Optimal Self-Routing of Linear-Complement
Permutations in Hypercubes!
by
Rajendra Boppana and C. S. Raghavendra

Technical Report No. CENG 89-37
12 December 1989

e-mail: raghu@surya.usc.edu
phone: (213) 743-5532
Dept. of Electrical Engineering—Systems
University of Southern California

Los Angeles, CA 90089-0781

1This research is supported by the NSF grant No. MIP 845“2003, a grant
from AT&T, DARPA/ARO Contract No. DAAG29-84-K-0066, ONR Con-
tract No. N00014-86-K-0602.

Optimal Self-Routing of Linear-Complement Permutations in Hypercubes

Abstract

In this paper we describe an algorithm to route the class of linear-complement per-
mutations on Hypercube SIMD computers. The proposed algorithm is self-routing and
optimal, that is, the path established by the algorithm between each pair of source and
destination PE’s is via a minimal path using only the destination PE address. Further-
more, the algorithm requires only (log V) steps to realize any linear-complement per-
mutation. The best known previous routing algorithms for Hypercubes are for the class
of bit-permute-complement permutations. Those algorithms are either non-optimal or
not self-routing. The algorithm presented is self-routing, optimal, and it routes a larger
class of permutations. Also, this algorithm can route the class of linear-complement
permutations in multi-dimensional meshes in optimal number of steps.

Key words: hypercube, interconnection network, linear permutations, minimal routing,
self-routing.

Contents

1 Introduction 1
2 A self-routing algorithm 2
2.1 Notation and definitions 3
2.2 Statement and discussion of the algorithm 5
2.3 Proof of correctness 6

3 Scope and use of the algorithm HL 8
3.1 Routing linear-complement permutationsin a g.mesh 9
3.2 Routing linear-complement permutations in a circuit switched hypercube 9
3.3 On routing a larger set of permutations 10
331 Theset PLL - - s - ¢ 5 5 55 6 5 65 5 8 a5 "5 55 5 38 s s %5 & » 11

4 Conclusions 13

List of Figures

1 An 8 PE Hypercube.
2 Routing bit reversal permutation in 8 PE hypercube using the algorithm.

.............................

3 Routing a linear-complement permutation on Qs.

11

1 Introduction

A parallel computer consists of a large number of processors (called Processing Elements,
orin short PE’s), and an interconnection network to exchange information between them.
This interconnection network can be characterized as either a multistage interconnection
network, e.g., shuflle exchange and Benes networks, or a static interconnection network,
e.g., topological connections of hypercube. In a static interconnection network, each PE
is directly connected with other PE’s which are termed adjacent PE’s. Communication
between PE’s, that are not directly connected, goes through intermediate PE’s.

In this paper, we are interested in SIMD computers with static interconnection net-
work, specifically the hypercube computer. In such parallel computers, efficient com-
munication schemes are necessary to obtain fast and efficient parallel algorithms. The
problem of moving data from one PE to another is called the ‘data routing problem’.
Various schemes have been developed for the general case of data routing [8]. Permu-
tation is a special case of data routing in which each PE sends a message to a PE, and
each PE receives a message from a PE.

In a hypercube [12, 13], there are N = 2", n > 0, PE’s; each PE is given a unique
index (also called address) from {0,1,...,N —1}. PE 7 is connected to PE j if and only
if the binary representations of the indices ¢ and j differ in exactly one bit. Hence each
PE has log N adjacent PE’s (neighbors). A hypercube of 8 nodes is shown in figure 1.
The index of each PE is indicated in binary form.

PE i (that is, PE with index 7) can send a message to a non-adjacent PE k by sending
it to an adjacent PE j such that the number of bits that j and & differ is one less than
that of 7 and k, and repeating this until PE k is reached. It is clear that a shortest path
of communication between any two PE’s goes through minimal number of intermediate
PE’s, which is one less than the hamming distance of the indices of the two PE’s.

An efficient method to realize arbitrary permutationsin hypercubesis to use Batcher’s

110 B o

000 001

Figure 1: An 8 PE Hypercube.

sorting technique [1, 14]; this takes O(log? V) time. However, for certain classes of permu-
tations, e.g. bit-permute-complement permutations (BPC), more efficient and, perhaps,
optimal routing schemes are possible [9, 10]. A routing scheme is called optimal (mini-
mal) if the communication path for each pair of source and destination PE’s goes through
the minimum number of intermediate nodes.

