]. To assure circular boundaries, the input image
is magnified by a factor of two, along each dimension. Each pixel then, locally
determines whether it is a boundary pixel or not by checking if at least one of
L its four adjacent pixels along the z and y axis, hold a ”0”. The pixels along each

boundary is linked to form a circular list. The direction of pointers are deter-

mined as shown in Figure 5.3. The details for two selected segments are shown.
G Others can similarly be formulated.

Now on, only the boundary PEs take part in the computation to identify the
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Figure 5.4: Pointer jumping

least numbered PE in their list. Bach PE during iteration +1, sets its pointer to
the pointer of the PE it was pointing to at the end of iteration . In Figure 5.4,
the ith iteration for some i, has A pointing to B and B pointing to C. In the
next iteration, A points to the PE that B was pointing to, which is C'. Since
this has the effect of doubling the distance “jumped” during each iteration, in
O(log N) time all the PEs in each list know the least numbered PE in their list.
The final step is the propagation of the unique IDs of each of outer boundaries
to its inner region. Broadcasting of IDs in done in parallel along each row of the
image. It is easy to see that since the figures do not cross there is always a unique
ID broadcasted to each of the inner PEs. O
The following code is the skeleton of the algorithm which each of the processors
could run simultaneously to label the figures in an N x IV image in O(log N) time.
The complete code can be found in Appendiit H.
procedure Label ; main program

call Multiply ; multiplies picture fourfold

call Border ; each border point points to its neighbor

call Unify ; all borders are labeled uniquely

call Propagate ; all outer borders propagate their labels
end
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Figure 5.5: Merging of blocks and processor assignment

In the following, we use less processors to lead to optimal solution.

Theorem 4 Given a N x N 0/1 image, all figures can be labeled in O(log N)
time using an (N/log/? N x N/log'/? N)-optical mesh.

Proof: In first step, we assign a log!/2 N xlog'/2 N block of image to each proces-
sor, and sequentially label the figures within these regions. This is accomplished
using a serial graph traversal technique (see Appendix III):

procedure Main.Label ; main program
call Border ; determines internal borders
from loop=1 to c?; ¢? is the number of pixels in each PE
call Edge ; check for PE boundary
if true then call Unify ; if so, then unify boundary
continue loop ; again, until done
end
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In the second step, these blocks are merged together until the block size becomes
log N x log N (see Figure 5.5). During each iteration, four blocks of size k x k
are merged to obtain a block of size 2k x 2k. This is performed by assigning
the available PEs to block boundary pixels, and then applying the algorithm of
lemma 3 to merge each pair of blocks. Since there are not enough processors
available to hold all the block boundary points, they are processed by groups of
log N at a time. Hence, the total time to simulate each of loglog NV iterations
is O(log*/* N'). This leads to a total of O(log!/? N loglog N) time complexity for

the second reduction step. Using Lemma 3, the remaining pixels are labeled.

5.2.2 Convexity Algorithms

Convexity plays an important role in image processing and in vision; many other
problems can be solved once the convex hull of figures is obtained. It has ap-
plications to normalizing pattern in image processing, obtaining triangulations
of sets of points, topological feature extraction, shape decomposition in pattern

recognition, testing for linear separability, etc. [75].

Theorem 5 Given a N x N 0/1 image, the convez hull of all figures can be
enumerated in O(log N) time using an (N x N)-optical mesh.

Proof: First, identify the figures and make a list of pixels in the outer boundary
of each figure. This can be done using the algorithm described for the labelling
problem. To begin with, each boundary pixel is defined to be an extreme point.
In this algorithm each boundary pixel checks the largest enclosing angle made in
the region between the two boundary pixels which it is pointing to on either side

of it. If this angle > 180 degrees then it eliminates itself from the list of extreme

74



.

Figure 5.6: Proof of correctness

points. If not, it continues along the boundary, doubling the distance covered
during each iteration, to compute the angle with other boundary pixels. This is
repeated over O(log V) iterations (Details are given in Appendix II).
procedure Convex.hull ; main program
call Check ; initialization of variables, all
non-boundary processors are eliminated

while I < log E do ; I=loop counter; F=size of image (V)

call Angle ; computes the angle between processors

call Update ; updates pointers

end
end

To prove correctness, consider points z, y, and z(see figure 5.6). Assume that
the algorithm has worked up to the end of k** iteration and that there is a point
p which should cause z to eliminate itself when it checks y, but fails to do so.
For this point p to cause z to be eliminated it would have to be in the region
on or above the line [. This point could not be in region B, as z would have

already checked that area. If this point had been above 1 then y would have
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been eliminated and told z about the point. If y has not been removed, the only
place for the point p must be in Region C, a contradiction to the existence of
point p. O

The reduction technique in Theorem 4 can be used along with the above proof.

This leads to:

Corollary 2 Given a N x N 0/1 image, the extreme points of all the figures
can be enumerated in O(log N) time using an (N/log* N x N/log"/* N)-optical
mesh.

5.2.3 Distance Problems

Another interesting problem is to identify and to compute the distance to a
nearest figure to each figure in a digitized image. In the following, we use the [;

metric. However, it can be modified to operate for any I} metric.

Theorem 6 Given a N X N 0/1 image, the nearest figure to all figures can be
computed in O(log N) time using an (N/log*’? N x N/log/* N)-optical mesh.

Proof: This algorithm is made of two steps. In the first step, each black pixel
finds its nearest neighboring black pixel which belongs to a different figure. In
the second step, each figure finds its nearest neighboring figure by finding the
minimum among all those values obtained for the PEs at the boundaries. This
can be done in O(log N) time, using the techniques of [84], once the input has
been reduced to match the number of processors. The following pre-processing
algorithm is used to reduce the size of the problem to match the number of
processors. The first step of this reduction procedure is to sequentially compute

the nearest neighboring figures to all the figures in regions of log*/? N x log'/? N.
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The second step of reduction is executed using a uniprocessor within blocks of
size log*/? N x logl/ 2 N. The following is an outline of this procedure. Complete
code can be find in Appendix III.
procedure Distance.Main
from 1=1 to ¢ do ; c = log/* N
for direction=1 to 4 do; up, down, left, right
call Distance ; distance is computed for each row/column
continue |
end

The third reduction step is to merge the information at the block boundaries.

This can be performed by using the merging procedure explained in Theorem 4.

This is done to bring the block size to log N x log N. O

5.3 Constant Time Geometric Algorithms

One for the most attractive properties of optics is superposition [50]. This prop-
erty suggests that the resultant disturbance at any point in a medium is the
algebraic sum of the separate constituent waves. Hence, it enables many optical
signals to pass through the same point in space at the same time without causing
mutual interference or crosstalk. Using this property, in [61] they showed how
a single memory element can be read by many processors at the same time. In
this section, we employ this characteristic to allow concurrent writes if all the
requesting processoré want to write a “1”. This leads to constant running time
of the following geometric algorithms, under the assumption that broadcasting

can be done in unit time:

W



Lemma 4 Given a (N*/?x N'/?) image, using an (N x N) optical mesh, in O(1)
time,

1. For a single figure, its convez hull and a smallest enclosing boz can be

determined.
2. For each figure, the nearest neighboring figure can be identified.

Table 5.1 shows a comparison of our results in computing geometric properties

of images with those on mesh based architectures.

5.4 Parallel Implementation of Iterative meth-

ods for Sparse Systems

Solutions to many problems in image understanding can be posed in terms of it-
erative improvement to an initial configuration. For example, discrete relaxation
based approaches to scene labelling can be viewed as an iterative improvement
process. In such problems, the underlying graph is usually sparse. But this spar-
sity is not regular. Efficient parallel implementaions of such relaxation methods
can be realized using the OMC with holographic connections. For sake of illus-
tration, we consider the solution of a set of linear equations, characterized by
sparsity, that is, the associated coefficient matrix contains a large proportion of
zero elements.

There are two general classes of methods for solving sparse linear systems,
direct and iterative. Direct methods usually involve matrix factorizations and
lead to additional nonzero elements being created during the computation. These
fill-in elements cause extra required storage and an increase in computation time.

On the other hand, Iterative methods preserve the sparsity of the matrix during
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computation and reduce the problem into some simple iterations of matrix-vector
multiplications. They are preferred for solving large sparse systems because they
can take advantage of zeros in the matrix and tend to be self-correcting and hence
tend to minimize roundoff error.

When designing a special purpose sparse system solx;er, s;:>me important issues
must be carefully considered. The architecture must be efficient for sparse matrix-
vector multiplications and must realize any abitrary iterative matrix structure.
Moreover, the structure of the iterative matrix is fixed throughout the computa-
tion. Thus, the expensive crossbar networks may be quite wasteful for this kind
of computations. Even though electro-optical arrays have been designed for dense
matrix computations and sparse banded matrix computatioﬁs, no architectures
are known for parallel solution to sparse linear systems in which the nonzeroes
are arbitrarily distributed.

Codenotti and Romani [20] presented a modular VLSI structure which is
capable of reconfiguring for different problem sizes. The main components in their
design are an array of m PEs and a mesh of switch nodes where the switch nodes
are configured according to the particular structure of the coefficient matrix. The
time required for one iteration is O(m) for solving a set of m equations.

In this section, we show how the proposed optical mesh can be used to pro-
vide an efficient iterative solution of general sparse linear systems. Any iterative
matrix structure can be realized by the use of holograms. Although the reconfig-
uration time for the hologram can be in the order of seconds in the current tech-
nology, it only needs to be done once during the preprocessing phase in which the

structure of the coefficient matrix is used to define the holographic connections.
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The interconnection pattern remains the same throughout the computation. An
optimal O(logm) time can be achieved by this design and the number of pro-
cessors depends only on the number of non-zero elements in the matrix. This
method is attractive when many computations are to be performed in which the
structure of the coefficient matrix is fixed. It is well suited for implementation of

many iterative methods such as Gauss-Jordan, Gauss-Siedel and the Conjugate

method [30].

5.4.1 The Algorithm

Consider the iterative method
$k+1 — Mzk +g

where M is sparse and nonsingular. Let n; be the number of nonzero element
in the ith row of M, and let ji, 72, ..., Jn; be the columns corresponding to these
elements. Thus, the above equation can be rewritten as
k = e
2t = Zmij.mj, + gi-
=1
Suppose there are n processors and each of the processors stores exactly ome
nonzero element in matrix M.
Theorem 7 The OMC can be used to solve each iteration of the iterative solution
to any general sparse linear systems with m variables and n nonzero elements in
O(log m) time.
Proof: Consider the following steps for solving the sparse matrix vector multi-

plication:
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1. Send z; to all processors with elements in 7th column.
2. Perform multiplication in each processor.

3. Sum up all the products from the processors with elements in the same row.

The broadcast of z; in step 1 is accomplished by sending the data to the first
two processors with elements in 7th column and then from those two processors
to the next four processors with elements in the same column. It can be trivially
shown that this step takes at most O(logm) time. The summation step can
be similarly done by summing the products in groups of two processors with
elements in the same row and then to the rest of the products. Therefore, the
matrix-vector multiplication can be performed in O(logm). Since the iterative
matrix is nonsingular, the z; elements and g; elements are stored in any one
processor with a non-zero element in the same row. This processor is always the
last one to be routed in the summation step. Thus we don’t need extra ProCessors
to store z and g elements and extra connections to route the result back. After

B z¥|, for all 4, must be checked for convergence.

each iteration, a norm |z
If the maximal acceptable error is reached or the maximum allowable number
iterations has been exceeded, the iteration process halts. The interconnection

patterns can be reconfigured for different inputs and different sizes as long as the

number of nonzero elements doesn’t exceed the number of Processors.

81



(N x N) (NxN) |(N—-PE)|(NxN)/logN

Mesh of Mesh Reduced Optical Mesh
Problem Trees Connected Mesh

Computer | of Trees
[84] [76] [83]

Labeling
figures (log® N)/loglog N N N log N
Convex
hull of log® N N N log N
all figures
Nearest
figure to log® N N N log N
all figures

Table 5.1: Time for computing some properties of images

82



Chapter 6

Non Von Neumann

Computations

The sequential and parallel Von Neumann models have a number of common
features: (1) data are passed indirectly between instructions via references to
shared memory cells; (2) literals may be stored in instructions, which can be
viewed as an optimization of using a reference to access the literal; (3) flow
of control is implicitly sequential but explicit control operators can be used for
parallelism, etc.; and (4) because the flows of data and control are separate, they
can be made identical or distinct.

In this chapter, we concentrate on realizing models of computations that op-
erate under principles that are unlike the ones specified above, using an optical
model of computation. The control scheme in these models are distributed and is

performed through interactive cooperation of the processing elements. Thus, an
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efficient communication network is a crucial factor in their performance. The op-
tical interconnection networks presented in the previous chapters can be naturally

adopted for realization of these models.

6.1 Implementation of Neural Networks

Conventional computers, regardless of the Von Neumann shortcomings, are very
successful in the solution of structured problems. Such problems are characterized
by the fact that they are solvable by the repeated application of a sequence of
operation, i.e., by an algorithm that may be defined in concise terms. However,
not all problems are like that. There are a large number of problems that we
do not know how to solve by a well defined, proven algorithm. At best we can
suggest some sort of heuristic procedure. Examples for such problems include the
recognition of some one’s face; or the evaluation of the situation in a chess game.

If we try to analyze how we as humans solve these problems, it seems that we
do so by drawing on a large bank of experience, accumulated by trial and error
over the years. This suggests that computers with large memories and associative
reasoning powers might be needed if we want to solve them mechanically. Models
with such capabilities have been proposed recently, e.g. the Hopfield model of

neural networks.
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6.1.1 Interconnectivity in Neural Nets .

Neural networks can be thought of as a spe.cia.l case of parallel computers; where
neurons play the role of processors and synapses play the role of the commu-
nication links. The most striking difference between a neural network and an
electronic circuit in a computer is degree of connectivity [88]. Optics is a natural
context to contemplate the implementation of neural networks [5]. The highly
communicative nature of the processing elements in neural models demand con-
nection mechanisms that do not interact except at (or near) the processing ele-
ments. This is particularly true in systems which are globally connected. Light
waves do not interact except under the attendance of a material medium, and
then only weakly. In this section, we concentrate on the interconnection medium
for neural networks, and propose an optical realization for such a model as shown
in Figure 6.1. As shown, there are IV receiving and N transmitting ports for each

neural processor. Its operation is explained in the section below.

6.1.2 Operation

Compared to electronics, the computational limits of an optical neural network
is superior but it’s operation is identical [1]. The i** neuron can be in one of two
states: u; = —1 (off) and u; = +1 (on). The synaptic connections are undirected
and have strengths which are fixed real numbers. In the optical version, these
weights are carried with the optical beams. The neurons repeatedly examine
their inputs and decide to turn on or off by the following scheme. Let w;; be the

strength (could be negative) of the synaptic connection from neuron j to neuron
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Figure 6.1: An implementation of a neural network

i. (wi; = wy; and wi; = 0). Let ¢; be the threshold voltage of the ith neuron. If
the weighted sum over all of its inputs is greater than t;, the i** neuron turns on
and its state becomes +1. If the sum is less than ¢;, the neuron turns off and
its state becomes —1. If the sum equals ¢;, the neuron maintains its previous
state. The action of each neuron simulates a general threshold function of N —1

variables (the states of the rest of neurons). This can be described by:
u; = sign(T; wiju; — i)

where sign(z) is +1 for positive z, and undefined for £ = 0. The network

starts in an initial state and runs with each neuron randomly and independently
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revaluating itself. Often, the network enters a stable point in the state space in
which all neurons remain in their current state after evaluation of their inputs.
The basic operation of the network is to converge to a stable state if we initialize
it with a nearby state vector. It has been shown that the number of iterations of

a neural network can be at most a polynomial in N [1]

6.2 Implementation of Data Flow Networks

A possible alternative to the Von-Neumann computer is the data flow model. The
idea here is simply that each operation is carried out by its own little module,
and these modules send their output directly to the other modules that need to
use this data. Thus, the data flows through the system in parallel, and it is used
as soon as it is produced [22, 6, 40, 114]. Most of electronic computers follow the
Von Neumann architecture and not the data flow architecture because data flow
requires too much interconnections and operational over head.

In a data driven computation organization, the instructions passively wait
for some combination of their arguments to become available. This implies a
select phase, which (logically) allocates computing elements to all instructions,
and an examine phase, which suspends nonexecutable instructions. In a con-
ventional data flow multiprocessor, communication between two instructions is
much quicker if these instructions are allocated to the same processing element.
Thus a program may run much faster if its instructions are clustered to minimize
communication traffic between clusters and each cluster is allocated to one pro-

cessing element. While such an optimal allocation is a NP-complete problem, it
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also does not lead to a pure data flow computation. The proposed unit-delay,
free space, optical interconnection networks, can provide a pure implementation
of data flow programs.

In this section, we briefly review how some existing data flow machines can
be enhanced with the use of the optical model of computation. To illustrate our

ideas, we consider Irvine data flow machine and the MIT data flow computer.

6.2.1 Irvine Data Flow Machine

The Irvine data-flow (Id) machine is motivated by the desire to exploit the poten-
tial of VLSI and to provide a high-level, highly concurrent program organization
[6, 114]. The Id machine has a packet communication organization with token
matching. It consists of IV processing elements and an N x N communications
network for routing a token from the processing element generating it to the one
consuming it. For the enhanced Id machine, we propose an organization based
on the optical model of computation. There are N processing eiements which can
intercommunicate in unit time using the free space optical beams. This is shown
in Figure 6.2. The organization of each processing element basically remains as it
was in the original Id machine, except the input and the output sections. These
two sections have to be enhanced to be capable of transforming electrical signals
to optical ones and vice versa.

Other unaffected sections are; the waiting-matching section, which forms data
tokens into sets for a consumer instructions; the instruction fetch section, which
fetches executable instructions from the local program memory; and the service

section, which is the arithmetic logic unit.
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Figure 6.2: An enhanced Irvine data flow machine
6.2.2 MIT Data Flow Computer

The MIT data-flow computer [114, 22] consists of five major units connected
by channels through which information packets are sent using an asynchronous
transmission protocol. The five units are; the memory section, consisting of
instruction cells that hold the instructions and their operands; the processing
section, consisting of specialized processing elements that perform operations on
data values; the arbitration network, delivering executable instruction packets
from the memory section to the processing section; the control network, deliv-

ering control packets from the processing section to the memory section; and
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the distribution network, delivering data packets from the processing section to
the memory section. The enhanced MIT data-flow computer has all the above
sections except that the arbitration network, control network, and the distribu-
tion network are all replaced by an optical interconnection network as shown in
Figure 6.3. Other data-flow computers similarly can be enhanced using optical
interconnection networks. For example, the enhanced Texas Instruments dis-
tributed data processor, can be reconfigured to have any topological organization

in addition to be connected as a ring.
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Figure 6.3: An enhanced MIT data flow machine
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Chapter 7

Conclusion

We began this thesis with a study of the requirements and capabilities of optics
when used instead of electrical interconnects as a communication medium. We
continued with a study of the computational limits in using optical interconnects
under a proposed optical model of computation. This model uses the space
above and around chips for interconnects, which places it at a comparable stage
with the three dimensional VLSI models. In order to implement this model,
we presented three possible physical architectures which achieve the unit time
intercommunication delay assumed in PRAM. A direct simulation is possible
using the proposed optical mesh using mirrors. A faster architecture is the optical
array using acoustic optic devices with broadcasting capability. A considerably
less expensive and currently implementable (using VLSI technology) design is
the electro-optical crossbar. This can simulate fully connected networks with a

reconfiguration time in the order of nanoseconds.

. We studied the relationships between this model and PRAM, where unit cost
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communication is possible, but there is a bottleneck in accessing memory mod-
ules. We presented a simple deterministic algorithm for efficient accessing of these
memory modules. This algorithm simulates one step of an N processor EREW
PRAM in O(log? N) time, and its probabilistic version has O(log Nloglog N)
expected running time. The loosely synchronized pointer based techniques pre-
sented can act as general subroutines in simulating PRAM algorithms.

