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Abstract

A Module Maintenance Controller (MMC) is a novel design that can test devices
supporting the IEEE 1149.1 boundary scan standard and the interconnect among them.
In this report we describe the implementation of an MMC prototype. Two ASICs have
been designed and implemented. One contains the major building blocks of the MMC
prototype. The other is a test chip employing the boundary scan architecture. Both chips
were implemented using field programmable gate array technology. The MMC prototype
has successfully executed the required test procedures for the test chip. Programs that
describe these test procedures are easy to develop since they can be written in a high level
languages such as BASIC. Compared to conventional ATEs, the MMC not only costs much
less but also has some performance benefits.

*This work was supported by Defense Advanced Research Projects Agency and monitored by the Office of
Naval Research under contract no. N00014-87-K-0861. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.
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1 Introduction

Boundary scan technique improves the testability of boards containing surface mounted
devices [1]. However, different vendors may provide devices with incompatible boundary
scan structures. To avoid this problem the IEEE has established a standard called IEEE
1149.1 [2], which guarantees the compatibility among devices that employing boundary
scan. In this report, a boundary scan device is referred to as a device that supports the
IEEE 1149.1.

A Module Maintenance Controller (MMC) can test boundary scan devices and the
interconnect among them. It can also provide test data to the devices under test (DUTs)
and analyze the test results. Thus, an MMC can completely test a board consisting of
boundary scan devices. A design called a Test Channel greatly increases the performance of
the MMC by efficiently accessing and controlling the built-in self-test (BIST) and design-
for-testability (DFT) facilities availables on the DUTs. The architecture of the MMC
design is shown in Figure 1.
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Figure 1: The architecture of an MMC.

In this report we describe the implementation aspect of the MMC prototype. A
detailed description of the MMC design can be found in [3]. The major components of an
MMC includes a processor, a memory unit and a Test Channel. An IBM AT computer is
used as the host computer of the prototype. The physical configuration of the prototype is



illustrated in Figure 2 A board, which occupies a bus slot in the IBM AT, is used to provide
an extension of the I/O bus. Another board, developed by Stanford University [4], is used
to decode the bus signals and to accommodate the Test Channel chip. The Test Channel
is implemented using the Actel field programmable gate array (FPLA) technology. The
implementation was aided by the Actel Action Logic System, which automatically performs
placement, routing and the programming of ACT 1020 devices.
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App1
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Figure 2: Physical configuration of the prototype.

Interfacing the Test Channel with the host processor requires little effort. Only the
following signal lines need to be connected: a 16 bit bata bus, a 4 bit address bus, a chip
enable line and two read/write control lines. These lines are available on the I/O bus of
the host. Through these lines, the host can control the Test Channel by executing I/O
read/write operations. Currently, control programs are written in BASIC. However, any
language that provides the read/write to the absolute I/O address space can be used.

In order to verify the functions of the MMC prototype, an ASIC conformed with the
IEEE 1149.1 is built. This chip, referred to as Appl, has been successfully tested by the

MMC prototype. During the testing of the Appl, all functions of the MMC are exercised.
Therefore, the prototype is tested functionally.

This report is organized as follows. The design and implementation environment for
the prototype is described in Section 2. The implementation details of the Test Channel,
which include design changes due to limited device capacity, the architecture, the DFT



aspects, simulation results and the physical characteristics, are described in Section 3. The
implementation details of the Appl are described in Section 4. A data bus adapter for
interfacing the 16 bits Test Channel to an 8 bits data bus is described in Section 5. The
details for testing the MMC prototype is described in Section 6, followed by the conclusions
in Section 7. A complete set of schematic diagrams of the Test Channel is presented in
Appendix A, followed by the schematic diagrams for the Appl in Appendix B. Simulated
timing waveforms for various operation modes of the Test Channel are listed in Appendix
C. Test control programs for both Test Channel and App1 are listed in Appendix D.

2 Design and Implementation Environment

The major steps for implementing a circuit using the Actel FPGA technology include
Functional Specification Design, Architecture Design, Logic Design, Testability Design,
Schematic Entry, Logic Simulation, Device Selection, Pin Assignment, Validate, Place and
Route, Timing/Delay Estimation, Device Programming and Device Testing. These steps
are illustrated in Figure 3.

The high level design work, which includes the steps from Functional Spec Design
to the Testability Design, is done manually. The low level design work is aided by a 386
PC running two major software systems, i.e., VIEWlogic and Action Logic System (ALS).
VIEWIlogic is a schematic capture, wirelist generation and logic simulation system. ALS
not only allows a user to define I/O pins, but can also automatically perform the follow-
ing tasks: the validation of the design, placement and routing, timing/delay parameters
extraction, generation of the fuse file and programming of the device.

There are many problems involved in implementing a design. For example, there may
be errors in the logic design; the design may be too large to fit into the selected device;
the predicted timing/delay may not be acceptable. These problems will introduce one or
more iterations in some of the design steps.

One drawback associated with this approach is that the software does not provide in-
formation about the number of the logic modules, which are the circuit primitives provided
by the Actel devices, required for a design during the early stage of the design process.
This information can only be provided in the validation step, where the entire circuit
design is entered. If the circuit requires too many logic modules to fit in the selected de-
vice, major design changes may be required. The software should be improved to support
the estimation of the number of logic modules whenever a building block is entered and
simulated.
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3 Design and Implementation of the Test Channel
Chip

The major purpose of designing the Test Channel is to efficiently test chips that are con-
formed with the IEEE 1149.1 standard. A detailed description of the Test Channel design
can be found in [3]. In this report we focus on the implementation aspects of the Test
Channel, the design changes resulting from the limitations of the implementation and the
enhancements on DFT.

Notations: Throughout this report, the following notation is used.

e Let SIGNAME be the name of a signal line, then /SIGNAME represents that the
signal is active low, SIGNAME/O represents that the signal is a primary output,
and SIGNAME/I represents that the signal is a primary input.

e The width of a bus is represented by its index. For example, PA[3:0] represents a
bus consisting of four signal lines PA3, PA2, PA1 and PAO.

3.1 Design changes

Some design changes have been made in the implementation of the Test Channel. The
main reasons for these changes are 1) the limited capacity of the device; 2) a change with
the clocking scheme; and 3) the addition of DFT facilities. These design changes are listed
below.

1. Registers PA and PB were not implemented. These two registers were used as (a)
temporary storage for the output and input data, and (b) the feedback control of
the two LFSRs (TxR and RxR). Without these two registers, the characteristic
polynominals of the LFSRs (TxR and RxR) are therefore fixed.

