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1 Abstract

This paper describes a representation for temporal information useful for natural lan-
guage understanding of system specifications. The representation is based on the design
data structure (DDS). The DDS is widely used in the ADAM Advanced Design AutoMa-
tion system, and contains four models of digital designs, data flow, control and timing,
structural and physical. The paper describes the control and timing model in detail.

The natural language interface operates by matching patterns in the input sentences
and then relating the patterns to concepts in its knowledge base. A number of concepts
for digital system specification have been created. Three of these are described in the
paper, with emphasis on the universal value transfer (UVT). Asynchronous behavior and
timing constraints are also discussed.

The natural language interface is operational and has been tested on a number of
sentences.



2 Introduction

Digital system specifications are usually written in English or other natural language.
Most existing formal techniques for describing or specifying digital systems are incom-
plete, thus overly restricting the resulting design. Or, they simply cannot be used to
specify the behavior of complex systems composed of large numbers of components and
many levels of hierarchies. Until a suitable formal notation for system specifications
has been developed, the only manner in which this information can be processed by
machine is via a natural language interface.

Understanding system specifications is especially challenging because a large por-
tion of the information is temporal. The behavior of these systems can be specified by
one or more processes (independently executing environments) which compete and/or
communicate. A process can be started asynchronously (whenever specified conditions
become true); execute indefinitely; start, suspend and terminate other processes asyn-
chronously; exclude other processes from executing; communicate with other processes;
and be asynchronously terminated or suspended itself when some specified conditions
become true. The (clock) rates at which these processes run may be different from
process to process, i.e., not a multiple of any common fundamental clock. Processes
communicate via shared data, synchronize at critical points, or compete for shared
resources.

This work describes a representation for temporal information like that described
above. The representation was developed as part of a natural language interface for
ADAM, the USC Advanced Design AutoMation System [1], [2]. The representation is
used to process specifications that describe the behavior of digital systems in restricted
English text.

The behavior of a system is composed of three parts:

1. the data flow of the system,
2. the timing and sequencing of the system, and

3. the interrelationships between the dataflow and the timing and sequencing infor-
mation.

This representation allows the information to be easily separated for analysis or
synthesis tasks. For example, the data flow information can be used to determine
operator precedence and the bindings can be checked to verify that the timing and
sequencing does not violate the inherent precedence relations.

The representation used to describe a digital system’s timing and sequencing in-
tegrates together four types of information, all of which define partial orders. This
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allows the information to be integrated together into a formal graphical model. The
different types of information that give rise to partial orderings and an example of the
corresponding English text that produces each are:

1. relative temporal ordering, e.g. event-a occurs before event-b;

2. metric time, e.g., the data transfer occurs 10 seconds after event-a;
3. causality, e.g., the cpu starts the memory data transfer cycle and
4. asynchronous activity, e.g., when the reset button is pushed.

The fundamental representation of behavior as data flow, sequencing and timing and
their interrelationships is used to define higher-level concepts that characterize digital
system behavior. These higher-level concepts are used by a semantic-based parser to
understand system specifications.

The outline of the paper is as follows. First, we introduce the ADAM system and give
a brief overview of how designs are represented. Following the introductory material,
related research is discussed in Section 3. Then, in Section 4, we detail the temporal
representation used in ADAM. Section 5 describes how the natural language interface
uses this representation to understand system specifications. Section 6 presents current
status and conclusions.

2.1 The ADAM System

The major subsystems of ADAM are a design-for-testability subsystem [3] and a dig-
ital synthesis subsystem [4]. The ADAM synthesis subsystem is intended to assist a
designer by providing a unified framework which combines: a natural language inter-
face for specification; a database for both the design representation and a collection of
knowledge bases; and a knowledge based planner, [5], which supervises specialized syn-
thesis procedures. Design information is represented using the Design Data Structure
(DDS), (6], [7)-

The goals of the synthesis subsystem are to produce correct implementations repre-
senting a range of tradeoffs, to allow varying degrees of user interaction, to allow design
to proceed incrementally, starting from a partially-complete initial design, and to pro-
duce designs which meet several kinds of constraints, including timing requirements.

