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DELAYED CONSISTENCY PROTOCOLS

Abstract

A new class of cache consistency protocols is introduced. The basic idea is that, in
some cases, coherence need only be enforced at synchronization points, and therefore
coherence enforcement can be delayed. A delayed consistency protocol can be designed
from any on-the-fly (non-delayed) protocol..In this report, we will develop a write-
invalidate delayed protocol. The main feature of the protocol is that the effect of out-
going Stores and in-coming Invalidations are delayed until the next synchronization
point in each processor. Moreover, block updates at memory are done partially.

The main gain is in the reduction of the number of invalidations due to block
sharing and a corresponding increase in the hit ratio, especially when the number of pro-
cessors increases. A second potential gain is that coherence actions such as invalidations
are totally asynchronous with the processor, and can be propagated at times selected to
optimize performance.

We present some results from a performance comparison of the delayed protocol
with the corresponding on-the-fly consistency protocol through execution-driven simula-
tions of two parallel algorithms; they show that there are significant gains to be obtained
on the hit rate and on the number of invalidations, in some cases, by delaying consisten-

cy.-

The protocols are not only applicable to cache-based systems but would be most
useful for implementing shared memory in distributed systems.



1. Introduction

'?he design of shared memory systems that can scale up for large number of pro-
cessors is a current topic of active research. There are two approaches. In one approach
prlvate_caches are associated with each processor and coherence is maintained amoné
caches in hardware with possible compiler assistance. The second approach consists in
emulating shared memory on a distributed system. The techniques presented in this re-
port are applicable to both cases, but here we concentrate on cache coherence.

It has been argued that cache coherence and synchronization are related [DSB8S].
'I"he global ordering of shared memory accesses defines the concurrency model of a mul-
tiprocessor architecture. The strongest model is sequential consistency defined by Lam-
port [Lam79]. Sequential consistency constrains the timing of shared memory accesses
and coherence activity. For example, sequential consistency is enforced if all shared
memory accesses are globally performed in program order; a shared memory access in a
processor cannot be issued before the previous shared memory access has been globally
performed. When a Store is performed globally, all copies of blocks with the same data
have been updated/invalidated [DuSc90]. Clearly, sequential consistency does not permit
the delaying of coherence actions. We say that coherence must be maintained on the fly.

When sequential consistency is not enforced, memory accesses are weakly ordered
[DSB86]. In a weakly ordered system, the programmer cannot make any assumption on
the order in which accesses are propagated and observed by other processors, except at
the execution of hardware-recognized synchronization primitives. Rather, synchronization
points are "fences': before a process can “jump over" the fence, all its previous accesses
must be globally performed; moreover no accesses following the fence in program order
can be issued before the successful execution of the synchronization primitive. Clearly, in
this model, coherence actions do not have to be taken on the fly; in principle, they can be
delayed at most until the next synchronization point. Still, in all existing multiprocessors
and in all proposals, coherence is enforced as soon as possible, on the fly. The major rea-
son is that on-the-fly, write-invalidate protocols rely on the acquisition of unique or ex-
clusive block copies for Stores; they cannot cope with the multiple, exclusive copies,
which may result from delays in sending invalidations.

In delayed protocols, some coherence actions are deliberately delayed, and multi-
ple, inconsistent block copies may exist in different processors at any one time. Therefore
the hardware complexity is increased, but the pay off is a greater concurrency in access-
ing shared cache blocks. In-coming invalidations are buffered in the processor; similarly,
when a cache must send invalidations to acquire a unique (exclusive) copy of a block on a
Store, the propagation of these invalidations can occur asynchronously with processor ex-
ecution: the processor is not blocked and the time to propagate invalidations may be
selected optimally by the hardware. More importantly, delayed consistency increases con-
currency by reducing the coherence activity on shared blocks due to false sharing.

2. False Sharing

False sharing is the sharing of cache blocks without actual sharing of data. In
parallel applications, shared data structures are partitioned statically or dynamically and
different processes work on different partitions of the structures. In general, partition
boundaries do not coincide with cache block boundaries. As a result, cache blocks are
shared while no data are actually shared. A more rigorous definition of false sharing can



be found in [TLH90].