2. The counter DC was not implemented. Therefore, the usage of the counters TC and
SC has changed.

3. The length of the counters TC and SC was reduced from 22 and 12 bits to 12 and 4
bits, respectively.

4. A new block TMSBL was added. This block generates an arbitrary 6 bits sequence
of values on the TMS line.

5. A new block Host_IF was added. This block is used to allow synchronization between
the host and the Test Channel. Gated clocks can then be avoided.

6. The operation modes of the FSM were extended.



7. A scan chain was added for improving the testability of the design.

8. The FSM was modified to ensure correct operations during test mode.

The modified Test Channel is shown in Figure 4. In this figure the solid line boxes
represent registers or sequential circuits; the dashed line boxes represent combinational
circuits. Registers TxR, RxR and STR are related to the test bus signal lines. Register
SR, CR, TC, SC and the sequential circuit sync are related to the control of the finite state
machine FSM. Both data bus and address bus are buffered in the Test Channel. When
executing an operation mode, the host first loads the proper data into these regsiters. The
data transmission between the Test Channel and the test bus is then controlled by the
FSM. The value of the SR indicates the current status of the operation. More details
about the Test Channel are described next.
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Figure 4: The architecture of the Test Channel

3.2 Functions of the Test Channel

The Test Channel can perform the following tasks:



1. control the bus state;

2. transmit instructions to and receive status from chips;

3. generate and transmit pseudorandom test data and receive and compact test results;
4. transmit deterministic test vectors to and receive test results from chips;

5. generate interrupts and also direct interrupts from chips to the host processor; and

6. keep count of the number of tests applied and the number of bits of each test or
instruction transmitted.

From the above list it is easy to conclude that the Test Channel should be able to
operate in any of the following eight modes, namely DTUR, DTCR, PTUR, PTCR, INS,
RTEST, STBUS and RSBUS. These operation modes are described briefly below.

In the DTUR mode, deterministic test vectors are send to the chips under test; test
results collected from these chips are sent to the host without compaction.

In the DTCR mode, deterministic test vectors are sent to the chips under test; test
results collected from these chips are compacted. The resulting signature is then sent to
the host for further analysis.

In the PTUR mode, test results (or status) of chips under test are collected and
sent to the host without compaction. The collected test results are also sent back to the
chips under test with a unit delay. In this way, the status can be read and data can be
recirculated back to chips under test.

In the PTCR mode, pseudorandom test vectors are sent to the chips under test; test
results collected from these chips are compacted. The resulting signature is then sent to
the host for further analysis.

In the INS mode, instructions are sent to all the chips under test; the status of these
chips are collected and sent to the host without compaction.

In the RTEST mode, all the chips under test are placed in a BIST mode for a pre-
defined number of clock cycles.

In the STBUS mode, the value of the selected TMS lines (e.g., TMSO0) are controlled
by the content of the STR register. The TAP controllers of all chips under test must be
in a stable state, such as the PAUSE or SHIFT state after the execution of this mode.

In the RSBUS mode, the signal /RST is activated for a pre-defined number of clock
cycles. Test logic of the chips under test is reset.

The operation mode of the Test Channel is determined by a command register CR
according to Table 1.

Two built-in counters and a register CNR are used to keep track of the operation of
the Test Channel. The major counter TC is 12 bits long and the minor counter SC is 4



CR2 CR1 CRO
0 0

op mode
DTUR
DTCR
PTUR
PTCR
INS
RTEST
STBUS
RSBUS
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Table 1: Operation modes of the Test Channel.

bits long. The control processor can load both TC and CNR with new values. The value
of SC is loaded from CNR. CNR is used to restore the initial value of SC without help
from the control processor. The usage of these counters depends on the operation modes
of the Test Channel. Table 2 shows the initial values that need to be loaded prior to each
operation. The value “t” represents the total number of test vectors to be applied. The
value “s” represents the number of bits to be shifted in each test vector. The value “cnr”
represents the current value in the CNR. A “-” indicates the don’t care case. For most
operation modes TC is used to keep track of the number of bits (to be shifted) in a test
vector, and SC is used to keep track of the number of bits left in TxR and RxR. The host
keeps track of the number of test vectors that have been applied. Note that this was done
by TC in the previous design [3].

length | Register | DTUR | DTCR | PTUR | PTCR | INS | RTEST | STBUS | RSBUS
12 TC s-2 s-2 s-2 t-1 s-2 | t-1 s-1 s-1

4 CNR 14 14 14 s-2 14 - - -

4 SC cnr cnr cnr cnr cnr | - - -

Table 2: Initial values for counters in various operation modes.

Three registers are directly related with the transfer of data to and from the test bus,
namely TxR, RxR and STR. The host can write data into the TxR in parallel. The data
in the TxR can then be shifted out to the primary output TDO serially. Data from the
primary input TDI can be shifted into the RXR serially and then read by the host in
parallel. The host can also write data into the STR in parallel. The data in the STR are
then shifted to the primary output TMSO0 or TMS1 during the STBUS operation mode.
In all other modes, the TMS0 and TMS1 lines are controlled by the FTMS line from the
FSM. Table 3 shows the function mode of each register for various operations.



length | Register || DTUR | DTCR | PTUR | PTCR | INS | RTEST | STBUS | RSBUS
16 TxR shift shift TPG | TPG | shift |- - -
16 RxR shift SA shift SA shift | - - -
6 STR - - - - - - shift -

Table 3: Registers usage in various operation modes.

3.3 Major blocks of the Test Channel Chip

The Test Channel contains 47 primary I/O pins (see Figure A.1). The top level building
block of the Test Channel includes HOST_IF, CR, FSM, CNTERS, TMSBL, XR2, SR,
CIRC and M8X4. Figure A.2 shows the connection among these building blocks. The
functions of each building block are described next.

3.3.1 CR

The CR is a 6 bit register storing commands for the Test Channel. The host can write
data into this register. The value of this register can also be altered during test mode since
this register is a part of the scan chain. The lowest 3 bits, CR2, CR1 and CRO are used
to determine the operation mode of the FSM, which controls the operation of the Test
Channel (see Table 1). The function of the other bits are listed next. CR5 controls the
signal TT, which is used to enable/disable the FSM. The FSM is disabled when CR5=0.
CR4 is used to enable one of the TMS0 and TMS1 lines. The TMSO line is enabled when
CR4=0. The CR3 is used to enable/disable the interrupt request signal IRQ. IRQ is
disabled when CR3=0.

