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The OMP Supercomputer: A New RISC Multiprocessor
Using Orthogonal Memory and Spanning Buses®

Abstract: An Orthogonal MultiProcessor (OMP) supercomputer is currently under con-
struction at the University of Southern California with research funding from NSF and
assisted by several industrial partners. The prototype OMP is being built with 16 Intel
i860 RISC microprocessors using custom-designed spanning buses and 256 parallel memory
modules, which are 2-D interleaved and orthogonally accessed without conflicts. This paper
presents the architecture design, simulation results, and the embeddings of other parallel
architectures, such as hypercube, mesh, and pyramid onto the OMP structure. The embed-
ding capability demonstrates the adaptability of OMP for either MIMD or SIMD operations.
The OMP architecture design has been validated by a CSIM-based multiprocessor simulator
developed at USC. Simulated performance data are reported for sorting and matrix algo-
rithms. These results demonstrate scalable performance as the machine size increases from
1 to 64 RISC processors. The 16-processor OMP prototype is targeted to achieve 300 MIPS,
which has been verified by a multiprocessor bandwidth analysis based on the design param-
eters used. MIPS rate of a simulated OMP is measured around 230 MIPS based on the
sorting and matrix simulation experiments conducted. The simulation results demonstrated
a 76% efficiency from the target performance. Both analytical and simulation results being
reported are based on worst-case design parameters. This leaves plenty of room for further
improvements in performance, as the project advances.
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1. Introduction

The appearance of high-speed RISC processors on monolithic CMOS chips [36] and
the enhancement of performance by parallel processing [18] have created a significant impact
on computer industry. In this paper, we report the design and research experience of an inno-
vative Orthogonal Multiprocessor (OMP) supercomputer using state-of-the-art 64-bit RISC
microprocessors, a conflict-free multi-memory organization, and multi-dimensional spanning
buses. This OMP architecture concept was originally conceived at the University of Southern
California [20] and at Princeton University [31] during the last four years. In an earlier effort,
the EMPRESS Project at ETH, Switzerland has explored a slightly different idea which was
based upon an obsolete technology [10]. Presently, a 16-processor OMP prototype system
is under construction at USC using the Intel i860 chips with funding from the NSF/MIPS

Experimental Systems Program and technical assistances from several industrial partners.

The architectural development of OMP system has been greatly influenced by design
and implementation experiences reported in the PASM [35], the NYU Ultracomputer [15],
the Cedar multiprocessor [41], the Warp systolic computer [4], the Wisconsin multicube [14],
and the P-RISC [27] systems. In the memory area, we choose private caches [7, 8] in a 2-level
structure [5]. Previous works reported in [11], [21], and [29], have also impacted our design

choices.

Through hardware prototyping and performance simulation, we show design inno-
vations in the dual-processor i860 boards, orthogonal memory organization, and spanning
buses on a large backplane board. We have joined Intel and Alliant in expanding the PAX
(Parallel Architecture Extended) software standards for i860-based systems [3]. The OMP
architectural strength is highlighted by its capability to embed a large class of interesting
parallel architectures, such as mesh and hypercube for SIMD and the pyramid for MIMD
applications involving large-scale matrix manipulations. These studies on architecture em-
beddings prove the effectiveness of a new paradigm for orthogonal vector communication

using parallel memory modules which are pairwise-shared by multiple processors.



This article also shows how to generalize the OMP model to support massive paral-
lelism using higher dimensional orthogonal structure of memory and spanning buses. This
generalizes the works by Wittie [40], Bhuyan and Agrawal [6], and Winsor and Mudge [39].
We are using a C-language based multiprocessor simulator, locally developed at USC with
the support from the CSIM package developed by Schwetman at MCC [32], to validate the
design decisions. The OMP simulator, closely reflecting the hardware behavior, is also used to
evaluate the performance of parallel algorithms developed for OMP. Simulated performance
results are reported for matrix multiplication and large array sorting on the simulated OMP
with machine sizes ranging from 1 to 64 RISC processors. These simulation results verified

the linear scalability in performance, as machine size increases.

The OMP prototype is designed to achieve a peak performance of 300 MIPS for the
16-processor prototype. Besides hardware prototyping, we are also modifying the Mach/OS,
ported to a SUN/4 host workstation, for supporting orthogonal multiprocessing using par-
tially shared memory. We have extended the language C to Ortho-C for more efficient
compilation and resource allocation towards vectorization and parallelization using the in-
terleaved orthogonal memories. The initial application phase of the OMP project includes
early vision processing and neural network simulations. Parallel language and algorithm
developments for applications of the OMP system were reported [16]. The results presented
in this paper are based upon our initial design specifications, theoretical architecture em-
beddings, and simulated performance data. Some of the design parameters are subject to

further refinement in the remaining phases of the project.

2. Orthogonal Multiprocessor Architecture

A generalized model for orthogonal multiprocessors is presented. This model treats
the 2-dimensional OMP structures proposed in [10, 20, 31] as special cases. The model also
extends the hypercube generalizations reported in [6, 40]. The central idea of orthogonal
multiprocessing lies in the use of multiple spanning buses to achieve conflict-free access

of parallel memories. Thus, full memory bandwidth can be delivered to match with the



combined bandwidth of multiple RISC processors.

A generalized orthogonal multiprocessor, OMP(n, k), is characterized by two parame-
ters, namely the dimension n and the multiplicity k as depicted in Fig.1la. There are p = S
processors and m = k™ memory modules (MM) in the system, where p > n and p > k. The
number of MMs is k times greater than that of processors. When k = 2, the system is called
binary and, in general, it is called k-ary. The system uses p memory buses, each spanning
into n dimensions, but only one dimension will be used at a time. There are k MMs attached

to each spanning subbus.

Each MM is connected to n out of p buses through a n-way switch, as shown in Fig.1b.
It should be noted that the dimension n corresponds to the number of accessible ports that
each MM has. This implies that each MM is shared by n (out of p = k™ ') processors.
In the three-dimensional case (n = 3) as shown in Fig.2, each MM is shared by only three

processors. For example, the MM2 is shared by processors a, b, ¢, and d.

