Self-routing Schemes in Parallel Memory Access’

by
Rajendra Boppana and C. S. Raghavendra

Technical Report No. CENG 89-36
12 December 1989

e-mail: raghu@surya.usc.edu
phone: (213) 743-5532
Dept. of Electrical Engineering—Systems
University of Southern California

Los Angeles, CA 90089-0781

1This research is supported by the NSF grant No. MIP 8452003, and
a grant from AT&T.

Self-routing Schemes in Parallel Memory Access

Abstract

In this paper, we give a generalized solution to the problem of conflict free access of
various templates of data of a matrix, when stored in memory modules in an SIMD multi-
processor system. The important features of our method are: (a) compact representation
of a skewing scheme, (b) simple address computation, (c) use of self-routing schemes to
set up the interconnection network, and (d) a general framework for the study of skewing
schemes. In our method, each template access of interest will be a linear permutation on
the processor address. The linear permutation involved determines the types of templates
accessible. For parallel access of the most important templates, namely, row, column,
main diagonal, and square blocks, the interconnection network needs to realize only the
class of linear-complement permutations. It is known that with Bene§ or Omega as the
interconnection network, one can efficiently self-route these permutations; this compares
favorably with the schemes proposed by other researchers who assume that a crossbar is
available for processor-memory interconnections. Hence, the approach given in the paper
can be used to solve the data alignment problem for the existing parallel machines such
as IBM RP3, BBN Butterlfy machine, NYU Ultracomputer, etc. This is a generalized
solution to the data skewing problem, and encompasses the previous efforts by other
researchers as special cases.

Key words: data alignment, interconnection network, linear permutations, matrix
storage, parallel memory systems, scrambled skewing, self-routing, shuffle-exchange net-
works.

Contents

1 Introduction 1
2 Related work 4
3 Preliminaries 6
3.1 Linear permutations 6
3.2 Subsetsof amatrix 7
3.3 latinmsquares e e e e e e e e e e e e e 7

4 The blip schemes 8
4.1 Conflict free access of the templates of interest 10
4.1.1 The row and column templates 11

4.1.2 The diagonal template 12

4.1.3 The square block template « v ¢ ¢ ¢ ¢ v v 6 50 v v 0 0 o o s 12

4.1.4 The crumbled rectangles 14

4.2 Address generation i i e e e e e 14
4.3 Someexamples« o 05 568 8w 6 F 5 EE aa FE LS AT e ¥ E 15
4.4 Conflict free access of some composite templates 16
4.4.1 The composite square block templates 17

442 Theoffdiagonalst 18

5 Some special blip schemes 18

5.1 Routing linear permutations in the Omega and the inverse Omega networks 21

52 Anz-blipschemie . . o. w055 ¢ 0 cn ot s o coasooennams s 23
6 Other applications and extensions 26
6.1 TUse of blip schemes for band matrices 26
6.2 TUse of blip schemes in SIMD distributed memory systems 26
6.3 Use of blip schemes for the vector processors 26
6.4 TUse of blip schemes to store matrices of larger size 27
6.5 Use of the blip schemes for storing multi-dimensional data arrays 27

7 Summary and conclusions 27

List of Figures

-~ O Ot =W N =

An SIMD multiprocessor. v i it e e e 2
Two methods of storing a 4 x 4 data matrix 2
A blip scheme to store a 16 x 16 data matrix. 9
An 8 x 8 Bene§network. L 11
An example of realizing f(T,) by the Bene§ network. 13
Two examples of crisscross latin squares 19

An 8 processor system with the modified Omega network. 20

i1

1 Introduction

In SIMD multiprocessors, access to shared data in the memory modules plays an im-
portant role in the overall performance. For specific problems, knowing the data access
patterns by processors, one can allocate data to memory modules initially so that high
parallelism can be achieved in data access at run time. By the parallel access of data, we
mean that the access of data is free of memory and interconnection network conflicts®.
This problem of arranging data in the memory modules to allow parallel access is called
the data alignment problem; a special case of this problem is, the storing of a matrix
of data in memory modules so that various portions of it can be accessed with high
parallelism.

Consider an SIMD multiprocessor system (figure 1) with N processors, N memory
units, and an interconnection network. We assume that the interconnection network can
realize some permutations so that it can, simultaneously, provide N data paths between
processors and memory units. Examples of such interconnection networks include cross-
bar, Benes, and Omega networks. The problem addressed in paper is: store an m X m
matrix, m > N, in the memory modules such that various N-(element)subsets (also
called, templates) of the matrix are retrieved from memory modules without memory
and interconnection network conflicts.

In figure 2, we illustrate two methods to store the elements of a 4 X 4 matrix, A =
(a;;), in 4 memory units, numbered 0,...,3. Given a storage scheme to store the data
matrix A, we can represent it in the form of a mapping matrix. A mapping matrix
is obtained from A by replacing each a;; by the number of the memory unit in which
it is stored. In the first storage scheme (the mapping matrix in figure 2(b)), any row
can be accessed without memory conflicts, since, in any row, the symbols appearing are
distinct. The same can not be said about the column access, because, in any given
column, a particular symbol appears 4 times; hence, to access a column of the matrix,
four consecutive memory accesses to a memory unit are to be made, before proceeding
with the computations using the column. In the second method (figure 2(c)), any row
as well as any column can be accessed without memory conflicts. This second method of
storing the matrix elements is called the skewed storage method. If various templates of
a matrix are to be accessed conflict free, then it is essential that the matrix be stored in
some skewed form; simplistic approaches such as the row major order storing (figure 2(b))
of a matrix are not satisfactory.

A good data skewing scheme, in addition to allowing conflict free access of various
data templates, should have the following features.

e Given the row and column indices of a data element, the computation of its address

11f a memory module contains more than one element of the data to be accessed, then there is a
memory conflict in accessing that data. Network conflicts exist, if the interconnection network can not
set up, in one pass, paths from processors to memory units to access data that are free of memory
conflicts.

O: Processing Units

Interconnection Network

¢ Memory Units

1 2 o o N

Figure 1: An SIMD multiprocessor.

aop,0 ag,1 ap,2 ag,3 0 1 2 3 0 3 1 2

1o ad11 QA12 413 0 1 2 3 1 2 0 3

Ao Qa2 Az2 A23 01 2 3 2 1 3 0

azo a3 as 2 as.a 0 1 2 3 3 0 2 1

The data matrix A Mapping matrix 1 Mapping matrix 2
a b c

Figure 2: Two methods of storing a 4 x 4 data matrix

— the memory module in which the element is stored and location within the
module — should be fast and efficient with very little hardware requirements.

e An inexpensive interconnection network such as a multistage interconnection net-
work with simple control algorithm should be sufficient to provide simultaneous

data paths between processors and memory modules, during the parallel access of
data.

e The skewing scheme should be represented compactly so that overheads are mini-
mized.

e The skewing scheme should allow efficient re-skewing of data between phases of
computation when necessary.

A large number of researchers [1, 2, 7, 9, 13, 14, 16, 17, 23, 26] studied the matrix
storage problem due to the frequent occurrence of matrix computations in a large num-
ber of problems related to linear algebra. Often, researchers assume the availability of
an expensive interconnection network such as crossbar and propose solutions to store a
data array without memory conflicts; this is not suitable for large matrices. Furthermore,
solutions of this type are difficult implement in the existing parallel machines, which con-
tain a multistage interconnection network or a sparsely connected static interconnection
network. Some researchers provided schemes that satisfy the above criteria; however,
these solutions are inefficient or do not achieve conflict free access of a large variety of
data templates.