3.3.2 HOST.IF

This block allows the host processor to read and write the internal registers of the Test
Channel. When reading an internal register, the content of the selected register is sent to
the output data bus OD[15:0], which in turn is sent to the I/O pins PD[15:0] under the
control of the signal OE (see Figure A.1). The signal OE is generated in this block by
the host control signals /CS and /RD (see Figure A.3). Note that the host can read the
internal registers at any time.

Writing to an internal register of the Test Channel requires a synchronization mecha-
nism. This is because the host and the Test Channel are driven by separate clocks which
are not in synchrony. The HOST_IF achieves synchronization via a handshaking scheme.
When writing, the values on the data PD[15:0] and the address PA[3:0] lines are latched
into the SYNDA block (see Figure A.5). A synchronization flip-flop (SYNFF) is then set
to indicate that a write operation is pending. The setting of this flip-flop activates the
signal AEN (see Figure A.6) at the next rising edge of the CLK. The signal AEN can



enable the address decoder ADEC to produce a proper control signal that will eventually
load data into the register that is selected by the address bus PA[3:0]. The schematic of
the ADEC is shown in Figure A.4. The ADEC allows the selection of registers according
to Table 4. The loading of values to a selected register is controlled by a signal shown in
the column “Asserted Signal” of the table.

Address | PA3 PA2 PA1 PAO | /CS | Register selected | Asserted Signal
- 0 0 0 0 i none none

0 0 0 0 0 0 CR /CRam

1 0 0 0 1 0 CNR /CNRam

2 0 0 1 0 |0 |STR /STRam

3 0 0 1 1 0 none none

4 o 1 o0 o0 |o |TC /TCLam

5 0 1 0 1 0 TxR /TxRam

6 0 1 /] 0 0 RxR /RxRam

¥ 0 1 1 1 0 none none

8 1 0 0 0 0 SYNR /SYNRam

9 1 0 0 1 0 SR / SRCLRam
10 1 0 1 0 0 none /SOFTRSam

Table 4: Addressable registers and associated control signals of the Test Channel.

The SYNFF is cleared immediately after a write operation is completed. The next
write operation can then be accepted. The control signals generated by the address decoder
(ADEC), such as /CRam, is a single negative pulse. Note that the signal AEN is part
of the scan chain. During test mode, AEN is altered by the values that go through the
scan chain. It is possible that erroneous write operations may be generated. To avoid this
problem all control signals generated by the ADEC are disabled during test mode. This
is achieved by ANDing the signal AEN with the signal TEST (see Figure A.3).

A FSM control signal FEN is also generated by this block. The register SYNR, which
controls FEN, can be set and reset by the host. Writing the value 1 into a selected address,
i.e., PA[3:0]=1000, will set this register and thus activates the signal FEN. Similarly,
writing a 0 into the same address will reset this register and thus deactivates FEN. Through
the setting and resetting of this register, the FSM can be controlled.

3.3.3 FSM

Figure A.9 shows the finite state machine (FSM) of the Test Channel. The FSM contains
five major blocks, namely CRDEC, NSDEC, STATE, OL and POST_OL. The CRDEC is

a 3 to 8 demultiplexer (see Figure A.10). Only one of 8 output signals is active at a time.

10



These signals determine the operation mode of the FSM. For example, if the signal DTUR
is active then the FSM is operated in the DTUR mode.

The state register of the FSM is a 5 bit register, referred to as STATE or PS, can
represent 32 states. However, there are only 23 valid states labeled as S0,...,522 in this
machine. All other states are invalid and they have the same next state (S0) regardless
the current control inputs. The FSM has 8 control inputs, 5 state variables and 7 outputs.
The control inputs are CR2, CR1, CRO, TT, FEN, TCTC, SCTC and SR2. The output
signals are /SCLDsm, SCsm, TCsm, TxRsm, STRsm, FTMS, and /RSTsm. The present
state are represented by PS[4:0]. Each state Si is encoded by the binary code of i. For
example, S0 is encoded as PS[4:0]=00000 and S2 is encoded as PS[4:0]=00010.

1 Reset

from all states——1—~| S0

looo 001 l_om 011 1100 J101 l110 Jm
P . (g B . T~ SSSE— -
: H i H

'INS = RTEST STBUS RSBUS
it B et

1 ........ l T M,lw

Figure 5: FSM state transition diagram.

H

The NSDEC is used to determine the next state for the FSM. The state transition
diagram for the FSM is shown in Figure 5, 6, 7 and 8. Each decision box is represented by
a combination of control inputs. For example, the box labeled with FEN*/SR3 represents
the condition that FEN=1 and SR3=0. The state transition diagram contains 8 major
branches, namely DTUR, DTCR, PTUR, PTCR, INS, RTEST, STBUS and RSBUS. Each

i |



DTUR,DTCR,PTUR

S2 |
S3
S4
Y
SR3+/FEN
S9
N S6 ‘
S10
S5 |
S7
FEN+/SR2 >N
Y
S8
to S1

Figure 6: State transition diagram for DTUR, DTCR and PTUR modes.
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branch corresponds to an operation mode. Note that DTUR, DTCR and PTUR share the
same branch. This branch is also used during the INS mode. The control signals CR2,
CR1, CRO, TT, FEN, SR2 and SR3 are controlled by the host via write operations. The
host thus can control the FSM. For example, the host can terminate the operation of the
Test Channel by resetting the signal TT. This will force the next state of the FSM to SO
which is an idle state.

3

The OL is used to generate output signals for each state. An output signal can be
activated in one or more states. Table 5 shows the output signals that are activated for
each state. For example, the signal /SCLDsm is active (=0) only in states S4 and S14.
For other states /SCLDsm is inactive (=1). Similarly, the signal TCsm is active (=1) only
in states S5, S6, 517, S19, and S20. For other states TCsm is inactive (=0).

State | Signals State | Signals

SO FTMS=1 S1 FTMS=0

S2 FTMS=1 S3 FTMS=0

S4 FTMS=0, /SCLDsm S5 FTMS=0, TCsm, SCsm, TxRsm
S6 FTMS=0, TCsm, TxRsm | S7 FTMS=0

S8 FTMS=1 S9 FTMS=1, TxRsm

S10 | FTMS=1 S11 FTMS=0

S12 FTMS=1 513 FTMS=0

S14 | FTMS=0, /SCLDsm S15 FTMS=0, SCsm, TxRsm
S16 | FTMS=1, TxRsm S17 FTMS=1, TCsm

S18 | FTMS=1 S19 FTMS=0, TCsm

S$20 | FTMS=1, TCsm, /RSTsm | 521 FTMS=1

S22 | FTMS=1, STRsm, TCsm || others | FTMS=1

Table 5: FSM output signals activated in each state.

