Test Generation for the JPL
Viterbi Decoder Chip

BY

M.A.Breuer, Margaret Driscoll, Rajesh
Gupta, Rajiv Gupta, Shen Lin, and
Rajagopalan Srinivasan

Technical Report No. CENG 90-08

February 1990

Electrical Engineering - Systems Department
University of Southern California

Los Angeles, CA. 90089-0781

Test Generation for the JPL
Viterbi Decoder Chip

M.A. Breuer, Margaret Driscoll, Rajesh Gupta, Rajiv Gupta, Shen Lin, and Rajagopalan

Srinivasan

February 6, 1990

This work was supported in part by the Jet Propulsion Laboratory, by the Defense Advanced
Research Projects Agency and monitored by the Office of Naval Research under Contract No.
N00014-87-K-0861, and in part by the Semiconductor Research Corporation under Contract No.
88-DP-075. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied,

of the Defense Advanced Research Projects Agency or the U.S. Government.

Acknowledgement
We want to acknowledge the contribution of Sandip Nerkar, Jung Chen Lien, as well

as Kuen-Jong Lee who developed TGS. Erland Olsen of JPL helped on modeling the chip.

Abstract
This report documents the results of our efforts in generating a set of test vectors
for the JPL Viterbi decoder chip using the CRETE software system developed at USC,
A brief discussion of the Viterbi decoder chip and CRETE system is first given. The
modeling of the chip and manually generated functional tests are then described. These
tests are used to test non-scan parts of the chip. The results produced by CRETE for

the scan portion of the design are then presented.

1 Introduction

The Jet Propulsion Laboratory (JPL) is currently designing a new Long Constraint Length
VLSI Viterbi Decoder to be used in many future NASA missions. To enhance testability,
much of this design uses a scan based architecture. The Test Group at USC is developing
several software packages to support design-for-test and test generation of VLSI chips.
This report describes the use of some of this software in the generation of tests for the
Viterbi Decoder. The tests developed are for the classical single stuck-at fault model.

The goals of this project were the following.

1. To develop a set of tests for the Viterbi Decoder.
2. To debug the test software using a complex test case.
3. To gain experience in modeling and developing tests for a complex circuit.

4. To determine what new features should be added to the test software.

All the goals of this project were successfully met. Detailed analysis fo the Viterbi De-
coder gave us insight on extending our system capabilities in the areas of cloud generation

and equivalence identification.

2 The Viterbi Decoder

The decoder consists of 8,192 Viterbi butterfly processors. A Viterbi decoder processor

IC contains 16 Viterbi butterfly processors, resulting in over 20,000 gates per chip, with

each individual butterfly processor having a complexity of about 1800 gates. More details
on the design of the decoder can be found in [1]. Aspects of testing a single butterfly

processor are discussed in [2].

3 Test Software

Figure 1 shows part of the TEST software system being developed at USC. Cbase is
an object oriented database system which has a graphics schematic capture system on
its front-end. TGS is a test generation system for combinational logic, and includes a
PODEM ATPG package, a good circuit simulator, a fault simulator, and a set of routines
for carrying out fault collapsing. CRETE, which stands for Clouding, Reorganization,

Equivalence, Test generation and Editing, is the primary system used to process a chip

Cbase TGS

X

Schematic

capture
CRETE

Figure 1: Part of the TEST system

design and produce a test set for the chip. CRETE assumes that the circuit to be processed
is a full scan design.
The flip-flop model used in CRETE is shown in Figure 2. A D flip flop is assumed.
No clock, reset, preset or mode control are allowed. The flip-flop is assumed to be
clocked between each input vector. Only a Q output is used; a Q output must be derived
external from the flip-flop by using an inverter. An implicit mode control line is assumed

to exist. This line is used to select either the D or S; input.

Figure 2: Flip-flop model used in CRETE

CRETE employs the concept of clouds. A cloud is a maximally connected block of
combinational logic such that all of its inputs are either primary inputs or outputs of flip-
flops, and all of its outputs are either primary outputs or inputs to flip-flops. A replicated
cloud (r-cloud) is a block of logic C, which can be used to create a cloud C as follows:
cloud C consists of n copies of C,,n > 1, where some inputs to C, are common to all
copies of C,. Figure 3 indicates the general structure of a cloud made up of r-clouds.
Here A represents outputs from an r-cloud; B represents inputs to an r-cloud; E represents

global cloud primary inputs; and D represents global cloud inputs which are outputs from

flip-flops.
[T TR e R e R e S e e e e e S e e e e e e e e e =
| I
| |
| |
1 |
| C |
I |
i A A
1 |
: 1| n |
I ' |
I 1
| C; Cy :
I l
I 1
) f
| I
: i B
| |
| |
| |
: B B
| :
I 1
e L -

Figure 3: A cloud C consisting of r-clouds C,

The first process carried out by CRETE is to reorganize the user input hierarchical

description of a circuit and produce a new hierarchical description consisting of clouds
and flip-flops. A procedure for identifying equivalent coulds, i.e. multiple instances of a
cloud has been developed but has not yet been implemented. Tests vectors for each cloud
are obtained using T'GS. These tests are then combined to create a test set for the entire
chip. The combined tests are output to files representing test vectors to be applied to the
primary inputs and test vectors which must be loaded into the scan chains. More than one
scan chain is allowed. The system automatically determines the order of the flip-flops in
the scan chains and orders the bits in the test vectors according to this ordering. CRETE

assumes the following standard test methodology is used in testing the combinational logic.

Step 1: Load the scan chains with a test vector while in the test mode.
Step 2: Apply a test vector to the primary inputs .

Step 3: Observe the primary outputs.

Step 4: Issue one system clock while in the normal mode.

Step 5: Scan out the scan chains while in the test mode.

This process is repeated for each test. Steps 1 and 5 can be carried out concurrently. More

details on CRETE can be found in [3].