In this paper, we provide a generalized solution to the data access problem for storing
matrices in memory modules. An important feature of the solution is, the data transfer
functions? that arise in the parallel access of many templates of data are in the class of
linear permutations, which is well studied by the researchers. As a result, the limitations
of interconnection networks are overcome in the parallel access of many useful subsets
of a matrix. In fact, using the solution presented, we devise storage schemes, that can
be used in existing parallel machines with the Omega interconnection network such as
IBM RP3, BBN Butterfly, NYU Ultracomputer, and Cedar multiprocessor systems. This
compares favorably with any of the previously proposed schemes.

The rtest of the paper is organized as follows. In the next section, we discuss the
related research and the proposed solution method. Next, we explain the notation used
in this paper. In section 4, we give the storage scheme, and discuss about the choice
of a storage scheme and its effect on the conflict free access of subsets; we also discuss
the problem of address generation, and the issue of realizing the transfer functions that
arise during the parallel access. In section 5, we devise skewing schemes for which the
data transfer functions in the parallel access of templates of a matrix are realized by an

2The functions that model the data paths to be set up by the interconnection network for the parallel
access of templates as permutations from inputs to outputs of the interconnection network are called
the data transfer functions.

Omega or an inverse Omega network. Next, we discuss about the use of the proposed
method in distributed memory SIMD systems, the hypercube and the mesh computers
We conclude the paper with a discussion and directions for further research.

2 Related work

In this section, we, briefly, discuss the skewing schemes proposed by the other researchers
and the solution proposed.

The skewing schemes can, broadly, be classified as: the linear skewing schemes, and
the non-linear skewing schemes. In a linear skewing scheme [7, 14, 23, 26], element (7,7)
is stored in the memory unit given by a linear combination of 7 and j; that is, element
(,7) is stored in the memory unit ai + b (mod N), for some fixed integers a and b.
Any skewing scheme that is not linear is called a non-linear skewing scheme.

Linear skewing schemes are not general enough to allow conflict free access to various
templates such as row, column, main diagonal, etc., when N is even [7, 14]. Various
solutions given to this problem are as follows. Budnik and Kuck [7] studied the matrix
storage problem initially and proposed a linear skewing storage scheme that can be used
to store an N x N matrix in a system with N processors and N + 1 memory units,
where N is a power of 2. A similar scheme is used in the prime memory system of
Burroughs Scientific Processor [15], which has 16 processors, 17 memory modules, and a
16 x 17 crossbar as processor-memory interconnection network. The disadvantages of this
approach, for large NV, are: (a) address computation is complicated, (b) interconnection
network is expensive, and (c) unequal allocation of data to the memory modules, which
might complicate the memory management. Lawrie [14] proposed the, now well-known,
Omega network and discussed a linear skewing scheme to store a N x N matrix in 2V
memory units so that rows, columns, main diagonal, back diagonal, and square blocks
of the matrix can be accessed in one pass of through the network. However, the use of
twice the minimum number of memory modules necessary is not desirable.

It is possible to design non-linear skewing schemes such that these templates are
obtained conflict free, using N memory modules, even when N is a power of 2. However,
arbitrary non-linear skewing schemes should be avoided in the interest of fast address
computation and reducing the cost of interconnection network.

There is a special class of schemes called, scrambled storage schemes, that satisfies the
criteria of a good skewing scheme. The class of scrambled storage schemes are defined
for the case N a power of 2 as follows. Element (4,7) of the matrix is stored in the
memory module whose binary representation is a linear permutation of of its row and
column indices, 7 and j, respectively. The storage schemes proposed by Batcher [2], Pease
[21], Balakrishnan et al. [1], Lee [16, 17], and Kim and Kumar [13] belong to this class.
Fairlong et al. [9] discussed this class of schemes in a general frame work and proposed

the class of XOR schemes.

In this paper, we consider a special class of scrambled storage schemes, which provide
skewed storge using linear permutations on the indices of the elements. These are called
bitwise linear permutation (blip) schemes. The schemes proposed by Fairlong et al. are
similar to the blip schemes and all the other previously proposed scrambled schemes,
are also in the class of blip schemes. The blip schemes provide conflict free access to
various templates such that the corresponding data transfer functions can be realized
by a multistage interconnection network with self-routing. In fact, given the access
requirements, one can devise an appropriate blip scheme. The advantages of the proposed
solution method compared to those given by other researchers are as given below.

e The proposed method is flexible. It facilitates the choice of an appropriate blip
scheme, given the access requirements.

e Representation of a blip scheme is extremely compact. Compact representation of
the skewing scheme is important in the interest of reducing the overhead in storing
the matrix, in skewed form, into the memory modules before the computation
begins.

e Sometimes, the data array is already in the memory modules, however, before using
it in the next phase of computations, it may be advantageous to re-skew it. In such
cases, blip schemes facilitate efficient re-skewing of the elements of the matrix.

e The blip schemes facilitate self-routing in interconnection networks, to realize the
data transfer functions corresponding to the access of various subsets of the data
matrix.

o The blip schemes are similar to the schemes given by Fairlong et al. The advantage
of blip schemes over the XOR schemes is that it is easier to see the relationship
between the access requirements and the criteria for choosing a skewing scheme.
Also, address generation is simpler for a blip scheme. Furthermore, we are primarily
interested in storing a matrix such that, to achieve conflict free accesses of various
subsets, the interconnection network need to realize only a well known class of
permutations.

Using theory developed for the blip schemes we, later, show that there are some blip
schemes, called restricted blip (r-blip) schemes, that actually allow conflict free access of
the templates of interest with one pass through either the Omega or the inverse Omega
network.

The linear skewing scheme given by Lawrie [14] is comparable to the r-blip schemes,
in terms of simplicity of skewing method and realization of the data transfer functions
using inexpensive interconnection network. In his method, to store an N x N matrix,
2N memory modules are required and a 2N X 2N Omega network is required to realize
the data transfer functions. Compared to this, the r-blip schemes require only half as
many memory modules and an N X N Omega network with some additional circuitry.

5

3 Preliminaries

In this section, we define the class of linear permutations and explain the notion of
templates of a matrix.

In this paper, we assume that there are N processors and N memory units in the
system, N = 2" with n >= 2. Each processor (memory unit) in the system is given an
index 7, 0 < ¢ < N, such that no two processors (respectively, memory units) have the
same index. Therefore, if 7 is the index of a processor, then 7 = (ig ... ¢,_1), an n-bit
vector, such that 1 = Z7252%1,.

3.1 Linear permutations

In what follows, we define the class of linear-complement permutations of N = 2" num-
bers. Let V = {0,1,...,N — 1}. Also, let z be any number and y be its image under
some mapping.

Definition 1 A permutation on V is said to be a linear permutation [21], if there exists
a non singular binary matriz Qny, such that, for every ¢ € V, its image ts given by the
equation, yT = QzT.

So, a linear permutation on V is the permutation that maps each z € V to a number
such that each bit in the binary form of this number is a linear combination of the bits
of z. If complement of bits is allowed, then the permutation is a linear-complement
permutation. To simplify the notation, we may omit the transpose indicator for vectors,
the superscript 7', when there is no confusion.