Since each stage of a Benes network of size N = 2™ can be simulated in a hypercube
of N PE’s without any loss of time, any algorithm that routes a permutation in a Benes
network would route the same in hypercube, with the same time complexity [9]. A linear-
complement permutation can be routed in a hypercube computer using the algorithm
given in [2]. However this routing is not optimal, since communication paths will be of
length 2log N — 1, in the worst case, where as, the length of a path obtained minimally
is, at most, of length log NV.

Nassimi and Sahni [10] developed an algorithm for minimal routing of bit-permute-
complement permutations in hypercubes. However, their algorithm requires the structure
of the permutation to be routed, hence is not self-routing. A routing algorithm is termed
self-routing, if moving of data for each source-destination PE pair is done using only some
local information, mostly, source and destination information. In this paper, we present a
self-routing and optimal algorithm to route the class of linear-complement permutations.

An example of routing bit reversal permutation in an 8 PE hypercube is shown in
figure 2. For each PE, the index and its initial tag (in parenthesis) are shown in binary
form. The tags in PE’s 000,010,101,111 are in the correct places before routing by the
algorithm. Therefore the algorithm does not move these tags in the routing process.
However the tags in PE’s 001,011,100,110 differ from their respective host PE indices
in the least significant and most significant bits. So tags in these PE’s are first moved
to the PE’s with indices differing in the least significant bit position, and then moved to
destinations PE’s; for example the tag 100 in PE 001 is moved to PE 000, and then to
PE 100, whereas the tag 001 in PE 100 is moved to PE 101 first, and then to PE 001.
The path traced by each tag during routing is indicated by arrows between consecutive
intermediate PE’s in the tag’s path.

In the next section, we give the algorithm and discuss its working. Also, we prove
that the algorithm does minimal routing for linear-complement permutations.

2 A self-routing algorithm

First, we define the linear-complement permutation class and explain notation and ex-
pressions used in this paper. Later, we give the algorithm and discuss it with an example.
We conclude this section with a proof of correctness of the algorithm. Throughout this
paper it is assumed that there are N = 2" PE’s in the hypercube computer, unless
otherwise noted.

(010) 010 (110)
(001} (0101 (101)
000 001
(000) (100)

Figure 2: Routing bit reversal permutation in 8 PE hypercube using the algorithm.

2.1 Notation and definitions

In what follows we define the classes of bit-permute-complement permutations and linear-
complement permutations of N = 2™ numbers. Let S = {0,1,...,N — 1}, and T =
{1,2,...,n}. Also, let I (with binary representation (I, I,_; ... I1)) be any number and
O (with binary representation (O, O,_; ... O1)) be its corresponding image under some
mapping.

Definition 1 A mapping f : S — S is called a permutation, of f is a bijection.

Definition 2 A permutation f : S — S is called a bit-permute permutation (BP) if there
ezists a permutation g : T — T such that for each I € S, its image O = f(I) is given by
permuting the bits I,,I,_1,...,1; as specified by g.

Definition 3 Bit-permute-complement permutation (BPC) is a bit-permute permutation
that allows bits to be complemented after permuting.

Definition 4 A permutation is said to be a linear permutation [6], if there erists a non
singular binary matriz Qnyn such that every (I,0) pair satisfies equation I.

0T =@ x IT (1)

Definition 5 Let I = (I, I,_q ... [1,1). A permutation is a linear-complement permu-
tation (LC) if there exists a binary matriz P = (Q | k), where Q is as defined above and
k is some n-bit binary vector, such that every (I,0) pair satisfies equation 2.

OT=PxI" (2)

A bit-permute-complement permutation is a linear-complement permutation with a
permutation matrix (each row and column of the matrix has exactly one 1) as Q.