Note that the STATE register is part of the scan chain. Erroneous output signals
may be activated during scan operation. To avoid this problem, a POST_OL is inserted
to disable all output signals during test mode (see Figure A.14).

3.3.4 CNTERS

This block contains three components that are used to control the state transition of the
FSM (see Figure A.15). These components are CNR, SC and TC. Only the CNR is part
of the scan chain. The host can write to both the CNR and the TC directly. The CNR is
used to store the initial value for the SC. The SC is a 4 bit programmable down counter
that can generate a terminal count signal SCTC when its value is 0 (see Figures A.18,
A.19). After the value of the SC reaches 0, the initial value can be restored by loading

15



the current value from the CNR. The TC is a 12 bit programmable down counter that can
generate a terminal count signal TCTC when its value is 0 (see Figure A.17). Both SCTC
and TCTC are used to control the FSM.

The usage of these counters has been shown in Table 2.

3.3.5 TMSBL

This block is used to generate the control signals for the test bus. These control signals
include TMS0, TMS1 and /RST (see Figure A.20). The signal /RST will remain active
as long as the signal /RSTsm is active. /RST is used to reset the slaves on the test bus.
Both TMS0 and TMS1 are used to control the state of the test access port (TAP) of all
slaves on the test bus. Only one of them can be active at a time. When the signal EN1
(which is driven by CR4) is active TMS1 will be active; otherwise TMS0 will be active.
Two sources drive TMSO0, namely the signal FTMS from the FSM and the signal Q5 from
the STR. During the STBUS mode (CR[2:0]=110), TMSO is driven by Q5. The content
of the STR can be first written by the host and then shifted out to the TMSO0 line. In this
way the value of TMSO can be controlled. Hence, the TAP controller state of the slaves
on the test bus can be completely controlled. However, the TAP controller must be in a
stable state at the end of the STBUS operation. The schematic of STR is shown in Figure
A.21.

3.3.6 XR2

This block contains two Linear Feedback Shift Registers (LFSRs), namely the TxR and
the RxR. The basic building block for both registers is a D-type flip-flop DFHL, which is
shown in Figure A.7. The DFHL is in shift mode if the signal T is high; otherwise, it can
be in either LOAD mode (/LD=0) or HOLD mode (/LD=1). The TxR can operate in any
one of the five functional modes, namely LOAD, SHIFT, HOLD, TPG and CLEAR (see
Figure A.25). During the TPG mode, the TxR is configured as a maximal sequence test
pattern generator that has a characteristic polynominal as f(z) = 28+ 25+ 28+ 22+ 1. It
is necessary to load a non-zero seed into the register before entering the TPG mode. This
can be done by a host write operation.

The RxR can operate in any of the five functional modes, namely LOAD, SHIFT,
HOLD, SA, CLEAR (see Figure A.26). During the SA mode, the RxR is also configured
as a serial signature analyzer that has the same characteristic polynominal as the TxR. It
is necessary to load a known pattern into this register before entering the SA mode. This
can be done in the CLEAR mode or by a host write operation.

During test mode, both the TxR and the RxR are in the scan chain. Since both
registers already have SHIFT capability, only a multiplexer is required to include each of
them in the scan chain.
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3.3.7 SR

The status register SR is a 4 bit register (see Figure A.27) which has input signals EVO,
EV1, SCTC and TCTC for SRO, SR1, SR2 and SR3, respectively. These signals drive the
Preset line of the flip-flop instead of the D line. Once being set, a flip-flop can hold its
content until a clear signal, which can be either /CLR1 or /CLR2, is activated.

Both EV0 and EV1 are used by the chips under test to indicate the occurrence of
important events. SCTC is the terminal count signal of SC and TCTC is the terminal
count signal of TC. The control processor can read SR at any time to determine the current
status of the Test Channel.

During test mode, the SR is configured as a shift register which is part of the scan
chain. The data inputs must be disabled during test mode to ensure proper shift operation.
A specific data pattern thus can be loaded into the SR during test mode. The host cannot
write an arbitrary pattern into the SR, but it can clear the SR by activating the signal
/SRCLRam. The host can read the SR at any time without considering the synchronization
problem.

3.3.8 Imterrupt Circuit

Under certain circumstances, the Test Channel should inform the host about the occurrence
of important events. The condition for activating the interrupt signal is TRQ = (/TEST *
SR3+EV0+EV1)*CR3 (see Figure A.2). Note that the host can disable the interrupt by
resetting the CR. To avoid erroneous operations, the interrupt generated by the signal SR3
is disabled during test mode. It is the user’s responsibility to enable the interrupt during
the operation modes that requires the interrupt to establish the handshaking operation
between the host and the Test Channel. For example, while running the RTEST mode,
the host must enable the interrupt such that it can be informed when the value of the TC
is 0.

3.3.9 CIRC

The schematic diagram of the CIRC is shown in Figure A.22. The CIRC selects data from
the RxR or the TDI line to drive the output TDO. Since TDO must be synchronized with
the falling edge of the CLK, a falling edge flip-flop is used. During the PTUR mode the
data in the TDI line is sent out to the TDO line after a CLK cycle delay. This recirculation
facility can restore the original value of a scan chain in the slaves while letting the host
read out its content.
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3.3.10 M8X4

This circuit contains four 2 to 1 multiplexers. It selects the data to be output to the output
data bus OD[15:0] from either the SR or the RxR. Since only 4 bits are multiplexed, the
higher 12 bits are always taken from the RxR.

3.4 Design For Testability Aspects

Serial scan is a well suited DFT technique for designing testable circuits using the Actel
FPLA Technology. This is due to that both a D type flip-flop (DFC1B) and a MUXed D
type flip-flop (DFMB) are implemented by the same number of logic modules. Since the
latter can supersede the former, a DFMB is used whenever a D type flip-flop is required.
Scan capability thus is provided without adding extra logic modules.

Scan Registers:

In the Test Channel design, registers that are designed with DFC1B are replaced by DFMB.
These registers include CR, STATE (in FSM), CNR (in CNTERS) and AEN (in SYNDA
of HOST_IF). Furthermore, registers that have shift capability can be easily included in
the scan chain. These registers include RxR, TXR (in XR2) and STR (in TMSBL). Other
registers such as FEN (in HOST_IF) and SR are designed to have scan capability by adding
extra logic modules.