Definition 2 Let ¢ = (2 ... Tn_1 1). A permutation on V is a linear-complement
permutation (LC) if there ezists a binary matriz P = (Q |k), where Q is as defined above
and k is an n-bit binary vector, such that, for every = € V, its image is given by the
equation, y = Pz .

In the literature [4, 11], the linear permutations are termed as the non-singular
linear transformations of the n-dimensional vector space over the field GF(2) — the
field consisting of two elements: 0, and 1. A linear-complement permutation with matrix
P =(Q | k), Q an n x n boolean matrix and k some n-bit vector, has the same properties
as the linear permutation corresponding to @ has.

Let eI be the binary representation of the number 2%. Then the matrix formed by the
column vectors ez, 0 < z < n, is I, = (€gy...s€n_1). Let @ = (g; ;) be an n x n boolean
matrix and 7 = (4g,...,4n_1) an n-bit boolean vector. Let ¢,, 0 < & < n, represent the
column z of Q; so, @ = (goy---sqn-1). Then, Qi =100 ® -+ D tn_19n-1-

If, in a particular data transfer, for each processor 7, 0 < 7 < N, the memory unit
it accesses is given by @1, for some non-singular boolean matrix @, then the problem
of realizing the data transfer is equivalent to the problem of realizing the corresponding
linear permutation by the interconnection network.

3.2 Subsets of a matrix

A template T of an N x N data matrix is a set of N element positions {(i,,7.)[0 < z < N},
with (20,70) = (0,0) [23]. By the access of a template T', we mean accessing of the N
elements of the matrix whose positions are given by the template. Row (7.), column
(T.), diagonal (T;), and square block (7,) templates are the four important templates
reported in the literature [7, 14]. These templates are defined as follows.

Definition 3

T, ={(0,7)l0 < j < N}
T, = {(i,000 <i < N}
T ={(5,9)0 <2< N}
Ts = {(17])‘0 st 17.7 < \/—N}

It is clear that T,,T.,Ty, and T, correspond to the positions given by, respectively,
row 0, column 0, main diagonal, and the square block Sp of the data matrix. The square
block S;; of an N x N matrix, N square of some integer, is the VN x +/N sub matrix
with (7,7) in the top left position.

Given, a template T = {(0,0), (42,)|l <z < N}, the set {(a,d),(a @iz, 0@ jz)|1 <
z < N}, defines the affine template T'(a,b) of T. The usefulness of these concepts will
be evident, once we define the blip schemes.

3.3 latin squares

Given a data matrix, the matrix obtained by replacing each element by the memory unit
number, in which the element is stored, is called the mapping matrix. A mapping matrix
such that, in each row and column, a number in the set V appears exactly once is termed
as a latin square of order N in the literature [8, 22]. A transversal of a latin square of
order N is the set of N positions such that no two positions are in the same row, in the
same column, and have the same symbol.

Right diagonal j of a N x N matrix is the set of symbols, {(4,7+4 (mod N)) [0 <1 <
N —1}. Similarly, left diagonal j is the set of symbols, {(4,7 —¢ (mod N))|0<:i< N}
Main diagonal of a matrix is the 0-th right diagonal, and back diagonal is the (N —1)-
th left diagonal. A diagonal latin square is a latin square in which the main and back
diagonals are transversals. A crisscross latin square [12] is a latin square in which all the
right diagonals for even j and all the left diagonals for odd ; are transversals.

7

4 The blip schemes

In this section, we give the blip storage scheme and discuss the criteria for having various
templates free of memory conflicts. We assume that there are N memory modules and
processors, and the data matrix to be stored is of size N x N, N = 2™ for some n > 2.

The blip storage scheme: Element (i,;) is stored in location ¢ of the memory unit
with index 7 @ 7(7), where 7 is some linear permutation. I

This storage scheme facilitates the use of the self-routing algorithms developed for
the class of linear permutations in Bene§ and shuffle-exchange networks [5]. The main
advantage of a blip scheme is, it allows an easy understanding of the scrambled schemes,
and simplifies the criteria for conflict free access to various templates.

In figure 3(a), we give the mapping matrix for storing a 16 x 16 data matrix in
16 memory modules. The linear permutation corresponding to the mapping is given in
figure 3(b). Any blip scheme can, compactly, be represented using a boolean matrix; this
is an important aspect of the blip schemes.

The storage scheme proposed by Kim and Kumar [13] is a blip scheme, with memory
units renumbered. This is easy to see from their construction method. This is the very
reason why address generation for their scheme requires only a set of exclusive-or gates.
It can be shown that the skewing scheme proposed by Balakrishnan et al. [1] is also a
member of the proposed class. Also, the schemes given by Lee [16, 17] are members of
the proposed class. It is easy to see that the storage schemes developed by Fairlong et
al. [9] can be obtained from this scheme. In fact, any scheme given by their method can
be converted to an equivalent blip scheme by renumbering the memory modules.

For the scheme given in [13], representation of the mapping of the elements of the
matrix to the memory modules requires either execution of the algorithm that gives the
skewing method, or a dedicated hardware unit that generates the address for each element
of the matrix. (The module number, in which an element is stored, and the location
within in the module constitute the address for the element.) In our approach, the
representation is in the form of n binary vectors; the operations required to generate the
address of each element are bitwise exclusive-or and bitwise ‘and’ operations. Compact
representation of a storage scheme and constant time computation of address reduce the
overhead of placement of data, before the computation begins, in the memory modules.

Since a linear permutation is used to skew data, the transfer functions for the parallel
access of the templates, row, column, diagonal, and square block, when free of memory
conflicts, will be in the form of a linear-complement permutation. Thus, blip schemes
facilitate pipelining of data movement by choosing a Benes network [3] or a IT [27] network
as the processor-memory interconnection network and using the self-routing techniques
developed for these networks [5]. Sometimes, data are read into memory modules in
a particular fashion; an example is reading the output of image scanners in Tow major
order; another example is transferring data from disk to main memory modules. Also,

8

0 12 4 8|3 15 7 111 183 5 92 14 6 10
1 13 5 9,2 14 6 100 12 4 8|3 15 7 11
2 14 6 101 13 5 9|3 15 7 11|0 12 4 8
3 15 7 11|10 12 4 8|2 14 6 101 13 5 9
4 8§ 0 127 11 3 155 9 1 13|]6 10 2 14
5 9 1 13|6 10 2 14,4 8 0 127 11 3 15
6 10 2 145 9 1 13} 7 11 3 15| 4 8 0 12
7 11 3 154 8 0 12|6 10 2 145 9 1 13
8 4 12 0|11 7 15 39 5 13 1|10 6 14 2
9 5 13 1|10 6 14 2|8 4 12 0|11 7 15 3
0 6 14 29 5 13 1|11 7 15 3|8 4 12 O
11 7 15 3|8 4 12 0|10 6 14 2|9 5 13 1
2 0 8 4|15 3 11 7|18 1 9 5|14 2 10 6
13 19 5|14 2 10 6 (12 0 8 415 3 11 7
14 2 10 6|13 1 9 5|15 3 11 712 0 8 4
5 3 11 7|12 0 8 4|14 2 10 6 |13 1 9 5
(a)

Figure 3: A blip scheme to store a 16 x 16 data matrix.

sometimes, the data are in the memory but not in the desired skewed order due to
previous computations. So, before the start of computations, the data may need to
be re-skewed, so that during computation conflict free access of various templates is
obtained. With the given storage scheme, the data movement can be pipelined with
simple address computations.