2.2 Overview of The Design Data Structure

The Design Data Structure (DDS) mentioned above is the underlying representation for
the Specification Representation Language (SRL) used in the natural language interface.
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The Design Data Structure is a unified representation for design information which
contains data flow behavior, control and timing behavior, logical structure and physical
structure. The DDS representation is interpretable for simulation purposes, the graphs
can be easily traversed to detect errors analytically (8], it supports description of families
of designs, it allows the design effort to be partitioned in a well-defined manner, it
corresponds directly to formal models of the synthesis process [9], it supports easy tool
interfacing, and supports incremental design, user interaction, and backtracking [10]. In
addition, it provides the necessary semantics to represent synchronous and asynchronous
events, timeouts, delays, pipelining, and process priorities.

The Design Data Structure represents specifications and implementations using sep-
arate models for the dataflow behavior, timing and control behavior, logical structure,
and physical structure. This allows both control and timing and data flow behavior to
be modeled accurately. Each model may be hierarchically decomposed, but the hierar-
chies may not be isomorphic. By separating different aspects of design information into
models, instead of lumping behavior, structure and timing into a single representation
at each ’level’ of design, consistency checking is simpler, and redundancy is reduced.

The four models can be described briefly:

1. Data Flow: represents data dependencies and functional definitions. It is a
bipartite acyclic graph where one type of node represents the operations and the
other type of node represents the values. The data link arcs which connect these
nodes indicate the sources and sinks of the values. These graphs are equivalent to
a single assignment programming language.

2. Control and Timing: represents timing, sequence of events and conditional
branching. It is represented by a directed acyclic graph, which consists of nodes
corresponding to events, and arcs which represent intervals and connect these
nodes. To capture as much semantic information about the design as possible,
four types of arcs and seven types of nodes are used to model various aspects of
timing and control (for example, concurrency, choice and constraints).

3. Structural: represents the logical decomposition of a circuit. This subspace is
similar to a schematic or block diagram. It consist of modules which are intercon-
nected by carriers.

4. Physical: represents the physical hierarchy of components and the physical prop-
erties of these components. In this subspace there are two primitive object types:
blocks and nets.

Items in one model are related to those of other models by bindings. For example,
a binding can occur between the addition in the dataflow, the ALU in the structural
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model which is used to implement it, and the time range during which the addition is
performed. All relationships between the models are explicitly delineated in this way.
These bindings correspond to the 0-1 variables in a formal model of the synthesis process,
supporting verification as well as synthesis [9]. The bindings also support cleaner par-
titioning of the design effort, since correspondences between design models are explicit.
Incremental design is possible with the simple addition of bindings, and backtracking is
supported by deletion of bindings. Users can interact by viewing, creating, or deleting
bindings.

In the DDS, abstract behavior is represented using the data flow and timing models.
Synthesis systems manipulate this information and also place additional implementation
information in the structural and physical models to create the design. An advantage of
the DDS is that both data flow and timing graph representations are employed, so that
both aspects of behavior can be accurately specified, and hierarchical decomposition
of both is possible. This is desirable because the design of data paths and control is
commonly done separately to reduce complexity, and yet tradeoffs between the two are
possible and often performed in human designs. Separating data flow from control and
timing also makes the specification of pipelined designs easier.

One could produce a single combined graph from the data flow and control and
timing models by using the bindings to ’snap together’ the two graphs at some level of the
hierarchy. (It should be noted that the two graphs at other levels of the hierarchy might
not compose cleanly into a single graph due to the non-isomorphism of the hierarchies.)
Thus, using two separates graphs supports a superset of the information that could be
contained in a single graph. The bindings which maintain the correspondence between
the two graphs are explicit, facilitating searching for concurrency and other design
features. ‘

In Section 4 of this paper, we will give a more formal description of the DDS control
and timing model and then present some examples of temporal information with the
corresponding DDS representations. These examples will highlight the ability to express
a number of different aspects of system behavior, grouped into high-level concepts.

2.3 High Level Concepts in The Digital System Specification
Domain

After studying many natural language specifications, a small set of concepts that char-
acterize system-level behavior, constraints and other ancillary data were developed.
These concepts provided an understanding of the representational requirements for the
natural language interface and formed the basis for the interface itself. The concepts
can be grouped into classes as follows:



Information Transfer

e Unidirectional Value Transfer,
e Bidirectional Value Transfer, and

e Nondirectional Value Transfer.

Temporal Activities

e Asynchronous Temporal Activity,
e Causal Temporal Initiation,

e Causal Temporal Termination, and
e Single Temporal Event.