4 Modeling of Viterbi butterfly processor and manual

test vectors

Since a Viterbi process consists of 16 identical Viterbi butterfly processors, only one but-
terfly processor was processed by CRETE. Since the processor is not a full scan design,
special models for parts of the processor had to be used so as to force CRETE to produce
results which would be applicable to the processor. CRETE could not generate test for
some non-scan parts of the logic. For these parts, manually generated tests were derived.
In this section we will describe the various modeling assumptions made and describe the

manually generated tests. Page numbers referenced below refer to the title of the schematic

drawing which define the Viterbi Decoder chip. These schematics are not included in this

report.

1. Scan flip-flops were modeled with a D input, a Scan-in input, a Q output, and a
Scan-out output only. Clock, clear (when applicable) and T /R lines were left out for
test generation purposes. When a Q bar output was needed (registers 5P and 9P
on page BFLY) an inverter was added to the Q output in the model. Also, the scan
chain in the model is formed using the Scan-in and Scan-out lines, even though the

actual circuit sometimes used the Q output instead of the Scan-out port.

2. TGS requires a gate level description for a circuit. The gate level models used for a

full adder, multiplexer, XOR and XNOR circuits are shown in Figure 4.

3. The 16 Bit Shift Register (page 16SR) was modelled as 16 scan flip-flops chained
together. The Mux (20P) and NAND gate (1P) will be tested with a functional test.
During the scan test process, RESET* is held high and WORD_SYNC is held low.
This sets up a path from DATA_OD through MUX 20P to MSDATA.

4. In the model of the COMPSEL unit (page COMPSEL), scan flip-flop 11P and Mux
24P were left out. This flip-flop/Mux pair becomes transparent during scan operation
due to the fact that the register is being clocked on the falling edge of the clock (due
to inverter 16P in the clock path). This part of the circuit will be tested with a

functional test.

Some parts of the butterfly processor were not included in the computer model. They

are enumerated below along with a discussion of how this logic is to be tested.

1. Buffers and inverter pairs at BFLY level, clock lines and T/R lines.

Resolution: These elements get tested “for free” when using primary input pins to
provide data for other tests, clocking in scan data, and switching between test and

normal mode.

m
!
|
@J :
Y
S

;(r

MUX

=

>
=

o

XOR

f:D o 2T

5 %

Figure 4: Gate level models

2. Resets on V1496 scan flip-flops.

Resolution: The following scan flip-flops are equipped with an asynchronous reset:
1,2, 16, 53, 86, 87, 88.
Shift into the scan-chain a vector of all 1s while in test mode. Bring RESET* low

and then high, and then shift out the vector in the scan-chain while in the test mode.

Check for Os in the aforementioned positions in the vector.

3. Reset on V1496 scan flip-flop 7P in Piped A-B (page PA_B).

Resolution: This reset is controlled by signal M_Word_Sync*, a buffered version of
Word _Sync. Shift in a vector of all 1s in test mode. Bring Word_Sync high and
transition the clock from high to low twice. Scan out the test vector and verify that

position 15 in the vector is now a 0.

4. KILL* circuitry, specifically V1220 NAND gate 96P (BFLY page), V1220 NAND
gate 1P, and V1925 MUX 20P (both on page 16SR).

Resolution: This circuitry appears twice in Compare-Select. There are two Compare-
Select Units in the BFLY, therefore there are 4 instances of this circuit that can be

tested simultaneously.

See Test Sheet 1 for a diagram of this circuitry and a functional test.

5. Inverter V1916 part 16P, V1496 scan flip-flop 11P, and V1925 MUX 24P (all on
COMPSEL page).

Resolution: This circuitry appears twice in BFLY, once in each Compare Select.

Both instances can be tested simultaneously.

See Test Sheet 2 for a diagram of this circuit and a functional test.

6. The D inputs to scan flip-flop 11P and scan flip-flop 7P at the BFLY level, and
the Init_ Bus_In input of Metric Computer do not have valid test values in the scan
vectors. This is because there is no logic driving these flip-flops, therefore the cloud
associated with these inputs is vacuous and hence no tests are generated for these

lines.

Resolution: These inputs will have been assigned a value of X in the scan test
vectors. Alter the test vectors such that they assume a value of 0 in one vector and
1 in another. The expected output vector must be altered accordingly to match the

input vector. (See Section 5.3.1 for further details.)

Test Sheet 1

. SiN

DATA-OD I 16 o

IFT
RESET* O—{I12 ourt MSDATA DATA DATA
—D>—o— IN ouT

>
EN2 TR souT
WORD-SYNC
KILL*
RENORM—TRIGGER*D
—]
ARITH-CLOCK

—>o— o

Tests

1. Inrun mode bring KILL* high by setting WORD_SYNC low and RENORM_TRIGGER*
low. Apply one system clock to latch these signals. Bring DATA_OD high (see Test
Sheet 3). Set RESET* low - this will select the 12 mux input and force MSDATA to
a low. Apply one system clock to load the low into 16 BITSHIFT. Change to test
mode, clock out the scan chain and look for a low in positions 21, 37, 54, and 70 of
the scan chain. Note that this circuitry appears twice in each COMPARE_SELECT,
and there are two COMPARE SELECT circuits.

2. Repeat test 1, this time setting WORD_SYNC high and RENORM_TRIGGER* high
to generate the high on KILL*,

3. Inrun mode bring KILL* low by setting WORD_SYNC high and RENORM_TRIGGER*
low. Apply one system clock to latch these signals. Bring DATA_OD high (see Test
Sheet 3). Set RESET* high - once again selecting the 12 mux input and forcing
MSDATA low. Apply one system clock to load this low value into 16 BITSHIFT.
Change to test mode, clock out the scan chain and look for a low in positions 21, 37,

54, and 70 of the scan chain.

10

4. Inrun mode bring KILL* high by setting WORD_SYNC low and RENORM_TRIGGER*
low. Apply one system clock to latch these signals. Bring DATA_OD high (see Test
Sheet 3). Set RESET* high - this will select the I1 mux input force MSDATA high.
Apply one system clock to load this high value into 16 BITSHIFT. Change to test
mode, clock out the scan chain and look for a high in positions 21, 37, 54, and 70 of

the scan chain.