In the literature [3, 5, 11], the linear permutations are termed as the non-singular
linear transformations of the n-dimensional vector space over the field F = GF(2").
(There are exactly 2™ elements in this vector space, and each element corresponds to a
PE index in binary form.) There is one-one correspondence between the boolean matrices
of size n X n and linear transformations on n-dimensional boolean vector space [5]. A
linear transformation is invertible, if and only if the corresponding boolean matrix is
invertible. A linear transformation can also be viewed as a homomorphism on the group
underlying the vector space.

Index of a PE is represented as an n-bit vector. Therefore, in the context of a
hypercube, a permutation is called a linear-complement permutation if there exists a
P, as defined above, satisfying equation (2) for every pair of source and destination PE
indices. Hence, if a given permutation is a linear-complement permutation, each bit of
the destination PE index is described by a linear combination of the bits of the source
PE index, and a constant term that could be either 0 or 1.

A hypercube of 2™ processors is denoted as Q,; and the set of linear-complement
permutations on 2" numbers is represented as LC(n). In this paper, all the additions are
bitwise and modulo 2 (that is, bitwise exclusive-or operation), and all the logarithms are
to the base 2. If PE’s 7 and j are connected by a link, then PE j is termed adjacent to
PE ¢ in dimension r, where 7 and j differ in bit ».

In the beginning, each Processing Element (PE) in the hypercube, contains the in-
dex of the destination PE and a message. We use the word tag to indicate the packet
containing the destination PE index and the message. For the purpose of the routing
algorithm the message is unimportant. Hence, we assume that the tags contain only the
the destination PE index, an n-bit vector. If PE z has tag y, then it is called the host
PE of the tag y. The goal of the algorithm is to route tags, so that, at the end of the
routing process, each tag matches with the address of its host PE.

When a PE sends a tag to its neighbor, it loses a tag; and when it receives a tag
from neighbor, it gains a tag. So, during routing, the number of tags in a PE may vary.
However, the algorithm assures that there are only two cases: one tag per PE, and two
tags per PE for N/2 PE’s and no tags for the remaining PE’s. We say that the hypercube
is in state A when each PE has one tag. Before routing the hypercube is in state A.
When there are 2 tags for each of N/2 PE’s and no tags for the remaining N/2 PE’s then
the hypercube is said to be in state B. Throughout the routing process, the hypercube
is, as proved later, in one of the two states.

During routing, the effect of sending a tag from a PE to another PE with index
differing in bit position i is succinctly stated that the tag is routed along the dimension

. We use the expression ‘a tag is routed to correct bit i’ to mean that the PE having
that tag routes the same along the dmension :. if the tag’s bit ¢ differs from that of PE’s
index in binary form. Note that it makes sense to say that a tag is routed to correct bit
¢ even when bit 7 of the tag and that of the PE address match; however, in this case the
tag remains in the PE itself during that routing step. In each routing step, all the tags
are examined and all of them are routed to correct a particular bit, say ¢; an alternate
way of saying this is ‘bit ¢ is corrected’. After a bit is corrected, all the tags are in the
correct PE’s with respect to that bit.

2.2 Statement and discussion of the algorithm

Algorithm HL:

If the hypercube is in state A, each PE routes its tag to correct the least significant bit
that has not been used in earlier routing steps. If the hypercube is in state B, PE’s with
no tags do nothing, and PE’s with two tags compare the two tags and route one of them
to correct the least significant bit in which they differ. This is repeated (log V) times. I

An example showing the routing of a linear-complement permutation, specified by
the following set of linear equations, is shown in figure 3.

Y3 = @3+ x4,
Yz = 2z+z1+1,
Y1 = T3 + 1.

The index of each PE and its initial tag (in parenthesis) are shown in figure 3(a);
this indicates the allocation of tags to PE’s in the hypercube. The effect of correcting
bit 1 in routing step 1 is shown in figure 3(b). Here PE’s with indices 000,011,100, and
111 send their tags the PE’s adjacent to them in dimension 1. It can be seen that the
tags in these PE’s differ from their respective host PE indices in the least significant bit.
The paths traced by the tags are shown by arrows; and the tags in a PE (if present) are
given in parenthesis.

After the routing step 1, half the PE’s of the hypercube have four tags, and the
remaining PE’s have none. From figure 3(b), we can see that in each of the four PE’s
with two tags, the tags differ in both bit positions. Each of these four PE’s pick to
correct bit 2, as specified by the algorithm, independently. Figure 3(c) shows the effect
of correcting bit 2 in routing step 2. The path traced by the tags that are routed are
shown by arrows.