Temporal Constraints

e Single Temporal Relation, and

e Dual Temporal Relation.

Control

e If-then-else,

e While,

e Repeat, and

e Looping.

Declarations

e Assignment or Inheritance Statements, and

e Structural or Physical Interconnection.

Abstractions of DDS Relations

e Value-Carrier-Net-Range (VCNR), and

e Operation-Module-Block-Range (OMBR).

Formal semantic definitions of all these concepts have been developed using the DDS
as a modelling tool [7].



3 Relationship to Other Research

This research is related to other work done in the broad areas of temporal logic, temporal
representations and natural language understanding.

3.1 Temporal Logic

Temporal logic [11] is an extension of standard logic to time-related propositions. Tem-
poral logic has been used by several researchers [12], [13], [14], [15], [16], [17] to reason
about temporal issues associated with programs, network protocols, and most recently
hardware. The general level of abstraction presented by Bochmann, Moszkowski and
Fujita is at a level where the individual states of the device must be identified and much
of the reasoning is done in terms of signals and their levels. Also the description of the
behavior mixes structural, data flow and sequencing and timing information in a way
which makes it difficult to reason about any one of these individually. Other work by
Schwartz et al. [18] which could be applied to this research has introduced intervals and
used temporal logic to reason about these intervals.

Shoham [19] has introduced a new nonmonotonic logic, chronological ignorance to
deal with causality. His problem is much broader in scope than our specification problem
and his notion of extended prediction problem has been challenged as nonexistent by
Rayner [20].

3.2 Representation of Temporal Information

In addition, to the classic view of temporal logic described in the previous section,
other work on representing temporal information has been done in the area of artificial
intelligence [21], [22], and the survey of research on temporal modelling by [23]. The
work of Allen [24], [25], [26] is closest to the research done in extending the DDS timing
and sequencing representation. The basic similarities are the notion of the temporal
interval as a primitive and the characterization of the relationships between temporal
intervals in a hierarchical manner using constraint propagation techniques. There have
been several other papers written on the computational aspects of Allen’s Temporal
Representation [27], [28], [29] and [30]. Our research differs in that we have added a
different notion of points and have extended the semantics of the relationships to reflect
causality.

Sathia et al. developed an integrated representation of time, causality, activity,
authority, constraint representation and ownership for the scheduling and planning do-
main. Their model is an activity/state network which includes much of the same tem-
poral information found in our model and treats causality in a similar way. In contrast,
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we are not producing a state-based representation and our notion of unifying the tem-
poral, data flow, structural and physical models through bindings is better suited to the
specification problem.

3.3 Related Research on Natural Language Understanding

Previous work done on processing natural language specifications has been concerned
primarily with software systems [31], [32], programs [33], [34], and data types [35].
This work falls into two categories. The first is characterized by virtually unrestricted
application domains and therefore required enormous vocabularies and the ability to
deal with tremendous variability in the input. The second covered a very limited domain;
namely, the manipulation of the objects which were created from the specification, e.g.
CREATE A STACK, DELETE A SET, etc. Also, it should be noted that the research
described in the paper by Mander was only concerned with syntactic analysis.

To make the problem tractable, for this research we selected an intermediate path
and chose a limited domain, the behavior of digital systems. In addition, this system
expects a structured input that has been checked for spelling errors and mistypings.

One prior endeavor involved the application of natural language processing as an
input to a design system for digital electronics, [36], but this work actually focused on
the construction of a circuit given predefined components and was focused on implemen-
tation rather than specification. Furthermore, it used certain hyphenated verb forms,
e.g. IS-CAPTURED-IN, and noun phrases like NUMBER-OF-WORDS to aid in the
processing making it more like an application-oriented programming language.

Other recent work, like the UNIX Consultant (UC), [37], and CLEOPATRA, [38],
answer questions concerning a given body of knowledge, the former the UNIX operating
system, the latter the results of a digital simulation.