A scan chain is formed during test mode, i.e., when the signal TEST is set high.
Starting from primary input SI/I and ending at primary output SO/O, the scan chain
consists of 60 scan cells in a predefined order (see Table 6).

SI/I ->

AEN -> FEN -> CRO -> CR1 -> CR2 -> CR3 -> CR4 -> CRb6 -> PSO -> PS1 ->
PS2 -> PS3 -> PS4 -> CNRO -> CNR1 -> CNR2 -> CNR3 -> STRO -> STR1 ->
STR2 -> STR3 -> STR4 -> STR6 -> BSCELL -> SRO -> SR1 -> SR2 -> SR3 ->
TxRO -> TxR1 -> TxR2 -> TxR3 -> TxR4 -> TxRb -> TxR6 -> TxR7 ->

TxR8 -> TxR9 -> TxR10 -> TxR11 -> TxR12 -> TxR13 -> TxR14 -> TxR1i6 ->
RxRO -> RxR1 -> RxR2 -> RxR3 -> RxR4 -> RxRb -> RxR6 -> RxR7 ->

RxR8 -> RxR9 -> RxR10 -> RxR11 -> RxR12 -> RxR13 -> RxR14 -> RxR15 ->
S0/0

Table 6: The order of the scan chain.

Non-scan Registers:

Some registers, such as TC and SC, use both data inputs of the DFMB. Another MUX is
required to make them scannable. Therefore, these registers are not made scannable. The
controllability and observability of these non-scan registers are achieved by reading and
writing through the data bus. For example, the value of the TC can be set by loading new
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data from data bus. The SC can be loaded from the CNR by seeding a proper value into
the STATE register (in FSM).

The value of these non-scan registers may be affected during scan. Since their control
signals are provided by the FSM, undesired control sequences may be generated when new
values are shifted into the STATE register of the FSM. Test data that have been loaded
into the non-scan registers may be altered. To alleviate this situation, all control signals
should be suppressed during scan. The functional block POST_OL in the FSM serves this
purpose.

3.5 Simulation results of the Test Channel

Only some of the important logic timing waveforms are included in this report. These
timing waveforms show the behavior of some important signals in various operation modes.
Figure C.1 shows part of the timing waveform during the DTUR mode. All primary inputs
of the Test Channel except the data bus are represented by the signal bus INS. The value
of INS is set properly so that the internal registers of the Test Channel can be loaded. The
FSM then operates in the DTUR mode. The value on the line TMSO0 is properly controlled
so that the slaves on the test bus can be controlled. During data transmission, the value
on the TxR is output to the signal line TDO. The high value on the signal line SCTC
terminates the first data transmission, and sets low the signal TCSM. The signal line OE
is used to enable the reading of internal registers. After loading appropriate values into
the internal registers, the FSM is again enabled. The data transmission is terminated by
the high value on the TCTC line.

Figure C.2 shows part of the timing waveform during the DTCR mode. Figure C.3
shows part of the timing waveform during the PTUR mode. Figure C.4 shows part of the
timing waveform during the PTCR mode. Figure C.5 shows part of the timing waveform
during the INS mode. Figure C.6 shows part of the timing waveform during the RTEST
mode. Figure C.7 shows part of the timing waveform during the STBUS mode.

3.6 Physical Characteristics of the Test Channel chip

The Test Channel is implemented using an ACT1020 device which is packaged in a 84 pin
Plastic Leaded Chip Carrier (PLCC). The module utilization of this device is high. 513
out of a total of 548 logic modules are used, and so are 47 out of 67 I/O modules. This
chip can operate at 2.5 MHz and consumes less than 250 mW of power. Figure 9 shows
the pinout of a 84 pin PLCC package. The pin assignment of the Test Channel chip is
listed in Table 7.
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84 Pin PLCC

TOP VIEW I

Figure 9: The pinout of a 84 pin PLCC device.

Pin | Name I/O || Pin | Name I/O || Pin | Name I/O || Pin | Name I/0
1 | SI/I I 2 |IRQ/O |O |3 |TDO/O |O |4 |VCC I
5 | TDI/I I 6 |EVO/T |I 7 | EV1/I I 8 | TMS0/O | O
9 |TMS1/O|O |10 |/RST/O |0 | 11 | PAO I |12 |NC :
13 | PA1 I 14 | PA2 I 15 | PA3 I 16 | PDO I/0
17 | PD1 I/O || 18 | GND I 19 | GND I 20 | PD2 I/0
21 | PD3 1/0 |[22 | PD4 I/O | 23 | PD5 I/0 |24 | PD6 1/0
25 | VCC I |26 |[vCC |1 |27 |PD7 1/0 |28 | PD8 I/0
29 | PD9 I/O || 30 | PD10 I/0 | 31 | PD11 I/O || 32 | PD12 1/0
33 | VCC i 34 | PD13 I/O |35 | PD14 I/O || 36 | PD15 I/0
37 |SO/O | O |38 |TEST/I |[I |39 |/RD/I |I |40 | GND I
41 | /WR/T |1 42 | /CS/I I 43 | RESET/I |1 44 | NC -
45 | NC - 46 | VCC I 47 | AENG/O | O 48 | PS1 )
49 | PSO O 50 | PS1 0] 51 | PS2 0 52 | PS3 0]
53 | PS4 O 54 | DTUR O 556 | SCTC 0O 56 | SR3 0]
57 | SR2 0 58 | NC - 59 | NC - 60 | GND I
61 | GND - 62 | NC - 63 | NC - 64 | CLK/I |I
65 | NC - 66 | GND - 67 | VCC I 68 | VCC I
69 | NC - 70 | NC - 71 | NC - 72 | GND I
73 | GND I 74 | NC - 75 | NC - 76 | NC -
77T | NC B 78 | NC - 79 | NC - 80 | NC -
81 | NC - 82 | GND I 83 | NC - 84 | NC -

Table 7: The pin assignment of the Test Channel chip.
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4 Design and Implementation of the Appl chip

The Appl chip is used as part of the functional testing of the Test Channel. This chip
conforms to the IEEE Std. 1149.1. The Appl chip contains a one bit full adder and a two-
bit feedback register. The feedback register is scannable. There are 4 scan registers in this
chip, namely Boundary Scan Register (BSR), Feedback Register (FB), Bypass Register
(BPR) and Instruction Register (IR). These registers are separately scannable.