To demonstrate occurrences of false sharing we will show two simple examples.
'I_‘he first example is an algorithm with static partitioning of the data, the S.O.R. itera-
tive algorithm. In this algorithm, an array (grid) of iterate components is updated itera-
tively by a linear combination of the iterate and its four neighbors in the 2-D grid. In
the ex?,mple of Figure 1.a, the grid has been partitioned among four processors. There
are private iterate components, and shared iterate components, as indicated in the Fig-
ure. Iq a shared memory, organized as a linear address space, the array will be stored
row-wise or column-wise. Assume that it is stored row-wise (i.e., first row 1, then row 2,
and so on), and assume that the row size is not a multiple of the block size. Then false
sharing occurs for blocks of type 2. False sharing (and true sharing) occurs also for
blocks of type 1. Clearly, in this static case, the compiler could easily deal with the prob-
lem by allocating an integer number of blocks per row. However, for blocks of type 1, it
will be difficult to achieve this in general, without wasting a lot of cache space or compli-
cating drastically the addressing to contiguous array components. In real-life PDE algo-
rithms, grid partitions are more complex than in the simple case of Figure 1.a, and the
compiler will not always be able to reduce false sharing significantly. Some simple com-
piling techniques, which in some cases can reduce the effect of false sharing, are intro-
duced in [TLH90]. It is obvious however that for a given problem size the false sharing
problem becomes worse as the granularity of parallelism decreases, ie for larger number
of processors.

The second example, in Figure 1.b, is an algorithm with dynamic partitioning of
the shared data structure, the dynamic quicksort algorithm. In this algorithm, a proces-
sor acquires exclusive access to a subfile and splits it in two. False sharing occurs at the
boundaries between consecutive subfiles. The boundary between two subfiles cannot be
predicted at compile time.

False sharing results in non-optimum protocols. In the case of a write-invalidate
protocol, such as the Illinois protocol [PaPa84], more invalidations are sent than strictly
needed by the parallel application and its data-sharing requirements. Invalidations create
traffic, and delays in the processor issuing them; moreover they increase the miss rate,
because an invalidated block must be reloaded if it is accessed again. If the protocol en-
forces coherence on the fly, then a block can literally "ping-pong’ several times between
two processors, even if they reference different data elements in the block. For a given
number of processors, the effect of the block size is very similar to the effect of the block
size in uniprocessor systems, but for different reasons. As the block size increases, the
miss rate curve first goes down because of spatial locality, then it bottoms out and goes
up. This behavior is observed even in caches of infinite sizes. The miss rate curve bot-
toms out because of the increase in false sharing, which quickly offsets the gains due to
spatial locality. Because of these effects, some researchers have advocated a block size of
one and extensive prefetching for shared data [LYL87].

These effects are clear from the curves of Figure 2 and 3, which show the effect of
false sharing on the total number of misses and invalidations sent for executions of the
S.O.R. algorithm (Figure 2) and the quicksort (Figure 3). The results in these Figures
were obtained through execution-driven simulations, following a technique introduced in
[DBPBS6]. In these simulations, all caches have infinite sizes and each simulated proces-
sor executes in turn until it accesses a shared data; at that point, the simulator simulates
a different processor. This is done in a round-robin fashion. In Figure 2.a (resp. 2.b) we
have plotted the total number of shared-data misses (resp. invalidations) for the S.O.R.



algorithm with four processors, a grid size of 128x128 and 100 iterations. Two curves are
shown: in one curve it is assumed that all processors are working at the same speed and
start each iteration at the same time (best case); in this case the effect of false sharing as
the block size increases is very small. In the second curve (worst case), processor 2 is
slightly slower so that it reaches a given block of type 2 at the same time as processor 1
(and similarly for processors 3 and 4); this could happen because of the order in which
the processors reach and execute the barrier synchronization; the effect of false sharing is
maximum here. This Figure demonstrates that

1) False sharing can have a large impact on the shared data miss rate for the S.O.R. al-
gorithm, and that

2) T'race-driven s‘imulation results can be very misleading to evaluate the effect of false
sharing on the miss rate, because it is very dependent on the exact timing of accesses by
each processor of the target multiprocessor [Bit90].

The plots for the quicksort are shown in Figure 3; the number of processors is
varied from 1 to 32, the file to sort is made of 32K random integers drawn from a uni-
form distribution; each point is the average of the number of misses and invalidations for
11)0 files. For 32 processors, the miss rate curve bottoms out for block sizes of 8x4=32

ytes.