After correcting bits 1 and 2, each PE again has one tag. So, each PE picks to correct
bit 3, as required by the algorithm, independently. In this routing step, PE’s 001 and 010

exchange tags with PE’s 101 and 110 respectively. This is shown by two parallel lines,
pointing in opposite directions arrow heads, between the exchanging PE’s to indicate the

path traced by each tag. After the third routing step, all the tags are at their correct
destination.

In the next section, we prove that the algorithm routes any linear-complement per-
mutation correctly in log N steps.

2.3 Proof of correctness

Let y = (Yn,...,y1) represent a tag and z = (z,,..., ;) represent its host PE address.
Also, let the tags be distributed among PE’s according to some affine linear transform f;
that is, the mapping from tags to PE’s is of the form: f:y — z, z = f(y) = T'(y) + k,
where, T is some linear transformation and k an n-bit vector. In other words, for each
tag, the address of its host PE can be specified by the following bit equations.

Tp = E?An,i'yi+kn)

Ty = YT ApiYiths (3)

Ty = 21 MYtk

Here, the n X n matrix ()\;;), Ay € {0,1}, represents the transformation matrix of the
linear transform 7. It is clear that if the matrix (); ;) is non-singular, the linear transform
T isinvertible, and 7 is a linear permutation. A non-zero vector for k indicates translation
of the linear transform, and it does not affect the invertibility of T'.

Now, suppose that the tags are moved among the PE’s using the following rule:
“each PE moves the tags that do not agree with its index bit p to its neighbor PE in the
dimension p.” Then, we claim the following.

Claim 1 When tags are moved as specified above, the mapping between tags and their
host PE addresses is still an affine linear transform.

Proof: After the routing step, each tag agrees with its host PE in bit p. Hence, for
all the tags the equation for bit p is, simply, z, = yp.
Now, if a tag is moved during the routing step, then it is moved to a new host PE

that differs from the old host PE only in the bit p. Hence, irrespective of whether the
tag is moved or not, the other bit equations are unchanged. |

If the mapping of tags to PE’s is an affine linear transform of the form, z = T(y)+k,
Then, z + k = T(y) is a linear transform. That is, if each PE address is translated by k,
then the tag distribution is simply a linear transform T. Now, ker T' = {y | T'(y) = 0},

that is, ker T is the set of all tags assigned to PE with address 0, under the linear
transform 7.

For any linear transform 7', T'(0) = 0; so, | ker T | > 1. Also, T can be treated
as a homomorphism from the group underlying the vector space of PE indices to itself.
From the first isomorphism theorem [11], we get that each PE with a tag will have the
same number of tags that PE 0 has under the linear transform 7. Therefore, we have
the following lemma.

Lemma 2 If the tags are distributed among the PE’s such that some PE’s have one tag,
some other PE’s have two tags, while the remaining PE’s have none, then the mapping
between tags and PE addresses is not an affine linear transform. |

Lemma 3 Suppose the tags are distributed among PE’s, according to some affine linear
transform z = T(y) + k, such that half of the PE’s have two tags and the remaining PE’s
have no tags. Then, the two tags in a PE, if present, differ in the same bit positions.

Proof: The mapping between tags and PE’s after translating the PE’s addresses by
k is a linear transform, 7. Under 7', PE 0 has two tags, namely, 0 and a, for some a # 0.
Now, take any PE z that has two tags b and c. To prove the lemma, it is sufficient to
show that b + ¢ = a. But, it is true in view of the following.

(0)=T(a)=0
(b) (e}=u

= T(b+c)=THB)+T(c)=z+z=0
= (b+¢c)=0,0ra

= b+4c=a, sinceb#c.

Ti0) =T
T(b)=T

Lemma 4 The algorithm HL routes tags such that the following are always true: (a)
after each routing step, the tag distribution is given by some affine linear transformation,
(b) the hypercube is in either state A or state B, and (c) in any routing step, a PE moves
at most one tag.