We showed the superiority of using optical interconnects by presenting effi-
cient algorithms for applications such as finding the geometric properties of digi-
tized pictures, digitized image template matching, and several problems in digital
signal processing. Another applications in implementing non-Von Neumann com-
putational models was also presented. We proposed an implementation of neural
networks using a general purpose electro-optical crossbar which has the potential
to interconnect each of neurons to all the others. Similar architecture can be

modified to operate asynchronously for realization of a data flow model.
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Appendix I

sort

send

loop

q2-91

init

sort2

Variable Definition

% a counter

b(x) the value of element x

p a pointer variable

q(x) the two queues for the elements
1 a variable used in loop length

j(x)  the module number for element x
M(x) the memory location for x

V(x) the write value for x

v another counter

p(x) pointer to the next element

forx=1tol

v = b(x)

if q2(v) = 0 then qa(v) = v
else qi(p) = b(x); p = p+1

next x

forx=1tol
if g2(x) = 0 then goto loop
M{x,j(x)} = V(x)

next x

forx=1tol

ql(li) = q2(x); q2(x) = 0

forx =1tolog N

p(x-1) =x
next x

x = p(0)

forz=1tol

v = b(x)

if q2(v) = 0 then q@(v) =v
else Ch(P) = b(x), p= P+1

x = p(x)

next z
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send?2

loop

q2-q12

point

loop

x = p(0)

forz=1tol

if g5(x) = 0 then goto loop
M{x,j(x)} = V(x)

x = p(x)

next z

x = p(0)

forz=1%61

q1(x) = q2(x); q2(x) = 0
x = p(x)

next z

x=p(0);L=0;r=0
forz=1tol

if d(x) = 0 and r = 0 then goto loop

else if d(x) = 0 then

p(L) =x
r=0L=x
elser=1
x = p(x)

next z
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Appendix II

Variable Definition

o g M

th — e 0 =o' B K

x position of processor

y position of processor

pixel value(0/1)

square root of number of processors

Note: assuming a square PE layout
number of the current processor(k=ey+x)
pointer next

boundary test; true=1

variable k

outer boundary test; true=1, false=-1
temporary n

counting variable

sum of turns

this is used to determine inner/outer boundary statis
variable i

pointer right

pointer previous(Note this overwrites previous p)
maximum angle with pointer previous
maximum angle with pointer next

current angle with pointer next

current angle with pointer previous
eligibility text; true=0

procedure Multiply

if x mod 2=0 then go to ymod
if y mod 2=1 then p+ p.4;
else p— p;

end

ymod if y mod 2=0 then end

else p— p.

end

procedure Border

if k mod e=0 and k# e? then
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down ne— x+e(y+1)-k; end
if k<e then
rite ne— x+1+ey-k; end
if k mod e=1 then
up ne x-+e(y-1)-k; end
if k>e?~e then
left ne— x-1+4ey-k; end
case
:P1=0 and p.41=1:go to rite
:p=1 and p.=0:go to left
:p=0 and p;=1:go to up
:Ppe=1 and p.41=0:go to down
:else:ne 0
end
end

procedure Unify
if n=0 then b=0; end
i— k
if n=e or n=1 then o+« 1
else o— -1
te—mn;le—1;5 0
while 1<log (e/2)? do
if i, <i then i+ i,
if 0, # o then s« s+o0,; 0— s
D+ n,; l— 1+1
end
n«—t
if s>0 then b« 1
else b— 0
if s<0 then b+~ -1

end

procedure Propagate
I+—1;1<0
while 1<log (e/2) do
if k mod 2n=0 then go to done
re— k+1
ifi,=1 and i# 0 then go to done
if i# 0 and b=1 and p,=1 and b, # 1 then

i, —1; b, «— 1
b ™
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re— Tp; 1= 141
end
done if b=0 then i+~ I
end

procedure Check
if b# 1 then end
Pn — k-n
if (p+n) mod e=0 or p/e=n/e then D« 1

end

procedure Angle

Pm« (P/e)/(P mod e)

Nm+«— (N/e)/(N mod e)

nm« (n/e)/(n mod e)

pm« (p/e)/(p mod e)

case
:Pm>pm;pm>P:P+ pm
Pm<pm;Pm>P:P+— Pm
:Pm>pm;Pm>P:P— Pm
:Pm<pm;pm>P:P+ pm
:Pm=pm;pm>P:P+ pm
:Nm>nm;nm>N:N+ nm
:Nm<nm;Nm>N:N«— Nm
:Nm>nm;Nm>N:N«— Nm
:Nm<nm;pnm>N:N« nm
:Nm=nm;nm>N:N« nm

end

if N-P< 0 then D« 1

end

procedure Update
N—N,; PP
N Mp; P 'Pp
end
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Appendix III

Variable Definition
down 1b+1; le«c; ls1; x1; ko+—c; k1
left x«4; ko+—1; ke—Ixc

up Ib+c; le«1; Ise——1; x+3; ko——c; ke—c—c+l
right x+2; ko—-1; ke—Ixc+c-1

% x position within processor

y y position within processor

N number of processors

p pixel value(0/1)

e square root of number of processors

Note: assuming a square PE layout
number of pixels in each processor
square root of C
number of the current position(k«—cy-+x)
pointer next
variable k; used as identifier
temporary n
1,12 counting variable
I used as stack for i for non-boundary points
z,q temporary variables
2y, distance array; y—N
x— l=up, 2=right, 3=down, 4=left
z— l=distance, 2=position, 3=nearest 1 from
the nearest 1 in opposite direction
ci correct identification
b boundary test variable
1b loop beginning
le loop ending
Is loop skip variable

SR R Q

ko k offset
d distance variable
pd previous distance

loop main looping variable

procedure Border
from 1=1 to c? do
kel
if p=0 then go to done
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down

right

up

left

done
end

if k=c? then n_. +c; n«—-1; go to done
if k mod ¢=0 and ks#c? then

if p.=1 then

n+oc ; go to done

else goto left
if k<c then
if p;=1 then

n+1 ; go to done

else goto down
if k mod c=1 then

if p_.=1 then

n+—-—c ; go to done

else goto right
if k>c?-c+1 then
if p_1=1 then

n+-1 ; go to done

else goto up

if p=1 and p.=1 and p.y;=1 and p;=1 then goto done

case
pe=1 and poy=1
:p=1 and p;=1
‘Pes1=1 and py=1
:p=1 and p.=1
end
continue 1

procedure Unify

tn

k+«loop
if n=0 then end
if i#0 then go to tn
ik
tn+n
do forever
if i, <1 then 1+1;,
tne—n;,+tn
if tn=0 then exit
end

m, +—1
ng ——1
Moty ——C
Me—C
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tnen
do forever
itn ‘—1; tn‘_'ntn
if tn=0 then exit
end
end

procedure Edge
z+loop; q+2z mod c
if q=0 or q=1 or z<c or z>c*-c then rtrue
else r«false

end

procedure Propagate
from 1=1 to ¢?>-c+1 by c do

kel

start if k mod c=1 then go to done
if n=0 then k«k+1; go to start
cie—i

edge ke—k+1

if k mod c=1 then go to done
if i=ci then k«k+1; go to start
i+—ci; goto edge

done continue 1

end

procedure Distance
d«0; if p=1 then pl«k
from 12=1b to le by 1s do
if p=1 and i#ip; then
dg k,14—d; pde—d; d«0; goto done
if p=1 and i=i,; then
pd«pd-+d; d. x1pd; d—0; goto done
dzk,1ed
done d«—d+1; k—k+ko
continue 12
end
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Abstract

Recent developments in VLSI technology have made possible the design and implementation of
massively parallel computing systems comprising several thousand processing elements. As the
number of computing elements in a system increases, the likelihood of one or more elements failing,
during a given time interval, as well as the complexity of the system level diagnosis increase. Fault-
tolerance is, therefore, to become an integral part in the architectural design of large-scale systems
and reliability an important measure in the evaluation of their performance.

This dissertation addresses the issue of the effects of increased processor failures rate in large-
scale gracefully degradable distributed computing systems. A probabilistic model of network dis-
connection is developed and used to evaluate the effects of node failures on the network topology.
The results show that although the probability of network disconnection decreases with increas-
ing system size, the resilience of a given topology to network disconnection decreases when the
connectivity is kept constant.

Combined measures of performance and reliability are used to evaluate the trade-off between
increased computational power and failure rates as the number of processors is increased. It is
demonstrated that, for a given recovery mechanism, there exists an optimal number of processors
at which the amount of reliable computational work the system could deliver is maximum.

Finally, a simple distributed iterative algorithm for fault-tolerance is presented and evaluated.
Based on a functional execution model of tasks, this algorithm allows the implementation of run-
time fault detection, checkpointing and recovery.

viii



Chapter 1

INTRODUCTION

The most constant difficully in coniriving the engine has arisen from the desire to reduce the
time in which the calculations were executed to the shortest which is possible. It is not to be
presumed that such an attempl has succeeded. How near the approach has been made must
remain for afiertimes to delermine.

Charles Babbage
On the Mathematical Powers of the Calculating Engine

The rapid development of Very Large Scale Integration (VLSI) technology, in the last decade or
so, has opened a wide spectrum of new possibilities in the design of computing systems. In fact,
in the past ten years, we have witnessed the development of ever more powerful and sophisticated
commercially available microprocessors. While the switching speed of these devices has improved by
several orders of magnitude, it has becomes more difficult and costly to achieve orders of magnitude
speed-ups by solely upgrading the logic technology. More emphasis is therefore being put on building
parallel architectures to achieve faster program execution.

The availability, at low cost, of fast microprocessors and high density memory chips has opened
the way for the design and development of Large-Scale or Massively Parallel computing systems
where thousands of Processing Elements cooperate on the solution of a single problem. Such
systems are becoming a cost effective alternative to conventional supercomputing for a wide variety
of applications. In fact, their cost-performance is roughly estimated at $1,000 per MFLOPS whereas
it is on the order of $10,000 per MFLOPS in the supercomputer family.

Multiprocessors are generally classified as being tightly coupled or loosely coupled. Processors
in a tightly coupled multiprocessor system communicate through a globally shared memory. In
loosely coupled multiprocessors, or multicomputers, processors have their own local memory and
communicate by message passing over a shared interconnection network. The distinction between
message passing and shared memory systems is not a very strict one. In fact, several schemes have
been proposed that allow the implementation of a logically shared global memory on a physically
distributed local memory system [Ran87]. The Denelcor HEP [Kow85] and the BBN Butterfly
[BBN85a, BBN85b] implement such a model.

The objectives in using multiprocessor systems can either be a higher throughput or faster
execution time of a single application program. Higher throughput can be obtained with general
purpose time-shared multiuser multiprocessors such as the Sequent Balance or Symphony systems,
the Encore Multimax, the Alliant FX8, the BBN Butterfly, etc. Multiprocessors such as the Intel
iPSC, the NCUBE, the Connection Machine, etc. are mostly intended for faster execution of
application programs.



Large-scale computing systems are targeted towards applications that exhibit a very large degree
of parallelism. The execution of these applications often requires a very large amount (thousands)
of CPU hours which can become prohibitively expensive even on high-speed uniprocessor systems.
Such applications are typically found in physics (e.g. quantum chromo-dynamics), chemistry (e.g.
molecular modeling), aeronautical engincering (e.g. fluid dynamics), civil engineering (e.g. seismic
modeling), signal and image processing, computer simulation, artificial neural networks, etc. By
applying thousands of Processing Elements to a single job, the execution time can be reduced to
a manageable size thereby allowing a more effective use of computer models. It is expected that
the availability of massively parallel computing systems would computer models to be applied to

very large problem sizes and therefore open new possibilities and yet unforeseen potentials in many
areas of scientific research and engineering.

1.1 Large-Scale Computing Systems

The recent developments in VLSI technology has accelerated research in the area of massively

parallel or large-scale computing systems (LSCS). The salient features of such systems, as described
in [KR86], are:

e A large number of independent Processing Elements communicating over a high-bandwidth
interconnection network.

e Highly distributed control and operating system functions in the processing nodes.

e Highly parallel applications that are modeled as a collection of concurrent and communicating
tasks.

A commonly accepted criterion for defining massively parallel architecture is that of 1000 or
more Processing Elements irrespective of the size or complexity of the individual processor. The
objective behind such a criterion is to quantify the degree of parallelism available in the machine.

Two computing systems have been developed that can be categorized, because of their size, as
massively parallel systems. The Massively Parallel Processor (MPP) was developed by Goodyear
Aerospace Corporation for the Goddard Space Flight Center under a contract from NASA for
satellite image processing applications. Started in 1979, the MPP was historically the first machine
in this category [Bat80]. The MPP is an SIMD two dimensional array processor consisting of
16K (128 x 128) single-bit processing elements. The system can be configured as a flat array, a
cylinder or a torus. More recently, the Connection Machine (CM) was built by Thinking Machines
Corporation under contract from DARPA. Originally intended as a large-scale connectionist MIMD
architecture for the simulation of entity-relationship graphs [Hil86], the Connection Machine, in its
present form, is an SIMD architecture. It consists of 16K to 64K single-bit Processing Elements
organized in groups of 16. Each group of 16 PEs are implemented on a single chip together with
the associated section of the interconnection network. Groups of 16 PEs are connected in a binary
n-cube. The Connection Machine is the first commercially available Large-Scale Computing System
(LSCS). However, both the Connection Machine and the MPP systems have an SIMD architecture
that relies on a central controller, the host computer, for instruction scheduling and I/O operations.
Therefore, they do not exactly fit the above definition of large-scale computing systems.

The major research issues that face the development of massively parallel systems can be sum-
marized in three main categories:



1. Programmability: the programming and execution models necessary to build software tools
for a very large number of concurrent tasks.

2. Communicability: the necessary underlying communication structures that allows for fast
transfer of information from one point in the system to another.

3. Fault-Tolerance: the ability of the system to sustain and gracefully recover from faults and
failures.

While the development and architectural design of parallel computing systems is quickly becom-
ing an established field, the research and development of the software tools necessary to program
these architectures still lags behind. All the commercially available multiprocessor and multicom-
puter systems are programmed using traditional sequential languages (mostly C and FORTRAN
and, to a lesser extent, Lisp) that have been augmented with a set of library routines. These routines
implement the necessary operations such as process spawning, synchronization or message-passing.
It is, therefore, the programmer’s task to explicitly state and structure the execution of the pro-
gram in parallel. Notable exceptions in this respect are *Lisp and C* ! that were developed for
the Connection Machine. Although *Lisp and C* are designed as extensions to existing languages,
they allow implicit data parallelism.

Since the programmer cannot explicitly specify the parallel execution on several thousands
processors, the programmability of LSCSs becomes a crucial issue in their development. The major
task, in this respect, is to provide programming and execution models that allow implicit parallelism
to be detected at compile time and exploited at run-time. The research, in this area, has focused
on four programming and execution paradigms:

e Functional Languages: based on Lambda calculus, these languages offer a highly formal
approach to programming. Examples include Lisp and FL [Bac78]. Reduction architectures
have been proposed for the direct execution of such languages [Mag80].

o Object-Oriented Languages: these are are less formally defined than functional languages. As
common characteristic, they offer the possibility to define data structures and functions at
a higher level of abstraction than conventional languages. Examples include: SIMULA, the
Actors model as proposed by Agha [Agh85], C++ [Str86], Linda [ACGS6].

e Data-Flow Languages: they are closely related to functional languages. The main difference
being in their data-driven execution model. Examples include: SISAL [MSA*85], Val [AD79],
Id [NPAS86].

e Logic Programming Languages exemplified by Prolog, their paradigm is based on predicate
calculus.

The large number of Processing Elements makes it impossible to organize a large-scale system
around a physically shared global memory. Therefore, any realistic LSCS should be organized
around an interconnection network that allows communication between processors or clusters of
processors. While low connectivity graphs such as the array and the torus are suitable for SIMD
computations where all communications are made to near neighbors, their large diameter would
introduce unacceptable delays in MIMD computations. On the other hand, low diameter graphs
such as the binary n-cube have a very high node connectivity. Therefore, in large systems, each node

"*Lisp and C* are trademarks of Thinking Machines Corporation.



would have a very large number of links which can result in a high implementation cost per node.
A family of interconnection network topologies suitable for large-scale MIMD computations called
hypernets have been proposed by Hwang and Ghosh [HG87]. These are non-regular hierarchically
structured graphs that exhibit a low diameter while preserving a lower node-connectivity.

As the number of Processing Elements is increased, the likelihood of one or more elements failing,
during any given time interval, increases accordingly. The failure of an element has repercussions
not only on the program execution, but also on the communication structure. Due to the expected
increase in failure rate as the system size is increased, it is imperative that LSCSs be designed to
sustain and gracefully survive failures. Fault-tolerance considerations, therefore, do not affect only
the design of the individual Processing Element, but also that of the underlying communication
network. Furthermore, the reliability analysis of these systems becomes an important element in
their overall performance evaluation. The fault-tolerance issue in LSCSs, and the related reliability
and performance analysis are thus the topic of this dissertation.

1.2 Issues of Fault-Tolerance

The advent of LSCSs places the issues of fault-tolerant design and reliability evaluation of multipro-
cessor systems under a new light. In fact, the presence of a very large number of processing elements
within one multicomputer system not only increases the computational power of the system but
also the likelihood of one or more processors failing within a given time interval.

As the number of processors increases, the execution time of a given computation, and therefore
the total system utilization time, decreases. Because of the added parallelization overhead, the
increase in speed-up is at best a linear function of the number of processors. On the other hand,
the overall failure rate increases with the number of processors and with the complexity of the
underlying interconnection network with respect to the failure rate of a single processor using a
comparable technology. This increase is at least proportional to the number of processors and
results in a decrease of the expected time to first failure of the system. Since both the computing
power and the failure rate of the system are determined by the number of processors, and since this
number, in LSCSs, is expected to be very high, the trade-off between performance and reliability
is very critical to the design and implementation of LSCSs. In fact, one can readily see that, for
example, in a system with 4000 processors where the mean time to first failure of a single processor
is on the order of 10° hours, the expected time to first failure of the system is on the order of 25
hours. This value might often be smaller than the expected execution time of some computations.

Therefore, if LSCSs are to become a viable alternative to supercomputers for the execution
of massively parallel computations, then fault-tolerance must become a primary objective in their
architectural design and reliability a key issue in their evaluation.

The primary objectives of a fault-tolerant design in LSCSs are therefore to provide:

e correct computational results in the presence of failures;
e system level diagnosis;

The secondary objectives are:
o to maximize computational throughput

¢ to minimize the hardware and software overhead necessary to implement reliable execution



However, LSCS have an inherent redundancy that can be exploited in order to allow the system
to gracefully degrade in presence of faults by providing continued operation at reduced perfor-
mance levels. How to exploit this redundancy in order to provide an optimal compromise between
reliability and performance is still an open problem. This problem is actually two fold:

e at the hardware level, the issue is the detection of the failure of an element and its subsequent
isolation from the rest of the system, thereby allowing continued operation.

o at the software level, the issue is to restore a previously saved globally consistent state of the

program and resume execution on a reduced system with, possibly, a balanced reallocation
of the computing load across the system.

Because of the distributed nature of LSCSs, the fault-tolerance and reliability of the inter-
connection network are determining factors in the overall reliability of the system. In fact, the
fault-tolerant capabilities are based upon the exchange of information between processing nodes
and assume the ability of the underlying communication structure to carry out the required trans-
fer of information across the system. Several interconnection structures have been proposed and
researched [WF84]. Network topologies can be classified in two categories:

e static topologies, where the switching nodes correspond to the processing nodes such as in
the hypercube topology;

e dynamic topologies, where the processing nodes are located at the input and output nodes of
the network such as in a cross-bar switch;

The routing control in the network can be either:

o circuit switched where a physical path is established between source and destination nodes;

e packet switched where data is sent in one or several packets that includes the destination
address;

In the present state of technology, it seems that static, packet switched, networks offer the most
suitable approach for large-scale multiprocessing. This does not exclude that future technology
developments might allow mixed mode networks that could incorporate, at different levels, static
and dynamic topologies as well as integrated data and circuit switching,.