5. Inrun mode bring KILL* high by setting WORD_SYNC high and RENORM_TRIGGER*
high. Apply one system clock to latch these signals. Bring DATA_OD low (see Test
Sheet 3). Set RESET* high - this will select the I1 mux input and force MSDATA
low. Apply one system clock to load this low value into 16 BITSHIFT. Change to
test mode, clock out the scan chain and look for a low in positions 21, 37, 54, and

70 of the scan chain.

Test Sheet 2

23P 1P 24P 12P
H D Q i l——-D Q

A/l 12 OUT—| T —12 OUT T
—1EN2 >

B/ D' F2 —E r
ARITH_CLOCK)) | l:

WORD_SYNC o

Tests

1. Bring A/I low and B/I high (see Test Sheet 3), leaving the clock in a high position.
In run mode bring WORD_SYNC high and transition the clock from high to low
- this will latch a low into scan register 11P and propagate it through mux 24P.
Bringing the clock back high again will latch a low into scan register 12P. Change to
test mode, clock out the scan chain and look for a low in positions 53 and 86 of the
scan chain, as this circuitry appears once in each COMPARE _SELECT, and there
are two COMPARE SELECT circuits.

2. Repeat test 1, this time with A/I high and B/I low. (see Test Sheet 3)

Check for a high in positions 53 and 86 of the scan chain.

3. While in the test mode, scan in a vector with a high in positions 53 and 86, a low in
positions 52 and 85, and leave the clock in a high position. Change to run mode, set
WORD _SYNC low and transition the clock from high to low - this will put a low on
the I1 input of mux 24P, a high on the 12 input of mux 24P, and will select the I2
input. Bring the system clock high - this will latch the output of mux 24P into scan
register 12P. Change to test mode, clock out the scan chain and look for a high in

positions 53 and 86 of the scan chain.

12

4. Repeat test 3, this time with a low in positions 53 and 86, and a high in positions

52 and 85. Check for a low in positions 53 and 86 of the scan chain.

13

Test Sheet 3

How to access A and B inputs to 16 Bit Shift in COMPARE SELECT:

The A input of COMPARE_SELECT 6P is the sum of ACC_METRIC_IN_0, BR METRIC.0,

and an internal carry.

The B input of COMPARE _SELECT 6P is the sum of ACC_ METRIC_IN_1, BR METRIC 1,

and an internal carry.

The A input of COMPARE_SELECT 7P is the sum of ACC_METRIC_IN_O, BR METRIC_1

and an internal carry.

The B input of COMPARE _SELECT 7P is the sum of ACC_METRIC_IN_1, BR METRIC.0,

and an internal carry.

ACCMETRICIN 0 and 1, and BR_. METRIC 0 and 1 are driven by the flip-flops in the
scan chain - in positions 1, 2, 7, and 16 respectively. The internal carry signals are driven
by the flip-flops in the scan chain in positions 17, 18, 19, and 20 respectively. For simplicity
we will hold the ACC_METRIC and BR.METRIC signals at zero and use the carry signals

to control the sum bit. The resulting test vectors are shown below.

14

For Test Sheet 1

scan vector position Data-OD

1 2 7 16 17 18 19 20| (all 4 instances)

000 0 1 1 1 1 1
000 O O O 0 o 0

For Test Sheet 2

scan vector position Compare Select Inputs
1 2 7 16 17 18 19 20| A (6P) B(6P) A(7P) B(7P)
000 0 1 1 1 1 1 1 1 1
0O 00 0 0 0 0 O 0 0 0 0
000 O 0 1 0 1 0 1 0 1
000 0 1 0 1 0 1 0 1 0

15

5 Results from CRETE

5.1 Schematic capture

Figures 5-11 indicate the circuit schematics of a butterfly processor as entered into Cbase.

5.2 Cloud generation

CRETE processed this circuit and identified 9 clouds which are listed in Table 1. The
following clouds are equivalent.
Clouds 1 and 2
Clouds 3 and 4
Clouds 6, 7, and 8

Cloud 9 is actually an r-cloud since it shares common primary inputs (FORCE and
FORCECTRL) with replicated versions of this logic existing in the other butterfly proces-

SOTs.

16

ATTdd g 21nSig

: Snjelg

NN
B TyuaaLds
142 uaad0s
UnousaI0s
dnu=ados

55 N ST BN A £ a0y

o4u]

JTun0]

appRRy)

[RERE

utuwooz

dnanoy

an0j)

103 [saregan || dizH || 1PL [Ramaqry | a1ty [sweashs [=g [xwn [sweor [esean |
_ : IHmn\oLM\MMMQU\HmmOm\:meﬂom\wEomw
[

17

[PSdwop PPy :9 2andijq

v

T sEn3eag

auoHU2210s

B Tyusaaas

142 u=aa0s

[T (RN

dpuaaJos

Rdogg [423noy

ateag | ogug

00 | 307

QREETR | D EEC

nedpay | [1E3E(

:WSW&WEM

nowoogz Uutwooz

sut oy | dnanoy

azrsay| ano)

JonTETSN

fido) | 31p3

=219 | #1284]

1x3 ||

s3InE 43

L

I alty][swe3shs || Beg Il XTUp |[{___stoor |[eseqs]

H&meQUUT@\:amﬂ\oLm\MMMﬂu\dmmam\:DmmHDA\MEDLJ

T°'C

18

dwop-o1ryeA :f 2In31 g

I En3eayg

EPLTIEENEE
B yuasans
}4aussa0s
UMO[Ua210s
_z: wﬁsg dnueaos

fos... :
”#A%WJLaEm ﬁUwam

Fdogg | 423noy

21205 | ofug

Sl @uqu¢|ﬁum4 A S IR R K | [N)

MR MY

00 b

meapay| (1238

i =

et
"

INOWD0Z | utwooz

mwjala Uumq

aut 4ay| dnanoy)

SRR N T T =1 E R R R azrsay| snoy
snrdyTpadTy SR ELL R : ! !

fdoy | 31p3

23213 | 23=84)

BTl

_ 317 __ EY G __ di=H __ 1PL __ Raeaqr __ a4 : suayshg __ Beg __ XTuf) __ SCEN __ aseqph _

_ &Eouums\mamQ\ULm\mmMQU\HMQDm\:DmmHom\mEDLm
T'¢ 35940

19

egdwo) :8 2In31

T =n3E3g

[L30a2d09 4!