4 The DDS Control and Timing Model

The DDS control and timing model is used to describe the timing and ordering of events
in hardware. It is formally represented by a directed acyclic graph (DAG) model.
Informally, such a model is constructed of ranges (arcs) and points (nodes). There
are four types of arcs in this model. The four types are based on the semantic use
of the arcs in representing timing and sequencing information. There are also seven
types of nodes in this model. Informally, a range represents a constraining or derived
duration of time, an ordering relationship, or a causal relationship between points.
Points represent events of infinitesimal duration, which separate ranges. A range may
have either a known, an approximately known, or a wholly unknown duration; any two



points may or may not be linked by a range. Ranges are directed: i.e. they indicate the
direction of the flow of time. A nonhierarchical graph of points and ranges is a directed
acyclic graph, corresponding to a partial ordering of events (hierarchical graphs appear
as hypergraphs). The graph can convey loops, conditional branching and concurrent
execution, all of which are important in hardware design.

4.1 DDS control and timing graph arc types

The four types of arcs are interval arcs, constraint arcs, causal arcs, and delay arcs.

An interval arc represents an interval of time (or range [39]). An interval arc
may also be viewed as a sequence of events or points. However, since a point has no
actual dimension (like a geometrical point on a line), the points serve only as labels
used for reference to specific events. The duration or length of the interval is associated
with the arcs joining the nodes. Since the ultimate objective is a physically realizable
implementation, one cannot bind an operation or a value to a node or point; bindings
are only permitted to arcs. Finally, interval arcs may be assigned a specific length that
indicates a particular amount of time (units are established as required by the design)
as shown in Figure 1. The ends of the interval in this figure are referenced as p; and
po. ' Note, this length is defined in terms of a value and a relation. The relation may
be any of the following: >, <, =, >, <. There is no restriction that the length of an
arc be positive; however, time proceeds in only one direction and negative lengths can
be transformed to positive lengths by reversing the direction of the arc.

In this representation a p point is a simple primitive event and will be explained in Section 4.2.
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(100 ns)

Figure 1: An interval arc in the DDS and its length in nanoseconds.

J'_ntervl1

Figure 2: A constraint arc used to specify that one interval begins 100 ns after the end
of the other.

A constraint arc represents a temporal constraint. For example, if the beginning
of one interval is specified to occur at 100ns after another interval ends, a constraint
arc is used to represent this information. An example of this is shown in Figure 2.

A causal arc represents a causal relationship. An example of this type of arc is
where the end of interval; is causally related to the beginning of intervaly, t.e., interval
ending causes interval, to start (shown in Figure 3).

A delay arc represents inertial delay [40]. ? In the research presented here, a simpli-
fied model is used that lumps the various delays associated with a physical component.
The lumped delay, delay;, as shown in Fig 4 is associated with delay,,,, that begins
with the arrival of the last input and ends with the beginning of the output being valid,
delay,yt. The end of the interval, delay;, is constrained by the arc labeled, constraint >
0 to precede the beginning of the interval labeled delay;. This constraint simply stated
is that the input value must not end before the operation begins. The analogy in a
physical implementation would be to measure the output after the signal was removed

?Inertial delay is not equal to propagation delay.
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Figure 3: A causal arc representing a causal relationship.

and the input was floating.

Note that the DDS can be used to construct a detailed timing model at the transistor
level, if required. Obviously, such a model is not required for system specifications.
Semantically, a clock interval is not fundamentally different from an arbitrary regular
repetition of interval arcs. The symbol tau (7) will be used to refer to the fundamental
unit of time chosen as a quantum unit for a particular interpretation. No interval of
smaller duration than this may be distinguished under that interpretation.

4.2 Control and Timing Graph Node Types

Points are primitives and have no explicit definition within the model. There are seven
types of points in the control and timing model: p nodes, and nodes, or nodes, and-j
nodes, or-j nodes, alpha (a) nodes, and omega (w) nodes. The first type is a simple
node that may join two arcs, providing a label for the meets ® relationship [24] or
providing a label for an event. This is a p node or point. An example is shown in
Figure 5. The location of p; is within the interval between py, and pe but is not further
specified.

The remaining six types of nodes are only useful to establish the temporal relation-
ship between three or more arcs. The types of nodes will be described with respect to
interval arcs only. The various combinations of nodes and arcs are defined in [7].

An and node represents a point at which the end of one interval is synchronously
associated with the beginning of two or more other intervals. This may also be referred
to as an and fork point [41] or a cobegin [42]. The two branches begin together but no
additional information is implied in Figure 6 (Note: Allen [24] uses the label starts,

3Meets is one of the thirteen unambiguous relationships that Allen defines between any two intervals
in time. It is a graphical relation in which the end of one interval abuts the beginning of the following
interval.
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Figure 4: A DDS representation showing the use of a delay arc

Figure 5: Three p points joined by two interval arcs.
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interval 1

Figure 6: A two branch and fork example.

which seems to imply some causality; the model described here differentiates the causal
information by using the causal arc construct.)