The orthogonal structure of an OMP(n, k) is illustrated in Fig.2 for the case of n =3
and £ = 2. Each bus is used by a single processor without time sharing and thus avoids
contention. Physically, all the spanning buses from the same processor form the same bus.
Logically, they are used in a mutually exclusive manner. Only MMs attached to the same
spanning bus can be used by the same processor at the same time. In fact, this requirement

enforces the orthogonal memory access, which results in no conflicts.

In Fig.2, we distinguish between three types of functional modules, namely the circles
for memory modules, the squares for processor modules, and the circle-inside-square for
a computer module. Each computer module has a local MM, which is private. The pure
MMs are pairwise-shared by the processor modules. The collection of all MMs is called the

orthogonal memory.

In Fig.2, four processors orthogonically access eight memory modules via four buses,
each spanning into 3 directions, called the z-access, y-access, and z-access, respectively. It

should be noted that the MMs of an OMP(n, k) form an k-ary n-cube, in which all the nodes
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Fig. 1 The orthogonal multiprocessor, OMP (n,k), with an n-dimensional spanning bus

network and £ memory modules attached to each spanning bus.



(O Memory module
(labelled as O through 7)

I—_—J Processor module

(labelled as a, b, ¢, and d)

O Computer module
(labelled as a0, b3, c5, and d6)

s Spanning bus in three

orthogonal directions

(a) Spanning bus connections

(b) x-access

(c) y-access (d) z-access

Fig. 2 The architecture and memory access modes of an OMP (3,2) system

with 4 processors and 8 memory modules.



Table 1: Orthogonal Multiprocessor System Sizes as a Function of Dimension n and Multi-
plicity k.

No. of Processors | No. of Memory Modules
OMP(n, k) p=k"! m = k"™
OMP(2,8) 8 64
OMP(2,16) 16 256
OMP(3,38) 64 512
OMP(3,16) 256 4,096
OMP(4,38) 512 4,096
OMP(4,16) 4,096 32,768
OMP(5,16) 65,536 524,288

are interconnected by spanning busses, instead by point-to-point links as in a hypercube ar-
chitecture. Readers should not confuse the OMP(n, k) architecture with the k-ary hypercube

architecture, in which all nodes are computer nodes.

For comparison purposes, various sizes of OMP architecture are listed in Table 1.
A 5-dimensional OMP with multiplicity & = 16 will have 65K processors comparable to
the connection machine. In other words, the generalized OMP can easily support massive
parallelism [19], although we are building only a small prototype system with 16 processors
just to prove the new architecture concept and the high speed multiprocessor technology

used.

Next, we present the architecture of the prototype 2-dimensional OMP system being
built at USC. Higher dimensional OMP can be built with the same orthogonality principle
as outlined above. Based on today’s technology, one can easily attach £ = 16 MMs to each
spanning bus and the dimension can be increased to n = 5 or higher, which is limited by

packaging, performance, and cost-effectiveness considerations.

The OMP prototype system is built as a backend machine attached to a SUN/4
workstation host as shown in Fig.3. The host handles all input and output functions with
the outside world. A video camera will be used to input imagery data and visual display

for image output. Special operating system software supports are necessary in the host
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to perform the following functions: program compilation (parallelization or vectorization
besides optimization), download of compiled programs to the OMP backend, handling of
data movement between the orthogonal memory and the mass storage in the host, control
and allocation of OMP resources, and performance monitoring of the entire system. We
are modifying the Mach/OS for these purposes [30]. This includes the development of a
parallelizing cross-compiler for the extended C language, Ortho-C, being specially developed
for orthogonal multiprocessing. A preliminary version of Ortho-C has been given in [16].

Programmer can only interact with the OMP system through the host.

The OMP machine layout consists of essentially 4 types of printed-circuit boards;
namely the processor boards (PB), memory boards (MB), spanning bus network (SBN), and
the interface board (IB). The IB interfaces MMs with the SCSI bus of the SUN/4 host for
data uploading and downloading using DMA. Each PB houses two Intel 1860 CPUs, with
internal caches, external cache/buffer, synchronization, and performance monitoring logic as
described in section 4. The 256 MMs supply 256 MBytes or 32 M 32-bit words of memory.
These memory words are 16-way interleaved in both orthogonal directions as described in

section 5.

The SBN is a custom-designed memory backplane. All the 16 MBs are vertically
plugged into this backplane. The PBs are connected to the OBN using flat cables. The
OBN implements the 16 horizontal and 16 vertical spanning buses as shown in Fig.3b. The
2-way switching between x-access and y-access is built on the backplane. Besides switching,
the SBN is designed to buffer high-bandwidth data transfers between the orthogonal memory
and the PBs.

In summary, the OMP backend machine is built on 8 PBs, 16 MBs, 1 IB, and SBN
backplane. The host board and all the PBs are plugged into the same VME chasis. The
purpose of the prototype OMP construction is to prove scalability in performance and yet
allow modular growth. In subsequent sections, we identify the research and development

issues and present our methods of attacking these issues.



The processing speed of OMP is analyzed below in terms of MIPS (Million Instructions
Per Second) rate. This analysis is based on the latency parameters used in the actual design.
Let = be the peak MIPS rate of a single :860 processor. For an example, z = 27 MIPS for a
33MHz 1860 [23]. Figure 3c shows a hierarchy of 3 levels of physical memories in the OMP:
the internal cache inside the 1860 chip (level 1), the ezternal cache on the processor board

(level 2), the local memory on the processor board (level 3) and the orthogonal memory

(level 3).