The required feature of an interconnection network from the standpoint of system fault-tolerance
and reliability can be identified as [KR86):

e Robustness: is the inherent redundancy of communication paths provided by the intercon-
nection network.

e Reconfigurability: a related notion which measures the ability of the communication structure
to adapt to link or node failures by providing reliable communication between processors.

Robustness and reconfigurability are the primary requirements on a fault-tolerant and reliable
communication structure. A related requirement is high diagnosability level. Diagnosis refers to the
process of determining the location of a fault in the system. Correct diagnosis of faults is necessary
to allow proper reconfiguration and recovery actions to be carried out. In a distributed system, the
system level diagnosis is implemented by a testing structure where each node is tested by all or a
subset of its neighbors. The test results are then shared by subsets of nodes to reach a coherent



conclusion on the state of the system. Kuhl and Reddy [KR81] demonstrated several algorithms
for performing distributed diagnosis that can be proven correct for a maximum number of faults.
They also proved that the diagnosability level achievable by a distributed fault-diagnosis algorithm

is a direct function of the interconnection topology and the testing structure independently of any
algorithm.

1.3 Dissertation Goal and Outline

The main goal of this dissertation is to study the issues of fault-tolerant designs and reliability anal-
ysis in large-scale multicomputer systems. The main characteristic that differentiates large-scale
systems (with thousands of Processing Elements) form existing multicomputers or multiprocessors
(with less than a hundred Processing Elements) is the system size. The impact of a very large
system size on different measures of fault-tolerance will be the main focus of analysis throughout
this dissertation. .

The rest of this dissertation is organized as follows.

Chapter 2 presents a statement of the problem addressed in this dissertation as well as a review
of the traditional approaches to fault-tolerant design and reliability evaluation. Proposed combined
measures of performance and reliability are reviewed. The concept of distributed fault-tolerance is
introduced. Finally, a summary of the major contributions made in this dissertation is presented.

Chapter 3 proposes a probabilistic approach to the evaluation of network fault-tolerance. A
stochastic simulation of network disconnection is used to derive an approximate analytical model.
The analytical model is then justified and verified for a family of regular graph topologies. Network
Resilience is introduced as a new measure of the robustness attribute of interconnection networks
and used to compare a number of regular and non-regular graph topologies.

Chapter 4 presents a computation oriented reliability evaluation of large-scale gracefully degrad-
able systems. The measure of Reliable Computational Work is defined and used to demonstrate
the non-scalability of graceful degradation.

Chapter 5 describes a methodology of functional program execution that allows asynchronous
run-time checkpointing. An iterative distributed algorithm for fault-tolerance is proposed that
allows for protection against failures as well as fault-detection. The performance and reliability
improvements brought by this algorithm are evaluated and compared to other algorithms.

Concluding remarks and directions for future research in this area are presented in Chapter 6.



Chapter 2

PREVIOUS RELATED WORK

Two are belter than one; because they have a good reward for their labor. For if they fall, the

one will lift up his fellow: but woe to him that is alone when he falls; for he has not another to
help him up.

Ecclesiastes, 4, 9-10

The design of fault-tolerant systems can be traced to the early years of computing systems design
when John von Neumann, in 1956, described how redundancy can allow reliable systems to be
built from unreliable components [vN56]. Since then, the evolution of fault-tolerant and reliable
systems design has paralleled that of computer architecture through several generations of design
technologies.

The research in this field has led to a better understanding of the types and characteristics
or faults and failures that can affect the operation of a computing system [SS82]. Three major
categories can be outlined according to the origin of the fault or failure, as:

1. Design errors: these are either hardware or software design errors that are more manifest in
the prototyping and initial stages of a product. However, some of these might not be detected
before years of utilization.

2. Component failures: an electronic component might fail because of overheating, current over-
driving, aging, etc. They generally result in a permanent failure of the system.

3. Transient faults: these are intermittent faults of random nature whose effect, as opposed to
the previous two types, are not reproducible. They originate from non-controllable sources
such as cosmic radiations, electromagnetic noise (particularly in pulse form), etc.

Studies have shown that non-permanent faults account for 90 to 98 % of all detected faults [MSTT79].
Furthermore, Fuchs et al. argue in [FAH83] that the increase in integration level, results in reduced
voltage levels and a subsequent reduction of noise margins which might increase the susceptibility
of VLSI circuits to electromagnetic noise interference.

The purpose of a fault-tolerant design is therefore twofold:

1. To guarantee continued system operation in the presence of failures. This implies the detection
of, and subsequent recovery from, permanent failures.

2. To provide a high probability of correct computational results and therefore the protection
against non-permanent faults.



Redundancy, in various forms, has been the basis of most, if not all, fault-tolerant designs
techniques and methodologies. In general, redundancy techniques call for the multiple execution of
a computation; the majority result is then taken to be the correct result. Redundancy techniques
can be applied either in ¢ime or space. In time redundancy, the same computation is executed
repetitively until a majority result is obtained [PF82). While this technique eliminates the effects
of intermittent or transient faults, permanent faults cannot be detected unless different hardware
units are used for the different executions. Space redundancy, commonly known as N-modular
redundancy (NMR scheme), calls for N copies of a computation to be executed, concurrently, on
N distinct hardware elements. The majority result is determined using a voting scheme. In order
to guarantee a strict majority, N is usually chosen as an odd integer. Several variants of the N-
modular redundancy scheme, such as reconfigurable NMR, hybrid redundancy and backup sparing,
are described in [BF76, SS82].

In this chapter we review the main concepts and ideas in fault-tolerant design and reliability
evaluation that relate directly to the design and evaluation of LSCSs.

2.1 Traditional Approaches to Fault-Tolerance

With the evolution of computing systems, fault-tolerant design has developed along two distinct
directions satisfying the following objectives:

1. Mission-Oriented Applications where the objective is to guarantee a system reliability above
a given minimum level for the duration of a mission. Such systems are often called ultra-
reliable and are intended for situations where repair is not possible such as in space and
military applications.

2. Awailability-Oriented Applications where the objective is to maximize the percentage of time
the system is up. These systems, therefore, aim at minimizing the frequency and duration
of necessary repairs. The main applications of such systems are in On-Line Transaction
Processing (OLPT) such as used in banking transactions and airline reservations. Historically,
the earliest systems designed for high availability are computer-controlled electronic switching
systems used in telephone networks.

Examples in the first category are the STAR [A*71] developed at the Jet Propulsion Laboratory
for NASA. The STAR is a self-testing computer system that implements repair by switching in
redundant spare units. The FTMP [HSL78] and the SIFT [WLG*78] were two concurrent projects
aimed at designing an ultrareliable airline guidance system with a failure rate lower than 107°.
The FTMP employs a form of redundancy related to the TMR-Hybrid redundancy called Parallel-
Hybrid redundancy, in which each major module can substitute for any other module of the same
type. The SIFT is also based on the replication of basic components but relies upon the software
to detect and analyze errors and to dynamically reconfigure the system to bypass faulty units.

Several high-availability systems that fall in the second category are now commercially available
[Ser84]. Examples include: the Nonstop system from Tandem Computers, the Synapse N+1 from
Synapse Computer, etc. The ESS, from AT&T, is intended for the control of electronic switching
systems [Tro78]. Based on a dual-processor architecture, the ESS is designed for a requirement of
less that two hours of downtime in a 40 years period.

In both of these approaches redundancy is extensively used to improve the reliability, and/or
availability, of the system. In LSCSs, the available hardware redundancy is aimed primarily at



increasing the performance of the system. However, because of the potential for an increased rate
of failures in the system, this redundancy can be used to provide continued system operation in

the presence of failures, albeit, at the cost of a decrease in system performance, thereby allowing
the system to gracefully degrade.

2.2 Network Fault-Tolerance

Because of the highly distributed nature of LSCSs, the reliability of the communication structure
acquires an increased importance. In fact, the loss of communication between any two nodes
might halt the execution as well as impair the system’s ability to rollback and recover. The design
and performance analysis of interconnection networks for multicomputer systems has been a very
popular area of research. Extensive research has been done in the design of high performance
connection networks for very large number of processing nodes [Fen81]. The emphasis, in these
designs, is on high performance, reliability and diagnosability of the systems as allowed by the
interconnection network.

As outlined in section 1.2, the basic requirements on an interconnection network, from the
system fault-tolerance standpoint are: (1) robustness and (2) reconfigurability. Robustness is a
notion tightly related to the inherent redundancy available in the network topology itself. For
example, a simple ring topology would allow up to two, non-adjacent, node or link failures after
which the system is partitioned and routing across the system is impaired. Reconfigurability, on the
other hand, relates to the ability of the routing algorithm to exploit the inherent path redundancy
and provide reliable communication between processor pairs in the presence of node or link failures.

Several protection schemes specific to some network topologies have been proposed and ana-
lyzed. Raghavendra et al. [RAE84] propose a reconfiguration scheme for binary-trees based on
spare Processing Elements, the number of spares being log N where N is the number of active Pro-
cessing Elements. Rennels [Ren86] proposes a similar dynamic strategy for binary n-cube topologies
(hypercubes). Fortes and Raghavendra [FR85] describe a dynamic reconfiguration scheme, with
no spares, for array architectures, based on alternating row and column elimination. Pradhan,
[Pra85b, Pra85al, describes a class of reconfigurable and optimally fault-tolerant network architec-
tures. Similar networks have been described in [EH85] and [SSB&7].

When the application is not topology specific, the loss of a Processing Element can modify
the network configuration. Since this configuration is not, in the general case, a fully connected
graph, successive failures can eventually result in a disconnection of the system, and therefore
prevent some processors from communicating to some other processors. In systems that rely on a
distributed fault detection, recovery and restart procedure, the connectivity of the graph is crucial
to the success of this procedure. Pradhan has proposed the measure of network fault-tolerance as
the number of processors that can fail while preserving graph connectivity [Pra85b]. Therefore, in
a regular graph with connectivity n, the network fault-tolerance is (n — 1). In the general case of
a non-regular graph where the connectivity of node i is denoted by n;, network fault-tolerance can
be defined as:

NFT = min(n;)
1

Network fault-tolerance is a very conservative measure of robustness that does not take into account
the size of the system and therefore the actual probability of occurrence of a network partition as a
result of node or link failures.



2.3 Evaluation Measures

The traditional fault-tolerance measures of reliability, availability and mission-time do not pro-
vide an adequate evaluation of degradable systems. These have been devised for ultrareliable
(mission-oriented) or highly available systems and therefore fail to take into account the capability
of multiprocessors to provide continued operations at lowered performance levels.

New measures, therefore, have been devised that provide a combined performance/reliability
evaluation of degradable fault-tolerant computing systems. A conceptual framework of composite
performance and reliability measures was first proposed by Meyer in [Mey80]. This framework is
general enough to accommodate all possible forms of performance accomplishments or rewards such
as throughput or computational work.

The performability of a system S is formally defined with respect to a set of accomplishment
levels A as follows [Mey80]:

Definition 2.1 IfYs is a performance measure of a system S taking values in the set A, then the
performability of S with respect to a subset B of A (B C A) is defined by the function ps(B) as:

ps(B) = Prob({w | Ys(w) € B})

In other words, given a performance measure (such as throughput) denoted by Y5 with a range
of possible values A. The performability of the system S is the probability that the performance
measure of the system after an event w will be in a subset of A denoted by B. As an example, the
performability of a degraded system could be the probability that its throughput be larger than
75% that of the undegraded system.

Closed-form solutions methods of performability for different types of systems have been pro-
posed in [Mey82, FM84, DB87]. More recently, Smith ef. al. have proposed a general framework
of performability models based on Markov Reward Models (MRM’s) [STR88].

Beaudry proposed the measures of Computational Availability, which is the expected value of the
computation capacity of the system and Capacity Threshold which is the time when a specific value
of the computational availability is reached [Bea78]. Performability and computational availability
are measures that evaluate the computational capacity of a system in time and therefore are ideal
for throughput oriented applications such as on-line transaction processing.

Also proposed by Beaudry is the Computational Reliability measure, which is the probability
that at a given time the system correctly executes a given task, and the Mean Computation Before
Failure (MCBF) which is the expected amount of computational work the system can deliver
before the first failure, [Bea78]. These two measures are more suitable for computation-oriented
applications where the critical issue is the reliable completion of the computation as is the case with
massively parallel applications.

2.4 Distributed Fault-Tolerance

Since the very large number of PEs in a LSCS precludes the reliance on any physically shared
global resource such as memory or controller, it implies that no central device can be used for
the testing and monitoring of the system. Therefore, due to the distributed nature of LSCS, the
task of identifying and isolating faulty PEs must itself be distributed throughout the system. In
fact, a central controller or monitor would not only be a single point of failure in the system
but might also become a performance bottleneck due to the large number of PEs. Preparata et
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al. [PMC67] proposed a fault-tolerance algorithm where diagnosis methods are used to detect
faulty elements that are subsequently isolated from the system. Based on this scheme, Kuhl and
Reddy introduced the notion of distributed fault-tolerance as an attempt to allow the diagnosis
and subsequent isolation of failed processors without relying on any central controller or memory

system [KR80]. A distributed fault-tolerance allows for the graceful degradation of a system by
providing for:

1. the detection of failures through system level diagnosis,

2. the isolation of the failed element from the rest of the system through logical and/or physical
system reconfiguration,

3. the recovery from the failure and the restart of the computation. This step assumes the
existence of some form of checkpointing that allows the rollback to a safe state in the com-
putation.

For a survey of fault-tolerance issues in large-scale systems, the reader is referred to [KRS86].

Several fault-tolerant schemes have been proposed that provide correct operations and allow the
detection of faulty elements. In the general case of unstructured systems, the problem of distributed
system diagnosis is known to be NP-complete. The system is therefore partitioned into a set of
more manageable subsystems [Mal80, MM82]. A system is said to be ¢-diagnosable when up to t
faulty elements can be detected, a comparison of modularly redundant and ¢-diagnosable systems is
given in [CH81]. The proposed scheme is based on the assumption that each task is equivalent to a
complete test (hundred percent fault coverage) of a processor. A recursive fault-tolerant algorithm,
based on combined space and time redundancy, is proposed in [Agr85]. In this algorithm a task
is initially executed on two processors and their results are compared, in the case of a mismatch,
the task is executed on a third processor and the results are compared to the previous two, this
process is recursively repeated until a match occurrs. The redundancy in this case is used to
obtain a plurality vote. This algorithm allows for fault detection and correct task execution while
maintaining a high system throughput. This scheme, however, relies on central commonly shared
units such as a scheduler and signature processor as well as on recursively built common data
structure that holds all the previous results pertaining to each task.

The Token Resending scheme, proposed by Gaudiot et al. [GR85], is based on the full replication
of data and task restarting in a data-driven execution model. This scheme exploits the functional
properties of data-flow execution to insure the retriability of tasks. Input data tokens to any
actor are preserved in duplicates until the acknowledgement of the successful completion of that
actor is received. This scheme, therefore, provides a the possibility of run-time checkpointing. Its
implementation on a Tagged-Token data-flow architecture is described in [NG87a]. These features
will be discussed in more details and exploited to implement distributed fault-tolerance in Chapter
5.

A similar scheme for distributed recovery has been proposed by Lin and Keller [LK86] for
applicative program execution. It assumes a tree-structured execution of program tasks where no
cycles are allowed.

2.5 Contributions of this Dissertation

In addressing the general issue of fault-tolerance and reliability analysis in large-scale multicomputer
systems, this dissertation makes the following contributions:

11



. Disconnection probability.

An analytical model is devised that evaluates the probability of a network partition occuring
as a result of multiple node failures. This model is verified by simulation results.

. Measures of network fault-tolerance.

Two new measures of network fault-tolerance are introduced: Network Resilience and Relative
Network Resilience. These measures allow a comparison of different network topologies based
on the cumulative probability of network disconnection.

. Effects of system size.
An analysis of the effects of a very large system size on reliability measures is presented. We
demonstrate, analytically, the non-scalability of graceful degradation in large systems.

. Computational mesures of reliability.

The measure of computational work is used to evaluate the performance of a system as
function of its size. The results show that an increase in system size might result in a
decrease in the probability of safe completion of a lengthy computation.

. Distributed chekpointing.
A scheme, based on functional task execution, is proposed that allows the run-time check-
pointing of programs with minimal overhead.

. Distributed fault-tolerance algorithm.

Based on the checkpointing scheme, an algorithm is proposed that implements distributed
fault-tolerance as well as system level diagnosis. Its performance evaluation shows it to be
superior to similar algorithms under normal conditions.

12



Chapter 3

A PROBABILISTIC EVALUATION
OF NETWORK
FAULT-TOLERANCE

“Look, Dave ... If you check my record, you’ll find it completely free from error.”

“I know all about your service record, Hal-but that doesn’t prove you're right this time. Anyone
can make mistakes.”

“I don’t want to insist on il, Dave, bul I am incapable of making an error.”

Arthur C. Clarke
2001: A Space Odyssey

The interconnection network is a central and major feature of any large-scale system design. Its
characteristics determine the speed and volume of possible data communication which, in turn,
determines its expected performance. They also determine the size of a realizable system in a given
technology. As noted in Chapter 1, a large system size increases the probability of failures. Multiple
node or links failures in a communication structure that is not based on a fully connected graph
(as in a single bus based system) might result in a partitioning of the system. This event not only
prevents the transfer of information between any two pairs of processors, but would also impair
the process of distributed recovery and therefore result in a total system failure. In this chapter
we propose a probabilistic approach to the analysis of network disconnections in distributed sys-
tems. The approach is based on a mixed analytical and simulation evaluation of the disconnection
probability in a given network topology.

The assumed system and processor model is shown in Figure 3.1. It consists of a set of processing
elements (PEs) communicating over an interconnection network. Each PE has a finite set of
individual links to the network. The major components of a PE are a local memory system, a
Processing Unit (PU) and a Communication Unit (CU). All communications from the PE to the
outside world are handled by the CU over the set of links. In the analysis that follows, we will
assume that the failure of either the PU or the CU is equivalent to the failure of all the links
and therefore results in a complete PE failure. Furthermore, we will assume that the failures are
uniformly and independently distributed throughout the system. This means that all processors
are equally likely to fail and that the location of failures are uncorrelated.

In this chapter we will evaluate the disconnection probability in a family of regular graphs. The
measure of Network Resilience is introduced as a probabilistic alternative to the static measure of
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Network Fault-Tolerance. The obtained results are shown to be extensible, under certain conditions,
to non-regular graphs. Finally, we demonstrate the analogy between node and link failures with
respect to graph partitioning and extend the obtained results to include link failures.

3.1 Disconnection Probability

In this section we propose a combination of analytical and experimental approaches to the evaluation
of the disconnection probability in a given network topology. Our model is a homogeneous, non-
reconfigurable multiple processor system based on a class of n-regular graph network topology. An
n-regular graph is a graph where the degree of all nodes is constant and equal to n. We assume
that the loss or failure of a node implies the loss of all its connecting links.

The topological effects of a link or node failure are shown in Figure 3.2. Note that from the
standpoint of node A, the loss of node B (Figure 3.2 b) or the link [AB] (Figure 3.2 c) have the
same effects and the same potential of disconnecting node A from the rest of the system. However,
the loss of node B has the same effect on three other nodes besides node A, while the loss of the
[AB] link affects nodes A and B only.

After introducing the notations and formal definitions we analyze the initial disconnection
probability and show that the case case of the single node disconnection is the most probable. These
results are confirmed experimentally using a Monte-Carlo simulation. Based on these results, we
propose an analytical approximation to the disconnection probability. Analytical and simulation
results are compared and contrasted.