An or node represents a point at which the end of one interval is associated with
one of a set of subsequent intervals, thereby representing an n-way branch. Each branch
exiting from this node is an exclusive selection. The choice of branch is based on the
value of a predicate that is attached to each arc emanating from the or node. The
predicates will be discussed further in the next section with respect to their use in
describing asynchrony and in the section on DDS canonical templates. An or node, two
branch example is depicted in Figure 7.

An and-j node represents an and join point, i.e., the termination of two parallel
branches. This node is analogous to a coend [42]; appropriate delay is inserted in either
branch to insure concurrent termination. An example of a coend is depicted in Figure 8.
An or-j node represents an ezclusive-or join point. The arcs that terminate at this
point represent all possible branches that could be the predecessor of the arc emanating
from the join. Only one branch (arc) will actually be active in a properly specified
behavior. An example of an or-j node joining three interval arcs is shown in Figure 9.

Alpha nodes and omega nodes occur in pairs and will be described together.
An alpha node represents the beginning of a repetitive interval or loop. The arc or
sequence of arcs that emanates from this point will eventually terminate in an omega
node that represents the normal termination of the repetitive interval. The basic con-
cept is shown in Figure 10 where the details of the control and timing graph loop body
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Figure 7: A two branch or fork example.

1 7ol
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Figure 8: An example of coend in the Control and Timing Graph.
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Figure 9: An example of xor join in the Control and Timing Graph.

are shown schematically. The alpha node and omega node are given symbolic subscripts.
These subscripts are used in distinguishing values and operations in different iterations
of the loop. When values are bound to a loop in the control and timing model, a corre-
spondence between the value subscripts that are in parentheses () and the subscript of
the loop is established. In effect, this loop could be considered to be unrolled in the DDS
and is simply a sequence of subgraphs delimited by subscripted alpha and omega nodes
as indicated in Figure 11. However, unfixed loops, i.e., those loops with an unknown
number of repetitions and infinite loops cannot be unrolled. Also, since the arcs inside

loop body

Figure 10: An iterative loop in the Control and Timing Graph.
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time between end of one iteration

and beginning of the next

constraint <7 constraint <7

Figure 11: An iterative loop unrolled.

the loop are subscripted there may be a different length of time associated with every
execution of the loop.

5 Representing Temporal Information in The Nat-
ural Language Interface

The use of natural language allows the ADAM system to capture a specification of the
system’s behavior from the designer’s point of view with a minimum of implementation
detail. In addition, the use of a natural language interface will relieve potential users
of the burden of learning one or more artificial languages. This interface will also
facilitate the construction of a complete, correct, consistent, concise and comprehensible
specification, via an interactive dialogue with the designer. The interface will allow the
user to interactively assist in the disambiguation of the the input, simplifying a difficult
part of natural language processing.

The research described here differs from UC and CLEOPATRA in that it is creating
a design entity, i.e., a formal, neutral representation of the behavior being specified. To
create this representation, semantic knowledge about system behavior has been encoded
in the parser’s knowledge base.

16



5.1 Components of the Natural Language Interface

To understand the specification of digital systems in restricted English text requires:

1. a corpus (a collection of writings, in this case examples) for the domain of these
specifications,

2. a representation for the knowledge expressed in the corpus,
3. a formal representation for the behavior of digital systems, and
4. a parsing technique to map the natural language into the formal representation.

Each of these will now be described briefly.

5.2 The corpus

The corpus for this natural language interface was developed by acquiring actual spec-
ifications, having students write specifications and constructing additional examples.
These examples were based on a taxonomy of high-level system behavior and a 20004
word lexicon which were developed as part of this research.

Examples of the sentences taken from the actual specifications are provided in the
following list:

1. A block of data bytes ts transferred by a sequence of data cycles.
2. The peripheral equipment shall sample the EF code word which ts on the OD lines.

3. FEach requestor communicates with the arbiter via two lines, a request line and a
grant line.

4. Select shall be dropped 100 ns after the write ts begun.

5.2.1 The Corpus’ Knowledge

The representation of the knowledge expressed in this corpus was constrained by the
choice of a pre-existing ‘parsing’ technique which was implemented by Arens in PHRAN,
a PHRasal ANalysis program [43].