Consider the execution of N instructions on each 860 processor in a p-processor
OMP system. Let f, and f, = (1 — f,) be the fractions of these instructions used for
processing and synchronization purposes respectively. The memory reference, corresponding
to executing N X f, instructions, are distributed over the hierarchical memory space seeing
from each processor. Let fy1, fo2, fp3, and fpa be the respective fractions of memory references
to internal cache together with CPU registers, external cache, local memory, and orthogonal
memory; where fp1 + fpa + fps + fpa = fp. The execution of instructions with memory
references to internal cache and registers is determined by the peak MIPS rate z of each
i860. The execution of those instructions using off-chip resources is limited by memory

access times (t,,%3, and t4 as shown in Fig. 3c) and by the synchronization overhead t,. So

the effective MIPS rate, X, of the OMP is estimated as:

p-z
X = 1
for + (forz + fos-ts + foa-ts) 2 +fo-ts-z (1)

We have chosen the following design parameters: p = 16 processors, z = 27 MIPS per
processor, t, = 91 nsec for external cache/buffer access, t3 = 547 nsec for a 32-byte block data
movement from local memory to external cache, t, = 6454 nsec for 16 32-bit interleaved data
fetch from orthogonal memory to external cache/buffer, and ¢, = 1243 nsec for synchronizing
all the processors. These parameters are based on a 33-MHz 7860 processor. Both internal
and external caches are block-oriented. The blockwise data movement between different

memory hierarchies give rise to high hit-ratios in the internal cache. Suppose we choose



for = 0.95, fpe = 0.04059, fpz = 0.007425, f,4 = 0.001485, and f, = 0.0005 as a test sample.
This results in a 301 MIPS rate of the experimental system. This implies that our design
could be 70% efficient as compared to the theoretical peak rate of 432 MIPS. In section 6,

we will report measured MIPS rates of the OMP based on 16 simulation experiments.

3. Embeddings of Other Architectures

In this section, we reveal superset architectural characteristics of the OMP. A new
shared-memory paradigm is introduced for orthogonal vector communication. We prove
that an n-processor OMP is capable of embedding any other n-processor architecture. The
idea of embeddings is illustrated by mapping a 16-processor hypercube and a 4 X 4 mesh
computer into a 16-processor OMP. Each processor can access the memory modules of two
neighboring processors using the shifted memory access. We also illustrate the embeddings of
a 16 x 16 mesh computer and a 64 base pyramid. These embeddings make the OMP system

dynamically adaptable to many scientific and image processing applications [2, 31, 34].

Consider the differences of an Orthogonal Processor (OP) used in our system, as com-
pared with a Processing Element (PE) used in a distributed memory multiprocessor system
(Fig. 4a). The OP differs from the PE mainly in the area of interprocessor communica-
tion. While a PE communicates with other PEs through dedicated communication links,
OPs communicate with each other through the orthogonal memory. We embed a distributed
memory multiprocessor network into an OMP by allocating the computational tasks of one
or more PEs to an OP and by replacing communication links with pairwise-shared memory
modules. The embedding process preserves the adjacency and connectivity properties of the

multiprocessor network.

When two processors PE; and PE; are connected by an unidirectional link (Fig.4b),
we can embed them directly into a 2-processor OMP. The unidirectional communication link
is established by two orthogonal memory accesses. The first access consists of OP; writing

data to memory module M;; in z-access (indicated by — in Fig.4). The OP; performs a y-
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access read from memory module M;; (indicated by T) in the second access. All OPs operate
synchronously to access the shared orthogonal memory. This methodology also allows us to
replace a bidirectional communication link between two processors by two-cycle orthogonal
memory accesses as shown in Fig.4c. The OPs perform a z-access write followed by a y-access

read to modules M;; and Mj; respectively.

Consider a 4-PE fully connected multiprocessor with 12 unidirectional links as shown
in Fig.5a. A PE can communicate with at most 3 other PEs in one time step. We consider
the 3 permutations shown in Fig.5b. These permutations can be carried out in one step
using dedicated links. In general, an n-PE fully connected multicomputer with n(n — 1)
unidirectional links can achieve n(n — 1) data communications with (n — 1) permutations in
one step. We show how an n-processor OMP can achieve the same n(n — 1) data commu-
nications in two memory accesses by an example of 4-processor OMP as shown in Fig.5c.
Both z-access and y-access to orthogonal memory are 4-way interleaved in this case.. The
interleaved read/write allows us to fetch/store from/to multiple MMs with the same displace-
ment address in one memory cycle. The two-cycle orthogonal memory access comprises of a

z-access write followed by a y-access read.

The orthogonal vector communication paradigm is formally defined below. All possi-
ble pairwise communications between OPs can be defined by an ordered set S = {(P;, P;), 1 <
1,7 <nand i # j}. Besides permutations, the set S also contains one-to-many and many-
to-one communications. We define an orthogonal vector as V. = {(P;,P;), 1 < ¢,j <
n, and (P;,P;) C S}. Clearly, V can take 2"~1) — 1 different values. Each V can be
implemented by two memory accesses using interleaved read/write. This capability makes
the orthogonal memory structure even potentially more powerful and cost-effective than a
crossbar switching network. In fact, an OMP can embed directly any distributed-memory
multiprocessor system consisting of up to n? — n unidirectional or (n* — n)/2 bidirectional

links, where n is the number of processors in the system..

Figure 6 shows the embedding of the bidirectional links of a 16-processor hypercube

[24] into our orthogonal memories. Each bidirectional link communication is replaced by two
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memory accesses(a z-access write — followed by a y-access read T) through two symmetric
shared memory modules. For example, module Mg is used for P; to communicate with Pg
in the +w dimension and My; for Py to P; in the —w dimension. This embedding scheme
provides the flexibility of implementing hypercube communications in a single dimension
(+z/4+y/+2/.../—w) or in any groups of multiple dimensions ((+z,+y)/(+v, +2z,—w)/ ...

etc) simultaneously.