The situation is similar in write-broadcast protocols, such as the Firefly protocol
[TSS88]. In these protocols sharing is detected dynamically and multiple copies of the
same block can be modified at the same time by different processors, provided
modifications are broadcast to all processors with a copy. Clearly, the update traffic
should be limited to data elements that are actually shared; however, because of false
sharing, a lot of redundant updates corresponding to different data elements in the same
block will be propagated. Delayed consistency can be applied to both write-invalidate
and write-broadeast protocols. In this report, we will develop a write-invalidate delayed

protocol.

3. Weak Ordering

The class of concurrent programs for which delayed consistency is applicable has
been defined in [AdHi90]. It is based on a weakly-ordered concurrency model called DRF
(Data-Race Free). Programs assuming sequential consistency will not run correctly in
general on machines with delayed consistency. In this model, processes must synchronize
in such a way that no set of processes can ever access a shared variable at the same time
unless all these accesses are Loads. Clearly, critical sections and semi-critical sections are
allowed in such programs.

In the following, we call a datom the smallest unit of addressing in the machine.
This is usually a byte (8 bits), but could also be a 32-bit word. Under DRF, a datom
goes through different phases. There are Read/Write phases by a single process, and /or
Read phases by multiple processes. To enforce DRF in asynchronous multiprocessors,
these phases must be "framed" by explicit, hardware-recognized synchronizations.



) When a process needs to enter a Read/Write phase (critical section) for a datom
it must first acquire a lock; then, at the end of the phase, it must release the lock. Criti-
cal sections are present in both algorithms. In the S.O.R. algorithm, each process exe-
cutes a barrier synchronization between consecutive sweeps of the grid, and in each
sweep, different iterates are updated exclusively by different processes. In the quicksort
example, when a process fetches a new subfile descriptor, some form of hardware syn-
chronization is assumed, so that updates to a given subfile are done exclusively by one
process; similarly, when a process has completed the split of a subfile, it must execute
some form of hardware-recognized synchronization.

_ Some datoms in the S.O.R. algorithm (the ones at the boundaries) can be read by
multlp_le processors (two or three) in every other sweep of the algorithm. Again, each
sweep is framed by barrier synchronizations.

4. Summary of Motivations

l We summarize here the basic motivations behind write-invalidate delayed proto-
cols.

e Read-Write sharing of blocks without actual sharing of datoms results in non-optimum
protocols. More invalidations, and more misses than strictly needed reduce the efficiency
of on-the-fly protocols.

e If we give up sequential consistency, then ownership is only required for explicit syn-
chronization variables. Implementing ownership for all datoms is useless and costly. In
particular, under DRF, the software ensures that one datom cannot be modified by one
process if other processes can access the datom.

e In between two explicit synchronization points, datoms can be modified freely, because
it is known that no other processor will attempt to read/write the datom. If a block is
accessed by multiple processors at the same time and one access is a write, then we know
that these accesses cannot be for the same datom in the block.

e In the delayed protocol, invalidations can be propagated asynchronously with processor
execution, at times selected optimally.

e At hardware-recognized synchronization points however, updates of datoms must pro-
pagate, because the processor may be terminating its Read/Write phase for a given da-
tom, allowing other processors to read it. ,

5. Maximum Delay Protocol

We describe in this Section a write-invalidate delayed protocol. In an on-the-fly
protocol, updates on non-owned blocks result in the sending of invalidations; later, these
invalidations are received and executed by individual processors. Each of these two
phases can be delayed, ie the sending of invalidations, and the execution of those invali-
dations. The protocol derived in this Section assumes maximum delays for both sending
and receiving invalidations. To maximize the delay, we also assume that at the hardware
level, distinction can be made between acquiring a lock (lock operation) and releasing a
lock (unlock operation).



The delayed protocol works in conjunction with two buffers per processor: one
Send-Invalidation Buffer (SIB) to buffer out-going invalidations and one Receive-
Invalidation Buffer (RIB) to buffer in-coming invalidations. The size of each of these
buffers is assumed to be infinite (ie, they must have the same number of entries as the
cache size in blockframes.) Moreover, a given entry in each buffer can be removed by ac-
cessing the buffer with the address (this feature is needed for replacements).

There is one dirty bit per datom in each blockframe. If a dirty bit is reset, it be-
comes set at the time the datom is modified in the cache. When a memory block is up-
dated from a cache, only the datoms in the block with a set dirty bit are modified in the
memory.