PHRAN is a knowledge-based approach to natural language processing. The knowl-
edge is stored in the form of pattern-concept pairs. A pattern is a phrasal construct
which can be a word, a literal string, (Digital Equipment Corporation), a general phrase
such as
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Figure 12: The DDS Template for a UVT.



<component><sends><data>to<component>

and can be based on parts of speech (for example <noun-phrase> <verb>).

Associated with each phrasal pattern is a concept. The pattern-concept pair
(PCP) encodes the semantic knowledge of the language. For example, associated with
the pattern:

<component><sends><data>to<component>

is a conceptual template that denotes a transfer of data from one component to
another physical component.

The concepts in PHRAN are expressed in a specification representation language
(SRL) based on Conceptual Dependencies (CDs) as developed by Schank [44]. CDs are
a declarative representation of meaning which are based on general concepts of human
action, human interaction and other generalizations about physical objects. Our SRL is
based on concepts of system behavior and the information required to specify a digital
system.

5.3 Répresentation of Digital System Behavior

Three examples of digital system behavior represented in the DDS will now be given.

5.3.1 The Unidirectional Value Transfer

An example conceptual template is the DDS template for a Unidrectional Value Transfer
(UVT) shown in Figure 12 and Table 1.

This template spans two of the DDS models, the data flow model and the control
and timing model. The template for the UVT in the data flow subspace is composed
of three values and three operations and their data link arcs. The control operation
may be associated with the source operation, where the value info originates or the
sink operation, the destination for info or the control may be associated with a third
independent operation.

An example of a sentence which maps into a UVT is
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Value range operation range

src cntl interval 4 cntl interval 1
snk cntl interval 4 sTC interval 3
info interval 5 snk interval 2

Table 1: The DDS Bindings for the UVT.

The cpu transfers the block of data bytes from the disk to the control
store.

If no timing information or constraints are specified in the same sentence then the
control and timing template shown in Figure 5.3.1 is used as the default. The default
control and timing template shows the timing for the three operations and the necessary
constraints for a valid UVT. For example, constraint; and constraint, represent the
fact that the time interval for the operation, control must begin before the end of the
intervals associated with the source operation and the sink operation. If this constraint
were not present it would be meaningless to associate the src_cntl value or the snk_ctl
value with this particular transfer of the value info.

The fact that the constraint arcs emanate from a node labeled and; indicates that
the two constraints, constraint; and constraint, and the interval labeled intervaly, all
begin concurrently.

5.3.2 The Single Temporal Relation

Additional control or timing information can be added in the same sentence. For exam-
ple, the sentence may be modified as follows: The cpu transfers the block of data
bytes from the disk to the control store in less than 100 ns. The adverbial
phrase, in less than 100 ns would result in an Single Temporal Relation (STR) being
added to the template. A constraint arc would be added from initiation of the UVT at
and_1 to the termination of intervals, bounding the total duration of the UVT.

5.3.3 The Asynchronous Temporal Activity

The previous example makes no assumptions regarding synchronization or asynchronous
behavior. To specify this type of information, the sentence could be prefixed with the
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adverbial phrase upon receipt of the flag !b. *

This would create an Asynchronous Temporal Activity (ATA) that would specify the
asynchronous branching model. The model for asynchrony is built from the or-node
DDS primitive which expresses an ‘or-fork’.

To accomplish this concept of ‘values changing’ in a single assignment data flow
language a carrier from the structural subspace must be introduced to model a changing
‘signal’ with two values. That is the flag !b may be considered a signal with the value
true or the value false and the change from true to false could be represented by binding
these values to the carrier in two different intervals.

5.4 The Parsing Technique: PHRAN operation

PHRAN reads the sentence from left to right one word at a time. As each word is
examined, existing patterns and concepts are checked for a match and retained, modified
or discarded. The match may be based on lexical criteria, semantic criteria and/or
syntactic criteria. PHRAN also provides some degree of look-ahead in the sentence
to the next word and the ability to look back at previously matched terms with some
limited ability to modify those previously matched terms.

The patterns and concepts for PHRAN are stored in a knowledge-base of pattern-
concept pairs (PCP). An example of the pattern for the UVT concept expressed by the
verb transfer is

[(or (a_component) (df_opn)) (root %transfer) (d-val)].