4.1 Architecture of the Appl Chip

Figure B.1 shows the top level schematics of the Appl chip. Many primary output pins
are added for the enhancement of observability. These pins include the state variables of
the TAP, namely A/O, B/O, C/O and D/O; the content of the IR, namely EXTEST/O,
INTEST/O, SAMPLE/O, SCANFB/O and BYPASS/O. The major building blocks of the
Appl include TAP controller, IR, CORE and APOL.

4.1.1 TAP controller

The TAP controller consists of two parts, namely APNS and APST. APST is a 4 bit
register that stores the current value of the state variables D, C, B and A (see Figure B.2).
Fach state is represented by a binary value of DCBA, where D is the most significant
bit. The TAP controller can be in any of the 16 states. APNS is the logic network that
determines the next state of the TAP controller (see Figure B.3). The next state logic is
derived from the state transition diagram defined in [2].

4.1.2 IR

The instruction register (IR) is a 3 bit registers (see Figure B.5). Each bit of the IR
consists of two flip-flops (see Figure B.6). Note that unlike the proposed example shown
in the IEEE 1149.1, the clock for the IR is not gated. The clocks for both flip-flops
are driven by the primary input CLK directly. The control signals for the IR thus are
generated differently. The content of the IR determines the test operation mode of the
Appl according to Table 8

The status, which is latched into IR during the CapturelR state, are 1, 0, and the
value on the Enable line. Since the Enable line is active at this state, the correct status
should always be 101.

4.1.3 Core

This circuit consists of the full adder, the boundary scan register and the feedback register
(see Figure B.7). The full adder has 3 inputs, namely PD, PSUM and PCO, and 2 outputs,
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IRO | IR1 | IR2 | op-mode
0 0 0 EXTEST
0 0 1 INTEST
0 1 0 SAMPLE
0 1 1 SCANFB
1 - - BYPASS

Table 8: Test operation modes for the Appl Chip.

namely NCO and NSUM. The full adder is connected to one primary input (DIN) and
two primary outputs (CO and SUM). The connection is done via boundary scan cells. For
example, DIN and PD are connected via an input scan cell, PSUM and SUM are connected
via an output scan cell, and PCO and CO are connected via an output scan cell.

The boundary scan register (BSR) consists of 3 scan cells (JTCELL), which are asso-
ciated with the primary inputs/outputs. The MUX control signal for the input cell (/BPI)
are different from that of the output cells (/BPO).

The feedback register consists of 2 DRCELLs. Each DRCELL consists of 2 flip-flops.
The clock inputs for these flip-flops are driven by the primary input CLK.

4.1.4 APOL

This circuit generates control signals for the CORE. The input signals for APOL are the
TAP state and the IR. Unlike the example proposed in the IEEE 1149.1, there are no gated
clocks used in this design. Therefore, we have modified the output logic design. Figure
B.4 shows the schematics of the output logic APOL. Table 9 shows the truth table for
generating the output control signals.

4.2 Physical characteristics of the Appl chip
The Appl chip is implemented using a 68 pin ACT1010 PLCC device. The chip can operate
at 10 MHz. In the worst case the power consumed by this chip is less than 100mW. Figure

10 shows the top view of the device pinout. The pin assignment of the Appl is shown in
Table 10.

22



BSR

FB

op-mode

state

BPI

BPO | /E1

=
()

=
=
~
=
[y

=
B

EXTEST

Capture

Shift

o
=l Ol

Update

INTEST

Capture

Shift

=l o

Update

SAMPLE

Capture

Shift

Update

SACNFB

Capture

Shift

Update

Hl=R= OOl O|C]lm= O
= o

L e = =l e = e

BYPAPSS

Capture

Shift

Update

/
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0

/
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

OO Ol=HlH||O|lOC|O|lC|C|O|| M| | k|~
1

O|O|ol|o|l=|=||OlO| || OO Ol ]| H| |~

o= o

Table 9: Truth table for generating control signals.

68 Pin PLCC

TOP VIEW

Figure 10: The pinout of a 68 pin PLCC device.
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Pin | Name I/O || Pin | Name I/O || Pin | Name I/O || Pin | Name I/O
1 PD O 2 PCO 0] 3 SUM 0 4 VCC I
5 (610 O 6 NSUM 0) 1 NCO 0 8 DIN I
9 |NC . 10 | NC . 11 | NC - 12 | NC -
13 | NC - 14 | GND I 15 [ GND I 16 | BYPASS | O
17 | SCANFB | O 18 | SAMPLE | O 19 | INTEST | O 20 | EXTEST | O
21 | vVCC I 22 | NC - 23 | NC - 24 | NC -
25 | VCC I 26 | NC - 27T | A ) 28 | B 0
29 | C O 30 |D 0 31 | NC - 32 | GND I
33 | NC - 34 | NC - 35 | NC - 36 | NC -
37 | NC - 38 | VCC I 39 | NC - 40 | NC -
41 | NC . 42 | NC - 43 | NC - 44 | TDO 0
45 | TDI I 46 | TMS I 47 | /TSRT |1 48 | RESET |1
49 | GND I 50 | NC - 51 | NC - 52 | CLK I
53 | NC - 54 | GND I 55 | VCC I 56 | GND I
57 | GND I 58 | NC - 59 | NC - 60 | NC -
61 | NC - 62 | NC - 63 | NC - 64 | NC -
65 | NC - 66 | GND | 67 | NC - 68 | PSUM O

Table 10: The pin assignment of the Appl chip.

5 Data Bus Adapter

A proto-board [4] is used in the MMC prototype. This board provides I/O connection and
bus decoding logics for interfacing with an IBM XT or AT computers that serves as a host
for the Test Channel chip. The width of the data bus on the proto-board is 8 bit only,
which is incompatible with the 16 bit design of the Test Channel chip. Hence, a data bus
adapter that provides data buffering between the 8 bit and 16 bit bus is required.

Figure 11 shows the data bus adapter used in the prototype. The signal lines available
on the proto-board include HD[7:0], HA[3:0], /PIOR, /PIOW and /POR. HDJ7:0| is the
8 bit data bus from the host. HA[3:0] is the 4 bis address bus from the host. The /PIOR
and /PIOW signal lines are derived from the host signal lines /TOR, /TOW and address
lines. Both /PIOR and /PIOW are active only when I/O is selected in the address range
from 300H to 30FH.