When a processor modifies a clean block, it does not need to acquire a unique
copy, and furthermore, the modification does not have to be wisible to other processors
before the execution of the next wnlock (at the latest). The reason is that the program-
mer intended it this way. Similarly, when a cache receives an invalidation for a block,
the local copy can remain valid and accessible by the local processor until the execution
of the next lock instruction; we say that the copy is stale. Note that a stale copy is only
valid for the local processor, which can read and modify the block copy; the rest of the
system considers it as invalid. In particular, in a directory based system such as the one
described in [CeFe78], the presence bit for a stale copy is reset. Therefore, when we talk
about the state of a block copy we have to distinguish between the processor point of
view (state stored in the cache directory) and the system point of view (state stored in
memory directories).

5.1 System Point of View

From the system point of view, a block copy can be in three states in any one
cache: I (stale, invalid, or not in cache), O (Owner), or K (Keeper). If a cache is the
Owner of the block, then the cache must deliver the copy on a miss by another proces-
sor; otherwise, if the cache has a valid copy but is not the owner, then the cache is a
Keeper of the block. From the system perspective, if a cache is an Owner of a block,
then the copy must be unique and the system must enforce this view. Later, we will see
that from the processors’ point of view, an Owned copy is not necessarily unique.

At the system level, the protocol is a conventional write-invalidate protocol. Tt
will be effective for private data, and by by-passing all buffers, it will also work for
accesses to synchronization variables. Addresses of synchronization variables must be dis-
tinguisha)ble from addresses of other variables in each processor node (but not at the sys-
tem level).

The following commands can be issued by one processor node to the memory sys-
tem (remember that the words nvalid or valid must be interpreted in the context of the
system, not the individual caches):

e ReqO (Request Ownership): This command can be issued if the cache has no valid
copy (case of a write miss) or the copy is in state K. If there are copies in other caches,
they must be invalidated. If there is an Owned copy and it has been modified, then the
modified copy with the dirty bits must be received by the cache issuing the command;
the new copy inherits the dirty bits and is obtained by merging the local copy (if any)
with the remote copy.



® ReqC (Request Copy): This command can be issued if the copy is I (case of a read
miss). If no valid copy exists in the system, then the cache issuing the command receives
the copy from memory and becomes Owner. Otherwise, if there are valid copies, then the
cache receives a K-copy from the memory; in case there was an O-copy, this copy must
first update memory if it is modified and becomes a K-copy.

e Inv (Invalidate copies): This command is issued whenever a non-owned copy has been
modified, and the modifications must be propagated (replacement or removal from SIB).
All copies must be invalidated, and if there is an O-copy, this copy must update memory
in case it was modified.

e UpdM '(Upda,pe mqmory.): This command is issued on a replacement or on a removal
from SIB in conjunction with the Inv command. The update is partial, based on the set-
tings of the dirty bits.

The state transition diagram is shown in Figﬁre 6. In this Figure, i is the local processor,
and j is a different processor.

5.2 Processor Point of View

The possible states of a block copy in a cache are
1) I X C: Invalid, Clean,

2) I X M: Invalid, Modified,

3) V K C: Valid, Keeper, Clean,

5) S K C: Stale, Keeper, Clean,
6) S K M: Stale, Keeper, Modified,
7) V O C: Valid, Owner, Clean, and

)
)
)
4) V K M: Valid, Keeper, Modified,
)
)
)
8) V O M: Valid, Owner, Modified.

Therefore, from the processor point of view, there are three validity levels for a
block copy: Valid, Invalid and Stale. Stale means that an invalidation is pending in the
RIB. When a copy of a block is stale, part of the block is valid and part is invalid; how-
ever, the processor can still access the copy (Read and Write) for as long as it accesses
the valid part (in practice until the next lock). Note that from the system point of view
a stale copy is considered invalid.

A block is Clean if no dirty bits are set in the block; it is Modifted otherwise.
When the cache is a Keeper, the dirty bits are cleared when the block is loaded in cache
and after memory is updated (on an unlock). When the cache is an Owner, dirty bits
may be set when the block is first loaded in cache (if the copy is inherited from an
Owned and Modified copy); in this case the block is Modified at the time it is loaded in
cache.



In the following protocol, both the system and the processor states agree that a
block copy is Owned. However, the system and processor states disagree in the case
where the cache is the keeper of a stale copy (the processor "believes" that it is a Keeper,
while the system "believes” that the copy is invalid).