4.1 Conflict free access of the templates of interest

In what follows, for each of the row, column, diagonal, and square block templates, we
obtain: the criterion to be satisfied by a blip scheme to provide conflict free storage of
the elements in the template, and the permutation to be realized by the interconnection
network to provide conflict free access. The issue of fast address generation is discussed in
§ 4.2. For the remainder of this section, we assume that @) represents the boolean matrix
corresponding to the linear permutation defining the blip scheme under discussion. If T'
is the template free of memory conflicts, then the data transfer function to be realized
by the interconnection network for the parallel access of T is denoted as f(T').

Suppose a template T is free of memory conflicts. Then to see which processor gets
which element, we rank the elements in the templates, using their indices, in the row
major order® and assign i-th smallest ranked element to processor 7, 0 < ¢ < N. There
are other possible assignments, namely, column major order, shuffled row major order,
snake-like row major order, etc. But, if the transfer function for a template access (in
row major order) is a linear-complement permutation, then the transfer function will still
be a linear-complement permutation with any of the other assignments given above. So,
in this paper, we concentrate on the access of templates in row major order.

We use the following theorem, to extend the results proved for any template to the
affine templates derived from it.

Theorem 1 If access to a template T is free of memory conflicts, then (a) access of any
affine template T' obtained from T is free of memory conflicts, and (b) (f(T')) is a linear
permutation, if and only if f(T") is a linear-complement permutation.

Proof: Since, there is one-one correspondence from 7' to T', part (a) of the theorem
follows. The one-one to correspondence from 7" to T' is a linear-complement permutation.
So, part (b) is follows from the definition of linear permutations. |

The interconnection network

In this section, we consider the use of multistage dynamic interconnection networks to
realize the transfer functions that arise in accessing the templates. Though, the following
discussion assumes the interconnection network to be an N x N Benes network, it is valid
for other networks, for example, the shuffle-exchange type of networks.

3In the row major order, element (¢, j) is ranked i X VN + j.

10

0 0

1 1
0

T

U

N 2 2
T

o 5 — 3
P
v U

T 4 4
T

S 5 5
>< >< S

6 6

7 7

stage 1 stage 2 stage 3 stage 4 stage 5

Figure 4: An 8 x 8 Benes network.

An 8 x 8 Benes network is shown in figure 4. In general, an N x N Benes§ network
consists of 2log N —1 stages of switches, each stage containing N/2 switches. Each switch
can be set in a cross or straight position. This network can realize any permutation of
inputs to outputs, by setting the switches appropriately [3]. However, to realize an
arbitrary permutation, the time to set up the network takes a lot of time [25]. So,
researchers have proposed methods to set up the network to realize some of the common
permutations such that each switch looks at the destination addresses of its inputs and
sets itself using some simple logic. Such schemes are called, self-routing schemes [18]. For
the Benes and shuffle-exchange networks, a self-routing algorithm to route any linear-
complement permutation is known [5].

To use the interconnection network efficiently, we need to show that there are suitable
blip schemes with transfer functions of the important templates in the class of linear
permutation. Then, by the theorem 1, the access of any affine template of T requires
a corresponding linear-complement permutation to be realized by the interconnection
network.

4.1.1 The row and column templates

Access of the row template (i.e., the row 0), T, means processor j, 0 < j < N, should
obtain the element (0,j), stored in the memory module 0 @ x(j), where 7 is the linear
permutation used for the blip scheme under consideration. Since, ¢ is the boolean matrix
corresponding to 7, 7(j) = Q7. So f(T,) is the linear permutation represented by Q.
Access of T, means processor 7 gets the element (¢,0) stored in the memory unit :. Hence

1

f(T.) is an identity permutation. These points are summarized in the following theorem.

Theorem 2 For any blip scheme, T, and T, are free of memory conflicts and f(T,) and
f(T,) are linear permutations. |

4.1.2 The diagonal template

Access of the diagonal template T, (the main diagonal) means processor 7 obtains the
element (7,7) stored in the memory module 7 @ Qi. Noting that,

10Qi=Li®Qi=(I,®Q)

we conclude that T is free of memory conflicts, if and only if the Q" = (I, ® Q) is
non-singular. Furthermore, whenever Q" is non-singular, f(7}) is a linear permutation.

Back diagonal is the template T4(0, N — 1). To access back diagonal, processor 1
gets the element (7,7), 7 = (N — 1) @1, which is stored in the memory module ¢ & Q7 =
Q1 &1 Q1,1 is the n-bit column vector with all 1’s.

Theorem 3 For a blip scheme with boolean matriz Q, Ty is free of memory conflicts, if
and only if the boolean matriz Q" = Q @ I,, 1s non-singular. Furthermore, whenever Q"
is non-singular, f(Ty) ts a linear permutation given by Q". 1

An example of accessing main diagonal of a 16 x 16 matrix with skewing method
given in figure 3 is shown in figure 5. We assume that to input (left side) of the network,
processors are connected, memories to the other end of the network. Input and output
lines are numbered top to bottom 0,1,..., N — 1. Processor (memory) ¢ is connected to
input (output) line ¢. The numbers at the input side represent the module number to
which the respective processor is to be connected.

4.1.3 The square block template

Let n be even, so that V/N is an integer. Also, for ¢ = (ig,...,%n-1), 0 < 2 < N, let
1= (io,...,i%_l,O,...,O), and 7, = (i%,...,in_l,ﬂ,...,()).

Access of T, (i.e. the elements in the square block Spo) means that processor ¢ obtains
the element (iy,4), which is stored in the memory module z, & Q1;. But,

Qudiy = 10go® - Diz_192-1 D inen/2 @ Din-16n1

= (qo,...,qzzz._l,eo,...,e%_l)z.

Let Q = (gos .- s g2 —17€0s- -5 ez_1). Then the processor ¢, 0 <1 < N, accesses memory

unit Q7. If Q' is non-singular, then this defines a linear permutation.

12

13

11

10

12

15

14

|
X1 X

L]
X1 [X

S Ao A

X |
X

_ X

|
-

i

Figure 5: An example of realizing f(7;) by the Benes network.

Theorem 4 For a blip scheme with boolean matriz Q, T, is free of memory conﬂzcts, if
and only if the boolean matmm Q' (obtained from Q such that, for 0 < i < n/2, q; = ¢,
and, for n/2 < i < n, qz = €;_n/2) is non- smgular Purthermore, whenever Q' is non-
singular, f(T,) is a linear permutation given by Q. |

4.1.4 The crumbled rectangles

Fairlong et al. [9] defined a crumbled rectangle of size (27,2"7") by step of (2%,2!)
(denoted, Tcr(n,,,k’l)) to be a template with the following set of elements:

(0,0) (0,2%) (0,(27 — 1)2%)
(213 O) (2172k) T (21’ (ZT - 1)2k)
(" = 1)2,0) (20 —1)2,2%) ... (@2~ = 1)2, (2" -)29

The concept of crumbled rectangles is a generalization of that of the square block
template. Extending the argument given for the case of the square block template, we can
obtain the criterion for a crumbled rectangle to be conflict free. The following theorem
gives this criterion, which is also discussed extensively by Fairlong et al. [9].