Figure 7 shows the embedding of a 4 X 4 mesh [26] of 16 PEs into the 256 MMs of a
16-processor OMP. The 24 bidirectional links are replaced by shared memory communication
via 48 shared memory modules. For example, bidirectional communication between PEiq
and PEy; is replaced by accessing the Mg 11 for eastbound (E) and the My 10 for westbound
(W) data movement. The embedding also provides flexibility to implement one or more of
the E, W, N, or S data movements among 16 processors simultaneously by accessing the

respective MMs.

The bus switching logic is built on the memory backplane. An OP can access not only
memory modules on its own spanning bus, but also on either of its two neighboring buses.
Besides the normal y-access, the OPs can perform right-shift y-access or left-shift y-access
synchronously. Similar shifted access (up and down) are also allowed in z-access mode. The
shift operations take place in a wrap-around fashion. Figure 8b and 8c show examples of

right-shift y-access and down-shift z-access respectively.

This bus switching scheme makes the OMP architecture more powerful. Figure 8
shows the embedding of a 4 X 4 mesh of 16 PEs into a 4-processor OMP. The computation
tasks of 4 PEs in each column are allocated to a single OP. The E data movement of the
mesh can be carried out by two orthogonal memory accesses. In the first cycle, all processors
perform interleaved y-access normal read operation (indicated by T in Fig.8b). In the second
cycle, all processors perform interleaved write operation (indicated by |) using y-access right-
shifted buses. Similar operations are needed for W data movements. Figure 8c shows the

two cycle operation for southbound (S) data movement.

10
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Finally, we illustrate in Fig.9 how to embed a hierarchical pyramid architecture into
an OMP. The pyramid consists of 3 decreasing meshes M1, M2, M3 of sizes 8 X 8, 4 x 4, and
2 x 2 respectively. These meshes can be embedded into the 16 OPs by assigning 8,4,2 OPs
to meshes M1,M2, and M3 respectively. The Top (T) processor of the pyramid is assigned
to a single OP. The intermesh communications are carried out by blocks of diagonal MMs
(blocks marked by M1, M2, and M3 in Fig.9). The intramesh communications, both upward

and downward, are carried out by off-diagonal blocks of MMs.

For example, the upward communication between meshes M1 and M2 is carried out
by the 8 x 4 MMs marked by block M1-M2. Similarly, downward communications between
meshes M3 and M2 are carried out by block M3-M2. This embedding allows concurrent
intermesh, upward, and downward communications. It also supports nonadjacent mesh
communications (for example M1 to M3, T to M2, T to M1 etc), which are difficult to

implement in a normal pyramid computer [1, 37].

4. Processor Board with Vector Extensions

There are two 1860 processors mounted on each processor board (PB). Each processor
communicates with other PBs through a shared VME interface and accesses the orthogonal
memory through a special memory interface on the PB. As shown in Fig.10, each processor
uses a 2-way, set associative, ezternal cache, through which it accesses the 512K x 64 local
memory and the off-board orthogonal memory. Each processor can access a row of 16 MMs

using z-access or a column of 16 MMs using y-access.

The major components on the PB include two processor modules, a shared VME bus
interface, an orthogonal memory interface, connectors for cables connected to the orthog-
onal memory backplane and two serial ports. Each processor module consists of one 1860
processor, its Boot-EPROM, local memory, external cache and a serial port interface to an
RS-232 port. The i860 was chosen because of its unique features, including a 64-bit ezternal

data bus, an internal 128-bit bus, a high speed floating point unit capable of executing two

11
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floating point operations per clock and the capability to perform vector operations with the
aid of a vector library of subroutines. Besides this, it has a graphics unit operating at 16
million 16-bit pixels/sec, which supports image display operations in the OMP. At its peak
rate of operation, the 860 can sustain two floating point operations and one integer RISC

operation per clock.[23]

Each processor is designed to boot up from a 64k x 8 EPROM. The EPROM holds
the self-test code, the monitor program, a loader for downloading code from the host to the
PB, and some initialization procedure for the PB. The 4 Mbytes of local memory for each
processor is organized as 512K x 64 with 80 nsec DRAMs. This implies that the processor
accesses local memory at 33 MHz with 4 wait states. The processor accesses one 64-bit
word per read/write cycle giving a bus bandwidth of 44 Mbytes/sec for local memory. The
program and run-time scalar data for the 1860 resides in the local memory. This includes
a stripped-down version of the MACH/OS to support orthogonal multiprocessing, the user
program and data sets. All this is downloaded from the host over the VME bus.

The external cache on the PB acts as a fast interface between the 1860 processor and
its local memory as well as to the orthogonal memory. An 8K bytes, 2-way, set-associative
internal data cache allows one clock access of up to 128 bits of data. A miss in the internal
cache goes to the external cache. This is a 8-words-per-block and 2-way, set-associative
cache, with a line size of 512 bits. This is implemented with fast static RAMs with 25 ns
access time, permitting 64-bit zero-wait-state accesses. All external caches are private to the

processors attached.

A miss in the external cache is directed to the orthogonal memory interface. This
initiates a request to access the interleaved memory over the orthogonal memory bus. Both
internal and external caches are flushed when the processors switch between x-access and
y-access. Both caches employ a write-back policy. Estimating the memory access times, we
have one clock per 128 bits for the internal cache, 3 clocks per 64 bits for the external cache

and 16 clocks per 32 bits for the orthogonal memory.
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Let By be the bandwidth of the internal processor bus for internal data cache accesses,
B, be the bandwidth of the PB data bus for external cache accesses, Bs be the bandwidth of
an orthogonal bus for orthogonal memory accesses and B, be the bandwidth of the PB data
bus for local memory accesses. Also, let h; be the hit ratio for internal data cache accesses,
hy be the hit ratio for external cache accesses and f the probability of accessing an address
in orthogonal memory during a processor’s memory cycle. Then, (1 — f) represents the
probability for the processor to access an address in local memory during a memory cycle.
In terms of these parameters, the effective bandwidth for one processor to access the memory

system consisting of the on-board local memory and the off-board orthogonal memory is,

1

Bl,, =
by Ol (1 = )1 — )£ + G52

(2)

For the entire system consisting of n processors, the effective bandwidth for memory
accesses should be, BZ;, < nx ijf. Table 2 shows the potential bandwidth for the processor

to access the orthogonal memory using Eq. 2.