Proof: Whenever the hypercube is in state A, each PE has exactly once tag, hence,
the tag movement specified by the algorithm HL and the rule used in the claim 1 is the
same. So, (a),(c) are true. Since, the tag distribution should be according to some affine
linear transform, by lemma 2, either each PE has one tag (state A), or half the PE’s have
two tags (state B). So (b) is also true after the routing step. Now, let us assume that
they are true for the first m > 1 routing steps. We need to show that they are true after
routing step (m + 1).

After routing step m, if the hypercube is in state A, then the conditions (a)-(c) are
true after the next routing step. However, if the hypercube is in state B, then lemma 3,

(i

tells that the two tags in a PE (if present) differ in the same bits. But, in that case, the
algorithm HL chooses one dimension unambiguously. Hence, for each PE with two tags,
exactly one tag matches with its index in the bit chosen for correction in the next routing
step. So, in the routing step (m + 1), each PE with two tags routes exactly one tag, so
that the tags that differed from the host PE index in the routing bit will now match with
the new host PE index. This shows that (c) is true for the routing step (m + 1). The
above argument and claim 1 tell that (a) is true after the routing step (m + 1). Since,
a PE with two tags moves one tag in the (m + 1) routing step, after the routing step, it
has 1 or 2 tags. Using lemma 2, we conclude that (b) is also true. |

Corollary 1 Any routing step given by the algorithm HL, and the rule given for the
clavm 1 are equivalent, provided each time the bits chosen for the rule is same as the
routing bit chosen by the algorithm.

Proof: This follows directly from the above lemma. |

Corollary 2 The algorithm HL routes tags such that each bit is chosen for routing ez-
actly once. And, after correcting a bit, each tag matches with its host PE indez in that
bit.

proof: The above corollary tells that when a bit is used for routing step, all the tags
match with the host PE index, after completing the routing step. The fact that each bit
is chosen as routing bit exactly once, is easy to see. |

Theorem 1 The algorithm, HL, routes any linear-complement permutation, in the set
LC(n), in a hypercube, Q,,, in n routing steps, such that each PE needs to route at most
one tag in a routing step.

Proof: The proof follows from the lemma 4, and the corollaries following the lemma.
|

3 Scope and use of the algorithm HL

In this section, we describe other aspects of the algorithm HL in routing permutations
in various types of hypercubes. First, we describe how to use this algorithm to route
linear-complement permutations in multi-dimensional meshes in optimal number of steps.
Next, we describe how the algorithm HL can be used to route messages in a circuit
switched mode of transmission. Then, we characterize a larger class of permutations
that are routed by the algorithm HL in hypercubes with the constraint of choosing of
same dimension links by all PE’s, in a routing step, is relaxed.

3.1 Routing linear-complement permutations in a ¢g-mesh

The algorithm HL can be used for routing the linear-complement permutations in multi-
dimensional meshes (g-mesh, ¢ > 2), by direct simulation of the hypercube connections.

Let us consider a 2-mesh with PE’s indexed in row major order. Let n be an even
number. Then the number of PE’s in a row or column is 2*/2. Dimension 7, 0 < i < n,
connection of n-cube can be simulated on the 2-mesh, in 2% routing steps, where z = ¢
or 1 — n/2 depending on 7 < n/2 or > n/2.

The time required to route linear-complement permutations on a 2-mesh is:

202(2° + 20 4 .- +2371)) = 427 —1).

This is the optimal number of steps to route the class of linear-complement permutations
on 2-mesh [7]. It can be shown that for an SIMD g-mesh, the time taken by the algorithm
is 2¢(29 — 1), which is optimal.

Theorem 2 The algorithm HL can route linear-complement permutations in a multi-
dimensional mesh, in optimal number of steps. |

3.2 Routing linear-complement permutations in a circuit switched
hypercube

So far, we have assumed that a message is attached to the tag, hence moved with it to
the destination. However, when the message is long, it is faster to send it using circuit
switching scheme. In this scheme, a path is established between each source-destination
pair of PE’s, and then messages are transferred at high rates. At the end of transmission
of the messages, the paths are released. To transfer messages in circuit switching mode in
a hypercube, we will assume that each PE has necessary hardware to establish temporary
physical paths between the input and output links used by the tags that passed through
the PE. Also, we impose the restriction that a link between any two PE’s, say ¢ and 7,
can be used by each of the PE’s 7 and j at most once, in circuit switching. The lemma 5
and the following discussion show that this constraint is satisfied.