Theorem 5 For a blip scheme with boolean matriz @), the access of the crumbled rect-
angle Tor(np gy 15 free of memory conflicts, if and only if the boolean matriz Q* =
(Qiy -+ s Qhtro1s €Ly« - - » En—rti—1) 18 non-singular. Furthermore, whenever Q* is non-singular,
F(Ter(rinpt)) 18 @ linear permutation. |

The discussion given by Fairlong et al. about the requirements for conflict free access
to various crumbled rectangle is applicable to the blip schemes as follows. Suppose
a skewing scheme is developed using their method. Then, to find the equivalent blip
scheme, renumber the memory modules such that the leftmost column of the mapping
matrix defined by their scheme is an identity permutation. The resultant mapping matrix
corresponds to the blip scheme with linear permutation given by the permutation of
topmost row of the mapping matrix.

The discussion on the chess board templates, given in [9], can be applied to the blip
schemes.

4.2 Address generation

For fast access of any template of a matrix, besides having each element of the template
in a distinct memory module, a fast scheme to generate the module numbers should
be provided. When a blip scheme is used, for the important templates, memory unit
number can be generated by each processor, independently, in constant time with only
log N exclusive-or gates. This can be explained as follows.

14

The most flexible approach is to store the boolean matrix, corresponding to the blip
scheme used, in each processor, in a fast memory. This requires (log V)? bits of storage.
Now, given row and column indices of an element, the memory module in which it is
stored is computed easily. However, if only the four data templates, T,, 7., Ty, and
T,, are used in the course of computation, then space and time can be saved with the
following approach. We assume that, in processor %, the n-bit boolean vectors Q1, Q1,
and Q1;, 7 and 4; are as defined in § 4.1.3, are stored.

For the access of the row template, processor 7 has to compute @17, which is already
present in the processor’s local memory. For the access of any affine row template 7, (a, b),
processor ¢ needs to compute the address of the element (a,7), which is a @ Q1. With the
broadcast of the vector a, each processor can compute address of the element assigned to
it in parallel and in constant time using log NV exclusive-or gates. In the case of an affine
column template T,(a,b) (column b) processor 7 computes the address of : @ Qb. If Qb is
broadcast, each processor can compute address in parallel.

To access the main diagonal elements, processor ¢ has to compute 1 & @7, the address
of the element (,7); this can be done in constant time. To access the back diagonal,
processor 7 needs to compute 7 & @7, which can be done in constant time.

Let n be even and, for any ¢, ¢, and 7; be as defined in § 4.1.3. For the access of the
square block template (square block Spp) processor 7 has to compute the address of the
element (4,,1%;), which is given by i, ® @Q7;. Each processor can compute this in constant
time. For an affine square block template T(a,b) (square block S, , a =a, x VN

and b = b, x V' N), to get the memory unit number, each processor would perform the
above computation and then perform exclusive-or of the result with the vector (a, ®Qb),
which is broadcast by the control unit.

4.3 Some examples

In what follows, we take some of the schemes proposed by the researchers, give the equiv-
alent blip schemes, and analyze the accessibility of templates with the theory developed
in this paper.
Example 1:

The scheme proposed by Lee [16] corresponds to the blip scheme with

. 0 In/2
Q= (L, 0) ’

Since, Q satisfies theorem 4, the square blocks template is free of memory conflicts.
However, Q" = I, ® Q is singular, since it is of the form given below. Hence, this scheme
can not provide conflict free access to the diagonal template.

LA I‘n/z In/Z)
Q N (In/2 In/?)

15

Example 2:

The scheme proposed by Lee [17] corresponds to the blip scheme with Q = (go, .. ., Ga_1),
where go = 3, g1 = 1, and, for 1 <7 <n—1, ¢ = ej41. Forn =6, Q and Q" are as
shown below.

1 00001 0 00 001
100000 110000
{01 00 0O w101 1000
Q= 001 00°O0]° Q= 001 100
000 10O 000110
000010 0 000T1T1

In general, it is easy to show that @ fails to satisfy the theorem 4, hence it can not
provide conflict free access of square block templates. But, Q" is non-singular, hence,
the diagonal template is free of memory conflicts.

Example 3:

Fairlong et al. [9], discussed a scheme to store 16 x 16 matrix as an example of the
method proposed by them. This scheme corresponds to the blip scheme with

0010
0 011
Q_l(]OO
1100

It is easy to see that @ satisfies theorem 4, hence allows conflict free access of the
square block templates. But, Q" is singular, hence the diagonal has memory conflicts.

Example 4:

For the case N = 16, the storage scheme using the Kim and Kumar’s method [13]
corresponds to the blip scheme (shown in figure 3) with

)
1
0
0
0

N e =)
o oo
oo =

Here, Q satisfies theorems 3 and 4, hence it provides conflict free access of both diago-
nal and square block templates. In general, one can show that their construction method
yields a blip scheme with conflict free access of diagonal and square block templates.

4.4 Conflict free access of some composite templates

Sometimes, it may be desirable to access subsets of the data that are not templates.
However, they may be regular and nice and have the same form as that of some template.

16

We call such templates as composite templates. In this section, we consider two composite

templates: square blocks {S; ;|4 = Oorj; = 0} and diagonal other than main and back
diagonals.

One can extend the address generation methods discussed in § 4.2 to these composite
templates, by storing only the three vectors Qi, Q7;, and Q7 in processor 7, 0 < i < N.
The trnasfer functions are not in the class of linear-complement permutations. How-
ever, some efficient routing techniques can be devised using using the known routing
techniques. Any composite square block can be accessed using a Benes or a II network
with the self-routing techniques given for linear-complement permutations in at most two
passes through the network. Any off diagonal that is free of memory conflicts will have
the composite permutation composed of a linear-complement permutation followed by a
cyclic shift permutation as its transfer function. Clearly, more work is warranted on the
realization of transfer functions for the parallel access of composite templates.

4.4.1 The composite square block templates

Kim and Kumar’s method is such that any square block S; ; is conflict free whenever 1 = 0
(mod v/N), or j = 0 (mod v/N). While this is difficult to understand by looking at their
construction method, it is very easy to obtain the necessary and sufficient conditions for
the property to be true when their method is viewed as a blip scheme.

The set of positions in square block S;;, i = 0 (mod /), are obtained form the set
of positions in the square block Sy ; by exclusive-or operation of (¢,0) on each position in
the square block Sy ;. So, if the set of square block So;, 0 < 7 < (N — V/N), are conflict
free, then any square block S;;, ¢ = 0 (mod \/N) is conflict free. Similar property holds
for the square blocks S;;, j = 0 (mod v/N).

First we obtain the criterion for conflict free access of any square block S;;. We
know that square block Sy is conflict free when the theorem 4 is satisfied. For, Sp; to
be conflict free, we need that symbols in the rightmost column of Sg; (consists of the
topmost /N elements of the column v/N of the mapping matrix) be a permutation of
the the symbols in the leftmost column of Spo. But, the topmost V/N entries in that
column the mapping matrix are of the form ¢ @ gn/2, 0 <1 < V/N. So, for conflict free
access of Sy, the vector g,/, should have value less than +/N. This argument can be
continued to show that each of the vectors gn/s,...,¢n—1 should be of value less than
/N, if each of the square blocks Sp;, 0 < j < (N — \/]V) are to be conflict free. Similar
argument can be applied to get the criterion for the square block S;, 0 <@ < (N — \/]7),
to be conflict free. In this case, it is required that each of the vectors gq,...,qz_1 should
be of value greater than or equal to v/N. Thus the the criterion for conflict free access of
any square block S;j, i = 0 (mod v/N), or j = 0 (mod V), is as given in the following

theorem.