135

auoHuaa.uos

U NG

}jauaaa0s

I OEENES

ENIEENES

Rdogs | Jag3noy

2[R2g a4uq

4004 | 3 1mmo)

IR MY

medpay | [1E3a)

NOW0oF | UTwooz

6eg 30alqp

autgay| dnasoy

aztr=ay| anoy

Rdo] | 31p3

23212 | s1Ea4)

_ 1123 [[satregaq || diej]| Pl || Faeagry | e[ty |[swa3shg

Beg

xwn [speo] Ik mmmnu.||4
zEC

9lS /T g9

B0, /2SE00 JEUWES JAEn

S e D 0 R R e i T A S S e e e |

20

gsnjd y :6 2anSiq

: wjuﬁuﬂ
CUETIEENEE
B ryuaados
J4aueauos
UMoL2a40s

druaauas

fdogg | uagnoy

21225 | 04Uy

3400y | 31w

WAREYI PR

meapay | [1e3ag

JNOWo0Z [ut wooz

aut 4ay| dnanoy)

azisay| aso)

fdog | 31p3

232713 | 232247

Beq qo03lqQg

_ 113 _r| sirnegeq || d12H [1pL _ﬁ||mgmga_4 || art4 || swa3shg __| Eeg | XTI || stoop |[[=s=ai |

Q18T Z35eqD /35800 JEUE S /18N

IR N S e NN S e e e T e e T e e]

21

2.1

CBASE

|

Systems |[File][Library || Tdl

I

Il

Tools || Urix

|

Ybaze

Object Bag

iy

oed,

Pusr/eamma/cbase/chaseZ.1/src

Copy

Zoomout,

(.

Scale

Edit

Hoveup |Refine

Zoomin

Detail |Redraw

CheckIr{Check

Commit | Abort

Info

screenllp
zcreenlown
screenLeft

screenfight

screenHomns

o

Piped A plus B

Figure 10

us

L]

22

g snuit y padig :1T o1nSi g

I sn3elq

U TIEENEE

FUTE PN

J4auaaans
Uno[uaalos
druazaos

Rdogg | Janoy

areag | ogug

34004 | 3 T0w0g

BT M2

medpay | [1e3ag

INOWo07 | Uutwooz

aut ay| dnanoy

aztzay| anoj

Rdo) | 31p3

23219 | 232247

Beg g0alqp
[1x3][s3tregeq 1 d1aH I Pl [[Fueaqry]| o114 || swesshg || Brg _—ll %I [[=1oog [[oseaa]
_ u;m\ﬁ.mmwm20\mwﬁmU\ﬁEEmM\meN

23

CLOUD #

CLOUD NAME CONTENTS CONTAINED IN CELL

At B W =

inv3

inv4
fadd1357
fadd1670
Cluster1860

Cluster2574

Cluster3569

Cluster4556

Cluster156

inv
inv

fadd

fadd

fadd

inv

inv

inv

fadd
dual_and
dual xnor
fadd
dual_and
dual xnor
fadd
dual_and
dual _xnor
mux

inv

inv

fadd

fadd

fadd

fadd

Xor

mux

mux

mux

mux

mux

Xor

mux

mux

mux

mux

mux

INV (QBAR of FF (9P)) / BFLY

INV (QBAR of FF (5P)) / BFLY
PIPED_A+B (12P) / METCOMP / BFLY
PIPED_A+B (11P) / METCOMP / BFLY
PIPED_A-B /| METCOMP / BFLY
PIPED_A-B /| METCOMP / BFLY
PIPED_A-B /| METCOMP / BFLY
PIPED_A-B /| METCOMP / BFLY
PIPED_A+B (7P) / METCOMP / BFLY
AND (30P & 32P) / METCOMP / BFLY
XNOR (26P & 31P) / METCOMP / BFLY
PIPED_A+B (9P) / METCOMP / BFLY
AND (27P & 28P) /| METCOMP / BFLY
XNOR (22P & 23P) / METCOMP / BFLY
PIPED_A+B (8P) / METCOMP / BFLY
AND (21P & 29P) /| METCOMP / BFLY
XNOR (24P & 25P) / METCOMP / BFLY
BFLY
INV (41P) /

INV (42P) /

A+B (2P) / ACS / BFLY
A+B (3P) / ACS / BFLY
A+B (4P) / ACS / BFLY
A+B (5P) / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL / ACS / BFLY
COMPSEL1 / ACS / BFLY
COMPSEL1 / ACS / BFLY
COMPSEL1 / ACS / BFLY
COMPSEL1 / ACS / BFLY
COMPSEL1 / ACS / BFLY
COMPSEL1 / ACS / BFLY

BFLY
BFLY

Table 1: Clouds in a butterfly processor

5.3 Test vector files

CRETE generated three test vector files for the butterfly processor, consisting of a file for
the primary I/0, the first scan chain and the second scan chain.

The organization of these files is given below.

5.3.1 Test vector file for the primary I/0

Tables 2 & 3 list the port names of the primary inputs and outputs of the cell BFLY. Table
4 lists the test vectors associated with these I/Os. For each test vector pair, the first row
corresponds to an input test vector and the second row gives the expected response for
the outputs. There are 19 primary inputs, 5 primary outputs, and 34 test vectors. The
leftmost bit of an input vector corresponds to input signal F, and the leftmost bit of an
output vector corresponds to output signal sel_1.

The following primary inputs pass through a clocked buffer at the BFLY level:

Renorm _Trigger
Symbol Mag < 5..0 >
Symbol Sign < 5..0 >

Symbol Mag _Sum
Force

Forcectrl

For each test vector, signals on these primary inputs must be applied one clock period
before other primary input signals in this test vector are applied.