Table 2: Potential Memory Bandwidth Per Processor as a Function of Cache Hit Ratios,
(f=1,0=52<1)

Hit Rate Effective Bandwidth

Internal | External Per Processor
Cache, hy | Cache, hy | Bi;; Mbytes/sec

1.0 - 528

0.9 0.9 261

0.9 0.7 173

0.7 0.9 130

0.5 0.5 32

0.1 0.1 11

0 z 9

For interprocessor synchronization at a memory access level the lock bit of the 1860
is used to implement mutual exclusion. In addition, all processors have a common synchro-

nization point for orthogonal memory access at the time of switching between x-access and
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y-access modes. Interprocessor communication over the VME bus serves as higher level,

interrupt-based, synchronization among processes running on different processors.

To support vector processing using the orthogonal memory, it is necessary to define
vector operations to be executed by the RISC i860 CPU. The vector library supplied by
Intel consists of some subroutines designed to optimize the pipelining operations. However,
the Intel-supplied vector routines are not sufficient for our purpose. Therefore, we decided
to develop additional vector operations in 1860 assembly code, specially tailored for OMP

applications. Some of these vector operations are shown in Table 3.

Table 3: Some Vector Operators Needed For The OMP

W Operator l Notation | Result J]
1. Vector Add C=A+B vector
2. Vector Subtract C=A-B vector
3. Vector Multiplyl c=A.B scalar
4. Vector Multiply2 | C(m x n) = A(m x 1) X B(1 x n) | array of vectors
5. Vector Sum Sigma(A) scalar
6. Vector Max MAX(A) scalar
7. Vector Min MIN(A) scalar
8. Vector Load LOAD(A) vector
9. Vector Write WRITE(A) vector

As an example, we show how Vector Multiply2, the cross-product of two vectors, is
implemented in a pseudo 1860 code as listed in the appendix. In this operation, Aisanmx1
column vector and Bis a 1 x n row vector. The multiplication of A and B produces an m xn
matrix C. Due to the three stages in the multiply pipeline for single precision multiplication,
the result of the current multiply instruction will go to the destination register (dest0, destl,
etc.) specified by the third subsequent multiply instruction. Also, due to the pipeline
optimization, arrays A, B and C may be accessed beyond their logical limits. The 1860

performs each pair of instructions prefixed by a d. in one clock when pipelined.

The PB is designed to run at 33 MHz, matching a 264 Mbytes/sec access rate for
the internal instruction cache, B; = 528 Mbytes/sec for the internal data cache, B, = 88
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Mbytes/sec for the external cache and By = 44 Mbytes/sec for the local memory. For 16
clocks per 32-bit data access, the orthogonal memory has a worst case bandwidth of B3 = 9.1
Mbytes/sec. The current implementation has two 1860 processors per PB due to board area
and connector restrictions. There is a future possibility of expanding this to four processors
per PB. The PB is being designed on the Viewlogic schematic capture system, [38], and
timing analysis is being performed using the Verilog simulator [13]. We are presently us-
ing STAR 860, an i860 software development system, [22], in extending the vector routines,
developing software support for interprocessor synchronization and interrupts, resource man-
agement, fault diagnosis and performance monitoring using the serial port attached to each

PIOCESSOr.

5. Orthogonal Memory and Spanning Buses

The spanning buses between the 1860 processors and the orthogonal memory are
built on the memory backplane. The memory access controller and switching logic for the
spanning buses are mounted on the same backplane. The memory controller controls two
modes of orthogonal memory access, namely the z-access (or row access) and y-access (or
column access). The bus switching logic consists of multiplexers/demultiplexers which switch
bus B; of processor P; to its corresponding x-bus, Bf, or y-bus, BY. Processor P; accesses
MMs M? in row i through BY using x-access, and MMs MY in column i through B} using

y-access.

In addition, two shifted memory access modes are implemented, in which each proces-
sor accesses memory modules on one of its two neighboring buses. i.e. processor F; accesses
modules MY, through bus BY_; in a left-shift y-access or modules M, through bus B4
in a right-shift y-access. Similarly, processor P; accesses modules MY ; through bus Bf ;in
an up-shift z-access or modules M7, through B, in a down-shift z-access. These shifted
accesses operate in a wrap-around fashion as shown in Fig.8b and 8c. This mechanism is
very useful to embed several architectures into the OMP as shown in Section 3, as well as to

implement image processing algorithms based on window operations efliciently.
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To simplify the routing of the buses on the backplane, every 4 adjacent x-buses, Bf
to Bf.s, (i = 0,4,8,12) are time multiplexed into one physical bus, called Horizontal bus
(H-bus). Similarly every 4 adjacent y-buses, B to B3, (¢ = 0,4,38, 12) are multiplexed into
a Vertical bus ( V-bus). Thus for our 16-processor OMP, there are 4 H-buses and 4 V-buses on
the backplane. Figure 11 shows the interconnections among the memory boards through the
H-buses and V-buses. This multiplexing scheme has the advantage of reducing the number

of backplane connectors on the memory board and hence the size of the memory board (MB).

The orthogonal memory of our prototype OMP system consists of 16 MBs. One MB
houses 16 MMs ( a 4 x 4 subarray of the 16 x 16 array shown in Fig.3b). Each MB is
connected to a H-bus and a V-bus on the backplane. Memory accesses take place through
the H-bus in x-access mode and through the V-bus in y-access mode. In order to make the
layout of all the MBs identical, four V-bus connectors are provided on every board. This
also permits us to plug in an MB into any slot on the backplane. Depending on which slot
the board is plugged into, it will be connected to one of the four H-buses and one of the four
V-buses. For purposes of identification, an MB may be specified as MBg,y where the and
V indicate which H-bus and V-bus the board is connected to. Figure 12a shows the layout

of a memory board, MB 3.