Lemma 5 During the routing process, any two adjacent PE’s communzicate at most once.

Proof: Any two adjacent PE’s have their index differ in only one bit say z. So if at all
they communicate, they do so only in the routing step to correct bit z. ' |

We have shown that in a routing step any PE will move at most one tag. Hence, it
immediately follows that a link between any two PE’s will be used at most once.

To send messages by circuit switching scheme, first the tags (without messages) are
routed. Then, each PE uses the path traced by its tag to send message to the destination
PE. Note that this can not be done using the self-routing algorithms of Benes network
given in the papers [2, 9].

3.3 On routing a larger set of permutations

So far, a hypercube is assumed to be operating in SIMD mode, and it was proved that the
algorithm HL can route linear-complement permutations. In the following discussion, we
use a stronger mode of operation for hypercube, and show that the algorithm HL routes
a larger set of permutations.

An n-cube can be partitioned into 2%, for some k < n, (n — k)-cubes. In a routing
step, if all the PE’s in a subcube choose the same dimension for routing, but PE’s in
different subcubes may choose different dimensions, then it is clear that each subcube
is operating in SIMD mode but the n-cube consisting of these subcubes is not in SIMD
mode. Such a mode of operation is called Multiple-SIMD or M-SIMD. In general, each
subcube can again be partitioned and partitioning of a subcube may be different from the
partitioning of another subcube, etc. For the following, we assume that a hypercube can
operate in M-SIMD mode when partitioning of PE’s, as discussed above, is considered.

After the first routing step, for routing purposes, the Q, can be viewed as two
subcubes, Q,_;, with each subcube having 2"~! tags. In the remaining steps of the
algorithm, each subcube routes tags among its PE’s, and does not send any tag to the
other subcube. This observation can be applied for the remaining routing steps too. This
gives us the motivation to relax the constraint of SIMD mode of operation to route a
larger class of permutations by the algorithm HL. For the following discussion, we assume
that after each routing step, the subcubes may choose different dimensions for the next
routing step. We call this mode of operation as Multiple-SIMD or M-SIMD mode.

Let the set A = {n,n—1,...,1} be partitioned into two subséts B = {n,n—1,...,n—
k+1}and C = {n—k,n—k—1,...,1}, where 1 <k < n. B can be used to partition the
set of numbers {0,1,...,2" — 1} such that if 4,7 are in the same partition, then i, = 7.,
Vn —k+1<z <n. This idea can be used to partition the PE’s in a hypercube such
that there are 2% partitions, 2°~* PE’s in each subcube.

Suppose PE’s in a hypercube are partitioned as given above. Define a permutation
7 that permutes partitions of PE’s by some permutation in £C(k), and PE’s in each
partition by some permutation in £C(n — k) (permutations of PE’s in different partitions
can be different).

Lemma 6 The algorithm HL routes the set of permutations as discussed above in a
hypercube operating in M-SIMD mode with partitions as described above.

Proof: In the first n — k routing steps, in each sub-cube a linear-complement permu-
tation is realized by the algorithm HL. This preserves the SIMD mode of operation for

10

ik

each subcube. Once the PE’s in each partition are permuted, the permutation of parti-
tions is achieved as follows. Partitions are rearranged so that, bits n — k,n —k—1,...,1
are used in partitioning the hypercube. So each subcube will have 2 PE’s and there
are 2" * such subcubes. Now each subcube has to route a permutation in £C(k), the
permutation that is defined on the bits n,n —1,...,n —k + 1 of the n-cube, to complete
the original routing task. Since this can be done by the algorithm HL, the statement
holds for all n. |

This idea of partitioned permutations can be used recursively on each partition,
and on the permutation of partitions itself. We call such permutations as partitioned
linear-complement permutations (PLC).

Definition 6 Forn = 1,2, PL(n)=LC(n). Forn > 3, PLC(n) is defined as follows. A
permutation is in the set PLC(n), if it permutes the partitions of PE’s by a permutation
in PLC(k), and PE’s in each partition are permuted by some permutation in the set
PLC(n — k), where 1 < k < n and the partitioning of PE’s 1s as defined above.