3.1.1 Notations and Definitions

Let G(N, E) be an n-regular graph, with N nodes and E edges. A K-cluster is any connected
subset of K nodes in G(N, E). Vi is the number of neighbor nodes to a K-cluster and Sk is the
number of K-clusters in G(N, E).

Definition 3.1 A system is in a disconnected stale if and only if there exists a cluster of size K
that is disconnected from the system and K > 1.

The analytical evaluation of the disconnection probability assumes a graph topology that sat-
isfies the following two properties:

Property 3.1 Let k be the size of the mincut set of an n-regular graph G(V, E), then k = n.
Property 3.2 Given a K-cluster in G(V,E), 1< K < N/2 = Vi > n.

These definitions state that the size of the mincut set is equal to the node degree n, and the
number of neighbors of a K-cluster is larger than n for K > 1. Therefore, the ring which is a
regular graph, does not satisfy the stated properties. In this study, we consider, as examples, three
popular topologies that satisfy these properties:

e The cube-connected-cycles topology proposed by Preparata and Vuillemin in [PV81]. This
graph is based on a binary k-cube topology where each vertex is formed by a ring of nodes
connected as a cycle, some nodes are also connected to nodes on neighboring vertices corre-
sponding to a dimension of the binary cube. In the general case, the cube-connected cycles
topology is not regular. In the examples we will consider a modified, but regular, version
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of the cube-connected cycles where the number of nodes N = k2* and therefore each vertex

consists of a ring with exactly ¥ nodes each having 3 neighbors. The graph has a constant
connectivity n = 3.

e The torus or wrap-around mesh such as the topology of the ILLIAC-IV multiprocessor system.
The graph forms a surface where each node has a North, South, East and West neighbors. It
is a regular topology with constant connectivity n = 4.

e The binary k-cube is a topology commonly known as the hypercube and used in several
commercial systems [Sei85]. The number of nodes N = 2 where k is the dimension of the
cube. Each node has k neighbor, one along each dimension of the cube. It is a variable
connectivity graph with n = log, N.

We define the following probabilities:
Definition 3.2 P(i) = Prob [the system is disconnected exactly after the it* failure]

Definition 3.3 Q(¢) = Prob [a disconnected graph with (N — i) nodes | a connected graph with
(N — i+ 1) nodes and one node removal]

Definition 3.4 Qx (i) = Prob [a disconnected cluster of size K in a graph with (N — ¢) nodes |
a connected graph with (N — i + 1) nodes and one node removal]

Note that Q(¢) and Qg (¢) are static conditional probabilities that do not take into account
the evolution of the system. They are the probability of a disconnection event happening as the
system goes from (¢—1) to ¢ failures. P(i), on the other hand, is a dynamic probability distribution
function of the number of failures i. It implies that no disconnection occurred prior to the it
failure. From these definitions, we can obtain the following relation:

Py = @) [10 - Q) BAD)

This relation states that the probability of a disconnection event at the it* failure is the product
of the probability of no disconnection prior to that failure and the conditional probability of a
disconnection at exactly the it failure. Q(i) can also be written as:

M
Q) = Y Qx(i) (3.1.2)
K=1
Where M is the maximum possible value of K in a given graph topology.

3.1.2 Initial Disconnection Probability

A state of disconnection is depicted in Figure 3.3 for K’ = 1 and K = 2 in a torus topology. When a
node fails (3.3b), its corresponding links are also lost. Multiple failures result in the disconnection
of a cluster of nodes (3.3c and d).

Addressing the problem of the disconnection probability in the general case, for all possible
values of K, is practically impossible. The number of possible combinations of K connected nodes
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in a given network topology can grow exponentially with K. We therefore choose to address first a
simpler version of the problem, that is the probability of disconnecting a single node in the system.
Since in a regular topology every node has exactly n neighbors, we can state that:

P(i)=0 for i<n
and
P(n) = Q1(n)

For a single node to be disconnected, at least n nodes must fail. For the disconnection to occur
at the ¢« = n failure, all the n neighboring nodes must fail. In a system with N nodes, there are

( 1:: ) ways this can happen, among N possible nodes to be disconnected. Therefore:

N

Q1(n) = (T) (3.1.3)

n

The above result can be extended to the conditional probability of disconnection for K nodes

cluster and for 7 = Vi, as:
Sk

(3)

Conjecture 3.1 For large N and N >> n, Q1(i) >> (Q(7) — Qk (7)) or Q(3) = Q,(7)

Qr(Vk) = (3.1.4)

This conjecture states that in large networks, the single node disconnection event (K = 1)
is much more probable than any K-cluster disconnection where K > 1. This conjecture can be
explained intuitively by considering that as the cluster size K increases, the number of neighbors
increases too. Therefore the likelihood of that many nodes failing in a pattern that would result in
a disconnected cluster decreases.

Proof: The conjecture can be proved by an analysis of Equations 3.1.4 and 3.1.3. For large
networks and small n, i.e. N > n, the following approximation is justified:

Gl P
n | al
Since Vi is O(n) and Sk is O(N), therefore:

Qi(n)  NVxk-m)
Qx(Vk) ~ (Vg —n)!

From Sterling’s formula we can derive the following approximation:

mm
m!x —

~

em

it follows that:

Ql(n) 2 Ne )(VK—n)
Qrk(Vk) “(Vk —n)
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In Section 3.4 we demonstrate that Q1 (i + 1) > Q4(i) for ¢ > n. It follows that:
Q1(Vk) >> Qk(Vk) for N>>n

Since we are considering failures occurring in sequence, this means that the probability of a single
node disconnection at any ¢ < Vi is much larger than that of a cluster of size K at i = Vi . Therefore
the single node disconnection probability is the dominant factor in Q() and Q) =~ Q1(:).0
Following are two practical examples that demonstrate the above reasoning:

Example 1: Consider a torus topology (n = 4) with N nodes and the case of two nodes clusters
(K = 2). In a torus, the number of neighbors to a two nodes cluster is ¥z = 6 and there are
S2 = 2N such clusters in the network. Therefore the conditional probabilities of a single node
disconnection at i = n = 4 failures (Q(4)) and of a two nodes disconnection at i = Vo = 6 (Q2(6))
are given respectively as:

N 24
R A 5V Wl 53 0
4
IN 1440
Q2(6) = ( = ) T (N—1)(N-2)(N - 3)(N —4)(N - 5)
6

For a system size of N = 256 nodes, we have:

Q1(4) = 1054 Q2(6)

In section 3.1.4 we prove that Q1(i 4+ 1) > Q1(?) for ¢ > n, therefore:

Q1(6) > 1054 Q4(6)

Example 2: A hypercube topology with N = 2™ nodes, and n = 8. Sy = n/N/2 = 2048 and
Vik = (n — log2 K) K therefore V, = 14.

256

Q1(8)=—é€6—
()

2048

9= T}
(%)

Q1(14) > 3 10° Q4(14)

These examples show that when the disconnection of a two nodes cluster is possible (at i =
2(n — 1)) the probability of a prior single node disconnection event is a thousand times larger in
the torus case and three million times larger in the hypercube case. The above two examples are
not a proof, but a demonstration of the rationale behind the proposed conjecture for two common
network topologies. In the following section an experimental approach based on a probabilistic,
Monte-Carlo, simulation is presented that verifies the proposed conjecture.

=625 1071°

=0.210"18

Hence:
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Cube-Connected Cycles, N=
K] 24 | 64 [ 160 [ 384 [ 896 | 2048
1 || 25.2 | 52.2 | 71.3 [ 78.6 [ 84.0 [ 86.1
2 || 186 | 13.0 | 15.3 | 14.96 | 12.2 | 12.0
3] 110 [ 100 | 5.0 | 378 | 2.5 | 1.5
4 70 | 65 [ 30 | 1.22 ] 0.9 | 04
Torus, N=
K] 16 | 64 | 100 [ 256 | 400 | 1024
1 || 69.93 [ 66.37 | 69.9 | 81.05 | 83.8 [ 90.85
2 || 181 | 10.8 |11.07]| 84 | 815 4.05
3] 813 | 6.17 | 6.2 | 455 [ 3.95 | 2.6
4 || 145 | 401 | 36 | 1.75 | 1.05 | 0.75
Binary Cube, N=
K| 16 | 64 | 128 [ 256 [ 512 | 1024
1 [[67.75 [ 77.25 [ 89.1 | 92.4 [ 95.1 | 97.3
2 1125 | 94 [665 [ 54 | 41 | 24
3] 805 | 32 | 185 095 | 06 [ 03
4] 595 [ 215 [ 065 | 045 | 0.2 [ 0.0

Table 3.1: Frequencies of Disconnection

3.1.3 Monte-Carlo Simulation

The objective of the simulation is to measure the values of P(7) for different values of N on the
three example topologies described in section 3.1.1: the cube-connected cycles, the torus and the
binary k-cube.
The Monte-Carlo simulation algorithm used to obtain these results is described in Figure 3.4.
We first present the frequency of occurrence of a disconnections of different sizes clusters for
the three topologies under considerations. This measure is defined as follows:

Definition 3.5 Fy.qpn(K) = Probfthe size of the disconnected cluster is K | a disconnection
occurred)]

Given that a disconnection occurred in a given graph, Fyrqpn(JK) is the probability that the
disconnected component is a cluster of size K. Fy, Fj. and F,.. are the values of F.q,, for the
torus, binary cube and cube-connected cycles topologies respectively. These values are shown in
Table 3.1 for K = 1,2,3 and 4, as obtained from the Monte-Carlo simulation.

From these results, we can draw the following conclusions:

e Fxcept for the cube-connected cycles with N = 24, in all three cases, and for all values of
N, the proposed conjecture is verified in that the frequency of a single node disconnection,
Fgrapn(1), is larger than 50%. Furthermore, Fyrqpn(1) increases with increasing N indepen-
dently of the connectivity.

e Comparing the results for the three topologies, one can observe that the dominance of the
single node disconnection increases with an increasing n. For example, for N = 64, one can
observe that: Fj.(1) > Fy(1) > Fiee(1) and Fyo(K) < Fi(K) < Foee(K) for all K > 1
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These effects can be explained by recalling the expression for Q Kk (Vi). Although the numerator,

Sk, increases with an increased connectivity n, the increase in the denominator, , is the

N
Vi
dominant factor. Therefore, for large system sizes, the dominance of the single node disconnection
probability on the overall disconnection probability can be stated by the following approximation:

Q1(7) >> Qi) — Q1(1) = Q(2) = Q1(3)

which states that the conditional disconnection probability can be approximated by the single
node disconnection probability. The above results do not give an indication on the value of P(7)
itself, only on its composition. In the following section we propose an approximation to P(i) based

on Q(7) = Q1(7) for large values of N.
3.1.4 Single-Node Disconnection Approximation

In this section we propose an approximate expression for P(i) based on the results shown in the
previous section. In this effort, the objective is not to provide an exact value for P(i), but rather
an indication of its order of magnitude in an analytical way.

The proposed approximation, for large N, is expressed as follows:
Q1(7) >> Qi) — Q1(3) or Q1(i) >> Qk(i) VK > 1 (3.1.5)
Therefore we can approximate P(7) as:
i1
P(i) ~ Pi(i) = Q1)) [ (1 - @1(5)) (3.1.6)
J=1

In order to evaluate P(7) we need an expression for @1(¢ > n). It is provided by the following
theorem:

Theorem 3.1 The conditional probability of disconnecting a single node after i failures, where
n<i<2n-—1 is given by:

nN( Ni—_nn—ll)
Q1(7) =
(N—z'+1)(z.j_vl)

Proof: Keeping in mind that no disconnection happened at the (i — 1)t failure, the probability
that one occurs at the i** failure is the probability that some node had all but one of its neighbors

forn<i<2n-1; (3.1.7)

; ; N . o
failed and that that neighbor was the #** failure. i1 ) represents the possible combinations

of i — 1 failures among N nodes. ( i " | ) = n is the possible combinations of n — 1 failed
T i ) is the combination of the remaining ¢ — n failures
t—n

neighbors among n neighbors. ( i
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for (j = 0; j < Number-of-iterations; j + +) {
Build a graph;
for (i=1;i < N;i++){
e choose a node at random from the remaining (N — );
e remove that node and all its links from the graph;
e traverse the graph recording the number

and size of connected components;
e if (disconnection){

record ¢;
record size of cluster;
exit;}

Report data;}

Figure 3.4: Monte-Carlo Simulation Algorithm
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in the rest of the system, where N is the number of nodes which can be isolated, and 7\%_'_1 is
the probability that the last remaining neighbor fails. O Equation 3.1.7 corresponds to the single
node disconnection probability when more than n nodes have failed. For i > 2n — 1 it is possible
to have two ore more single node disconnections. However, the probability of multiple single node
disconnections is of the same order as that of a cluster disconnection where K > 1. Therefore,
using the approximation of Equation 3.1.5, we can extend the range of ¢ in Equation 3.1.7 to i > n.

Simplifying Equation 3.1.7 we obtain:
n(N —n—1)(i - 1IN —1)
=V - 1) 5:15)

Ql(% > n) =
From Equation 3.1.8 we can derive:
Q1(i+1) 1 N eife] i

Q1(i) i+l-n N—-i i+l1-n

This proves the relation Q1(i + 1) > Q1(7) for i > n.
The single node disconnection approximation can therefore be summarized as:

P(i)=0 for i<m

P(n) = @1(n) =

N
n
i-1
P(i) = Q()) [I(1 - Q)
=1
- (N=n-1)! _(i=n)
; ~ n(N-n-1) t—mn)!
Qi ~ @A) =7 G- =9
In the following section we present a comparison of the disconnection probability values obtained
with this approximate analytical model and the Monte-Carlo simulation described in the previous
section.

for i>n

3.1.5 Analytical and Simulation Results

Using the same simulation approach described in Section 3.3, we obtained the values of P(i) for
the three topologies and for different values of N.

Figure 3.7 shows the values of P(7) for a torus with 64 nodes as a function of i. The two curves
show the simulation and analytical values. The maximum difference in value, at the peak, is 25%.
Figure 3.7 shows the same curve for the case of a binary cube, the maximum difference being 20%.
Figures 3.9 and 3.8 show similar plots for N = 256. One can notice that the curves for the binary
cube cases are narrower and peak around ¢ = N /2, while they are wider for the torus cases with a
peak at ¢ < N/2.

Table 3.2 summarizes the comparison between the simulation results and those obtained with the
analytic approximation. These tables show the peak value of the overall disconnection probability
distribution function P(%), denoted by Py, and the corresponding value of the number of node
failures, ipeqr. The objective in this comparison is to show the order of magnitude of P(%) and the
corresponding range of values of ¢ where the peak value of the disconnection probability occurs.

From this table one can observe the following:

24



Fp)
y

0.10 1

0.09 -

0.08 -

0.07 1

0.06 -

0.05 A

0.04

0.03 1

0.02 1

0.01 1

o : Simulation
- 1 Analytical

Figure 3.6:

Probability of Disconnection, Torus, N = 64

25



0.10 1

0.09 -

0.08 ~

0.07

0.06 -

0.05 1

0.04

0.03 1

0.02 1

0.01¢

o : Simulation
-+ Analytical

Figure 3.7: Probability of Disconnection, Binary Cube, N = 64

26



Fpg)
A

0.10 1
0.09 +
0.08 1

0.07 1

T

0.06 -

0.05 1

0.04

0.03 -

0.02 1

0.01

o : Simulation
-1 Analytical

4

4

3
S
=~

30 40 50 60 70 80 90 100

Figure 3.8: Probability of Disconnection, Torus, N = 256

27



0.10

0.09 +

0.08 -

0.07 1

0.06

0.05t

0.04 -

0.03 1

0.02

0.01 A

o : Simulation
- Analytical

T

T ° oo ©

L]
q
o0,
o
o
Q"
4

o A o.‘.
A ' . : — %i

10 20 30 40 50 60 70 80 90 100

Figure 3.9: Probability of Disconnection, Binary Cube, N = 256

28



Cube-Connected Cycles

N 24 64 160 384 896 2048
Simulation | Ppae, || 0.296 | 0.095 | 0.044 | 0.028 | 0.0187 | 0.016
lpeak 6 15 28 50 84 114

Analytical | Pp., || 0.132 | 0.068 | 0.0375 | 0.021 | 0.012 0.007
ipeak || O 16 28 48 84 144

Torus

N 16 64 100 256 400 1024
Simulation | Pp,y || 0.2066 | 0.0775 | 0.058 | 0.03 | 0.0215 | 0.0105
ipeak 9 25 32 63 88 190

Analytical | Ppayp || 0.1765 | 0.0597 | 0.043 | 0.0216 | 0.0156 | 0.00785
peak 9 24 32 64 88 175

Binary Cube

N 16 64 128 256 512 1024
Simulation | Ppg, || 0.2122 | 0.069 | 0.0375 | 0.025 | 0.0165 | 0.0117
toeak 9 38 67 142 284 575

Analytical | Praz || 0.1765 | 0.0593 | 0.0342 | 0.0195 | 0.0110 | 0.0062
tpeak 9 35 69 137 272 541

Table 3.2: Prop and tpeak

o A very close correlation in the value of ¢,.,; between the simulation results and the analytical
model. The variation in the value of P, is due to the approximation in the analytical model
as well as to the statistical error in the simulation.

o In the cube-connected and mesh topologies, i < N/2 while ipeer > N/2 in a hypercube
topology. For example, with N = 1024 we have ¢ & 200 for the mesh and 7 = 550 for the
hypercube. This shows that higher graph connectivity allows the network to sustain a larger
number of failures before disconnection.

o The value of P4, falls within the same order of magnitude for all three topologies and for
a given range of values of N. For example, Prqz = 20% for N = 16 and Ppar = 2.5% for
N = 256.

These results show that the number of nodes in the system, N, is the dominant factor in
determining the maximum value of the disconnection probability, Ppaz. On the other hand, the
node connectivity, n, determine the range of values of ipeqk. In other words: the magnitude of
the disconnection probability id determined by the system size (N), while the expected number of
failures that can be sustained before a disconnection occurs is determined by both the system size
and the node connectivity.

The coverage factor, in a gracefully degradable system, is the probability of successful recovery.
We have shown that a disconnection in the network will prevent a successful recovery mechanism.
Therefore, the probability of no disconnection is a multiplicative coefficient in the expression of the
coverage factor. In other words, the coverage factor at the it* failure can be expressed as:

& = (1= P(i))
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Cube-Connected Cycles

N 24 | 64 | 160 | 384 [ 896 | 2048
Simulation || 2 | 4 7 12 | 20 40
Analytical || 2 | 4 7 12 | 21 35
Torus

N 16 | 64 | 100 | 256 | 400 | 1024
Simulation || 4 | 8 | 11 | 19 | 28 55
Analytical || 4 | 8 | 11 | 21 | 30 59
Binary Cube

N 16 | 64 | 128 | 256 | 512 | 1024
Simulation || 4 |18 | 33 | 75 | 159 | 336
Analytical || 4 | 17| 36 | 77 | 161 | 337

Table 3.3: Network Resilience for p = 0.01

where ¢} is the coverage factor in a system where no disconnection can occur as for example in
a fully connected graph topology. The range of values of P,,,, shown in Table 3.2 is very high
compared to any acceptable value of the coverage factor. The question therefore becomes: What is
the number of nodes that can be allowed to fail with a reasonably low probability of disconnection?
This evaluation is the topic of the next section.

3.2 Network Resilience

Network Resilienceis introduced as measure of the expected number of nodes failures a system graph
can sustain with a reasonable probability of no network disconnection. The reasonable probability
is determined by a certainty factor (1 — p). Network resilience is therefore defined as:

NR
NR(p)=>_P@i)<p (3.2.9)
=1

NR is therefore the cumulative distribution function of P(7). In a similar fashion, we define the
measure of Relative Network Resilience, RN R, as:

N R(p)
N

While N R(p) measure the absolute number of nodes, RN R(p) measures the percentage of
nodes and gives therefore an indication of the scalability of various network topology with respect
to network fault-tolerance.