Theorem 6 Let Q be the boolean matriz corresponding to a storage scheme. Then, the
storage scheme has the property that any square block S;; such that i = 0 (mod V/N), or

17

7 =0 (mod V/N), is conflict free, if and only if Q can be partitioned such that

_ 0 | @
o = (ot%)
where @1, @y are non-singular 5 X % boolean matrices. |

The boolean matrix in figure 3(b) can be partitioned as given in the above theorem.
Hence, in the mapping matrix, figure 3(a), any square block S;;, 7 = 0 (mod 4), or
7 =0 (mod 4), is conflict free.

4.4.2 The off diagonals

In a matrix of size N x N, there are N right diagonals and N left diagonals. Hedayat [10]
showed the non-existence a latin square of even order such that every right diagonal and
left diagonal is accessible. As an alternative, Hwang [12] defined crisscross latin squares.
He showed that crisscross latin squares exist whenever N is a multiple of 4, and gave a
method to construct such latin squares. We will modify the procedure given by Hwang
to obtain crisscross latin squares that correspond to the blip schemes.

In the original method given by Hwang, he constructed a set of N positions in
which 0 would occur. Form this he obtained the set of positions in which the numbers
1,2,...,N — 1 occur by simple arithmetic operation on the set of positions obtained for
0. Due to the modulo N arithmetic, the rows and columns of such a latin square are
not linear permutations. See figure 6(a) for an 8 x 8 crisscross latin square obtained by
Hwang’s procedure. For the case N a power of 2, a blip scheme can be devised to obtain
a crisscross latin square. First obtain the positions of the symbol 0 as given by Hwang.
This can be shown to be some linear permutation 7 due to the construction method. (For
the 8 x 8 case, the boolean matrix in figure 6(c) corresponds to this linear permutation.)
Now, the crisscross latin square is given by the blip scheme whose linear permutation is 7.
The 8 x 8 crisscross latin square in figure 6(b) is obtained by the modified procedure. It
can be shown that this blip scheme gives conflict free access to any even (odd) right (left)
diagonal of the matrix. The transfer function for the diagonals, other than the main and
back diagonals, is a permutation of the form, a linear-complement permutation followed
by a cyclic shift operation.

5 Some special blip schemes

We now devise some special blip schemes called r-blip (restricted blip) schemes for which
f(T,), = € {r,c,d,s}, can be realized by an N x N Omega (Qx) or an inverse Omega
(Q3') network. If Qu (Q') can realize f(T), we denote this (Lawrie’s notation) as

18

0 2 4 6 7 1 3 5 0 6 4 2 7 1 3 5
175 3 2 0 6 4 1 75 3 6 0 2 4
2 46 01 3 5 7 2 46 0 5 3 1 7
3 1 7 5 4 2 0 6 3 5 7 1 4 2 0 6
4 6 0 2 3 5 7 1 4 2 0 6 3 5 7 1
5 3 1 7 6 4 2 0 5 3 1 7 2 4 6 0
6 0 2 4 5 7 1 3 6 0 2 4 1 7 5 3
75 3 1 0 6 4 2 71 3 5 0 6 4 2

—~
o
~
—~
o
N’

O
I

1
1
1

o o
O = o

(c)
Figure 6: Two examples of crisscross latin squares

We organize this section as follows. First, we present the Omega network with some
additional circuitry. Next, we characterize the linear permutations passable in the Omega
and the inverse Omega networks. Then, we discuss an 1-blip scheme that can be used
with the Omega network and some additional circuitry.

The interconnection network

In this section, we assume that the Omega network is available as the interconnection
network between processor and memory units. In the process of realizing the data transfer
functions, we may use the interconnection network as an Omega network, when processors
are connected to the left end of the network and memory units to the right end of the
network, or as an inverse Omega network, when processors are connected to the right end
of the network and memory units to the left end of the network. This can be achieved
with N additional 2 x 2 switches. By setting these N switches to straight position, the
interconnection network between processors and memory units is the Omega network;
by setting these switches to cross position, the inverse Omega network is available. This
can easily be done with a 1-bit control line by the central control unit. An 8 processor
system with this interconnection network is shown in figure 7.

19

1"

®_
_@

|

olf, olf

1 : memory unit i @ : processor i

[1 . a 2 input/output switch

: A switch in the Omega network

Figure 7: An 8 processor system with the modified Omega network.

20

5.1 Routing linear permutations in the Omega and the inverse
Omega networks

Characterization of Qy (2') passable linear permutations enables us to devise the r-blip
schemes.

Let us define a lower triangular linear permutation to be a linear permutation with
boolean matrix a non-singular lower triangular matrix. Similarly upper triangular linear
permutation is defined.

Pease [21] proved that a linear permutation is realizable in an indirect binary n-cube
network (identical to the inverse Omega network [20]), if and only if it is composed of
two linear permutations: the upper triangular permutation followed by lower triangular
permutation. So, a linear permutation is passable in an Omega network, if and only if
it can be decomposed into a lower triangular linear permutation followed by an upper
triangular permutation. The theorem below gives an equivalent criterion to characterize
the Omega passable linear permutations. This is a special case of the more general
property proved by Varma [24] to count the number of passes required to realize a linear
permutation in Omega.

Definition 4 For a boolean matriz @ = (gi ;)nxn, the ezpanding sub-matriz k, 0 < k <
n, of @ is defined as follows.
oo - ok

Qo ik

Definition 5 Similarly, for a boolean matriz Q = (g; ;j)nxn, the contracting sub matriz

kE, 0 <k<mn, of Q is defined as follows.

ke, ke o Qkn-1

gn—-1k **° Gn—1,n—1

Lemma 1 A boolean matriz Q = (g ;)nxn can be decomposed into non-singular upper
triangular and lower triangular boolean matrices without pivoting, if and only if each of
the ezpanding sub-matrices is non-singular.

Proof: First, assume that Q can factored without pivoting. We can factor @ into
UL, using the modified form of Gauss’s algorithm [21] such that, in step 4, 0 < < n, the
first 7 Tows are reduced to lower triangular. For this we can define elementary column
operations similar to the elementary row operations. Note that here modulo 2 arithmetic
is used. Now, at each step of the Gauss’s algorithm, the pivot element is non-zero by
assumption. The expanding sub matrix with bottom right corner element as the pivot

21

element is a lower triangular matrix, which is non-singular. This lower triangular matrix
is obtained from the corresponding expanding sub matrix of ¢ with some elementary
column operations. Since, the elementary row or column operations do not change the
non-singularity of a matrix, we conclude that the expanding sub matrix of @) is non-
singular as well.

If each of the expanding sub matrices of @ is non-singular, then it is easy to see that
@ can be factored without pivoting. |

Theorem 7 A linear permutation with boolean matriz Q) is passable in the inverse Omega
network, if and only if each of the expanding sub-matrices of @ is non-singular.

Proof: Directly follows from the above lemma and the Pease’s result discussed above.
|

Let p denote the bit-reversal permutation, w™' be an Qy' passable permutation.
Then, the corresponding) passable permutation (w) is given by the following theorem,

proved by Parker [20].
Theorem 8 w = pw™p. B

Corollary 1 A linear permutation given by the boolean matriz Q is passable in the in-
verse Omega network, if and only if each of contracting the sub-matrices of @ 1is non-
singular.

Proof: The result follows from the above two theorems. |

In addition to these, we state the following theorem for the Omega network. Similar
result holds for the inverse Omega network.