Primary outputs Sel0 and Sell pass through a 16 bit shift register at the V16BP level.
Signals on these primary outputs can be observed by scanning out the contents of the two
16 bit Memory Interface units.

For each input test vector, an X entry indicates that the corresponding primary input
is only feeding a scan flip-flop. For each output response vector, an X entry in the second

row indicates that the corresponding primary output is fed by a scan flip-flop. CRETE

25

does not generate tests for these lines because the cloud associated with them is vacuous.
These lines can be tested as follows:

The Xs in one or more test vector pair must be replaced by 1s to test for s-a-0 faults
on these lines; the Xs in one or more test vector pair must also be replaced by 0s to test

for s-a-1 faults on these lines.

5.3.2 Test vector file for the first scan chain

The test vectors pairs to be scanned in and the corresponding response to the be scanned
out of this chain are given in Table 5. For each vector pair, the first row corresponds to
scan-in test vector, the second row specifies the expected scan-out response.

The right most bit in the input test vector is the first bit to be entered. Once the scan
chain is fully loaded, this bit will be in the last flip-flop in the scan chain. There are 88
flip-flops in the scan chain of the modeled butterfly processor (See Table 6). The primary
input signal to this scan chain is labeled ISCANIN.

The rightmost bit in the response vector is the first bit to come out of the scan chain.
The primary output signal name for this scan chain is labeled OSCANOUT.

For each test vector pair, an X entry in the first row indicates that the corresponding
scan flip-flop is directly feeding another flip-flop or a primary output, and an X entry in
the second row indicates that the corresponding scan flip-flop is directly fed by another
flip-flop or primary input. These lines can be tested as follows:

The Xs in one or more test vector pair must be replaced by 1s to test for s-a-0 faults
on these lines; the Xs in one or more test vector pair must also be replaced by Os to test

for s-a-1 faults on these lines.

5.3.3 Test vector file for the second scan chain

The format for this file is the same as for the first scan chain. The results are shown in
Tables 7 and 8. There are 6 flip-flops in this scan chain which makes up the butterfly ID

register. The primary input and output signal names for this scan chain are IINITIN and

OINITOUT, respectively.

26

Chbhase

Name Schematic Name
F — FORCE
FC — FORCECTRL
magsum — SYMBOLMAG.SUM
acciin0 — ACCMETRICIN.O
acciin.l — ACCMETRICIN_1
Keq.l5 — KEQ_15
signd — SYMBOL_SIGN_5
sign4 —_— SYMBOL_SIGN 4
sign3 — SYMBOL_SIGN_3
sign2 —_ SYMBOL_SIGN_2
signl — SYMBOL_SIGN_1
sign0 - SYMBOL_SIGN_0
magb — SYMBOL MAG_5
magd — SYMBOLMAG. 4
mag3 — SYMBOL MAG_3
mag?2 — SYMBOL MAG_2
magl e SYMBOL MAG_1
magd — SYMBOLMAGLO
init.in — INIT BUS_IN

Table 2: Primary inputs

27

Chase

Name Schematic Name
sel.1 — Select_1
sel0 — Select_0
acc0 — ACCMETRICOUTLO
acc.l — ACCMETRIC.OUT.1
init.out — INIT BUS_.OUT

Table 3: Primary outputs

28

U LB]

T2:

T3:

T4 :

T5:

T6 :

T7:

T8:

T9:

T10:

Tll.

T12:

T13:

Tl4:

T15:

T16:

T17:

T18:

011XX1101010111111X
0000x

001XX1101010111111%
0111x

001XX1000000111111%
01XXX

010XX0010101111111%
00XXX

000XX1010101111111%
00%XXX

000XX1000000111111%
01XXX

011XX1000000010101X
00XXX

010XX1000000101010%
00XxX

00XXX1101010000000%
10XXX

01XXX0000000111111x
00XXX

00XXX1000000010101x
11XXX

11%XX0010101101010X
11XxX

00XXX1111111000000%
00XxX

OOXXXOXAAXKXXAXAXXXX
11XXX

LOXXXOXAAAAXNAXAXXX
10XXX

OO0XXXOXXAXAAXXXAAAXX
11XXX

LOXXXOXAXXAXAAXANKX
00XXX

LIXXXOXXXXAAXXANAKK
11XXX

T19;
T20:
T21:
T22:
P23;
T24 ;
T25:
T26:
T27 :
TZQ:
T29:
T30:
T31:
T32:
T33:

T34:

LIXXXOXXXXXXXXXXXXX
11XXX

OLXXXOXXAAAAAAXXXXX
00X%X

L1XXXOXXAXAKXXKXXXXX
11xXXX

LIXXXLXXNXANAAXXXAX
11xXX

LOXXXLXAAAXARAKXAXXX
00%XXX

OLXXXOXXXXAXXAXXXXX
00XXX

OOXXXLXXAXXAXAXXKNX
01XXX

OLXXXLXXXXXXXAXAXXX
00XXX

LOXXXOXXXAAXXAXAXNX
11XXX

LOXXXOXAXXXNAAX XXX
10%XXX

OLXXXIXXXXAXAXKXXXAX
00XXX

LIXXXOXXXXXXXXXXXXX
11XxX

LIXXXOXXXXXXXXXXXXX
11XXX

((]000.0:{1):0'0:0'0:0'9:0:0.9.0.0:0¢
01%XXX

OOXXXLXXXXXXAXXXXXX
10XXX

O1XXXOXXAXAXAXXAXAX
00XXX

Table 4: Test vectors and output responses for primary I/0

29

T1s

I2:

13:

T4:

16:

16:

iy

18:

19:

T10:

Ti1:

T12:

T13:

Ti4:

Ti6:

T16:

Ti7:

001010110111X0001 110X XXX XXX XX XX XXX XA XXX X XXX XX XX XXX XL OX XX XXX XX XX XXX XXOXAAXXXXAXXXXXAXOL11
XX1101X110111X0010001 XXX XXX XX XX XX XXX 1 XXX XXXXXXXXXXXXOOXX XXX XX XX XXX XX X1 XXXXXXXXXXXXXXX000