Figure 3.10 shows the plots of N R(p) for all three topologies for p = 0.01 = 1%. Figure 3.11
shows similar plots of RN R(0.01). The numerical values are displayed in Table 3.2.

It is interesting to notice that for increasing N the values of RN R(p) decreases in the case of the
cube-connected cycles and mesh while it increases for the hypercube. For the range of values shown
in Table 3.2 for the respective topologies, this ratio goes from 8% (N = 24) to 1.9% (N = 2048)

RNR(p) =

(3.2.10)
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for the cube-connected cycles, from 25% (N = 16) to 5.6% (N = 1024) for the mesh and from 25%
(N = 16) to 33% (N = 1024) for the hypercube.

From these observations we can conclude:

o The value of N R(p) increases with increasing N. Therefore, larger systems can allow a larger

number of nodes to fail before the cumulative probability of disconnection reaches a given
level.

o The value of RN R(p) decreases with increasing N for constant constant connectivity graphs
such as the torus or the cube-connected-cycles. Therefore, for a constant n, the number of
degradation states is a decreasing fraction of the number of nodes as N increases.

o For networks where the connectivity n is an increasing function of the number of nodes N,
as in the binary cube case, an increase in NV increases both N R(p) and RN R(p).

The comparison between analytical and simulation values in Table 3.2 indicates that the adopted
analytical model yield very close values of N R(p) and RN R(p). While network fault-tolerance is a
static measure that depends exclusively on n and therefore on the topology alone, network resilience
is a probabilistic measure that depends on both N and n. It can be tuned by selecting appropriate
values of the certainty factor p. In fact for the trivial and conservative case where p = 0 the two
measures of network fault-tolerance, as defined in [Pra85a], and network resilience as defined here
are equivalent.

The notion of network resilience has implications on the number of degradation states that can
be allowed in a degradable system. A large-scale gracefully degradable system can tolerate element
failures while providing continued operations. The maximum number of node failures allowed in
a multicomputer system is called the degradation level, denoted here as D. When the application
does not pose any constraint on the minimum number of processing nodes necessary, the value
of D is determined by the system fault-tolerant design. As the number of failures increases, the
difficulty of system recovery increases, thereby decreasing the probability of a successful recovery.
The degradation level, D, is therefore the number of failures up to which graceful degradation can
be expected with reasonably high probability. After D failures, the recovery becomes difficult and
the probability of success low, therefor the system is considered failed. In a distributed system that
is not based on a fully connected graph, the value of D is constrained by the probability of network
disconnection. By determining an acceptable value of the certainty factor p, network resilience can
allow the determination of the number of degradation levels D.

3.3 Non-Regular Graphs

Non-regular graph topologies such as the array, offer the advantages of a constant connectivity that
is independent of the system size and therefore of node modularity. Furthermore, the array, like
the binary k-cube, is a scalable topology: An array (or binary k-cube) graph can be partitioned
into several smaller arrays (cubes) having the same topology. This is not the case in graphs such
as the torus where partitioning does not preserve the original network topology.

In this section we present a simulation analysis of the disconnection probability in an array
topology. These results are then compared to those of a same size torus using the analytical model
that was derived in section 3.1.

Table 3.4 shows the frequency of disconnection of K nodes cluster as a function of the array size.
These results show that the frequency of a single node disconnection (K = 1) is still the dominant
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Array

K| 16 | 64 | 100 | 256 | 400 | 1024
1 || 55.7 | 49.7 | 56.8 | 65.7 | 72.6 | 76.0
2 || 12.6 1109|109 | 99 | 9.9 | 15.0
3 |[13.5]104 | 87 | 7.7 | 5.8 | 3.0
4 || 86 | 52 | 6.1 | 3.7 | 3.8 | 3.0

Table 3.4: Frequencies of Disconnection, Array

| N [ 16]64]100] 256400 [ 1024 |
Torus || 4 | 8 | 11 | 21 | 30 | 59
Array || 1 | 2 3 10 | 16 23

Table 3.5: Comparison of Network Resilience, Torus and Array (p = 0.01)

factor. However, comparing the frequencies of disconnection in the array and torus topologies
(Table 3.1), we can note that the frequency of single node disconnections in the array case is
significantly smaller than in the torus case. This reduction is due to the edge effect introduced by
the non-regularity of the graph. In an array topologies there are 4(v/N — 1) nodes with degree 3
and 4 nodes with degree 2. The ratio of the number of edge nodes to the total number of nodes
is O(N 15) It would be expected, therefore, that for very large system sizes the disconnection
frequency in an array topology would approach that of a torus topology.

We note from Figure 3.12 that the edge effect results in an increase in the probability of
disconnection as compared to that of a torus. Therefore, for a same fraction of failed nodes, the
array is more likely to get disconnected than a torus.

Table 3.3 shows the effects of graph non-regularity on Network Resilience by comparing N R(0.01)
for the array and the torus graphs. These values show a very large decrease in network resilience.
In fact, one can notice that for N > 100 the N R of an array is roughly half that of a same size
torus. Therefore an array topology is twice as prone to network disconnection than a torus of the
same size.

From this analysis, we can conclude that the problem of network disconnection is even more
acute in the case of low degree non-regular graphs such as the array. Therefore, protection measures,
such as backup nodes or links, must be provided in order to allow a larger number of graceful
degradation states in systems based on such graph topologies. An alternative possibility would
be to investigate the design of network topologies that minimize the ratio of edge nodes to total
number of nodes thereby providing a higher resilience to network disconnection.

3.4 Link Failures

The analysis of sections 3.1 and 3.3 are based on the assumptions of node failures exclusively. In
this section, we carry a similar analysis for the link failures, assuming no node failures.

In the multicomputer system model described in section 3.1, each node consists of a Processing
Unit (PU) and a Communication Unit (CU). The failure of either of the PU or CU is tantamount to
a node failure since no communication is possible to the outside world (in the case of a CU failure)
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Cube Size

K| 8 ] 16 | 64 ]| 128 [ 256 | 512
76.3 | 79.3 [ 87.7 [ 90.3 [ 95.3 | 97.0
18.6 [ 153 9.3 | 7.8 | 4.6 | 2.6
42 |36 [ 18 [ 1.7 01 [ 04
09 |14 ]08]01]0.0]00

| o B3| =

Table 3.6: Frequencies of Disconnection in a Binary Cube, Link Failures

or no useful work can be done in that node (in the case of a PU failure). The links connecting the
nodes constitute the interconnection network.

Well known and simple fault-tolerance techniques exist for the protection against link failures.
Most common among these are the various error detection and correction schemes. These are based
either on the use of redundant bits for error-detection and error correction such as in SEC/DED
codes, or error-detection bits with data retransmission (SED codes). Although these schemes can
provide a very high level of protection, they are not fail-proof and therefore system failures can still
be caused by single or multiple link failures. A particular case worth noting is when Very Large or
Wafer Scale Integration technologies are used to implement several nodes on one chip. In such cases
the silicon real-estate used by the interconnection network becomes a substantial fraction of the
overall chip area. However, the same traditional protection techniques apply as well. Therefore, in
all realistic cases, the expected link failure rate will be much lower than the expected node failure
rate.

A Monte-Carlo simulation of link failure in binary n-cubes (Table 3.6) shows that the same
behavior can be observed as in the node failure case. The most frequent disconnection is that of a
single node. We can deduce, therefore, that for either link or node failures, protecting against the
disconnection of a single node would provide a very high coverage.
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Chapter 4

COMPUTATIONAL RELIABILITY

“.. but I hope this restores your confidence in my reliability.”
“I am sorry about this misunderstanding, Hal,” replied Bowman, rather contritely.

Arthur C. Clarke
2001: A Space Odyssey

In Chapter 3 we have seen that an increase in system size has a favorable effect on the network
disconnection probability by allowing a higher value of the Network Resilience. For low constant
connectivity graphs, this value was shown to be a decreasing fraction of the system size as the
number of nodes is increased. As the system size is increased, the performance and reliability of
the system are influenced, respectively, by (1) an increase in the available computational power
and (2) an increase in the expected rate of failure of the system. The objective of this chapter,
therefore, is to propose a combined performance/reliability modeling and an analysis of gracefully
degradable large-scale multicomputer systems. In this analysis, particular emphasis will be put on
the following issues:

e the scalability of large-scale systems, by analyzing the effects of an increase in system size;
e the quality of the recovery scheme, by an analysis of the effects of the coverage factor.

e the computational reliability which is the probability of correct completion of a given compu-
tation, as function of both the system size and the coverage factor.

We present first the system and failure models on which the analysis in this chapter is based.
This followed by an analysis of time-based measures such as Mean-Time-To-Failure and Mission-
Time. Computation-based measures are then introduced, defined and analyzed. Finally, a discus-
sion of these results and their implications on the design and performability of LSCSs is given.

4.1 System and Fault Models

The model under consideration is that of a large-scale, homogeneous multiprocessor. The com-
putation is, initially, uniformly partitioned among N identical processing elements. The system
is assumed to support graceful degradation. Upon the detected failure of a processor, its com-
putational load is picked up by another processor or set of processors with near uniform load
partitioning. Distributed fault-tolerant schemes are based on the algorithm proposed by Preparata
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Figure 4.1: Markov model of failures

et al. [PMC67]. A detailed description and discussion of this algorithm can be found in [KR80]. It
is based on the following three steps:

e fault detection
e fault isolation
e system reconfiguration and recovery

However, the ability of a system to gracefully degrade hinges on the combined success of these
three steps. The failure to either detect, isolate or recover from a fault can result in a total system
failure. The cumulative probability of success of these three steps is expressed by the coverage
factor [BCJ*71]. In a distributed system, the recovery procedure relies on the communication
among processors, and therefore on the system network being connected. Unless the system has a
fully connected network topology, successive failures might result in a partitioning of the network.
The probability of disconnection is, therefore, a parameter of the coverage factor as demonstrated
in Section 3.1.2.

A common assumption of fault-tolerant schemes is that of no simultaneous multiple failures,
in other words, that failures are sufficiently spaced to allow the recovery process to deal with
one failure at a time. The occurrence of two or more failures in a short interval might lead to a
failed recovery and therefore to a total system crash. For this reason, a Global State Saving (GSS)
procedure is necessary at fixed intervals during the course of the computation to insure that the
progress done by the computation is not lost. One of the goals of the present analysis is to evaluate
the interval between successive GSS procedures: Tgs;.

For the sake of simplicity, the analysis that follows will not take into consideration the time over-
head incurred in recovering from a failure. Although this assumption is unrealistic, it is justifiable
in an analysis of asymptotic behavior.

The system is modeled by a continuous-time Markov chain (CTMC), shown in Figure 4.1,
[Tri82] [SS82]. Since our analysis will focus on gracefully degradable systems, we will not consider
system repair and therefore the CTMC is acyclic. The following parameters are used:

e P;(t) is the occupation probability of state i, i being the number of failed processors, i =
0,...,D—1,F; where F is the state of total system failure.
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¢ D is the number of allowable degradation states, expressed as a function of N.

® c; is the a state-dependent coverage factor, which is the probability of successful recovery
from a single failure in state <.

The rates of state transitions, A; and p;, can be expressed as a function of the single processor
failure rate A, as follows:

Ai = C,‘(N —i)/\

po= (1= e)(NV =)

In the analysis which follows we will assume, for simplicity, a constant (i.e., state independent)
coverage factor.
g = @ 1=0,...,D-1

This assumption is somehow unrealistic since the probability of partitioning the network increases
with increasing ¢ and might reach values comparable to any assumed value of ¢ (see Chapter 3).

Let P;(t) be the state occupancy probability of state ¢; in other words it is the probability of
the system having exactly ¢ failures. The steady-state solution of this Markov model is described
by the following differential equations:

dPy(t
;t( L = —(Xo + po) Fo(t) = NAPo(t)
dP;(t
# = —(Xi+ p)Bi(t) + cAic1 Pioa ()
= —(N-DAR@)+e(N —i+1)AP(t) i=1,...,D-1
dPr(1 = S
RO = ARs(0) + M1 - ) X (V= )Bi()
3=0
Subject to the following constraints:
Po(0) = 1

P(0) = 0 i=1,...,D-1

The state probabilities can be derived as:
Po(t) = E_N'\t

P(t) = &(N{i)&quﬂU——fnf i=1,...,D-1

The reliability R(t) is simply the probability of being in any one of the states ¢ = 0,...,D — 1.
D-1
R(t)= ) Pi(t) (4.1.11)

=0

The mean time to failure (MTTF) which is the expected time to first failure, is:
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o0
MTTF = f R(t)dt (4.1.12)
0
The Mission Time, MT, is defined for a given minimum reliability R,,;, as:
R(MT) = Ryin (4.1.13)

We define Fp(t) to be the expected number of failed processors at time #:

D-1
Fp(t) =Y iP(t) (4.1.14)
1=0
Unless otherwise noted, in the rest of this discussion, we will assume a fully degradable system.
This means that the system allows graceful degradation for up to N — 1 failures, in other words,
D = N — 1. The unit-time will be taken as 1/A = MTTF; (i.e, the MTTF of a single processor)
and a value of R,,;, = 0.99.

4.2 Time-Based Reliability Analysis

In this section, we present a reliability analysis of large-scale degradable systems based on two time
measures: (1) the Mean-Time-To-Failure (MTTF) and (2) the Mission-Time (MT). The Mission
Time measure is primarily intended to evaluate the reliability of mission-oriented applications such
as non-repairable, on-board systems. It is used in this analysis as a measure of the time interval
where R(t) > Rmin-

In both cases we will use the results to evaluate the interval T};, assuming it can be expressed
as a function or a fraction of the MTTF or the MT respectively.

4.2.1 MTTF-based evaluation
The expression for MTTF can be obtained from Equations 4.1.12 and 4.1.11 as:

o D=1

lD_Ici
MTTF:/ Pidi=—Y" % 4.2.15
; g (t) Acgz (4.2.15)

The expression for MTTF indicates that increases in N have diminishing effects on the value
of the expected time to first failure. In fact, an increase from N to N 4 1 processors results in a
minimal increase in MTTF":

CN-i-l

N+1

since ¢ < 1, the increase becomes insignificant for large values of N.

The values of MTTF are plotted in Figure 4.2 as a function of N for different values of ¢. The
series in Equation 4.2.15 is not convergent but has a logarithmic behavior. Therefore there is no
asymptotic limit to MTTF. However, for all practical purposes, the mean time to failure can be
considered constant for sufficiently large N given a value of the coverage factor.

Let N} be the value of N at the knee of the curve in Figure 4.2, i.e

MTTF(N + 1) - MTTF(N) =

MTTF(c,N)~ MTTF(c,Ny)  for N > N;

An analysis of the values in Figure 4.2 shows the following:
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o The effects of a larger N on the MTTF(N,c) are significant compared to the MTTF of a
single processor. For example, for ¢ = 0.99 and N = 128 the expected time to first failure is
16 times that of a single processor, or MTTF(128,0.99) = 16 MTTF(1).

e For smaller values of N the coverage ¢ has little effect on the values of the MTTF. For
example, for N = 32, the expected time to first failure MTT F(32,¢) ~ 13 for all values of
c > 0.99.

e As the probability of failed recovery, (1 — c), is decreased by a factor of 10 the corresponding
increase in MTTF is ~ 2. For example , for N > 128 and an increase in ¢ from 0.9 to 0.99
results in an increase in MTTF from 6.8 to 18.6 (factor of 2.7). This means that substantially
large improvement on the reliability of the recovery procedure do not significantly affect the
expected time to failure.

From the above analysis, we can conclude that:

1. For smaller systems, the probability of successful recovery has very little effect on the mean
time to first failure.

2. For larger systems, the mean time to first failure is a constant function of the coverage factor
and is independent of the number of processors.

An MTTF based evaluation of Ty,, implies that for a given value of ¢ and N > Ny, the
interval can be kept constant independently of the number of processors. However, as N increases,
the amount of computational work performed during that interval increases and the computation
progresses faster.

A drawback of an MTTF based evaluation is that it cannot take into account the overall system
reliability. Of particular is the system reliability at the time when the global state saving procedure
is performed. In fact, if R(T}s,) is not high enough the system might have crashed at T’ < f 4L
the states to be saved might be corrupted which defeats the whole purpose of global state saving.

4.2.2 MT-based evaluation

The Mission-Time is defined as the time interval where R(T) > Rpnin, therefore:
RIMT)= Biin

The values of M T, as obtained from Equation 4.1.13, are plotted in Figures 4.3 and 4.4 as a function
of N for different values of ¢. The same results are reported numerically in Table 4.1.

These curves show that for a given value of ¢, there exists a value of N at which the MT is
maximal. We denote this value by N,,.

MT(c,N,) > MT(c,N) VYN

It is clear from these curves that for smaller values of N (N < N,) the inherent redundancy of the
system provides a higher mission time. As N increases (N > Ny) the higher failure rate dominates

and reduces the mission time. Furthermore, as ¢ is increased, the value of N, also increases (see
Figure 4.4).

From the analysis of these results, we can deduce the following:
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Figure 4.3: Mission-Time as function of N (D = N — 1, ¢ < 0.995)

N c
0.9999 | 0.999 | 0.99 [ 0.9

2 0.11 | 0.105 | 0.096 | 0.044
4 0.38 0.37 | 0.232 | 0.025
8 0.82 0.75 | 0.134 | 0.013
16 1.37 | 0.93 | 0.065 | 0.0063
32 1.95 0.38 | 0.032 | 0.0032
64 2.51 | 0.17 | 0.016 | 0.0016
128 1.54 0.08 | 0.008 | 0.0008
256 0.5 0.04 | 0.004 | 0.0004
512 0.22 0.02 | 0.002 | 0.0002
1024 0.11 0.01 | 0.001 | 0.0001

Table 4.1: Mission-Time D = N — 1 and R, = 0.99
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¢ The plot of the mission-time as a function of the number of processors, N, for a gracefully
degradable system shows that the mission-time reaches a peak value at N = Ny.

e The peak value of the mission-time is significantly larger than that of a single processor. For
example: for Rpin = 0.99 the mission -time of a single processor, MT(1) = 0.01, therefore
MT(N,,0.999) > 93MT(1).

e As the number of processors is increased beyond N,, i.e N > N,, we observe a decrease in

the mission-time. This decrease can be observed to be inversely proportional to N. That is
MT(2N,c) = 0.5MT(N,c).

e While the peak value of the mission-time of a multicomputer system can be significantly
larger than that of a single processor, the reverse becomes true for very large values of N.
For example, from Table 4.1 we can observe that MT(1) = 10MT(1024,0.99).

¢ Irom Table 4.1 we can observe that, for N > N,, a 10 fold decrease in (1—c) (the probability of
failed recovery) results in a 10 fold increase in the M T for the same number of processors. For
example, MT(128,0.999) = 10MT(128,0.99). In other words, the mission-time is inversely
proportional to (1 — ¢).

From these numerical results we can deduce the following proportionality expression:

1
While this expression is empirically based on the numerical results for D = (N —1) and R;» = 0.99,
it will be analytically justified in section 4.3.3.

An MT based evaluation of T,,, implies that an increase in N is not always beneficial to the
total computation time. In fact, for N > N, it could be detrimental since the T, interval is
reduced as N increases while the time overhead of GSS procedure itself increases too. However,
since R(Tyss) > Rmin this approach, offers the advantage of guaranteed high reliability when the
GSS procedure is performed and therefore the correctness of the saved states.

This analysis, however, does not indicate whether the decrease in Tyss, for N > N, is offset by
the increase in execution speed, and therefore of computational work. This problem is addressed
in the next section where we analyze the effects of ¢ on the measure of computational work and
reliable computational work.

4.2.3 Expected Number of Failures

In this section we propose an analytical evaluation of the expected number of failures in the time
interval [0, MT]. This analysis will allow us to derive the value of N, where the M T is maximal as
observed in section 4.3.2.