Each of the 16 MMs on a board has a capacity of 1 Mbyte, organized as 256K x 32 bits.
The total capacity of the orthogonal memory is thus 256 Mbytes. Even though the word size
of the memory does not match with the 64 bit width of the processor bus, this word size 1s
sufficient to support single-precision arithmetic and image processing applications. Double-
precision data are stored in two consecutive words within an MM. Since each module M;;
receives requests from the H-bus or the V-bus, the address and control signals from the
two buses are multiplexed. The data lines, due to their bidirectional nature, go through a

multiplexing/demultiplexing stage. The logical blocks within an MM are shown in Fig.12b.

Various parallel memory organization schemes exist for accessing vector data at high
speed [9, 25, 17, 28]. We implement high speed vector data accesses from/to the orthogonal

memory array by using a 2-dimensional, 16-way interleaving scheme. Vector operands are
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interleaved across the 16 MMs in each of the two orthogonal directions. Each processor
accesses an entire row or entire column (16 elements) of vectors in a pipelined fashion. In
cither of the two orthogonal accesses, processor P; has access to the modules M or M.
These modules are identified sequentially from 0 through 15. Furthermore, the addressing
scheme must be identical along either the x or the y directions. This means that each memory
word in module M;;(z # 7) should have two addresses: an address A, when accessed in the
x-access mode by processor P; and an address A, when accessed in the y-access mode by
processor P;. A, and A, have the same displacement, but differ in the module identity. We

provide a hardware implementation scheme to manipluate these two addresses automatically.

The address format of a memory location is shown in Fig.13a. The complete address
of a memory word consists of the memory module identity (I.D.), the displacement of that
word within the module, a bit to indicate row/column access mode and the row/column
number. The row/column number is generated by the memory controller to support mul-
tiplexing/demultiplexing on H-bus or V-bus. Sixteen-way interleaving is achieved by using
the 4 least significant bits of the address for module identification. Figures 13b and 13c¢ show
the interleaved addressing in x-access mode (on the left hand side) and y-access mode (on

the right hand side) for an orthogonal memory array having four words per memory module.

The orthogonal memory and spanning buses are designed to allow each 1860 processor
to fetch a vector of sixteen 32-bit elements from orthogonal memory to external cache within
213 clocks or 6454 nsec. These timings are based on a 33 MHz 1860 processor. Since a
processor can access an 8-byte word from external cache with one wait-state as shown in
Section 4, the effective access time of a 64-bit word from othogonal memory is [213 + (7 x
3)]/8 = 29.25 clocks or 886.4 nsec. Thus the orthogonal memory bandwidth per processor

is estimated as 9.03 Mbytes/sec.

Besides z-access and y-access of columns and rows, we show four types of data ma-
nipulation using the orthogonal memory. These correspond to data broadcast, remote access,

diagonal access and ezchange of rows and columns as defined below:
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Displacement Module 1.D.

(b) The 6-bit interleaved format for the example in part (c), where each address

is shown in decimal inside the memory module

o] o 1| o 2 | o 5] o
16 | 16 17 | 16 18 | 16 31 | 16
32 | 32 33 | 32 a4 | | "7 41 ] 32
48 | 48 49 | 48 50 | 48 63 | 48
0 | 1 1|1 2 | 1 15 | 1
16 | 17 17 | 17 18 | 17 |, ... | 31]17
32 | 33 33 | 33 34 | 33 47 | 33
48 | 49 49 | 49 50 | 49 63 | 49
0o | 2 1| 2 2 | 2 15 | 2
16 | 18 17 | 18 18 | 18 31 | 18
32 [ 34 33 | 34 3 | 34 | 0 |41 ]| 34
48 | 50 49 | 50 50 | 50 63 | 50
0o | 15 1| 15 2 | 15 15 | 15
16 | 31 17 | 31 8 31| . [31] 3
32 | 47 33 | 47 34 | 47 47 | 47
48| & 49 | & 50 | &3 63 | 63

(c) The 16-way interleaved memory addresses where each MM is illustrated with 4 words and

each word is x-accessed by the left address and y-accessed by the right address

Fig. 13 The 2-Dimensional,16-way memory interleaving in the

orthogonal memory organization
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Table 4: Steps For Data Broadcast, Remote Row Access and Diagonal Access

Data broadcast in two memory cycles

Remote row access in three memory cycles

Diagonal access in three memory cycles

z-access mode;
For processor P; do

read w; /* from local memory */
Interleaved write w to all MY;
y-access mode;
Forall processors Py(k = 0,1,...p — 1)
doparallel

Read w from M;y;

Interleaved write w to all M};

Endforall;

y-access mode;

Forall processors Pr(k=10,1,..

doparallel
Vector read A} from M/;
Fori=1topdo
bik = Q(itc) mod p,k>
Vector write By, into M};
z-access mode;
Vector read Af from M[;

Endforall;

sp—1)

y-access mode;

Forall processors P(k = 0,1,..

doparallel
Vector read A} from M};
Fori=1topdo
bik = Q(itk)mod pk>
Vector write By into M};
z-access mode;
Vector read A} from M[;

Endforall;

sp—1)




(A) Data Broadcast: A data word w contained in local memory of processor P; is broadcast

to all MMs as shown in the left column of Table 4.

(B) Remote row/column access: Processor P; accesses MY or M} where j = (i+c)mod p as

described in the middle column of Table 4.

(C) Diagonal access: Processor Py accesses a diagonal vector from memory modules M; (x4

(:=0,1,...,p — 1), as shown in the right column of Table 4.

(D) Ezchange between two rows or two columns: Scalar data in local memory may be ex-
changed between two processors P; and P; over the VME bus. However, two rows or two
columns are exchanged more efficiently using orthogonal memory. An exchange operation
using orthogonal memory is similar to a remote access described in (B) above, except that

processor P; accesses row ] and P; accesses row 1.