Lemma 7 The algorithm HL can route any PLC permutation in a hypercube operating
i M-SIMD mode.

Proof: By considering the partitioning of the hypercube to be the same as the parti-
tioning of the PLC permutation being realized, it can be shown that proof for this lemma
is a simple generalization of that of the previous lemma. |

3.3.1 The set PLC

In what follows, we give an estimate on the size of the the set of partitioned linear-
complement permutations.

A decomposable linear permutation [4] is a linear permutation whose matrix ¢ can

Q — Ql 0)
0 | @
@, and @, are square boolean matrices, and define linear permutations on smaller
size set of numbers. Let us define a subset of LC(k), that contains the permutations that

can not be decomposed such that rows 1 and k of the original @) matrix are in different
partitions. With complement of bits considered, this set is denoted as £LC (k).

be partitioned as follows.

We now give an alternate definition of partitioned linear-complement permutations.
It can be shown that the following definition and the definition given earlier are equiva-
lent.

11

Definition 7 A permutation is in the set of partitioned linear-complement permutations,
if there is a partition of most significant k bits, for some 1 < k < n, such that partitions
of the PE’s are permuted by some permutation in LC (k), and the PE’s in each partition
are permuted by some permutation in PLLC(n — k).

From this, we get

PLO@)| = YLILC'(R) - (PLC(— B (@)

Since, |LC'(k)| < lLC’(k)(|, a,)nd |LC(k)| = 2% x |L(k)|, where L(k) is the set of linear
k(k—1

permutations, |L(k)| =277 (28 —1)(2¥*—1)...(2—1). Hence, the upper bound given
below can be used to approximate the size of PLC(n).

- [(PLC(n — K))|*.

PLO@I < 3100

Since, PLC(k) > LC(k) > 2k2_2, the size of the set PLLC(n) is at least Q (N‘/—Nng/s),
which is the lower bound on the term with k& = n/2, in the summation of the right side
of the identity 4. Thus the size of the set grows exponentially with N.

The idea of operating a hypercube in M-SIMD mode gives a method to construct
exponential number of rearrangeable Benes-like networks. A link between two PE’s in the
hypercube is assumed to be replaced by a switch such that tag routing between the two
PE’s is simulated by the switch. Each routing step in the hypercube is equivalent to the
operation of a stage of switches in a corresponding multistage interconnection network
constructed as below. Consider routing a partitioned linear-complement permutation in
a M-SIMD hypercube. In the first routing step, all PE’s in the cube use dimension 1
links. So, switches in the first stage have inputs lines with addresses that differ only
in bit 1. In the next routing step, each subcube chooses dimension links depending on
the partitioned linear-complement permutation being realized. For different partitioned
linear-complement permutations, different dimensions are chosen in each subcube. The
switches simulating the links used in the second routing step form the second stage of
switches. The interconnection pattern between the first and second stage of switches
is such that, in the top half of the switches will have input lines with even addresses,
and the lower half of switches will have input lines with odd addresses, or vice versa.
Furthermore, input lines to a switch will differ in only the bit that is the dimension of
the link simulated by the switch. Now, top half of switches are considered to form a sub-
network, and bottom half of switches are considered to form another sub-network. This
is repeated recursively in each routing step. The next routing steps can be used in this

12

manner to obtain the first n stages of a network. After n routing steps, the first n stages,
of a Benes-like multistage network, are formed. The complete network of (2n — 1) stages
is such that stages n+1,...,2n — 1 are mirror images of stages n —1,...,1 respectively.
Benes network is obtained when the same dimension is chosen in each routing step in
each subcube, i.e., when SIMD mode of operation is enforced on hypercube. For M-SIMD
mode of operation, different partitioned linear-complement permutations give different
Benes like networks, which by construction are rearrangeable. The algorithm given in
2] with appropriate modifications can be used to route the class of linear-complement
permutations in these networks.

4 Conclusions

In this paper, we presented an algorithm to the realize the the class of linear-complement
permutations in a hypercube. The algorithm is simple, self-routing, and optimal. It
routes any linear-complement permutation in (log V) routing steps, with each step re-
quiring a constant time. In message passing scheme, time required for a routing step is
proportional to the length of the message.