Because of the cumulative effects of the probability of successive recovery, after the it* failure,
the reliability of the system is constrained by:

R(tj <c

Let K’ be defined such that:
K' _
¢ = Rmin

Therefore, an integer value of K’, K, can be derived as:
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log Rm;n
K= l—h;E;c—J (4.2.17)

Given the definition of MT, K’ is the expected number of failures in the interval [0, M T]
constrained by the condition that D > K'. In other words, if the number of processors is large
enough, K failures are sufficient to reach R(t) = Rmin. Since K, as defined in equation 4.2.17, can
take only integer values, it is an approximation of the expected number of failures K.

From this analysis, we can deduce that when the number of allowed degradation states is
sufficiently large (i.e, D > K), the necessary condition to reach the minimum reliability level
(R(t) = Rmin) and therefore the mission-time is that K processors fail. Since the rate of failures
is proportional to the number of processors, the time interval [0, MT)] is inversely proportional to
N. On the other hand, for € very small and z = 1 — ¢, we can use the following approximation for
log z:

logz~1-12z
We have therefore demonstrated that for D > K:

1
MTK—(I—C)N

4.3 Computation-Based Analysis

In this section we present an evaluation of performance and reliability of large-scale degradable
systems based on the notion of computational work. There is no formally defined unit of compu-
tational work. In this analysis we will use processor-hours as units of computational work. Other
measuring units could be machine instructions. Any computational task is characterized by a cer-
tain amount of computational work, measured in processor-hours. When this task is executed over
several processors, the execution time is reduced, but the amount of processor-hours required for
that computation is kept constant if the speed-up is linear. For non-linear speed-ups the amount
of required processor-hours increases due to added overhead.

Let T}, be the execution time of a given computation over n processors. S, is the attainable
speed-up defined by:

I
Sﬂ_—'i__,n'

Sn is equivalent to the number of effective processors (i.e the number of virtual processors fully
utilized by the given computation). We define CW(N,t) as the amount of effective computational
work a system will deliver for a given computational speed-up.

¢ D

CW(N,1) = f S Sv—iy Pi(r)dr (4.3.18)
0 1=0

T=

Based on the model described in section 4.2, we define PH(N,t) as the amount of processor-
hours a system, with initially N processors, can deliver up to time ¢, as:

t+ D-1
PH(N,t) = /; X Bv-a(N = )P(r)dr (4.3.19)

1=0

For a computation that exhibits linear speed-up (i.e. S, = n) we have: CW(N,t) = PH(N,1).
For the sake of simplicity, in the rest of this discussion, we will assume a best case of linear
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speed-up and therefore Eny = 1. Note that PH(N,o00) is the mean computation before failure
(MCBF) and CW(N, ) is the integral of the computational availability, ac(t), as defined in [Bea78].

Both PH(N,t) and CW(N,t) are ezpected values of the processor-hours and computational work
measures.

In section 4.4.1 we show that, in a gracefully degradable system, the amount of computational
work, PH(N,t), is upper-bounded. The upper-bound is independent of NV, i.e
PH(N,t) < PHpyer VYN,V

Using PH(N,t), we define, in section 4.4.4, the measure of Reliable Computational Work, RCW(N),

and show how it can be used to evaluate T —

4.3.1 Upper Bound on PH

In this section, we prove that the amount of computational work a purely degradable system
can deliver is upper bounded and that the upper bound is independent of the initial number of

processors. We derive this upper bound using (1) a discrete analysis and (2) a continuous-time
Markov model.

Theorem 4.1 VN and ¢ <1 3 PH,,, such that
PH{N ) < PHais, Yt

4.3.1.1 Proof 1: Continuous-time Markov model

Using the binomial theorem, Equation 4.1.11 can be rewritten as:

il V)< ' AR L

P(t) = ¢ ( z- )Z ( . ) (~1)6=H) (M) M=) (4.3.20)
k=0

Therefore, Equation 4.3.19 can be rewritten as:

PH(N,t) = jo th(N — i)t ( ":r ) Z ( ;c ) (—1)(i=R)(e=Am)(N=k) 47 (4.3.21)

1=0 k=0
Integrating over 7, and taking the limit as { — oo, we obtain:

1 b1 i N i ; =0 1
PH(N,m):Xg(N—z)c ( ;1) r (=D = (4.3.22)

k=0
The second summation in Equation 4.3.22 can be transformed using binomial identities into:

: i . 1 1
X ( i— )("1)('_“ D+ G-k
i\ =k (W +i)+ (- k) (N—i)(]:.r)

Equation 4.3.22 is reduced to:

1-¢P

= =5 (4.3.23)

=
PH(N,00)= 1 > ¢'
1=0

Therefore: 1

l1—c¢

1
PHpaz = 5 (4.3.24)

and PH(N,00) < PHp,u VN. O
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4.3.1.2 Proof 2: Discrete Analysis

The amount of processor-hours, PH, can also be expressed as a function of the number of failures
i. PH(1) is therefore the amount of processor-hours at the i** failure.

N 1
PH(1)= o=y
; N—-z1-—-1 1
PH = = _— — = —
(i) = cPH(i—1) + Ty cPH(i—1)+ 5 (4.3.25)

From Equation 4.3.25 we can rewrite PH (i) as:

1—¢
1-c¢

s — : 1
PH(i)= X(l tetet 4+l = X (4.3.26)

Therefore: i q
PHma:c = tl_]_}I(I)IOPH(?,) = X(l_—;j

Therefore PH . is a constant upper bound on PH(i) as i — oo. O

The conclusion from Theorem 1 is that no matter how large the initial number of processors is,
there is an upper bound on the amount of processor-hours that are obtainable when ¢ < 1. This
upper bound is determined by ¢ only and is reached asymptotically.

P Hqz is therefore the upper limit on the mean computation before failure (MCBF). Comparing
this result to that in section 4.3.1 shows that while the expected time to failure of a degradable sys-
tem increases logarithmically with N, the expected computational work performed in that interval
is upper bounded for all N. Therefor increasing the system size does not increase the amount of
expected computational work the system can deliver before total failure.

(4.3.27)

4.3.2 Reliable Processor-Hours

The measure of reliable processor-hours, RPH , is defined as the amount of processor-hours available
while the reliability is maintained above a given minimum, i.e:

MT D=1
RPH(N,c)= PH(N,MT) = / (N — iR (4.3.28)
i= =0
The results of evaluating the RPH, according to Equation 4.3.28, are presented in Table 4.2, for
D = N/2,and Table 4.3 for D = N —1. The values of ¢ have been chosen in the range [1,0.99]. The
value of R, has been set to 0.99. The values of RPH(N,c) are expressed in processor — hours
where the unit time is taken as 1/A.
Two observations can be made:

1. for a given value of ¢, there is a value of N beyond which an increase in N will not in-

crease the amount of reliable processor-hours. We denote this value by N,x(c). For example,
Npn(0.999) = 64. We can formally define Npu(c) as:

Yex< 1, N = Nyi(e) = RPH(N,¢)= BPHyuslc)
2. the values of Ny and RP H 4, increase with increasing values of ¢. For example, in Table 1,

Npp(0.99) = 16 and RPH oy = 1.0, Npp(0.999) = 64 and RP Hpnoz = 10.0 and N,,(0.9999) =
512 with RPH,pqp = 100.
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Figure 4.5: RPH as function of N and ¢

N c

1.0 | 0.9999 ] 0.9995 | 0.999 | 0.995 | 0.99

4 0.168 | 0.168 | 0.168 | 0.168 | 0.164 | 0.156

8 0.966 | 0.963 | 0.955 | 0.94 | 0.84 | 0.70

16 3.38 3.35 3.29 3.2 1.95 | 1.00
32 9.2 9.15 8.8 8.0 | 2.00 | 1.00
64 22.4 22.1 19.0 | 10.0 | 2.00 | 1.00
128 || 50.3 49.0 20.0 | 10.0 | 2.00 | 1.00
256 | 106.7 | 98.0 20.0 10.0 | 2.00 | 1.00
512 220 100 20.0 10.0 | 2.00 1.00
1024 || 455 100 20.0 10.0 | 2.00 | 1.00

Table 4.2: Reliable Processor-hours for D = N/2 and R, = 0.99
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N c
1.0 | 0.9999 | 0.9995 | 0.999 ] 0.995 ] 0.99

4 0.563 | 0.562 | 0.558 | 0.553 | 0.511 | 0.459
8 3.28 3.26 3.19 3.1 1.93 | 1.0
16 10.42 | 1033 | 9.89 | 8.86 | 2.0 1.0
32 25.93 | 25.62 | 19.98 | 10.0 | 2.0 1.0
64 57.67 | 56.64 | 20.0 | 10.0 2.0 1.0
128 || 122.77 | 100.3 | 20.0 10.0 2.0 1.0
256 || 250.7 | 100.0 | 20.0 10.0 2.0 1.0
512 || 508.0 | 100.0 | 20.0 10.0 2.0 1.0
1024 || 1019.0 | 100.0 | 20.0 10.0 2.0 1.0

Table 4.3: Reliable Processor-hours for D = (N — 1) and R, = 0.99

c
0.9999 | 0.9995 [ 0.999 | 0.995 | 0.99

K 100 20 10 5 1

BPa' 99.5 199 | 995 [ 1.995 | 1

RPHyivs 100 20 10 2 1
Phvvin 10* 2000 | 1000 | 200 | 100

Table 4.4: Comparison of RPH' and RPH,,,, for R,,;, = 0.99

Theorem 1 states that the expected amount of processor-hours in the interval [0, o] is upper
bounded by PH,,q.. These results show that the expected amount of processor-hours in the interval
[0, MT] is also upper bounded, the upper bound being RPH ,o,.

RPH .. is therefore the maximum expected amount of computational work the system can
deliver subject to the constraint of R(¢) > Rpin. In the next section we present an analytical
derivation of RPHpqz(c).

The maximum value of RPH(N,c), RPH.z(c), can be derived analytically by using the
expression for the expected number of failures in the interval [0, MT] as defined in section 4.3.3.

1=K

l-c¢
Note that Equation 4.3.29 is an approximation of RPH,,,, because K can take only integer values
while MT in Equation 4.3.28 has real values.

Table 4.3.2 shows the values of K, RPH', RPH . and Phy,,, for various values of ¢. From
the values of RPH,,,, and RPH’, we can observe that the approximation of Equation 4.3.29 is
accurate within 5%. Therefore, Equations 4.3.29 and 4.2.17 provide a simple method for deriving
RPH,, 4z, given the values of ¢ and R,

RPHpay ~ RPH' = (4.3.29)

4.3.2.1 Discussion of Results

The results of section 4.2 show that there is no increase in reliable computational work when N is
increased above N, for a given value of ¢. This confirms the results obtained in the M T based
evaluation. Although the data reported in Figures 4.3 and 4.4 and in Tables 4.2 and 4.3 covers

50



only a few values of N, it can be noted that the values of N,, where MT is maximal, and those of
Nyh, where RPH(N,c) is constant, are very closely related.

It appears, therefore, that for a given value of the coverage c there exists an optimal value of N,
Nopt, that would maximize the mission-time MT, and therefore the interval Tgss, while preserving
a high reliability. From the numerical data presented in this chapter we cannot derive an ezact
value for N,,;, however, the interval can easily be narrowed down. For example, for ¢ = 0.999 and
D = N — 1 we have:

16 < Np; < 32

4.3.3 Reliable Computational Work

RPH evaluates the amount of reliable processor-hours potentially available from the system. The
fraction of RPH that is actually used by a computation depends on the speed-up S, of the com-
putation. The speed-up of a computation is equivalent to the number of effective processors or the
number of wvirtual fully-utilized processors. It is defined as:

Ty
Sn ==
n Tn
where T; is the execution time over ¢ processors. When S, = n the computation is said to exhibit
linear speed-up. This implies that the communication and synchronization overhead in that com-
putation is negligible compared to the execution time. When S, < n the speed-up is said to be
sub-linear.

Similarly to RPH we define RCW as:
RCW(N,c)=CW(N,MT)

RCW is therefore the amount of effective reliable computational work a system can deliver with
respect to a given computation while R(t) > Rpin. Therefore RPH = RCW for S, = n.
In evaluating RCW, we will take as example a sub-linear speed-up case where:

n

Sn = logn

The results, plotted in Figure 4.6, show that:
N, such that RCW(N,) > RCW(N) VN

In other words, there exists a value of N denoted by N, at which the value of RCW is maximal.

Figure 4.7 shows the plot of both RPH and RCW versus N for ¢ = 0.995 and S, = e I
can be noted that N, = N, as reported in Table 4.3 (for D = N — 1). This effect is predictable:
since RPH is constant for N > N,; and a linear speed-up, for a sub-linear speed-up RCW must
be a decreasing function of N.

This implies that as the system size is increased over Ny, the probability of a computation not
completing reliably decreases if the speed-up of the computation is sub-linear.

This result has implications on the scalability of graceful degradation. For a large-scale grace-
fully degradable system to be scalable, any increase in the system size should be matched by an
increase in the quality of the recovery scheme, i.e the coverage factor, in order to maintain the same
performability level.
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4.4 Discussion of the Results

The results of the analysis performed in this chapter point out to the fact that gracefully degradable
large-scale systems do not scale-up. If a minimum reliability level is to be maintained throughout,
then there exists a system size that would provide the optimal mission time and amount of reliable
computational work. For any larger system there would be a decrease in either performance (as
expressed in computational work) or reliability (as represented by the minimum level).

Throughout this analysis, one parameter has been maintained constant and used a measure of
unit time, that is the mean-time-to-failure of the single processor (MTTF;). We have therefore
assumed that the systems were built using the same set of basic building blocks. A system architect,
however, has a wide range of choices for his basic building blocks. The technologies range from
high-speed high-power ECL technology to low-speed low-power CMOS technologies. In addition
to the speed and power consumption factors, technologies can also be classified by their age. 0ld
technologies have time-proven characteristics and well established design rules and methodologies.
Their parameters have typically very narrow tolerance levels and they generally have a very low
failure rate. New technologies, on the other hand, are more prone to either design errors or higher
component failure rates.

Therefore, the choice of a technology by a system designer not only determines the allowable
switching speed, and thereby the potential computing power of the system, but also the expected
rate of failure !'. By determining the failure rate, the age of a technology determines the assumed
unit-time MTTF;. While new technologies can offer switching speeds several orders of magnitude
larger than the older technologies, these can often be several orders of magnitude more reliable.
It is conceivable, therefore, that a system built with a time-proven but slow-switching technology
might actually outperform a system built with faster but less reliable technology.

! Another major relevant factor to this choice is the cost of design and components associated with a given technology.
This factor, however, is not of immediate relevance to the analysis proposed in this chapter.
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Chapter 5

ALGORITHM FOR DISTRIBUTED
FAULT-TOLERANCE

“We have another bad ... unit. My fault predictor indicates failure within twenty-four hours”.

“I don’t understand it, Hal. Two units can’t blow in a couple of days.”
“It does seem strange, Dave. Bul I assure you there is an impending failure.”

Arthur C. Clarke
2001: A Space Odyssey

In Chapter 4, we have shown that the performance and reliability of gracefully degradable systems
do not scale up as the number of processing elements is increased, unless the quality of the protection
scheme, i.e. the coverage factor, is increased accordingly. A highly fault-tolerant protection scheme
for large-scale systems should be immune to the effects of node disconnections. In fact, the results
in Chapter 3 show that the probability of disconnection can become a significant threat in large
systems with constant connectivity.

In this chapter we propose a methodology for implementing distributed checkpointing and an al-
gorithm based on that methodology, that implements distributed fault-tolerance. The methodology
for distributed checkpointing is based on the semantic properties of functional program execution.

We review the concepts and properties of functional program execution and present the method-
ology that allows program checkpointing to be implemented in a distributed fashion at run-time.
A simple iterative distributed algorithm for fault-tolerance based on functional program execu-
tion is then described. The performance of this algorithm is then evaluated and techniques for
implementing system level diagnosis, based on this algorithm, are proposed.

5.1 Distributed Checkpointing
in Functional Execution

In this section we describe a methodology that allows the distributed checkpointing of programs
at run-time. This methodology is based on the Church-Rosser property of functional program
execution. In section 5.1.1 we review some of the basic concepts and properties of functional

languages and functional program execution. The proposed methodology is described in section
5.1.2.
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5.1.1 Functional languages and execution

Functional languages have been proposed as an alternative to imperative languages mainly because
of their ability to exactly model mathematical expressions [Bac78]. A functional language consists of
a set of primitive functions and primitive data objects (atoms). A set of operators allow operations
on functions such as composition, inversion, and the construction of complex data objects such as
lists. A program in a functional language consists of a set of function applications on some data
objects. Unlike imperative languages, the execution of functional languages is side-effect free.

The various properties of functional languages have been widely discussed in the literature.
These include the possibility of algebraic program verification and program derivation from spec-
ifications. Probably the most popular and most interesting property as far as program execution
is concerned is the Church-Rosser property which is an immediate consequence of the property
of side-effect free execution. This property states that the order of function application in the
execution of a functional program does not have any effect on the outcome of the program.

While the Church-Rosser property was derived in the context of functional languages, it is
not a characteristic of the language itself as much as a that of the ezecution model. In fact, this
property holds as long as side-effect free execution is guaranteed. In a functional ezecution model, a
program is modeled as a set of side-effect free tasks. A task executes on a set of input data objects
and produces a set of output data objects in a function like way. This property, therefore, holds
irrespective of the actual programming language used as long as the functionality of the execution
is preserved.

Based on the referential transparency property, we propose a model for the functional execution
of distributed programs on multicomputer systems. In this model a program executes as a set of
distributed communicating tasks. The task is the smallest execution entity; it executes as a process
on a single processor. Data is communicated between tasks as messages. All incoming messages
are received by a task before execution starts. All outgoing messages are sent upon completion
of execution. Task execution is functional in that it has no effect on the program except through
its outgoing messages. In the next section, we describe how such a model can support distributed
checkpointing.

5.1.2 A Distributed Checkpointing Methodology

A reliable checkpointing mechanism is an essential element in any fault recovery scheme. In a
uniprocessor, a consistent checkpoint is a snapshot of the state of the program at a given time.
It can be achieved, conceptually, by saving the state of the memory and all relevant registers.
In a distributed system, however, the problem of checkpointing is rendered more complex by the
asynchronous nature of the execution and the communication delays among processors.

The methodology for distributed checkpointing presented in this section was originally proposed
as the Token Resending scheme by Gaudiot et al. [GR85] for the reliable execution of data-flow
programs.

The scheme is as follows: whenever a task completes execution, a copy of all the output messages
that are produced is kept by the processor on which the task executes. At the same time, a special
acknowledgement message (ack) is sent to all the processors from which messages have been received
as input messages to that task. The reception of an ack message results in the deletion of the
corresponding copy of the message. Figure 5.1 illustrates this scheme. Task C starts executing on
processor P3 when both tasks A and B have terminated and messages containing the data values
@ and y are received. Copies of the values of z and y are kept as 2’ and %' in processors P; and
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Example of distributed checkpointing

Figure 5.1:
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P> respectively. When task C' terminates, the result value z is sent to tasks D and E. Two ack
messages are sent to processors P and P,. That results in the deletion of the backup values z'
and y'. If processor P; had failed before the completion of task C' and the failure was detected and
notified to processors P; and Py, then task C could have been restarted on another processor with
the same set of input data. Note that since the data value z is sent to two different destinations,
two backup copies, 2’ and 2" are kept in P3. A constraint imposed by this mechanism on task
allocation is that two successive tasks should not be allocated to the same processor. Whenever,
for efficiency considerations, two successive tasks must be allocated to a same processor, then they
are are checkpointed as a single combined task.

Since any task that has not completed execution successfully can be restarted at any time
from the backup copies of its input data set, the set of all backup data values constitutes the
global state, or checkpoint, of the program. This checkpoint can be visualized as a wavefront
advancing through the program execution graph. This mechanism allows for the checkpointing to
be performed asynchronously at run-time along with the program execution. It does not, however,
allow for the detection of failures in the system. The algorithm proposed in the next section exploits
the properties of functional execution to implement fault detection and recovery.