The subject of the sentence must belong to the semantic category of an a_component
(abstract component) or a df_opn (data flow operation) for this pattern to match. The
next part of the pattern indicates that some verb form with the root of transfer must
be present. The verb may be in a different tense, e.g., transferred or it may be combined
with a modal verb like shall. The object transferred belongs to the semantic category
df_val (data flow value). The abstract component is introduced to handle a certain am-
biguity that arises from specifying a component in English. For example, a cpu may be
a logical module or a physical block, which are differentiated in the DDS. An additional
declaration or phrase like an appositive is required to resolve this type of ambiguity.
Therefore, when the word cpu is encountered it is treated as an abstract component
until additional information is provided. If a cpu process had been specified this would
be interpreted as a df_opn and the pattern would also match.

Associated with each pattern is a concept that describes the meaning of the word,
phrase or sentence that matches the pattern. The concept is represented as a frame

4A ! prefix indicates a user-supplied label.
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using the specification representation language (SRL) based on the set of concepts we
introduced.
For example, the concept part of the pattern-concept pair for the UVT in SRL is

(uni_dir_vtrans
(source (a_component ?source))
(sink (a_component ?sink))
(info (df_val ?info))

(control (a_component ?control)))

The slots in the frame are represented by variable names that are prefixed with a
question mark. Fillers for these slots are obtained when the sentence matches the
pattern. For example, consider the sentence

The cpu transfers the command.

When the sentence is processed tokens are created for the cpu and the command.
The resulting concept for this example is

(uni_dir_vtrans
(source (a_component *unspecified*))
(sink (a_component *unspecified*))
(info (df_val commandl))
(control (a_component cpul)))

Note the slots for the source and sink have defaulted to *unspecified* since they were
not included in this sentence.

The source and sink are specified by adding two adverbial phrases to the sentence.
These phrases must match the patterns associated with the desired concepts. The
patterns are

[to (or (a_component) (df_opn))]
[from (or (a_component) (df_opn))]

When these patterns are matched the concept associated with each of them modifies
the UVT pattern by replacing the default value of *unspecified* with the value of
source and sink found in the sentence.

The following sentence results in a completely specified UVT.
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The cpu transfers the code word from the controller to the peripheral
device.

Another option in the prototype system is for SPAN to display the resulting concept
in English instead of the frame like data structure.

SPAN’s output is the following:

This sentence resulted in a data flow subgraph for a unidirectional value transfer.
The source of the information is the controllerl.

The sink for the information is the peripheral-devicel.

The information transferred is the code-wordl1.

The transfer is controlled by the cpul.

6 Current Status and Conclusions

The system currently recognizes simple sentences associated with all the primitive con-
cepts of our specification language which are required to describe behavior in the domain
of digital systems. At the time of this writing (October 89), actual pattern-concept pairs
have been built for 88 basic verb patterns common to specifications and 468 nouns.
In addition, the system uses several hundred of PHRAN’s patterns as supplied from
Berkeley. Some auxiliary verb constructs for verbs like shall have been added to the
pattern-concept pairs and the system now has the ability to handle certain type of noun-
noun phrases prevalent in specifications. Also the system has been extended to detect
ambiguity that can arise from the use of nouns and verbs that have the same lexical
stem, e.g., transfer, interrupt, and signal. A database has been added so that sentences
can be passed in context. Finally new patterns, a concept and new vocabulary were
added to deal with loops and iterations.

The system is coded in Franz Lisp and is running in interpreted mode on a SUN
workstation under SUN’s operating system, Version 1.4 (UNIX BSD 4.2). Typical
sentences take approximately 10 to 25 cpu seconds to process. No attempt has been
made to optimize the code, run compiled code or port the application to a Lisp processor.
Any or all of these speed-ups should result in an interface which could operate in near
real-time.

In conclusion, a small set of concepts for system-level specification, including tem-
poral information, have been identified and their semantics defined. The usefulness of
the DDS as a neutral formal representation for capturing the specification of system
level behavior has been demonstrated.
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The system also has demonstrated the application of PHRAN to another domain
and for a different purpose than previous applications. The work presented here is a step
toward using natural language to solve a problem involved with generating information
rather than simply asking queries about an existing body of information.
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