Since, the algorithm picks to correct bit 1 in routing step 1, and whenever the hy-
percube is in state A, the least significant bit that is not yet corrected is picked in the
next routing step, it routes inverse omega (£27') permutations trivially. If the algorithm
picks to correct the most significant bit, whenever there is a choice of bits that can be
picked to correct in a routing step, then it is clear that it still routes linear-complement
permutations and also the class of omega ({)) permutations.

All the permutations of order 4 are routed by this algorithm, since they all are
in £C(2). It is shown that the class of permutations realizable by this algorithm on a
hypercube M-SIMD computer is larger than the class of permutations realizable on a
hypercube SIMD computer. When the hypercube is allowed to operate in the MIMD
mode, an even larger class of permutations can be routed by the algorithm HL. For
example, in an 8 PE hypercube, any arbitrary permutation can be routed if the mode of
operation is MIMD; the same is not true if SIMD mode of operation is used.

The algorithm routes many permutations that are not in the linear-complement per-
mutation class. An interesting and useful problem would be to study the characterization
of the class of permutations realizable by the algorithm. Knowing this characterization,
one can perform a pre-processing step to convert an arbitrary permutation to a permu-
tation realizable by this algorithm.

References

[1] K. E. Batcher. Sorting networks and their applications. In AFIPS Spring Joint
Computer Conference, pages 307-314, 1968.

13

[2] R. Boppana and C. S. Raghavendra. On self-routing in Benes and (2n — 1)-stage

3]

4]
[5]
[6]

[7]

[11]

[12]

[13]

[14]

shuffle exchange networks. In Int’l Conf. on Parallel Processing, pages 196200,
1988.

G. Birhkoff and S. MacLane. A survey of modern algebra. Macmillan, 4 edition,
1977.

I. N. Herstein. Topics in Algebra. John-Wiley and Sons, 2 edition, 1975.
K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, 2 edition, 1974.

M. C. Pease, III. The indirect binary n—cube microprocessor array. JEEE Trans. on
Computers, ¢-26(5), 1977.

D. Nassimi and S. Sahni. An optimal routing algorithm for mesh-connected parallel
computers. J. Assoc. Comput. for Mach., 27(1), 1980.

D. Nassimi and S. Sahni. Data broadcasting in simd computers. IEEE Trans. on
Computers, c-30(2), 1981.

D. Nassimi and S. Sahni. A self-routing Benes network and parallel permutation
algorithms. IEEE Trans. on Computers, c-30(5), 1981.

D. Nassimi and S. Sahni. Optimal BPC Permutations on a Cube Connected SIMD
Computer. /EEE Trans. on Computers, c-31(4), 1982.

J. J. Rotman. An introduction to the theory of groups. Wm. C. Brown Publishers,
3 edition, 1988.

C. L. Seitz. The cosmic cube. Comm. of Assoc. for Comput. Mach., 28(1):22—33,
1985.

J. S. Squire and S. M. Palais. Programming and Design Considerations for a Highly
Parallel Computer. In Proc. Spring Joint Computer Conf., 1963.

H. S. Stone. Parallel processing with the perfect shuffle. IEEE Trans. on Computers,
c-20(2), 1971.

14

a1

€3 uo uorpeinurrad jusure[durod-1esul] ® Jurnoy :¢ 2Indrq

€ 21Tg burlzosaxod 19313V (P)

(TOT)
T0T

(TTO)| TTO

TTT
(1T7T)

(T00)
T00

(000)
000

00T [00T)

0TO
(0T0)

OTT
(0TT)

T 3Tq burjosxxoo x933Y¥ (q)

(TT0’TOT)
T00

(TOO’TTT)
TOTCS

(00070TT)
0TO

0TT
(0T0‘00T)

Z 2ATq butjosxxodo I23IY (D)

(ToT) (000)
TOO 000
(T00)
T0T 00T [(00T)
(TTO)| TTO 0TO
(OTT)
ITT 0TT
(TTT) (0TO0)

butanox sxozsg (e)

(T0T) (1T0)
T00 000