From the previous discussion in Section 5.1, it appears that a cache may receive
two commands from the memory system. They are:

e Invalidate: The block copy becomes Stale and if it was Owned and Modified then it
must be forwarded to the memory system (with the dirty bits).

e Release Ownership: This command can be received only if the block is Owned by
the cache. The cache must become a Keeper and if the block copy is Modified then it
must be forwarded to the memory system (with the dirty bits).

Let’s now examine the state transitions due to accesses made by the local processor.

e Read hit. No action.

e Read Miss. The processor sends a ReqC command to the memory system. The re-
turned copy will be either in state K or O.

e Write hit. The dirty bit of each modified datom is set to 1. If the block is Mod:f1ed,
then no further action is needed. If the block is Clean, then it becomes Modified, and if
the cache is a Keeper, then an entry is inserted in the SIB.

e Write Miss. The cache issues a ReqO command. The returned copy is Owned; it is
Clean or Modified depending on the source of the copy.

e Replacement. If the block is Modified, then the cache issues commands Inv&UpdM
to the memory system. If there is an entry in the SIB or in the RIB, it must be removed.
Note that replacements can be done through a Write-back buffer, just like in on-the-fly
protocols.

e Acquiring a lock (lock). The RIB must be emptied, right AFTER the lock has been
acquired. For each entry in the RIB the cache block is invalidated (ie, all Stale copies be-
come Invalid from the processor point of view.)

e Releasing a lock (unlock). The SIB must be emptied right BEFORE releasing the
lock. For each Stale entry in the SIB, an Inv&UpdM command is sent to the memory
system. For each Valid entry in the SIB, a ReqO command is sent to the memory sys-
tem.

When a block is Stale and Modified, a lock results in simple invalidation; the ac-
tual update of memory takes place later when an unlock is executed. This is why we
have distinguished between InvalidéModified and Invalid&Clean in the list of states.
The reason behind this distinction is to facilitate the design of the RIB.



6. Implementation

There are major implementation problems with the protocol described in Section
5. First, infinite buffers are needed to accommodate the worst case situation. The major
problem, is that, at replacement, it is very difficult to pull out of the SIB or the RIB the
entry corresponding to a given blockframe, unless we are willing to implement fully asso-
ciative buffers. Another problem is that at synchronization points, there will be a large
number of invalidations sent to other processors; in the case of a barrier synchronization,
the interconnection network may be swamped by invalidations; a large amount of time
may be needed to empty the RIB and SIB. Therefore, it would seem more reasonable to
spread these invalidations over a period of time. Finally, to take care of asynchronous
algorithms, i.e. algorithms that potentially never synchronize, some form of periodical
flushing of the buffers will have to take place anyway, in the absence of lock or unlock
instructions. In the following, we present a practical implementation of the ideal proto-
col of Section 5. Since the protocol from the system point of view is unchanged, we only
concentrate on the processor point of view. The two buffers RIB and SIB must be easily
and efficiently implemented.

6.1 Implementation of the RIB

An infinite size RIB is easy to implement, in the above protocol. It can be done by
associating with each blockframe a Stale bit (S-bit). When an invalidation is propagated
to the cache, the S bit is set. When the S-bit is set, the blockframe is still accessible by
the local processor, but for the rest of the system, the block has been invalidated in the
cache.

Therefore, to implement the protocol described in Section 5, we propose to associ-
ate 4 bits with each blockframe: the S-bit (Stale bit), the I-bit (Invalid bit), the O-bit
(Ownership bit), and the M-bit (Modified bit). The encoding of the different states of
Section 5 should be obvious.

When the processor acquires a lock, the S-bits and I-bits are ORed into the I-bit,
and the S-bit is cleared for all blockframes in the cache. Whenever a new block is loaded
in a blockframe, the S-bit must be cleared. This simple mechanism works because in the
protocol, no specific action has to be taken when a Stale block is invalidated (at lock
time) besides setting the Invalid bit. To insert an invalidation in the RIB, the S-bit is
set; to remove it, the S-bit is cleared.

Note that stale bits do not need to be set immediately, since they are only needed
at a synchronization point. A small invalidation buffer can still be present, so that in-
validations on non-owned copies are propagated to the cache at the most opportune time
(eg, when the processor does not access the cache).