6. OMP Simulator and Performance Results

We have developed an OMP simulator using CSIM in a Unix environment (32, 33].
CSIM has been implemented as a set of extensions to the C programming language. First
we introduce the reader to the salient features of CSIM. Then we discuss the design of
the OMP simulator and describe some CSIM macros specially developed for performance
simulation of OMP. Performance results on sorting and matrix algorithms are presented with

interpretation.

In a process-oriented simulator, the computer system is modeled as a set of interacting
processes (right hand of Fig.14). These processes are executed in parallel with each other.
Memories, processors, buses and input-output devices are defined as system facilities (left
hand of Fig.14). The dynamic interaction between processes and facilities is coordinated by
the occurrence of events. We define an event as an instantaneously occurring change of

state of some process or facility.

In CSIM, a process is implemented as a reentrant program with its own private

data area. Once initiated, a process can be in one of three states: active (currently being
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processed by the simulator), holding (waiting for an interval of simulated time to pass),
or waiting (in a queue for an event to occur). Facilities are treated as passive objects
that can assume one of two states, busy or free. Events also have two states, occurred
and not-occurred. CSIM provides the user with special descriptors for defining processes,
facilities and events. An underlying simulation run-time system manages the scheduling
and synchronization of processes, management of facilities, and advancement of the global
simulation time. Simulated time passes only when processes are in the hold state. Upon

completion of a simulation run, statistics gathered by the run-time system are reported.

The design philosophy used in our simulator can be characterized as algorithm-driven
simulation. This design style is adapted from the ASPOL-based simulator for the ETA-10
supercomputer [12]. The OMP simulator introduces the user to the C language extensions
provided in Ortho-C as well as to data structures matching the architecture of OMP. With
this simulator, the user can experiment with vector data allocation to the shared orthogonal
memory, and synchronization on semaphores, etc. Thus the user writes OMP programs with
an augmented C language. These programs, after compilation and execution using the CSIM

run-time simulation system, generate timing estimates for OMP machines of various sizes.

Within the simulator the main components of OMP have been declared as CSIM
facilities. These include the processors (i860s), the orthogonal buses, and the orthogonal
memory modules, etc. Parallel segments of the algorithm executing on the OMP processors
are written as CSIM processes. During execution these processes reserve and release the
facilities and synchronize their actions using event variables(Fig.14). Whenever a facility is
used, simulated time is advanced to reflect its utilization. This corresponds to the delays
associated with the actual hardware. Critical OMP hardware component delays have been
assumed based on the actual hardware design experience. Examples include orthogonal
memory module access time, synchronization bus access time, local memory access time,
and RISC instruction execution time as revealed in previous sections. These numbers are

progressively refined, as the OMP hardware design makes progress.

Two major extensions to C are introduced. One set consists of verbs that will actually
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be supported by the Ortho-C compiler. The other set consists of verbs that are used only
for simulation. All these extensions have been encapsulated as macros of CSIM statements.
Consider the following macro example:
#define TSETCNT(x,n) if (entr[z]— >init==0) {

cntr[z]— > conum = n;

clear(c_set[x]);
centr[z]— >init = 1; }

This macro implements the initialization of a semaphore structure. It consists of a CSIM
statement (clear) and regular C code. This macro will be supported by the Ortho-C com-
piler so actual i860 code will be generated for it. All macros are explicitly invoked by the

programmer.

The simulation results can be used to compare the relative performance of different
algorithms and programming strategies and observe the scalability of OMP. Because the
simulator runs on a SUN workstation the execution time estimates for the parallel algorithms
cannot be entirely accurate. Simulator users are therefore cautioned to avoid interpreting
the results in an absolute sense. Two parallel programs have been simulated on a SUN
workstation: one for sorting and the other for matriz multiplication. These two parallel
algorithms were originally specified in [20]. The orthogonal sorting algorithm was recursively
specified in [20]. What we did in this simulation is to unfold all the recursions to exploit
maximum parallelism down to the deepest recursion. The parallel matrix multiplication takes
full advantage of OMP in fetching rows or columns of the matrix elements using interleaved

access of the orthogonal memory.

Program execution time is estimated by counting the number of simulated RISC in-
structions. The test programs are first compiled on a (RISC) SUN processor to generate
assembly language programs. These programs are then analyzed and instructions counted.
Although instructions are counted at compile time, the simulation time is advanced dynami-
cally at run time. Consider how to advance the simulation time of the for loop as an example.

Before the control enters the loop body, simulation time has to be advanced for initialization
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of the loop counter and test of the predicate. The actual computation is carried out in the
loop body, and the simulation time is based upon the counted number of RISC instructions
in the loop body. After incrementing the loop counter and the next predicate test, time
will be advanced again. The total time depends upon the number of iterations performed.

Ortho-C language constructs are timed in a similar manner.

The parallel programs are coded in such a way that each simulated processor gets
the same copy of the compiled program. The behavior of the program depends upon which
processor it runs on. The primitive, getpn( ), is used by a user program to determine the
processor number. The portion of the data set that a processor manipulates is indexed by
the processor number. The scoping rule is the same as in conventional C language except
that global data has to be explicitly assigned to MMs. The performance of the simulated
algorithms is heavily dependent upon the data allocation scheme used. These benchmark
experiments took advantage of the i860 pipeline instructions. In an interleaved read, an array
of data is brought to the processor. The matrix multiplication program is coded to exploit

this feature by moving the data items in each row or column from the orthogonal memory

to a PB buffer first and then utilizing the buffered data.

Before collecting performance data, the machine-dependent overhead should be esti-
mated accurately. This overhead was obtained by running different sizes of data set for the
same algorithm on a given size of OMP and taking the average of all the overhead observed.
The speedup is defined as S = (Ty + C1)/(Tp + Cp), where T, and T, are the respective
execution times on a p-processor OMP and on a uniprocessor OMP with only local memory

and no orthogonal memory, and C, and C; the corresponding overheads.