011111010101X000104 1 XXX XXX XXX XXX XXX XXX X XXX AXXXAAXXLOXXX XXX XX XX XXX XXOXXXXXXXXXXXXXXX0100
XX1010X101010X010001 1 X XX XXX XXXXXXXXXOXXXXXXXXXXXXXXX 11 XXXXXXXXXXXXXXX1XXXXXXXXXXXXXXX100

111010011101X110101 1 XX XX XXX XX XX XX XXOX X XX XX XXX XX XXX XLOXXX XXX XX XX XXX XXOXXXXXXXXXXXXXXX01XX
XX1010X101010X00101 10X XXX XX XX XX XX XXXOX XX XX XXX XX XXX XXOOXX XXX XX XX XXX XX X1 XXXXXXXXXXXXXXX011

111101111011X1000040X X XX XXX XX XX XX XX L XX XX XXX XX XX XXX XL OX XX XXX XX XXX XX XX AXXXXXXXXXXXXXXX10XX
XX1110X111011X1110440X XX XXX XXX XXX XXXOX XX XXX XX XX XXX XXOOXX XXX XX XXXXXXXX1XXXXXXXXXXXXXXX000

001000111001 X100010 1 XX XX XXX XX XX XX XXOXX XX XXX XX XX XXXXOOX XX XXX XXX XX XXX X1 XXXXXXXXXXXXXXX10XX
XX1001X100110X0000010X XX XXX XX XX XXX XXOX XX XXX XX XXXXXXXOL XX XXX XX XX XXX XX X1 XXX XXXXXXXXXXXX011

111101010001X01001 0L XX XXX XX XX XX XX XX 1 X XXX XXX XX XX XXXXOOX XX XXX XX XX XXX XXX XXX XX XXXXXXXXX11XX
XX1001X100110X110101 1X XX XXX XXX XXX XXXOXXX XXX XXX XXX XXX L1 XXXXXXXXXXXXXXXOXXXXXXXXXXXXXXX100

011000010011X0110110XX XX XXX XXX XXX XXOX XXX XXX XX XX XXX XLOX XX XXX XX XX XXX XX1XXXXXXXXXXXXXXX00XX
XX1000X100010X1101 100X XX XXX XX XX XX XXX 1 X XX XXX XX XX XXX XXOOX X XXX XX XX XXX XX XA XXX XX XXXXXXXXXX011

101111111111X1101001 XX XX XXX XX XXX XXX XX XX XXX XX XX XXX XOOX XX XXX XX XX XXX XX 4 X XXX XXXXXXXXXXX10XX
XX1011X101110X101001 XXX XXX XXX XXX XXXOX XX XXX XX XXXXAXX LA XX AXXXXXXAXXXXXOXXXXXAXXXXXAXXX100

1IN XAXAXX X000 X XXX XXX X XXX XXX XL XX XX XXX XX XA AXAAOL XXX XXX XX XX XXX XXOX XXX XXX XXX XXXXXL10XX
XXO1XXXO01XXO1XXX11 110X XX XXX XX XX XX XXX 1 X XX XXX XX XX XXX XX OO XX XXX XX XX XXX XX XOXXXXXXXXXXXXXXX011

010XXX10XXXOXXX11 100X XXX XXX XX XX XX XXOXX XX XXX XX XX XXX XOOX XX XXX XX XXXXXXX1XXXXXXXXXXXXXXX01XX
XX10XXX10XX10XXX1 104 1 XXX XXX XX XX XX XXXOX XX XXX XX XAXXXAXLOXX XXX XA XX XXX XXX L XXX XXXXXXXXXXXXO10

100XXX10XXX0XXX1101 1 XX XX XXX XXX XXX XXOXX XX XXX XX XXXXXXO1 XXX XXX XX XX XXX XXOX XXX XXXXXXXXXXX01XX
XXO1XXXO01XXO01XXX101 1 4 XXX XXX XX XX XXX XXOX XX XXX XXXAXXXXX LA XAXXXXX XX XXX XX AL XXX AXNAXXXAAAXXXLLL

100XXXO00XXX0XXX101 10X XXX XXX XX XX XX XXOXX XX XXX XX XX XXX XOOX XX XXX XX XX XXXXXOXXXXXXXXXXXXXXX01XX
XX01XXX01XX01XXX01101 XXX XXX XX XX XXXXXOX XX XXX XXXXXXXXX 11 XXX XXX XXX XXX XXXOXXXXXXXXXXXXXX X111

100XXX00XXXOXXX110L 1 XX XX XXX XXXXXXXXOXX XXX XXXXXXXXXXOOX XX XXX XXXXXXXXX1XXXXXXXXXXXXXXXOOXX
XX00XXX00XX00XXX10101 X XX XXX XX XX XXXXXAX XXX XXX XXX XXX XXOOXX XXX XX XX XXX XXX L XXX XXXXXXXXXXX X011

LIXXXXOXXXXAAXXXLL000X XXX XAXXAXXXXXOXX XX XXLXAXAXAAXOL XXX AXXAXAAAXAXXLAXXAXAAXXAAAXAXOLXX
XXXXXXXXXXXXXXXXLL100X XX XXX XXX XXX XXX A XXX XX XXX XX XXX AXOOXX XXX XX XX XXX XX XOXXX XXX XXX XXXXANL11

O0XXXX1XXXXXXXXL1100X XXX XXX XXX XXX XKL XX XX XXX XX AX XXX XL AN XXX XXX XXX XXX XX LA XXX XA XAXXXXXXXL0XX
XXXXXXXXXXXXAXAALL00L XXX XXX XAXXX XXX XL XXX XXX XX XXX XX XX LOXA XXX XX XX XXX XX XOXXXXXXXXXXXXXXXOOO