6.2 Implementation of the SIB

The SIB must be accessible in two ways. Most of the time it functions as a FIFO
buffer: entries are entered at one end, and when the buffer is full, entries are removed at
the other end. But, if there is a replacement in the cache, the entry must be removed
from the buffer, and therefore, the buffer must be accessible fully associatively. The cir-
cuit to implement this function is feasible and is very similar to the circuit implementing
LR[]J, shown in Figure 7, for two bits of address (this Figure is taken from [HwBr84, p.
117)).



To be infinite, the SIB would have to contain as many entries as the number of
blockframes in the cache. This may be difficult for very large caches. Also, while an
infinite SIB results in maximum delays, and therefore minimizes false sharing, it will
create very non-uniform traffic in the interconnection.

Therefore, the protocol may be more efficient if the size of the SIB is less than the
size of the cache. When the SIB is full, an entry must be removed from the head of the
FIFO buffer. To extend the protocol, we must indicate the actions to take when an en-
try is removed from the SIB. Assume first that the SIB has at least size one. At the time
when an entry is removed from the SIB the same actions must be taken as on an unlock
(which is the only time when an entry is removed from the SIB in the case of an infinite
size buffer). Therefore, the modification of the protocol is trivial in this case. The only
modification to Section 5.2 is that "Releasing a lock" should be replaced with "Removing
an entry from SIB", with the understanding that the SIB must be emptied on an unlock.

The protocol is specified in the state transition table corresponding to a Mealy
Finite State Machine shown in Figure 8.

To verify the correctness of a protocol like the one in Figure 8 is in general very
complex: one has to prove that a Load of a datom always returns the value defined by
the latest Store on the same datom, given that the system is weakly ordered and the con-
currency model is DRF. In this model, modifications of datoms by a processor do not
need to be wvisible to the rest of the system until the next unlock; as long as a datom
modification is local and has not propagated (it is in the SIB), the system ignores it, as if
it had not happened yet. Similarly, when an invalidation is received for a block by a pro-
cessor, the copy becomes stale: the local processor can still access it up until the next
lock operation, while, for the rest of the system, the copy has been invalidated. From the
perspective of the protocol among processors, a stale copy is an invalidated copy and a
modification of a block has not happened for as long as it is buffered in the SIB. The
ownership bit has been introduced to deal efficiently with private blocks, and the proto-
col has been optimized to avoid extra overhead in the case of private blocks. The proto-
col also makes sure that either the memory or a cache have the latest copy of an overall
block (the notion of “latest" here takes into account the rules for visibility of updates as
described above).

Extensive testing of the protocol has been done by generating random sequences of
locks, unlocks, reads and writes so that, in the sequence, the succession of locks/unlocks
may not deadlock, and furthermore the reads and writes to shared writable data obey
the weakly ordered model. These sequences were applied to the simulators of the delayed
protocol and of the corresponding on-the-fly protocol obtained by removing all buffers.
In both cases, the state of the shared variables in memory had to be the same after ap-
plying each sequence to both simulators. This simple technique allowed us to detect
several subtle errors in the protocol.

6.3 No SIB

At the limit, the SIB could be of size zero; in this case, invalidations are sent im-
mediately when they are produced, as in the on-the-fly protocol. Note that false sharing
is still reduced in this case, because invalidations are still delayed in the RIB of the desti-
nation processors. In this case, no action is taken on unlocks, but a write can only be
executed on a unique (owned) copy. Figure 9 displays the new protocol.
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7. Effect on False Sharing

The effectiveness of the protocol of Section 5 is demonstrated in Figure 10, for
random sequences of reads and writes of a given block, as well as locks and unlocks by 3
processors. The changes of states are indicated on the Figure. Only four misses occur in
the maximum delay protocol. The reader can verify that the on-the-fly protocol of Sec-
tion 5.1 would cause misses on practically every access.

We have run the same examples as in Figure 2 and 3, and the improvement due
to the protocol of Figure 6 is shown in Figures 4 and 5. The on-the-fly protocol used for
Figure 2 and 3 is the protocol of Section 5.1 (System point of view) with no delays in the
processors. In the miss and invalidation curves for the delayed protocol, the increases due
to false sharing have practically disappeared. For a given problem size, the delayed pro-
tocol reduces the number of false sharing misses as the number of processor increases.
For these examples, it appears that delayed protocols are more scalable than on-the-fly
consistency protocols. At this point, we have no result for the protocol with an SIB of
finite size.