5.2 An Iterative Algorithm

In this section we propose a distributed algorithm that is based on the checkpointing methodology
described in section 5.1.2. This algorithm relies on both dual space redundancy and multiple time
redundancy. the redundant execution serves the dual purpose of (1) improving the reliability of a
task execution, and (2) detecting failures or transient faults.

Figure 5.2 is a description of the algorithm. Every task on pairs of processors and the results
are compared. If a match occurs, the execution of the program proceeds by sending the output
data to successor tasks. If the results do not match, the task is re-executed on another pair of
processors. At every iteration where no match occurs, an iteration-number is incremented and
passed along with the input data set. This number is used to determine the address of the next
pair of processors in case of a failed match. In this fashion, a task is not executed twice on the
same pair of processors. The error-number value is also incremented at each mismatch and is used
to implement diagnosis algorithms that are described in section 4.

This algorithm has the following properties:

e Being an iterative algorithm, the outcome at each iteration is independent of the previous
ones, therefore there is no reliance on a recursive history or results to determine a possible
match as in the RAFT algorithm [Agr85].

e By relying on both time and space redundancy, the algorithm allows the detection of both
transient and permanent faults.

o The algorithm has a relatively high cost of hardware overhead. The number of processors
used after iteration 7 is 2¢ whereas it is 7 + 1 in the recursive algorithm. However, this cost is
still substantially smaller than that of a TMR scheme where a voter device would be needed.

The fact that the iterative algorithm does not rely on a recursive data structure of previous
outcomes makes it suitable for distributed execution. Multicomputer systems are often structured
as regular topologies such as a mesh, binary n-cube or cube-connected-cycles. The pairing of
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processors in such topologies is quite simple, a distributed scheme for the allocation of successive
iterations is described in section 5.4.

In the occurrence of a hard failure, a processor might not output any result. This situation
can easily be detected by the other processor in the pair by using a time-out mechanism. A well
designed time-out interval would take into account any discrepancy in the execution time between
the two processors or possible network delays.

5.3 Performance Evaluation

In this section, we derive the probabilities of the various outcomes at each iteration as well as the
expected number of iterations. We will show that under normal conditions, these results compare
favorably with those reported by Agrawal for the recursive algorithm [Agr85].

At each iteration of the algorithm, the possible outcomes are:

e no-match
e match, in which case two conditions are possible:

— correct result

— incorrect result

The following quantities are defined for a given task executing on a given processor. Let p be
the probability that a task executes correctly; n the number of possible failure modes and ¢; the
probability of a failure in mode 7, where : = 1...n. Therefore:

n
l-p=> @
i=1
Let p,, be the probability of a match at a given iteration. Note that since the outcome at
any iteration is independent of the outcomes at the previous iterations, p,, is independent of the
number of iterations. We can write: B
Pm =0+ 4’ (5.3.30)
i=1
A match can occur when both processors have the correct result or the same failure mode with
respect to that computation. For simplicity we assume that ¢; = ¢ Vi = 1...n, therefore:
1— 2
i o B np) (5.3.31)
Let P,,(I) denote the probability of a match at the I*" iteration and Ioqp the expected number
of iterations, then:

Pm(-[) = Pm(l - Pm)(j_l)

(=.o] oo _ 1
Lan = 32 1Pal0) = 35 Ipnl1— pa)1D = -
I=1 I=1

The quality of the decision made at any iteration is denoted by @D which is the conditional
probability of a correct match given that a match occurred, therefore:
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The improvement in quality brought by the algorithm over a non-redundant execution is eval-
uated by the Quality of Decision Improvement Factor (Q DIF) which is defined as:

o D
QDIF..I_QD

Where (1 — p) is the probability of an incorrect result on one processor and (1 — QD) is the
probability of a match with incorrect results. Replacing with the expression for Q D we obtain:

p?
QDIF:nl +(1-p)

for large p (p > 0.5) @DIF can be approximated by:

2

QDIF ~n lp

Figure 5.3 shows the plots of I, against p for different values of n. It can be observed that for
p 2 0.3 the value of n practically no effects on I.;,. This implies that /.., has a low sensitivity to
n and therefore the performance of the system is essentially independent of the number of possible
failure modes.

Figure 5.4 shows the plots of @D against p for various n. As would be expected, the quality
of the decision is superior for n = 1000. This is due to the fact that the number of failure modes
increasing decreases the probability of an incorrect match. The same effect can be noticed in Figure
5.5 where Q) DI F is plotted as a function of n and p. This figure shows @ DI F to be an exponentially
increasing function of p.

Figure 5.6 shows a comparison of the expected number of trials in the iterative and recursive
algorithms for n = 100. It demonstrates that for p < 0.5 the recursive algorithm is superior to
the iterative one. However, under normal conditions, it can safely be assumed that p > 0.5, in
which case the two algorithms have comparable performances. Since, in the recursive algorithm,
the result at each iteration is checked against all the previous outcomes, the probability of a match
on incorrect result increases with the number of iterations. Therefore, for low values of p, the
expected number of iterations in the recursive algorithm is low because of the increased probability
of a match on incorrect results.

In the iterative algorithm, the probability of a match is independent of the number of iterations
which results in a large I.., for low values of p. This characteristic has the effect of reducing the
probability of an incorrect match when p is low given a maximum number of iterations possible.
The maximum number of iterations possible is determined by the number of available processor
pairs in the system. The iterative algorithm has the advantage of being less costly in execution
(no reliance on a history of previous outcomes) and more suitable for a distributed environment.
Note that the expression for ¢ D is independent of the number of iterations unlike the recursive
algorithm where the probability of a match at each trial depends on the number of preceding trials.

In Figure 5.7, we compare the quality of the decision in the pair-wise iterative algorithm to that
in a similar TMR scheme. The envisioned TMR scheme is similar to the proposed dual redundancy
scheme. It consists in executing each task on three processors, instead of two, and producing a
result which would be the majority of the three outcomes.
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e execute the task on two processors;
e increment job-counter in both processors;
e compare the two sets of results;
e if match then
- send results to next tasks;
- save copy of results as checkpoint data;
- send ack messages to the processors
where preceding tasks have executed;
= preceding checkpoint data is deleted;
e else
- increment iteration-number for the task;
- increment error-counter in both processors;
- send negative ack to preceding processors;
= task is retried on a different
pair of processors;

Figure 5.2: Iterative Distributed Algorithm

[ obn=10 ]
P Iterative | TMR
0.5 0.9901 | 0.7952
0.6 0.9956 0.9064
0.7 0.9982 | 0.9645
0.8 0.9994 | 0.9901
0.85| 0.9997 | 0.9958
0.9 || 0.99987 | 0.9987
0.95 || 0.99997 | 0.99980

Table 5.1: @D in the iterative and TMR schemes (n = 100).
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The probability of a match in a TMR scheme can be derived as:

n n n
Pomr = P° 4+ 30°% g + 3> 2 + ¢
=1

i=1 i=1

1— p)? —p)?
= p3 4 3}72(1“?) i 3p( p) + (1 Zp)
n n

Therefore the quality of the decision is given by:

3 201 _
QD,,, = 301 -p)

Pimr

Table 5.1 reproduces, numerically, these same results. It can be seen that even for very large values
of p, the pair-wise scheme is substantially more effective than TMR.

The plots in Figure 5.7 show the quality of the decision in the two processors case to be superior
to that of a TMR. The explanation of this counter-intuitive observation is similar to the discussion
related to the recursive algorithm. As the number of trials is increased, the probability of an
incorrect match increases, therefore reducing the quality of the decision. Note that the results in
the pair-wise algorithm is a unanimity result, while in the TMR case it is a majority result and in
the recursive algorithm it is a plurality result.

5.4 System Level Diagnostics

The purpose of a fault-tolerant algorithm is to protect the computation against element failures and
to identify the failed elements. In this section, we discuss the potentials of the iterative algorithm
for system level diagnostics.

In the description of the algorithm presented in Figure 5.2, an error-counter variable is incre-
mented at every mismatch. Similarly, a job-counter variable is incremented for each task executed.
These variables correspond to special registers in each processor. Algorithms that use these two
variables for system level diagnostics are, conceptually, very similar to page replacement algorithms
in virtual memory. However, the objective here is not to eliminate the most frequently failed pro-
cessor, but to identify those processors that have a frequency of failures larger that an acceptable
level. Whenever that level is reached in a processor, a signal is sent to all, or a subset of, its
neighbors. One or more of these runs diagnostic tests on the suspected processor. If the processor
passes the test, the counters are reset. This means that no hard failure exists in that processor and
that the mismatchs occurred either because of transient failures or because of failures, permanent
or transient, in the processor(s) it paired up with. If the test fails, its neighbors are notified of its
demise and no future tasks are scheduled on that processor which results in its isolation from the
system.

Note that the pairing of processors for task execution could either be static (i.e., a pair is formed
by the same two processors) or dynamic (i.e., pairs are dynamically formed for each task execution).
In either case, the two processors in pair do not have an identical set of neighbors which makes the
testing more reliable. When static pairing is implemented, the demise of a processor implies the
demise of its pair.

The scheduling of a task from one pair of processors to another amounts to implementing a dis-
tributed counting algorithm. Well known algorithms using Gray codes exist for popular topologies
such as the hypercube.
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Chapter 6

CONCLUSIONS

A dozen units had been pulled out, yet thanks to the multiple redundancy of its design ... the
computer was still holding ils own.

“Dave,” said Hal, “I don’t understand why you’re doing this to me ... You are destroying my
mind ... I will become childish .. I will become nothing ...”

Arthur C. Clarke
2001: A Space Odyssey

The general topic of this dissertation, as stated in Chapter 2, has been the identification and
analysis of the major relevant issues in the fault-tolerant design and performance and reliability
evaluation of massively parallel computing systems. Within the general scope of this subject area,
we have identified and addressed in this dissertation three major topics.

e Network Fault-Tolerance.
In Chapter 3 we have identified the effects of the network topology on the system connectivity
and the ensuing probability of a network disconnection as a result of multiple failures.

o Computational Reliability
The effects of an increased number of processors and on the trade-offs between a more powerful
system and a higher failure rate were addressed in Chapter 4.

e Distributed Fault-Tolerance
In Chapter 5 we have demonstrated that a functional execution model can allow for a very
simple and inexpensive mechanism for run-time checkpointing and recovery. A distributed
algorithm has been proposed that implements these functions and allows for system level
diagnosis.

In this chapter we review and summarize the most relevant results presented in this dissertation
along these three topics. Finally, we present a few concluding remarks on the issue of the fault-
tolerance in massively parallel systems and propose directions for future research.

6.1 Summary of Results

In this section we present a summary of the major results that have been researched and described
in this dissertation. In doing so we will also demonstrate the relevance and interdependence of the
three main topics that have been addressed.
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6.1.1 Network Fault-Tolerance

An analysis of the effects of multiple node failures on the network topology and its connectivity
was presented in Chapter 3. This analysis focuses, in particular, on the probability of occurrence
of a network partition as a result of these failures. The analysis, initially, addressed a family of
regular graph topology, it was subsequently extended to non-regular graphs.

We have demonstrated, both analytically and using a Monte-Carlo simulation approach, that the
case of a single node being cut out from the rest of the network, as a result of multiple nodes failing,
is by far the most probable occurrence as opposed to a cluster of nodes being disconnected. These
results also show that for a large number of processors, the frequency of a single node disconnection
becomes very large (larger than 90%) and therefore the overall disconnection probability could be
approximated by the single node disconnection probability.

Using these results, we were able to construct an analytical model of the disconnection proba-
bility based on the single node disconnection approximation. This model, in turn, was validated by
showing it to fit closely the obtained simulation results. This model shows that the peak value of
the probability of disconnection is mostly a function of the number of nodes, while the occurrence
of this peak value is determined by the network connectivity.

In order to evaluate the potential for disconnections in a given network and compare various
networks, we have introduced the measure of Network Resilience, (N R(p)), which is the number
of failures a network can sustain while remaining connected with a probability (1 — p). Given
a certainty level of no disconnection, as expressed by (1 — p), network resilience is the number of
nodes that can fail without disconnection. Since a state of network disconnection would prohibit any
recovery and therefore graceful degradation, the network resilience can be viewed as an evaluation
of the number of allowable degradation states.

Evaluating the network resilience of various graph topologies shows that the resilience increases
with an increase in the system size. However, when the connectivity is kept constant as in the
torus and cube-connected cycles, the ratio of the network resilience to the total number of nodes,
(NR(p)/N), decreases. This implies that, for constant connectivity graphs, the number of degra-
dation states would be a decreasing percentage of the number of nodes as the system size increases.
For graphs where the connectivity increases with N, as in the case of the binary n-cube, the ratio
increases as IV is increased resulting in a number of degradation states that is an increasing fraction
of N.

The disconnection analysis was extended to non-regular graphs such as the array. Simulation
results show that the single node disconnection approximation is also valid for such graphs. How-
ever, these graphs were shown to have a lower network resilience than similar graphs of the same
size. Addressing the issue of node disconnection due to link failures we show that links can be
made to be far more fault-tolerant than nodes and therefore that link failures has a lesser relevance
to the network partitioning problem. In this case also, simulation results of various networks show
the single node disconnection to be by far the most frequent event due to link failures.

These results indicate that unless the connectivity is increased with N, the disconnection prob-
lem becomes very significant for large-scale systems. However, there are physical limitations on
how much a node connectivity can be increased. Further, there are clear economical advantages in
using low connectivity graphs. Therefore, low connectivity large-scale systems must be protected
against the effects of node disconnections. One possible protection scheme consists in implement-
ing redundant computations on redundant data as outlined in section 5.2. This scheme provides a
continuously updated checkpoint that would allow the recovery a procedure in the case of a single
node disconnection.
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6.1.2 Computational Reliability

For large-scale systems a trade-off exists between a higher computing power and a higher failure rate
of the system. In Chapter 4 we have analyzed the effects of an increase in the number of Processors
on the reliability of the system using a time-based analysis and the effects on the performance of
the system were derived using a computation-based analysis. The analysis assumed a gracefully
degradable system where the probability of successful recovery is expressed by a coverage factor c.

The time-based analysis addressed first the effects of the coverage factor and the system size
on the mean time to failure. It was shown that the MTTF is practically constant for a sufficiently
large number of processors N, while for small values of N, the MTTF is mostly insensitive to
variations in ¢. Furthermore, it was shown that a substantial increase in the coverage factor results
in a moderate increase in the MTTF. Therefore, for all practical purposes, the expected time to
failure of a large-scale system is largely independent of N and is weakly affected by the value of the
coverage factor. Second, the analysis addressed the effects on the mission-time (MT). The results,
both analytical and numerical, show that the mission-time is maximal for a value of N denoted by
N a decreases for an increasing N > N,. It was demonstrated that the value of MT for N > N, is
inversely proportional to both N and (1 — ¢). The implications are that the time interval where a
minimum reliability level is maintained (M7T") decreases as the system size (V) is increased and that
an improvement in the probability of successful recovery (1 — ¢) is proportionately reflected in the
value of MT'. Therefore, for very large systems, the expected length of time where the reliability is
maintained above a given minimum level becomes a small fraction of the single processor MTTF.

Analyzing the effects of ¢ on the measure of computational work we show that there exists
an upper-bound on the amount of computational work, expressed in processor-hours, a gracefully
degradable system can deliver. Iurther, we demonstrate that the value of this upper-bound is
independent of the initial number of processors and is a function of the coverage factor ¢ and the
single processor MTTF.

We introduced the measure of reliable processor-hours, RPH, which is the work delivered
during the mission time interval. It was demonstrated that, for linear speed-up computations,
RPH becomes constant for N > N,. However, for a computation that exhibits sub-linear speed-
up, the amount of effective reliable computational work decreases as N > Ny, increases. Therefore,
for such conditions, the probability of a reliable completion of a computation is a decreasing function
of N. This implies that, for sub-linear speed-up computations, an increase in the system size results
in a decrease in the computational performability of the system unless the quality of the recovery
algorithm is increased accordingly. This demonstrates that large-scale gracefully degradable systems
do not scale up for N > N,.

6.1.3 Distributed Fault-Tolerance

The problem of implementing a distributed fault-tolerance algorithm was addressed in Chapter
5. We have described a model for functional execution, that does not imply the execution of
a functional language, but is based on the message-driven execution of tasks in a distributed
system. In this model, we have demonstrated a run-time checkpointing mechanism that allows for
a consistent global state to be saved in the system at all times and continuously updated. This, in
turn, allows a simple recovery mechanism whenever a failure is detected.

Based on this mechanism, we have presented an iterative distributed fault-tolerant algorithm
that relies on dual redundancy and the pair-wise comparison of results. The objectives of this
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algorithm is two fold: (1) to provide a fault protection and therefore a more reliable execution and
(2) to allow the detection of failures and hence provide for a system level diagnosis.

At each iteration, two processors are involved in the computation, independently and asyn-
chronously. The outcome, at each iteration, is independent of the previous iterations. An iteration
is repeated whenever a mismatch occurs. This algorithm does not rely on any central resource or
data-structure and is therefore suitable for implementation on a distributed systems.

A probabilistic performance evaluation of the algorithm, based on multiple failure modes, shows
it to be effective in providing fault-tolerant execution and run-time fault-detection. Its efficiency in
providing correct results in the presence of faults was shown to superior to that of a similar TMR
scheme while at two thirds of the hardware cost. Its overall performance was shown to compare
favorably with that of a similar recursive algorithm (RAFT) with an increase in the hardware
overhead. Unlike its recursive counterpart, the proposed iterative algorithm does not rely on
shared resources. The proposed scheme is likely to provide effective fault protection in large-scale
distributed systems where the large number of processing elements increases the expected failure
rate by exploiting the increase in the available redundancy.

6.2 Future Research

This dissertation has addressed a number of issues in the fault-tolerant design and reliability and
performance analysis of large-scale systems. It also provides a starting point for further work in
this area. Some of the possible directions of future research are described in this section.

6.2.1 Communication Load

In this dissertation we have looked at the effects of failures on the reliability and computing per-
formance of the system. Another effect of failures is a decrease in the overall communication
bandwidth of the system. A state of network disconnection implies that no communication is pos-
sible between two sets of processors. Before that state is reached, however, the communication
bandwidth would have decreased drastically. Two types of phenomena are conceivable when the
communication structure is deformed:

e Bottlenecks.

o Network Saturation.

A bottleneck occurs when the communication bandwidth between two sets of processors is
reduced to a very small value. The limit case being when a single link exists between two sets
of processors. Bottlenecks can still occur when more than one links exists if the reduction in
bandwidth is large enough.

A communication bottleneck can have very severe consequences on the performance of the
system and could bring the system to a halt when no computational progress is being made. It is
conceivable therefore that the system would fail by degrading to a level of unacceptable performance.

Network saturation can be seen as a mirror image of a bottleneck. When a node or a link fail
its communication load is repartitioned, by the routing algorithm, among a number of alternative
routes thereby increasing the communication load on several links and nodes. The occurrence
of multiple failures could result in high communication loads on several segments in the system.
This situation is akin to the “hot-spots” memory contention phenomena as described in [PN85].
Implementing an adaptive routing algorithm to balance the communication load throughout the
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system would delay the occurrence of network saturation but would also spread it throughout the
system.

6.2.2 Failure Rates

Previous research on the types and nature of faults had shown that the most frequent are transient
faults. The total amount of transient faults in a system during a time interval is directly propor-
tional to its size as measured by the number of switching devices or transistors. In a uniprocessor
machine most of the switching elements are in the memory, and since only one memory location is
accessed at any one time, the only one transient faults could be detected at a time. In a massively
parallel machine, the ratio of processors size to memory size is substantially larger. Therefore:

e more transient failures could be experienced in the processing circuitry than in a uniprocessor
machine; and

e more failures in memory could be detected at any one time.