10XXXXAXXXXXXXX0010L XX XXX XX XX XX XX XX L XX XX XXX XX XXX XX XL L XXX XXX AX XXX XXX XOX XXX XX XX XXXXXAXLLXX
XXX XXX XXX XX X100 1 XXX XXX XX XX XX XXX OX XX XXX XXX X XXX XX 10X X XXX XXX XXX XXX X1 XXX XXX XXX XXX XX X000

10XXX X1 XXX XXX XXO01 100X X XX XXX XX X XXX XX L XX XX XXX XX XX XXX XLOX XX XXX XX XX XXX XXOX XXX XX XX XXXXXXX10XX
XXX XXX XXXAXXXXL000 L X X XXX XXX XX XXX XX L X KX XX XXX XX XXX XXOL XX XXX XX XX XXX XX X1 XXX XX XX XXXXXXXX001

Table 5: Test vectors for scan chain 1

30

Ti8:

T19:

T20:

T21:

T22:

T23:

T24:

T26:

T26:

I27:

128;

T29:

T30:

T31:

T32:

133:

T34:

D 0006000900 00SRNIERD000000000000006099599999959909(13D099900990000000000900.009990000850.0:
)00600000000000083RRE0 990099000900 908R90099009000000080900090090000090109000.90999040098511]

OOXXXXOXXXXXXXX0L004 XXXXXXX XXX XXX XX XXXXXXXXXXXXXXX0OX XX XXX XX XX XXX XXLXAXXXXXXAXXXXXXOLXX
XXXXXXXXXXXXXXXXO0000X XX XX XXX XXX X XX XA XXX XXX XX XX XXX XNOL XX XXX XXX XXX XAXOXXXXAXXAAXXAXXAL 11

OLXXXXAXXXXXXXXIL 444 XXXX XXX XXX XXX XXOXX XX XXX XX XXX XX KOAX XX XXX XX XXX XXX XOX XXX XXXXXXXXXXX10XX
XXXKXXKXXEXXX XXX L4 OX XX XXX XXX XX XX XA XXX XXX XX XX KX XXX OO XX XXX XX XX XXX XX XL XXX XXX XXX XXXXXXO44

10XXXXOXXXXXXXX10010XX XX XXX XX XX XX EXO XX XX XXX X XXX XXX XOOX XX XXX XX XX XXX XX 1 XXXXXXXXXXXXXXX00XX
XXXAXXXXXXXXAXXXOOL0 L X XX XXX XX XX XX XX XOX XX XXX XX XXX XX XX LA XA NAAXA XXX AAXAXLXXAXAXAXAXAAXAXOLL

LOXXXXOXXXXXXXXL11001 XXX XXX XXX XX XXX XL XX XX XXX XX XX XXX XL AX XX XXX XX XX XXX XAOX XX XXX XX XXXXXXXL10XX
KXXXAXXXXAXXXXXXLO0L00X XX XXX X XXX XX XXX AX XX XXX XX XX AXXXXOOXX XXX XX AXXXAXXALXXAXXAXXAXXXXX X000

10XXXXAXXXXXXXXOL000 XX XX XXX XX XX XX XX L XX XX XXX XX XXX XXX LOX XX XXX XX XXX XAXXOX XXX XXX XAXXXXXO0XX
XXX XXX XXX XXXXXL000 1 XXX XXX XXX XXX XXX AX XX XXX XX XX XXX XXOL XXX XXX XXX XXX XX XOXXXXXXXXXXXXXXX100

10XXXXOXXXXXXXX10010X XXX XX XXX XXX XAAL XX XX XXX XXXAXXXXLOX XXX XX XXX XXX XXOX XXX XX XX XXXXXXXL0XX
XXXXXXAXXXXXEXXXOOLOLX XX XXX XXX XXX XXX OX XX XXX XX XX XXX AN L XXX XX AXXAXXX AL XL XXX XX AAXXAXXXAXO0

00XXXXOXXXXXXXX0000L XX XX XXX XX XX XX XXO XK XX XXX XX XX XXX XL OX XX XXX XX XX XXX XXOX XXX XX XXXXXXXXX01XX
XXXXXXEXXXXXXXXX00000X X XX XXX XXX XX XXX A XXX XXX XX XX XXX XX OO XXX XX XX XXX XX XX XOX XXX XXX XXXXXXX X111

00XXXXOXXXXXXXX00000 XX XX XXX XX XX XX XXOX XXX XXX XX XX XXX XL 1 XXX XXAXXXAXXXXXOXXXXXXXXXXXXXXXO1XX
AXXX XXX XX XXX XXXO0000X KX XXX XX XX XX XXX OX X X XX XX X XX XXX XX LOX X XXX XXX XXX XXX XOXXX XXX XXX XXX XX X111

OOXXXXOXXXXXXXXO0001 1 XX XX XXX XXX XXX XXX XXX XXX XX XX XXX XL A XXX XXX X XXX XXX XXOXAXX XXX XXX XXX XXO1XX
XXX XXX XXXX0000 1 XXX XXX XX XX XX XXX XXX XXX XX LA XXX XL LOX XXX A XX XA XX A XX XOX XXX XX XX XXX XX X101

OOXXXXOXXXXXXXX00100X XXX XXX XX XX XXX XL X XXX XXX X XXX XXX XL 1XXX XXX XX XX XXX XXOXXXXXXXXXXXXXXX10XX
XXX XXXKEXXXXKXXX00000X XX XXX XK XX XX XX XOX XX XXX XX XX XXX XX 10X X XXX XX XX XXX XXX LI XXXXXXXXXXXXXX X001

10XXXXIXXXAAXXNOL00L XX XX XXX XX XXX XXX XX XX XXX XX XA XXX XOLX XX XXX XX XXX XXXXOX XXX XX XXXXXXXXX10XX
I XX XXX XXX XXXL00L 1 XXX X XXX XXX XX XXX OX X XXX XXX XK XXX XX LA XX XXX XX XXX XX XX XOXXXXXXXXXXXXXXX100