Theorem 9 If a permutation 7 is passable in the Omega network, then any permutation
obtained from © by complementing some bits is also passable in the Omega network. 1§

If a template T has the data transfer function f(T'), then any affine template de-
rived form 7 has a data transfer function that is obtained from f(7') with some bits
complemented. So, if we show that, for a template T, f(T') is passable in the Omega
or the inverse Omega network, then f(7T'(a,b)), T'(a,bd) is an affine template of T', is also
passable in the network.

22

5.2 An r-blip scheme

Let L, (U,) be the z X z non-singular lower (upper) triangular boolean matrix, with
all entries below (above) the diagonal as 1. Let L, = L, ® I,. U, is defined similarly.
Let p, be the z X boolean matrix corresponding to the bit reversal permutation on 2*
numbers. As an example, Ly, Uy, and p4 are given below.

1000 1111 000 1
{1100 o111 loo 1o
Le=1 7110 %=]o011]|" ”=|010 0

1111 000 1 1000

For any blip scheme, the transfer function of the column template f(7,) is always an
identity permutation.

Theorem 10 For any blip scheme, QnT f(T.) and Q3T F(T.). |

Now, consider a blip scheme defined by the following boolean matrix I',. Assume
that IV is an even power of 2. We will show that this is an r-blip scheme.

. Ln/2 In/2
LS (Lojz | 0)

For N =16, I'y 1s,

We note the following.
Lemma 2 For the r-blip scheme given by T, f(T;) and f(Ts) are the same.

Proof: Result is immediate by the application of theorem 4. |
Lemma 3 Each of the exzpanding sub-matrices of I',, s non-singular.

Proof: For any i, 0 < i < n/2, the expanding sub matrix ¢ of I', is a lower triangular
matrix, hence non-singular. The expanding sub matrix n/2 is of the following form.

1
Ln/g 0

23

In this, the first row can not be a linear combination of any of the other rows, since it
has a 1 in position (0,n/2) and no other row has a 1 in this column. The remaining
rows, considering the first n/2 columns, form an 3 X % boolean matrix that is same as
L./, with the rows cyclically shifted upward by 1 steIS. So, the expanding sub matrix
n/2 is non-singular. This argument can be given to show that any expanding sub matrix
1, n/2 <1 < n, is non-singular. |

Hence, for the blip scheme defined by T',,, Q5T {f(T.), f(T\)}.
I" =T, @ I, defines the permutation f(7;). As an example, T, is given below.

0
1
0
1

In the general case,
" L1
¥ = n/2 n/2)
" (Ly | Inys

n . .
Lemma 4 T'_, n even, is non-singular.

Proof: Use the following transformation on I‘;. Replace row ¢, 0 < ¢ < n/2, of F;:
with the sum of rows ¢ and ¢ + n/2. The resulting matrix is as given below.

Ln/2 In/Z
It is clear that, this is non-singular. Hence, I, is non-singular. |

Lemma 5 FEach of the contracting sub matrices of I is non-singular.

Proof: Consider the contracting sub matrix k, 0 < k < n/2. This will be of the
following form.
Ln/z—k 0 In/2—k
0 1, 0

Ln/2—k 0 In/z—k

It is clear that the above matrix is non-singular, if the sub matrix obtained from it
by deleting the middle k columns and k rows is non-singular. Since the sub matrix
so obtained is of the form T',_,,, by the above lemma, it is non-singular. Hence the
contracting sub matrix k of I, is non-singular, when 0 < k < n/2. For n/2 < k < n, the
contracting sub matrix k of ', is simply an identity matrix. Hence the lemma holds. 1

Hence, for the blip scheme defined by T',,, QnT {f(T4)}.

24

Theorem 11 T, defines an r-blip storage scheme. |

Another r-blip scheme similar to the above has its boolean matrix as follows.

Un/z In/z
(Unsa | 0)

We note that, for the blip schemes proposed by Balakrishnan et al. [1], Lee [16, 17],
Kim and Kumar [13], and the example scheme given by Fairlong et al. [9], neither Qpn
nor Q' network can realize f(7,). It is interesting to note that the first proposed blip
scheme, given by Batcher [2], which is called the flip scheme by him, has I,, as the boolean

matrix. So, either Qx or Q3 can be used to realize f(7,). However, this scheme is too
simple, and does not allow parallel access of the templates 7, and 7.

An interesting non r-blip scheme

The following blip scheme gives conflict free access to many off diagonals that are
not affine diagonal templates (see § 4.4.2). However, with this scheme, the square block
template is not free of memory conflicts. So, this scheme is useful when conflict free
access of square block template is not needed. The boolean matrix, A,, for this scheme
is such that §o = N — 2, 8,1 = N — 1 and, for all other 7, §; = €;4,. Here, §; indicates
the column 7 of A,,. Given below is As.

0 0001
10001
A= 1100 1
10101
10011

It can be shown that, the contracting sub matrices of A, are non-singular. The linear
permutation corresponding to the access of the diagonal is given by A=A, 0 I, A
is as follows.

e

Il
= e
o O = O
O = = OO
== O O O
O =

In general, except for k = n — 1, each of the expanding sub-matrices of A" is a
non-singular lower triangular matrix. And, A itself is non-singular. We summarize this
in the following theorem.

Theorem 12 The blip scheme defined by A, gives conflict free access of rows and
columns by operating the interconnection network as the Omega network and conflict
free access of diagonal template by operating the interconnection network as the inverse
Omega network. |

6 Other applications and extensions

In this section, we briefly discuss other applications of the blip schemes.

6.1 Use of blip schemes for band matrices

Often, matrices to be stored are sparse and non-zero entries of the matrix are in the
diagonals around the main diagonal. Such matrices are called the band matrices. A
matrix of band b, b odd, is a sparse matrix with non-zero entries only along the right
diagonals 0,1,...,(b—1)/2,(N—(b—1)/2),...,(N—1). It is wasteful of resources to store
and treat them as dense matrices. So, it is desirable to store the band matrices using
diagonals. Furthermore, often computations with band matrices involve simultaneous
access and computation of elements in a diagonal. The proposed method can be used
in this situation to get conflict free access to the diagonals of the matrix as follows. Let
the size of band of the matrix be b. Then, we can treat the problem of storing this
matrix as that of storing a matrix of size b X N obtained as follows. Right diagonal j,
0<j7<(b-1)/2,is row j, and right diagonal (N —(b—1)/2)+ 7,0 <7< (b—1)/2,1s
row (b+1)/2+ j in the b x N matrix. Now, when this matrix is stored in the memory
using a linear permutation scheme, conflict free access to any row (that is, any diagonal
of the original sparse matrix) is obtained.

6.2 Use of blip schemes in SIMD distributed memory systems

The theory of blip schemes developed in this paper, can be applied with no changes to
some of the popular SIMD multicomputer systems such as the hypercube the mesh con-
nected computer, and the shuffle-exchange computer. In this case, the storage problem is
to store a matrix of data, without duplication, in local memories of processors such that
the data movements among processors are some well-defined transfer functions. The only
issue to be considered here is, how to realize f(T') by the interconnection network among
processors. One approach is to simulate an appropriate multistage interconnection net-
work and use the self-routing algorithms developed for that multistage network. Another
approach, relevant for the hypercube and the mesh computers, is to use the self-routing
techniques developed for these computers to realize f(T') for the parallel access of the
template 7. In [6] self-routing algorithms to realize the the class of linear-complement
permutations in the boolean n-cube and the mesh connected computers are developed.