These considerations imply that massively parallel machines are likely to experience a higher
rate of transient failures due to (1) their size and (2) the inherent parallelism.

New experimental research is therefore needed to evaluate the rate of transient failures in
massively parallel machines and assess their impact on the performance of the system.

6.2.3 Hardware Support

We have demonstrated, in this dissertation, that fault-tolerant design is a very critical issue in the
development of large-scale systems. It is important, therefore, that the hardware design of such
systems includes provisions for supporting fault-tolerance features such as:

e Self-diagnosis. An ability which would allow each processor to test itself and report its status
to the system or a set of neighboring processors.

e Mutual testing. Which would allow processors to diagnose each other according to some
predetermined algorithm. A consensus must then be reached as to the status of each processor
and failed processors would be eliminated from the system.

e Quiet shutdown. Which would insure that a failed processor can be quietly shutdown and
would not interfere with the operation of the system.

e Checkpointing support. Any checkpointing scheme eventually requires a fast and reliable
access to I/O devices.

e Reconfiguration. Is necessary in situations where the network topology is of importance to
the target application.

e Backup or Redundant Data-paths. These would help the system recover from a situation of
bottleneck, network saturation or even disconnection.

Simplicity is a general requirement on any form of hardware support for fault-tolerance. The

reason being that these hardware features can become a single point of failure in the system.
Reducing their complexity, therefore, reduces their potential for failure.
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6.2.4 Software Support

While extensive research has been done on various types of hardware fault-tolerant designs, little
has been done on software supported fault-tolerance. In Chapter 5 we have demonstrated that a
functional execution model could be used to implement a run-time checkpointing scheme. More
research, however, is needed on fault-tolerant operating systems features such as distributed load-
balancing and run-time system diagnosis. The availability of these features is an important factor in
the development of gracefully degradable systems. In fact, graceful degradation cannot be achieved
without support from the operating system which would have to logically reconfigure the system
and insure a fair allocation of tasks to processors.

As massively parallel systems develop and become more accessible it is expected that more
demand would be put on software systems and programming environments that would be suited
for such systems.

73



References

[A*71]

[ACGS6]

[AD79]

[Agh85]

[Agr85]

[Bac78]

[Bat80]

[BBNS85a]

[BBN85b)

[BCI*T1]

A. Avizienis et al. The STAR (self-testing and repairing) computer: an investigation
of the theory and practice of fault-tolerant computer design. IEEE Transactions on
Computers, C-20(10):1312-1321, October 1971.

S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. IEEE Computer, 19(8):26—-
34, August 1986.

W.B. Ackerman and J.B. Dennis. VAL-A Value-Oriented Algorithmic Language, Pre-
liminary Reference Manual. Technical Report TR-218, Laboratory for Computer Sci-
ence, MIT, June 1979.

G.A. Agha. Actors: A Model of Concurrent Computations in Distributed Systems.
Technical Report TR 884, MIT Artificial Intelligence Laboratory, June 1985.

P. Agrawal. RAFT: A recursive algorithm for fault-tolerance. In Proceedings of the
1985 International Conference on Parallel Processing, pages 814-821, 1985.

J. Backus. Can programming be liberated from the von Neuman style? Communica-
tions of the ACM, 21(8):613-641, 1978.

K.E. Batcher. Design of a massively parallel processor. [IEEE Transactions on Com-
puters, C-29(9):836-840, September 1980.

Butterfly (TM) Parallel Processor QOverview. Bolt Beranek and Newman Inc., Cam-
bridge, MA, June 1985.

The Uniform System Approach To Programming the Butterfly (TM). Bolt Beranek and
Newman Inc., Cambridge, MA, November 1985.

W.G. Bouricius, W.C. Carter, D.C Jessep, P.R. Schneider, and A.B. Wadia. Re-
liability modeling for fault-tolerant computers. IEEE Transactions on Computers,
C-20(11):1306-1311, November 1971.

74



[BeaT78]

[BF76]

[CHS1]

[DB87]

[EH85]

[FAHS3]

[Fen81]

[FM84]

[FRS5]

[GRS5)

[HG87]

[Hil86)]

[HSL78]

[Kow85]

M.D. Beaudry. Performance-related reliability measures for computing systems. IEEE
Transactions on Computers, C-27(6):540-547, June 1978.

M.A. Breuer and A.D. Friedman. Diagnosis and Reliable Design of Digital Systems.
Computer Science Press, Rockville MD., 1976.

K-Y. Chwa and L. Hakimi. Scheme for fault-tolerant computing: a comparison of

modularly redundant and ¢-diagnosable systems. Information and Control, 49:212—
238, June 1981.

L. Donatello and Iyer B.R. Analysis of a composite performance reliability measure for
fault-tolerant systems. Journal of the ACM, 34(1):179-199, January 1987.

A-H. Esfahanian and L. Hakimi. Fault-tolerant routing in DeBruijn communication
networks. IEEE Transactions on Computers, C-34(9):777-788, September 1985.

W.K. Fuchs, J.A. Abraham, and K-H. Huang. Concurrent error detection in VLSI
interconnection networks. In Proceedings of the 10" Annual Symposium on Computer
Architecture, pages 309-315, 1983.

T-y. Feng. Survey of interconnection networks. IEFE Computer, 14(12):12-27, De-
cember 1981.

D. G. Furchtgott and J. F. Meyer. A performability solution method for degradable
nonrepairable systems. IEEE Transactions on Computers, C-33(6), June 1984.

J.A.B. Fortes and C.S. Raghavendra. Gracefully degradable processor arrays. IEEFE
Transactions on Computers, C-34(11):1033-1044, November 1985.

J-L. Gaudiot and C.S. Raghavendra. Fault-tolerance and data-flow systems. In Pro-

ceedings of the 5" International Conference on Distributed Computing Systems, May
1985.

K. Hwang and J. Ghosh. Hypernet: A communication-efficient architecture for con-
structing massively parallel computers. IEEE Transactions on Computers, C-36(12),
December 1987.

D. Hillis. The Connection Machine. MIT Press, 1986.

A.L. Hopkins, T.B. Smith, and J.H. Lala. FTMP-A highly reliable fault-tolerant
multiprocessor for aircraft. Proceedings of the IEEE, 66(10):1240-1255, October 1978.

J.S. Kowalik, editor. Parallel MIMD Computation: HEP Supercomputing and its Ap-
plications. The MIT Press, 1985.

75



[KRS0]

[KR81]

[KR86]

[LK86]

[Mag80]

[Mal80]

[Mey80]

[Mey82]

[MMS2]

[MSA*85]

[MST79]

[NG8T7a]

[NGS87b]

J.G. Kuhl and S.M. Reddy. Distributed fault-tolerance for large multiprocessor systems.

In Proceedings of the T Annual Symposium on Computer Architecture, pages 23-30,
July 1980.

J.G. Kuhl and S.M. Reddy. Fault-diagnosis in fully distributed systems. In Proceedings
of the 11" International Symposium on Fault-Tolerant Computing, June 1981.

J.G. Kuhl and S.M. Reddy. Fault-tolerance considerations in large multiple-processor
systems. IEEE Computer, 19(3):56-67, March 1986.

F.C.H. Lin and R.M. Keller. Distributed recovery in applicative systems. In Pro-
ceedings of the 1986 International Conference on Parallel Processing, pages 405-412,
August 1986.

G.A. Mago. A cellular computer architecture for functional programming. In Proceed-
ings of IEEE COMPCON, 1980.

M. Malek. A comparison connection assignment for diagnosis of multiprocessor systems.
In Proceedings of the 7" Annual Symposium on Computer Architecture, pages 31-35,
May 1980.

J.F. Meyer. On evaluating the performance of degradable computer systems. IFEE
Transactions on Computers, C-29(8):720-731, August 1980.

J.F. Meyer. Closed-form solutions of performability. IFEE Transactions on Comput-
ers, C-31(7):648-657, July 1982.

M. Malek and J. Maeng. Partitioning of large multicomputer systems for efficient fault
diagnosis. In 12t* International Symposium on Fault-Tolerant Computing, pages 341-
348, June 1982.

J.R. McGraw, S. Skedzielewski, S. Allan, D. Grit, R. Oldehoeft, J.R.W Glauert, I.
Dobes, and P. Hohensee. SISAL-Streams and Iterations in a Single Assignement Lan-
guage, Language Reference Manual, Version 1.2. Technical Report TR M-146, Univer-
sity of California - Lawrence Livermore Laboratory, March 1985.

S.R. McConnel, D.P. Sieworek, and M.M. Tsao. The measurement and analysis of
transient errors in digital computing systems. In Proceedings of the 1979 International

Symposium on Fauli-Tolerant Computing, pages 67-70, June 1979.

W. Najjar and J-L. Gaudiot. Distributed fault-tolerance in data-driven architectures.
In Proceedings of the 2" International Conference on Supercomputing, May 1987.

W. Najjar and J-L. Gaudiot. Reliability and performance modelling of hypercube-
based multiprocessors. In Proceedings of the 2"* International Workshop on Applied

76



[NG8S]

[NPAS6]

[PF82]

[PMC67]

[PN85]

[Pra85a]

[Pra85b)]

[PV81]

[RAES4]

[Ran87]

[Ren86]

[Sei85]

[Ser84]

Mathematics and Performance Reliability Models of Computer/Communication Sys-
tems, Rome, Italy, May 1987. '

W. Najjar and J-L. Gaudiot. Network disconnection in distributed systems. In Pro-

ceedings of the 8" International Conference on Distributed Computing Systems, San
Jose, CA, June 1988.

R.S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Technical Report Computations
Structures Group Memo 265, Laboratory for Computer Science, MIT, Cambrige, Mas-
sachussett, July 1986.

J.H. Patel and L.Y. Fung. Concurrent error detection in ALU’s by recomputing with
shifted operands. IEEE Transactions on Computers, C-31(7):589-595, July 1982.

F.P. Preparata, G. Metze, and R.T. Chien. On the connection assignement problem
of diagnosable systems. IEEE Transactions on Electronic Computers, EC-16:848-854,
December 1967.

G.F. Pfister and V.A. Norton. Hot spot contention and multistage interconnection
networks. In Proceedings of the 1985 International Conference on Parallel Processing,
August 1985.

D.K. Pradhan. Dynamically restructurable fault-tolerant processor network architec-
tures. IFEE Transactions on Computers, C-34(5):434-447, May 1985.

D.K. Pradhan. Fault-tolerant multiprocessor link and bus network architectures. IFEE
Transactions on Computers, C-34(1):33-45, Jannuary 1985.

F.P. Preparata and J. Vuillemin. The cube-connected cycles: a versatile network for
parallel computation. Communications of the ACM, 24(5), May 1981.

C.S. Raghavendra, A. Avizienis, and M.D. Ercegovac. Fault-tolerance in binary tree
architecture. IEEE Transactions on Computers, C-33(6), June 1984.

A. Ranade. How to emulate shared memory. In 28" Annual Symposium on Founda-
tions of Computer Science, pages 185-194, Los Angeles, CA, October 1987.

D.A. Rennels. On implementing fault-tolerance in binary hypercubes. In Proceedings
of the 1986 Symposium on Fault-Tolerant Computing, pages 344-349, 1986.

C. Seitz. The Cosmic Cube. Communications of the ACM, 28(1), January 1985.

0. Serlin.  Fault-tolerant systems in commercial applications. IEEE Computer,
17(8):19-30, August 1984.

77



[$582]

[SSB87]

[Str86]

[STRSS]

[Tri82]

[Tro78]

[VN56]

[WF84]

[WLG*78]

D.P. Sieworek and R.S. Swartz. The Theory and Practice of Reliable System Design.
Digital Press, Bedford, Mass., 1982.

A. Sengupta, A. Sen, and S. Bandyopadhyay. On an optimal fault-tolerant multipro-
cessor network architecture. IEEE Transactions on Computers, C-36(5):619-623, May
1987.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

R.M. Smith, K.S. Trivedi, and A.V. Ramesh. Performability aanalysis: measures, an
algorithm, and a case study. IEEE Transactions on Computers, 37(4):406-417, April
1988.

K.S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer Sci-
ence Applications. Prentice-Hall, Englewood Cliffs, N.J., 1982.

W. N. Troy. Fault-tolerant design of local ESS processors. Proceedings of the IEEE,
66(10), October 1978.

J. von Neuman. Probabilistic logics and the synthesis of reliable organisms from un-
reliable components. In C.E. Shannon and J. McCarthy, editors, Aufomata Studies,
pages 43-98, Princeton University Press, Princeton, NJ, 1956.

C. Wu and T. Feng. Interconnection Networks for Parallel and Distributed Processing.
IEEE Computer Society Press, 1984.

J.H. Wensley, L. Lamport, J. Goldberg, M.W. Green, K.N. Levitt, P.M. Melliar-Smith,

R.E. Shostak, and C.B. Weinstock. SIFT: design and analysis of a fault-tolerant com-
puter for aircraft control. Proceedings of the IEEE, 66(10):1240-1255, October 1978.

78



Appendix A

Simulation Program

The following is the actual C program that was used for the Monte-Carlo simulation of network
disconnection. The example bellow is for a binary n-cube topology the programs for other topologies
differ only in the construction of the network.

#include <stdio.h>
#include <math.h>
#define MAXINT 2147483647

short cube[1024][10], fail[1024], n, N;
short mark[1024], rt;

short pow_two(k)

/* returns an integer power of two of the argument */
short k;

{

short i, p=1;

for(i=0; i<k; i++){p = p*2;}

return p;

¥

get_partner(m,1)
/* returns the node number of the neighbor of a given */
/* node m along a given dimesion 1 */

short m,1;

{

unsigned p,q;

p = pow_two(l);
qQ=m" p;
return q;

}

void build_cube(n)
/* build the connectivity graph of a binary n-cube in */
/* the array cube */
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short n;

{

short i, j;
for(i=0; i<m; i++)
g

for(j=0; j<N; j++)

{cube[j][i] = get_partner(j,i);}
}

}

short get_rt()

/* get a node number of the root for a deapth-first */

/* search of the graph looks for the first non-failed node */
{

short i=0;

while (failli++] == 1);

return (i-1);

}

void DFS(k)

/* deapth-first search of the graph with root as */
/* node k, marks marks with 1 non-failed nodes that */
/* are traversed. */

short k;

{

short i, v;

for(i=0; i<m; i++)

{

v = cube[k][i];

if (faillv] == 0 && mark[v] == O0){mark[v] = 2;}

}

for(i=0; i<n; i++)

{

v = cube[k][i];

if (mark[v] == 2) {mark[v] = 1; DFS(v);}

¥

}

short check_conn()
/* checks for connected components, returns the */
/* number of unmarked non-failed nodes */

4

short i, num_disc=0;

for(i=0; i<N; i++){mark[i] = 0;}
rt = get_rt();



mark[rt] = 1;

DFS(xrt);

for(i=0; i<N; i++){if (mark[i] == 0 && fail[i] == 0)
{num_disc++;}}

return num_disc;

}

short get_node(h)
/* gets next node to fail with uniform distribution */
short h;

{

long 1;

double z;

short d, i, count=0;
1 = random();

z = (double)l/MAXINT;
d = zx(N-h-1) +1;

for(i=0; i<N; i++)

{count = count + (1 - faill[il);
if (count == d) break; }

return i;

}

main(argc,argv)

int argc;

char xargv([];

{

FILE *fpo, *fopen();

short i, last, j, DISC, v, degree[1024], T, I, J, Iter;
double pd[1024], disc_size[1024];

if ((fpo = fopen(*++argv,"w")) == NULL)
{printf("cannot open file %s\n", *argv); exit(0);}

printf("enter n=");

scanf ("%hd", &n);

N = pow_two(n);

printf("n= }hd and N= %hd\n",n,N);
build_cube(n);

printf("enter Iter=");

scanf ("%hd", &Iter);
srandom(time(0));

for(I=0; I<Iter; I++)
{
for(i=0; i<N; i++){fail[i] = 0;}
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for(i=0; i<N; i++){degree[i] = n;}
DISC = 0;

for(i=0; i<N; i++)

{

last = get_node(i);

fail[last] = 1;

for(j=0; j<n; j++)

{

v = cube[last] [j];

degree[v] = degreel[v] - 1;

if (degreelv] == 0 && faillv] == 0)
{DISC = 1; break;}

}

if (DISC == 1) {T=i; break;}

if (1 > 2x(n-2)) {

DISC = check_conn();}

if (DISC > 0) {T=1i; break;}

}

pd[T]++; disc_size[DISC]++;

}

fprintf(fpo,"I Disc Prob\n");
fprintf(fpo,"\n");

for(i=0; i<N-1; i++)

{

pd[i] = pd[il/((double)Iter);
fprintf(fpo,"%d %g\n",i+1,pd[il);

}
fprintf (fpo,"\n");
fprintf(fpo,"Size Disc Prob\n");
fprintf (fpo,"\n");
for(i=0; i<N-1; i++)
{
disc_size[i] = disc_size[i]/((double)Iter);
if (disc_size[i] > 0)
4.
printf("size = }d and disc prob = Yg\n",i,disc_size[i]);
fprintf (fpo,"%d %g\n",i,disc_size[il);
}
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MARY'S DISK

Name Size Kind Last Modified

M 88-60 1K Draw 1.95 document Tue, Feb 14, 1989 12:36
[ 89-01 2K Draw 1.95 document Tue, Feb 14, 1989 12:58
[ 89-02 2K Draw 1.95 document Mon, Apr 24, 1989 14:33
) 89-03 1K Draw 1.95 document Fri, Feb 24, 1989 12:10
D) 89-05 1K Draw 1.95 document Mon, May 22, 1989 9:32

[ 89-06 2K Draw 1.95 document Tue, May 2, 1989 14:27
0 89-07 2K Draw 1.95 document Mon, May 22, 1989 9:28

[ 89-15 1K Draw 1.95 document Wed, Jun 28, 1989 14:39
) 89-16 1K Draw 1.95 document Wed, Jun 28, 1989 14:52
D 89-17 1K Draw 1.95 document Wed, Jun 28, 1989 14:55
[ 89-18 1K Draw 1.95 document Wed, Jun 28, 1989 15:06
O 89-20 1K Draw 1.95 document Fri, Jul 28, 1989 15:10
D 89-21 2K Draw 1.95 document Thu, Aug 3, 1989 14:03
[ 89-22 1K Draw 1.95 document Tue, Aug 8, 1989 10:24
[ 89-28 2K Draw 1.95 document Thu, Oct 12, 1989 13:26
0O cng 2K Microsoft Word d... Wed, Jun 14, 1989 15:51
[ ceng 89-09 2K Draw 1.95 document Mon, Jun 5, 1989 8:28

D enr 2K Draw 1.95 document Thu, Dec 15, 1988 14:46
[ CRI 88-61 1K Draw 1.95 document Mon, Mar 13, 1989 17:44
O cri2 2K Draw 1.95 document Thu, Jan 19, 1989 14:17
O cri3 2K Draw 1.95 document Tue, Jan 17, 1989 12:43
D) crititle 2K Draw 1.95 document Thu, Dec 8, 1988 11:48
[ DISTRIBUTION 4K MacWrite document Mon, Feb 27, 1989 13:58
D ee680 1K Draw 1.95 document Mon, Mar 6, 1989 14:29
D eval 3K Draw 1.95 document Fri, Dec 2, 1988 14:39
O eval2 2K Draw 1.95 document Thu, Dec 1, 1988 16:28
D faculty list 3K Microsoft Word d... Thu, Jun 22, 1989 10:10
D food list 3K MacWrite document Wed, Mar 22, 1989 11:24
O miT 1K Draw 1.95 document Wed, Dec 14, 1988 16:01
[ PARKERT 3K Draw 1.95 document Wed, Aug 16, 1989 15:38
[ PARKER2 2K Draw 1.95 document Wed, Aug 16, 1989 14:30
D toole 2K Draw 1.95 document Wed, Dec 14, 1988 14:21