10XXXXOXXXXXXXALL010X XXX XXX XX XXX XXX L XX XX XXX XXX XXXXXLOX XX XXX XX XXX XX XXOX XXX XXX XXX XXX XX L1 XX
XXX XX KX XX XXX XX XL010 4 XXX XXX XXX XX XXX OX XX XXX XX XX XXX XX 10X X XXX XX XX XXX XX XL XXX XXX XXX XXX XX X000

10XXXXIXXXXXXXX01004 XX XX XXX XX XX XXX XOXX XX XXX XX XX XXX XOL XXX XXX XX XX XXX XXOX XXX XXXXXXXXXXX00XX
XXX XX XXX XXX KXXL00L L XXX XXX XX XX XX XXX OX XX XXX XXX XXX XL XX XXX XXX XXX XA XOXXAXXXXXXXAXXA AL

LOXXXXOXXXXAXXXXL11 110X XXX XXX XXX XXX X XL XX XX XXX XX XX XXX XL OX XX XXX XX XX XXX XXOX XXX XX XX XX XXXXXO1XX
XXX XXX XXXL 110 XXX XXX XX XX XX XXX OX X X XXX XX XA XXX XX 10X X XXX XX XX XXX XX XOAXX XX AX XX AAXXXX101

10XXXXIXXXXXXXX01001 XX XX XXX XX XXX XXX XX XX XXX XX XX XXX XOLX XX XXX XX XX XXX XX L X AXXXXXXXXXXAXXLOXX
9.99.000090000800SL[iRD009000000000069(0940000000009 9E80990089000000900)00090999999999CEE]

L0XXXXOXXXXXXXXL1 110K XXX XXX XXX XXX XOX XXX XXX XX XX XXX XOOX XX XXX XX XX XXX XXOX XXX XX XX XXXXXXX10XX
XXKXX KX XXX XAAL 110X XK XX KK XX KX XXX OX XXX XX XX XXX XX L OX X X XXX XXX XXX XX XOX XXX XXX XXXXXXXXO11

Table 5: Con’t.

31

Flip-Flop Position Flip-Flop Name

O 00 == O Ut o W N =

I T e T o T o SO o S S = G S U Y
O W 00 =~ O Ul B W N = O

21-36
37-52
53
54-69
70-85
86
87
88

11P/BFLY

7P /BFLY

4P /PAPB7P/METCOMP/BFLY
3P /PAPB7P/METCOMP /BFLY
4P /PAPB12P/METCOMP /BFLY
3P /PAPB12P/METCOMP /BFLY
13P/METCOMP /BFLY

4P /PAPBSP /METCOMP/BFLY
3P /PAPB8P/METCOMP /BFLY
4P /PAPB11P/METCOMP/BFLY
3P/PAPB11P/METCOMP/BFLY
4P /PAPBOP /METCOMP /BFLY
3P/PAPBYP/METCOMP/BFLY
10P/METCOMP /BFLY

7P /PA_B/METCOMP /BFLY
3P/PA_B/METCOMP /BFLY
1P/APB2P/ACS/BFLY
1P/APB3P/ACS/BFLY
1P/APB4P/ACS/BFLY
1P/APB5P/ACS/BFLY

16 BITSHIFT1P/COMPSEL7P/ACS/BFLY
16 BITSHIFT9P/COMPSEL7P /ACS/BFLY

12P/COMPSEL7P/ACS/BFLY

16 BITSHIFT1P/COMPSEL6P/ACS/BFLY
16 BITSHIFT9P/COMPSEL6P /ACS/BFLY

12P/COMPSEL6P/ACS/BFLY
5P/BFLY
9P/BFLY

Table 6: Positions of flip-flops in scan chain 1

32

b 3

T2:

13:

T4:

16:

16:

T7:

18:

19:

T10:

Ti1:

T12:

T13:

T14:

T16:

T16:

Ti7:

101010
XXXXXX

000000
XXXXXX

101010
XXXXXX

010101
XXXXXX

000000
XXxxxx

010101
IXXXXX

000000
XXXXXX

000000
XXXXXX

010101
XXXXXX

000000
XXXXXX

ioio10
XXXXXX

000000
XXXXXX

000000
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXxx
XXXXXX

XXXXxx
XXXXXX

Table 7: Test vectors for scan chain 2

33

Ti8:

T19:

T20:

T21:

T22:

T23:

T24:

T125:

T26:

T27:

T28:

T29:

T30:

I31:

T32:

T33:

T34:

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXx

XXxxxx
XXXXXX

XXXXXX
XXXXXX

XXXxxx
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

XXXXXX
XXXXXX

Flip-Flop Position Flip-Flop Name

1 5/6 BIT SHIFT/METCOMP/BFLY
4/6 BIT SHIFT/METCOMP /BFLY
3/6 BIT SHIFT/METCOMP /BFLY
2/6 BIT SHIFT/METCOMP /BFLY
1/6 BIT SHIFT/METCOMP/BFLY
0/6 BIT SHIFT/METCOMP /BFLY

(o2 TN &1 SR - S -]

Table 8: Positions of flip-flops in scan chain 2

5.4 Processing Unclouded Butterfly

The circuit was also processed by combining all the logic into one cloud and processing
this cloud through TGS. The cloud has 49 inputs and 28 outputs. The result consists of
39 test vectors. Since the clouded version of the circuit required only 34 test vectors, the
clouding process led to a 12.5% savings in test vectors. These same 34 test vectors are used
to test the Viterbi decoder chip which contains 16 butterfly processors. If all of this logic
were processed as a single cloud, we esitmate that over 60 test vectors would be required.

References

1. J. Statman, G. Zimmerman, F. Pollara and O. Collins, “A Long Constraint Length
VLSI Viterbi Decoder for the DSN,” TDA Progress Report 42-95, Vol. July-September
1988, Jet Propulsion Laboratory, Pasadena, California, pp. 134-142, November 15,
1988.

2. M.A. Breuer, “Test Aspects of the JPL Viterbi Decoder,” TDA Progress Report 42-
96, Vol. October-December 1988, Jet Propulsion Laboratory, Pasadena, California,
pp. 59-79, February 15, 1989.

3. “CRETE”, USC Technical Report, (draft form), 1989.

34