The signal lines of the Test Channel chip that need to be controlled by the host are
PD[15:0], PA[3:0], /RD, /WR, /CS and Reset. PD[15:0] is a 16 bit data bus. PA[3:0] is a
4 bit address bus that selects the internal register to be accessed. A data buffer consists

of two 74LS373 is used to interface PD[15:8] with HD[7:0]. A bus transceiver 7415245 is
used to interface PD|[7:0] with HD[7:0].

The address PA[3:0]=1111 is reserved for accessing the data buffer, which is used to
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Figure 11: The data bus adapter.
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store the high byte data. Two write operations are required to move a 16 bit data from
the host to an internal register of the Test Channel. The first write operation, which is
“OUT &H30F, high_byte_data” in BASIC, loads the high byte data into the data buffer.
The second write operation “OUT &H30i, low_byte_data” loads both the high byte and
low byte data into the internal register that is addressed by PA[3:0]=i.

Similarly, two read operations are required to move a 16 bit data from an internal regis-
ter of the Test Channel to the host. The first read operation “low_byte_data=inp(&H30i)”
moves the low byte of the internal register into the host data bus and the high byte into
the data buffer. The second read operation “high_byte_data=inp(&H30F)” moves the high
byte from the data buffer into the host data bus.

6 Testing the MMC Prototype

Testing the MMC prototype functionally is easy since all its functions can be exercised in
testing the Appl. Programs executed by the host can exercise all the operation modes
of the Test Channel, which include DTUR, DTCR, PTUR, PTCR, INS, RTEST, STBUS
and RSBUS. These functions can be verified if the Appl passes all of its tests.

Host programs that control the Test Channel mainly consist of I/O write and read
operations. Write operations are used to load data into the internal registers of the Test
Channel. Read operations are used to get status and test results from the Test Channel.
Two write operations are required for loading a 16 bit register because that the host
interface board has a 8 bit data bus while the Test Channel has a 16 bit data bus.

The handshaking circuit in the Test Channel requires two clock cycles to synchronize
a write operation. Since the clock speed of the host processor is faster than that of the
Test Channel, the host processor must wait for the completion of each write operation.
For example, in the prototype, the clock speed of the Test Channel is 1 MHz, thus a 2
us delay is required between two write operations. Table 11 shows three primitives in
Turbo BASIC. The primitive writeReg is used to write a 2 bytes data to a I/O location.
The primitive readReg is used to read a 2 bytes data from a specified I/O location. When
the primitive polling is executed, the control program is looping until the value of SR is
non-zero. These primitives are used to construct all test control programs.

To set up an operation mode, the host must load data to various internal registers of
the Test Channel. These registers include SYNR, CR, CNR, TxR, TC, RxR and SR. The
signal FEN must be disabled to ensure that the FSM is in a specific state which will allow
the write operation to be done correctly. Once all registers are loaded with proper values,
the signal FEN is then enabled, so the FSM can operate in the newly determined mode.

Testing the Test Channel
To test the Test Channel it is necessary to execute its eight operation modes. The operation
mode INS can be tested if a predefined instruction is sent to the IR of the Appl and the
received status is 101. Figure D.1 shows a program that can load 000 to the IR of the
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SUB writeReg(addr),, highValue%, lowValue%)
LOCAL i, j

OUT &h30f, highValue

0UT addr%, lowValue%

FOR i=0 to 30

=]

NEXT

END SUB

SUB readReg(result?, addr%)
LOCAL lowB%, highBY
lowB%=INP (addr%)

highB%=INP (&h30f)
result’=highB%*256+1lowBY
END SUB

SUB polling

DO

sr%=INP (&h300)

sri=sr)% and &hOf

LOOP UNTIL sr% <> O

PRINT "SR [tctc sctc evO evil]="; bin$(sr%)
RETURN

Table 11: Primitives for test control programs.
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Appl chip. The output pin EXTEST should be active after this program is executed. In
addition, the received status, which is in RxR, should be 101. Figure D.2 shows a program
that loads 011 to the IR of the Appl chip. The output pin SCANFB should be active
after this program is executed. We have tested the INS operation mode by sending all 8
possible patterns for the IR and then observe the primary outputs of the Appl.

The operation mode DTUR can be tested if a predefined vector is sent to a data
register of the Appl correctly. Figure D.3 shows a program that can send data to the
a selected data register. In this example the boundary scan register is loaded with the
data 011, the first two bits can be observed at the primary outputs of the Appl. After
this program is executed, the values on the SUM and CO pins should be 1,0 respectively.
We have tested the DTUR operation mode by sending different patterns and observe the
primary outputs.

The reset operation modes can be tested similarly. For example, the operation mode
PTCR are tested if pseudorandom test patterns are sent to the Appl and the signature
of the test results are correct. Another example is that the operation mode RSBUS are
tested if the slaves can be reseted after this operation is executed.

The Test Channel has been tested and verified by executing control programs for all
operation modes. The observed results are correct.

Testing the Appl

The functional circuit of the Appl contains only a 1 bit full adder. The inputs to the
adder is PD, PSUM, PCO and the outputs of the adder is NSUM and NCO. The input
PD can be controlled by the boundary scan register (BSR) during the INTEST mode,
while the inputs PSUM and PCO can be controlled by the feedback register (FB) during
the SCANFB mode. Therefore, to apply a 3 bits test vector, the Appl must be in the
INTEST mode so that the value for PD can be scanned in, followed by the SCANFB mode
during this time the values for PSUM and PCO can be scanned in. It is not necessary to
scan out the test results since during both modes the values of the NSUM and NCO can
be observed at the output pins SUM and CO, respectively.

To test the full adder functionally, 8 test patterns are required. Table 12 shows the
truth table for the inputs and the expected values on the output pins SUM and CO.

Figure D.4 shows a program, which when executed by the host, can sets the PD to 0,
the PSUM to 0 and the PCO to 1. The Test Channel first operates in the INS mode and
sends 001 to the IR in order to set the Appl to the INTEST mode. The Test Channel
then operates in the DTUR mode and sets the input PD of the full adder to 0. Next, the
Test Channel operates in the INS mode again and sends 011 to the IR in order to set the
Appl to the SCANFB mode. The Test Channel then operates in the DTUR mode and
sets the inputs PSUM and PCO of the full adder to 0 and 1, respectively. If the full adder

is fault free, the values of the output pins SUM and CO should be 1 and 0, respectively.