6.3 TUse of blip schemes for the vector processors

Norton and Melton [19] discuss a storage scheme for the vector processors. Their scheme
guarantees conflict free access to any power of 2 stride. It can be seen that their class also
belongs to the class of schemes proposed here. The criterion to get conflict free access

26

to a power of 2 stride is obtained by considering the appropriate crumbled rectangle.
Whenever, such a stride is free of memory conflicts, the transfer function to be realized
by the interconnection network is a linear-complement permutation.

6.4 TUse of blip schemes to store matrices of larger size

For the case when the data matrix is of size m x m, m > N and a power of 2, partition
the matrix in terms of square blocks of size N x N. Then, one can use the storage method
discussed earlier to skew the elements in the N x N square block at (0,0) of the matrix.
Other square blocks of the matrix can be skewed using a linear-complement permutation
with the same @ as that used in the skew of the square block at (0,0). Then, one can
describe the skew of the square blocks using a linear permutation. By looking at the
access requirements, one can choose a linear permutation to skew the square blocks, and
a linear permutation to skew the elements at square block (0,0). This will completely
define the skew of the m x m array. Then the issues related to address generation and
routing in interconnection networks are similar to the case m = N.

6.5 TUse of the blip schemes for storing multi-dimensional data
arrays

There are two approaches to apply the theory of blip schemes to devise storage schemes
for multidimensional matrices. In the first approach, a multidimensional matrix can be
converted into a 2-dimensional matrix, which is very much like converting a 2-dimensional
matrix into a linear array by row major ordering or some similar ordering. Then, the
approach given for the case of larger size matrices can be used to devise an appropriate
storage scheme. The other approach is to use that suggested by Fairlong et al., namely,
skew on each dimension of the matrix with the modification that for no skewing is used
for the first dimension. While this seems to be more flexible, it has the disadvantage that
it complicates the criteria for conflict free access of various templates.

7 Summary and conclusions

In this paper, we considered a class of scrambled skewing schemes. The method pro-
posed has the advantage of: (a) facilitating simple control of inexpensive interconnection
networks, in accessing various subsets of a matrix, (b) compact representation of the
storage scheme, and (c) simple address generation methods. These aspects are crucial
for the use of a storage scheme. We showed that a multistage interconnection network
such as the Benes network or the Omega network can be used to realize the data trans-
fer functions that arise during the parallel access of various templates of the matrix.
Compact representation and simple address generation of a skewing scheme obviate the

27

need to store the complete mapping matrix in the memory, and reduce the overhead of
placing data in the memory, before the computation begins. Another advantage of the
proposed method is it facilitates efficient re-skewing of data between different phases of
computation; re-skewing may be necessary to ensure that, in each computation phase,
the required templates are conflict free and allow self-routing methods to set up the inter-
connection network. The treatment given here shows that various efforts by researchers
become special cases of the proposed method.

We later devised, using the theory developed, some special schemes that allow parallel
access of rows, columns, main diagonal, back diagonal, and square blocks of a matrix
using the well known Omega network with some additional hardware. Compared to the
Lawrie’s linear skewing method, these special schemes are better since parallel access of
data is achieved using half as many memory modules and an interconnection network
that is approximately half as big as that to be used in the Lawrie’s scheme. An additional
advantage of the proposed schemes is, simpler and faster address generation.

This approach is very promising. Further work in this direction would be to develop
systematic procedures to obtain the linear permutation schemes that allow conflict free
access of the templates of interest. Also, one can analyze the transfer functions for
subsets that are regular but not affine templates and investigate the methods to realize
them using an Omega or a similar network.

References

[1] M. Balakrishnan, R. Jain, and C. S. Raghavendra. On array storage for conflict-free
memory access for parallel processors. In Int’l Conf. on Parallel Processing, pages

103-107, 1988.

[2] K. E. Batcher. The multidimensional access memory in STARAN. IEEE Trans. on
Computers, c-26(2):174-177, 1977.

[3] V. E. Benes. Mathematical theory of connecting networks and telephone traffic.
Academic Press, 1965.

[4] G. Birhkoff and S. MacLane. A survey of modern algebra. Macmillan, 4 edition,
1977.

[5] R. Boppana and C. S. Raghavendra. On self-routing in Benes and (2n — 1)-stage
shuffle exchange networks. In Int’l Conf. on Parallel Processing, pages 196-200,
1988.

[6] R. Boppana and C. S. Raghavendra. Optimal self-routing of linear-complement
permutations in hypercubes. Tech. Report, EE-systems, USC, 1989.

28

[7]

8]

[9]

[10]

[20]

[21]

[22]

P. Budnik and D. J. Kuck. The oorganization and use of parallel memories. IEEE
Trans. on Computers, c-20(12):1566-1569, 1971. '

J. Denes and A. D. Keedwell. Latin Squares and Their Applications. Academic
Press, 1974.

J. M. Fairlong, W. Jalby, and J. Lenfant. Xor-schemes: A flexible data organization
in parallel memories. In Int’l Conf. on Parallel Processing, pages 276-283, 1985.

A. Hedayat. A complete solution to the existence and nonexistence of knut vik
designs and orthogoanl knut vik designs. Journal of Combinatorial Theory, Series A,

22:331-337, 1977.
K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, 2 edition, 1971.

F. K. Hwang. Crisscross latin squares. Journal of Combinatorial Theory, Series A,

27:371-375, 1979.

K. Kim and V. K. P. Kumar. Perfect latin squares and parallel array access. In Int’
Symp. on Comput. Arch., pages 372-379, 1989.

D. H. Lawrie. Access and Alignement of Data in an Array Processor. [EEE Trans.
on Computers, c—24(12), 1975.

D. H. Lawrie and C. R. Vora. The prime memory system for array access. [EEE
Trans. on Computers, c-31(5):435-442, 1982.

D. Lee. Scrambled storage for parallel memory systems. In Int’l Symp. on Comput.
Arch., pages 232-239, 1988.

D.-L. Lee. On access and alignment of data in a parallel processor. Information
Processing Letters, 33(1):11-14, 1989/90.

D. Nassimi and S. Sahni. A self-routing Benes network and parallel permutation
algorithms. IEEE Trans. on Computers, c-30(5), 1981.

A. Norton and E. Melton. A class of boolean linear transformations for conflict free
power-of-two stride access. In Int’l Conf. on Parallel Processing, pages 247-254,
1987.

D. S. Parker. Notes on shuffle/exchange-type switching networks. IEEE Trans. on
Computers, c-29(3):213-222, 1980.

M. C. Pease, III. The indirect binary n—cube microprocessor array. IEEE Trans. on
Computers, c—26(5), 1977.

H. J. Ryser. Combinatorial mathematics. The Math. Assoc. of America, 1963.

29

[23] H. D. Shapiro. Theoretical limitations on the efficient use of parallel memories.
IEEE Trans. on Computers, c-27(5):421-428, 1978.

[24] A. Varma. . Personal communication, 1989.
[25] A. Waksman. A permutation network. J. Assoc. Comput. for Mach., 15(1), 1968.

[26] H. A. G. Wijshoff and J. V. Leeuwen. The structure of periodic storage schemes for
parallel memories. I[EEE Trans. on Computers, c-34(6):501-505, 1985.

[27] P.-C. Yew and D. H. Lawrie. An easily controlled network for frequently used
permutations. JEEE Trans. on Computers, c-30(4), 1981.

30