8. Hardware Complexity

The cost of implementing delayed consistency is higher than for on-the-fly con-
sistency. It includes:

e One additional dirty bit per datom and one stale bit per block,
e An efficient circuit to OR the Stale bits and the Invalid bits of all blockframes,
e An SIB buffer accessible associatively as well as FIFO, and

e A circuit on the processor board to distinguish between accesses to synchronization
variables and to other variables.

There is no added complexity for the compiler, except for the separation of syn-
chronization variables from other shared data in memory.

9. Conclusion

In this report, we have introduced the class of delayed consistency protocols in
which the coherence overhead due to false sharing is reduced with respect to on-the-fly
consistency protocols. Another advantage of delayed consistency is that the sending of
invalidations and the receiving of invalidation can be done asynchronously with the local
processor execution; the time to propagate those invalidations can be selected by the
hardware to reduce conflicts and multiple invalidations pending in the SIB may be sent
at the same time. This feature reduces the coherence penalty seen by the processor and is
critical to good processor efficiency. From our preliminary evaluations (which only in-
clude the effect on false sharing), it appears that delayed protocols are more scalable than
traditional protocols; this increased scalability is obtained with no assistance from the
programmer and the compiler, and therefore it is particularly useful for general-purpose
multiprocessors.
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We have described a protocol for systems with infinite size invalidation buffers
(both for send and receive). The hardware for such systems seems quite costly. However,
the Receive Invalidation Buffer can be implemented at very low cost by adding a stale
bit in each blockframe and by a special circuit to OR the invalid and stale bits after a
successful lock operation is executed. The protocol has been extended to accommodate a
Send-Invalidation Buffer of finite size. One interesting case is the case where the SIB is
removed. The hardware complexity is then very low, and some advantages of the proto-
col with maximum delay are retained. This simplified implementation may be the way to
go. I-Iow}ever, at this time we have no evaluations to demonstrate the performance of this
approach.

Synchronization variables must be stored in different regions of shared memory
than other shared data. Accesses to the region of memory reserved for synchronization
variables must by-pass all buffers, so that an on-the-fly protocol is enforced on these
variables.

Much more work remains to be done. First of all the protocol may not be op-
timum and it may be possible to refine it once simulation results are available. Second,
we need to investigate the effect of delays on write-broadcast protocols. Third, we need
to study physical implementations of the protocol in bus-based systems, in directory-
based systems (implemented by linked lists or by tables), and in systems with multi-level
caches. But foremost, a more thorough evaluation of the delayed protocol, including
finite caches, finite SIB, and interconnection traffic is needed to demonstrate the superior-
ity of this new class of protocols.
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Read Write Lock Rem SIB Replace INV; Rel O;
SToM Inv&UpdM UpdM UpdM
goto STOM | goto STOM
SToM goto STOM goto STOM | goto STOM
SIoM ReqO Inv&UpdM | goto STOM
goto STOM
STOM goto SIOM | Tnvé&UpdM | Inv&UpdM
goto STOM
SIOM InsSIB goto STOM
goto SIOM
STOM InsSIB | goto STOM
goto STOM
XIOM Inv&UpdM UpdM Inv&UpdM | Inv&UpdM
ReqC ReqO
goto STOM (ns) | goto STOM
goto STOM(s)
XIOM ReqC ReqO
(NIC) | goto STOM (ns) | goto SIOM
goto STOM(s)

Figure 8: State table for the delayed consistency protocol
(processor viewpoint)

S: Stale bit; I: Invalid bit; O: Ownership bit; M: Modified bit; X: 0 or 1
Rem SIB: Remove from SIB (must be done before an unlock instruction

Ins SIB: Insert in SIB

ns: not shared (no copies in other caches

s: shared (other copy exists)

Other commands are described in the text.

Read Write Lock Replace INV; Rel O;
SioMm UpdM UpdM UpdM
goto STOM | goto STOM | goto STOM
SToM goto STOM goto STOM | goto S5TOM
SIoM ReqO goto STOM
goto STOM
STOM ReqO goto SIOM
goto STOM
XIXX ReqC ReqO
(NIC) | goto STOM(ns) | goto STOM
goto STOM(s)

Figure 9: Simplified protocol for the case where there is no SIB
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