The performance results of the sorting and matrix multiplication algorithms are sum-
marized in Table 5 as well as in Fig.15. Two problem sizes were experimented upon. In the
case of sorting, we sorted an array of n randomly-generated numbers, where n = 4K and
16K in 8 simulation runs on 7 machine sizes from 1 processor to 64 processors. Sublinear
speedups were observed and are displayed in Fig.15. This implies that all the processors in

the simulated OMP were almost fully utilized and maximum parallelization was exploited
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Table 5. Performance of Sorting and Matrix Multiplication on Simulated OMP Computers of Various Sizes

Machine Size

1 Processor

4  Processors

16 Processors

64 Processors

Time(sec) Time(sec) Time(sec) Time(sec)
i Probl MIPS MIPS MIPS MIPS
Algoritho Sirge e Rate Rate Rate Rate
Speedup Speedup Speedup Speedup
0.48 0.23 0.06 0.02
64x64 14.52 56.71 227.03 909.50
Sorting 1.00 2.06 7.97 28.28
3.24 1.57 0.40 0.10
14.76 57.62 231.94 923.36
128x128 14 00 2.07 8.16 31.29
0.62 0.21 0.07 0.02
Matrix 64x64 14.89 58.90 235.34 935.30
Multipli- 1.00 290 9.20 25.00
cation
4.69 1.60 0.40 0.14
128x128 14.89 58.88 235.86 938.94
1.00 2.93 11.69 33.70
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with small overhead time introduced.

As revealed in Fig.15, the speedup and MIPS-rate curves do increase steadily with the
increase of machine sizes. Due to the fact that regularly structured parallelism is embedded
in dot-product operations, the matrix multiplication achieves higher speedup than the sorting
algorithm. The increase in problem size from 64 x 64 to 128 x 128 data elements shows only
slight improvement. However, when the machine size grows to 64, both algorithms approach
a speedup around 32, which is about 50% efficiency observed. In the 16-processor case, the
speedup ranges from 7.97 to 11.69 with an efficiency between 50% and 73%, depending on

the problem size.

We have also measured the MIPS rate of the simulated OMP for various machine sizes.
For the 16-processor OMP, the measured performance is around 227 MIPS in running the
sorting algorithm, and 235 MIPS in running the matrix multiplication algorithm. Comparing
with the 301 MIPS calculated from using Eq.1 in Section 2, we achieved 75% to 78% of the
calculted peak performance. The performance data from these two simulated algorithms on
OMP provide a check point of the processing bandwidth given in Eq.1. We are encouraged
with the simulation results, which essentailly validated the accuracy of the design parameters

chosen.

It should be noted that the simulation results were obtained with a very conservative
design based on using 33 MHz i860 chips and the worst case memory latencies calculated at
various levels. Once we enter the implementation phase of the OMP project, these param-
eters will be further refined. For example, using 40 MHz 1860 chips and better packaging
technology, we can further shorten the memory latencies and synchronization overhead as-
sumed. This imples that the projected 300 MIPS performance for the 16-processor prototype
could be further upgraded. Continued simulation runs on other parallel algorithms will be

reported based on those refined system parameters. Of course, once the system is completely
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constructed in 1991, we will report the real benchmark results.

7. Conclusions

We have reported the board-level OMP architecture design of the processors, memo-
ries, system interconnects, and host interfaces; the embeddings and mappings of other paral-
lel architectures onto OMP; and the initial performance data generated from the CSIM-based
OMP simulation experiments. What we can conclude at this point is that the OMP does
support scalable performance and modular expansion, which are our primary goals. Many
algorithms which were originally developed for the mesh, hypercube, and pyramid computers,
are shown readily convertible to run on the OMP system. Our experimental system supports

either synchronized SIMD or asynchronous MIMD operations under direct hardware control

and modified Mach/OS support.

Other key contributions of OMP project, besides delivering scalable performance, in-
clude the system reconfigurability between SIMD and MIMD modes; better match between
multiprocessor bandwidth and that of the orthogonal memory; expandibility to support
massive parallelism by increasing the dimension or the multiplicity of the OMP(n, k) archi-
tecture; and the use of orthogonal memory and spanning buses for orthogonal vector data
communications. We emphasize the mechanisms of global data broadcast, exchange and
permutation in any row, column, or diagonal of matrix elements, which are often needed
in scientific computations. The OMP prototype will be used as a research vehicle for the
Viscom Project at USC. Research and development progress made in the areas of hardware,
software, programming, and benchmarking will be reported in a Series of Technical Reports
published by USC’s Laboratory for Parallel and Distributed Computing.
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Appendix

Pseudo i860 Code for Vector Multiply2 : C(m x n) = A(m x 1) X B(1 x n)
begin
Load A into cache ( a Vector Load from orthogonal memory )
Load B into cache
2.5=10i7 == 0;
Initiate dual mode operation of i860
Loop:
d.fnop ( dummy dual mode floating point instr.)
load B[j]..B[j + 4] from cache to i860 registers ( 2nd instr. of dual pair )
d.Multiply A[7] x B[j] : dest0 ( dual mode floating point instr. )
store dest0 register into C[z,7 — 3] ( 2nd instruction of dual pair )
d.Multiply A[é]* B[j + 1] : destl ( dual mode floating point instr. )
store dest1 register into C[7,7 — 2] ( 2nd instruction of dual pair )
d.Multiply A[i] x B[j + 2] : dest2
store dest2 register into C[7,j — 1]
d.Multiply A[é] % B[j + 3] : dest4
store dest4 register into C[z, j]
If not end of B then begin j := j + 4; go to LOOP; end
elseif not end of A then
begin
1i=14 157 = 0;
go to Loop
end
else
begin
flush pipeline
store trailing values to C[m — 1,n — 3],C[m —1,n — 2] and C[m — 1,n — 1]
exit dual mode
end
end.
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