The full adder can be tested functionally by repeating this process for the remaining
test vectors.
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Table 12: Functional test vectors and expected results for the full adder.

7 Conclusions

The prototype has successfully executed the required test procedures for the test chip.
We have shown that programs that describe these test procedures can be easily developed
since they can be written in a high level language such as BASIC. Since the prototype has
been implemented using a PC, it costs much less than a conventional ATE. Furthermore,
the performance of the prototype is superior to an ATE in testing boundary scan devices
thanks to the Test Channel chip.

Using the developed Test Channel it is possible to implement a minimal MMC by
adding two chips such as an off-the-shelf RAM chip (e.g. Hitachi 6116), and a micro-
controller (e.g. Intel 8048). Thus at most three chips are required to make a board
completely self-testable.

The major drawback of the field programmable gate array technology is its limited
capacity. Because the maximal capacity of the selected device (ACT1020) is less than 2000
gates, many functions in the original designs have been omitted. It is possible to implement
the MMC using a different technology that has a larger capacity than an ACT1020. In
such case the performance of the MMC can be improved as follows.

1. Add to the Test Channel parts omitted in this implementation, such as PA and PB
registers, and the DC counter as described in [3].

2. Increase the length of the two counters TC and SC, such that both the maximal
number of test vectors and the number of bits in each vector can be increased.

3. Add a memory control circuit so that the Test Channel can access a local RAM. In
this way it is possible for the Test Channel to send a long sequences of instructions
and data without interruption.
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4. Integrate the processor, the Test Channel and a memory unit into a chip. Handshak-
ing circuit among the processor and the Test Channel can be avoided since they can
be designed to be synchronous. However, to fit into a chip, the size of the processor
instruction set and the on-chip memory should be bounded.
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Schematic of the ADEC.
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REM extest.BAS ---- set extest mode --- by Lien

REM INS OPERATION +++ put appl ir=000
REM DISABLE FEN

call writeReg(&h308, 0, 0)

REM LOAD CR

call writeReg(&h300, O, &h24)

REM LOAD CNR

call writeReg(&h301, O, &hOe)

REM LOAD TXR

call writeReg(&h306, O, &h6c)

REM LOAD TCL = &H1A, high byte =0
call writeReg(&h304, 0, &hia)

REM CLEAR SR

call writeReg(&h309, 0, 0)

REM ENABLE FEN

call writeReg(&h308, 0, 1)

GOSUB polling

REM DISABLE FEN

call writeReg(&h308, 0, 0)

REM CLEAR SR

call writeReg(&h309, 0, 0)

REM LOAD TXR = OO0OC\H, SELECT BS CHAIN, IR0=[0,1,2]=000,
call writeReg(&h305, 0, &hOc)

rem ==-=-=---- the above line : 0=0000 the 000 decide ir=000
call readReg(rxr, &h308)

PRINT "RXR="; bin$(rxr)

REM ENABLE FEN

call writeReg(&h308, 0, 1)

GOSUB polling

REM IF DONE, THEN APP1 IR[0,1,2]=011



Appendix D 2
REM --- set to SCANFB mode --- Lien

REM DISABLE FEN

call writeReg(&h308, 0, 0)

REM LOAD CR

call writeReg(&h300, O, &h24)

REM LOAD CHNR

call writeReg(&h301, O, &hOe)

REM LOAD TXR; high byte=0

call writeReg(&h305, O, &h6c)

REM LOAD TCL = &H1A

call writeReg(&h304, O &hla)

REM CLEAR SR

call writeReg(&h309, 0, 0)

REM ENABLE FEN

call writeReg(&h308, 0, 1)

GOSUB polling

REM ———m—= do @gain -—--crREssSEEIEEEERaERRan
REM DISABLE FEN

call writeReg(&h308, 0, 0)

REM CLEAR SR

writeReg(&h309, 0, 0)

REM LOAD TXR = 006C\H, SELECT fb CHAIN, IRO=[0,1,2]1=011,
call writeReg(&h305, O, &h6c)

rem =—====== the above line : 6=0110 the 110 decide ir=011
REM READ RXR

call readReg(rxr, &h306)

REM ENABLE FEN

call writeReg(&h308, O, 1)

GOSUB polling

REM IF DONE, THEN APP1 IR[0,1,2]=011

REM READ RXR again ---

call readReg(rxr, &h306)

PRINT "RXR="; bin$(rxzr)

Py

Figure D.2: Program that sets the IR of the Appl to 011.
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REM ---- send 011 to the BSR --- Lien
REM DISABLE FEN

call writeReg(&h308, 0, 0)
REM LOAD CR=20\H, MODE IS DTUR
call writeReg(&h300, 0, &h20)
REM LOAD CHNR

call writeReg(&h301, 0O, &hOe)
REM LOAD TXR=006c¢

call writeReg(&h305, 0, &h6c)
REM LOAD TCL = &HOO1A

call writeReg(&h304, 0, &hla)
REM CLEAR SR

call writeReg(&h309, 0, 0)
REM ENABLE FEN

call writeReg(&h308, 0, 1)
REM wait for conditions occur
GOSUB polling

REM ------ do again -------
REM DISABLE FEN

call writeReg(&h308, 0, 0)
REM CLEAR SR

call writeReg(&h309, 0, 0)
REM load txr =003c

call writeReg(&h305, 0, &h3c)
rem -------- the above : 3=0011, the 011 decide bs=110,
REM READ RXR again ---

call readReg(rxr, &h3086)
PRINT "RXR="; bin$(rxr)

rem clear rxr

call writeReg(&h306, 0, 0)
REM ENABLE FEN

call writeReg(&h308, 0, 1)
REM wait for conditions occur
GOSUB polling

REM READ RXR again ---

call readReg(rxr, &h3086)
PRINT "RXR="; bin$(rxr)

rem --- end of dtur.bas ----

Figure D.3: Program that sends data to the Appl.
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REM ---- set extest mode ----------------=-====----- by Lien
call writeReg(&h308, 0, 0)

call writeReg(&h300, O, &h24)

call writeReg(&h301, O, &hOe)
call writeReg(&h304, O, &hOa)
call writeReg(&h305, O, &hOc)
call writeReg(&h309, 0, 0)
call writeReg(&h308, 0, 1)

GOSUB polling

call readReg(rxr, &h306)

PRINT "RXR="; bin$(rxr)

REM ---- send 010 to the data register ---------------
call writeReg(&h308, 0, 0)

call writeReg(&h300, O, &h20)

call writeReg(&h301, O, &hOe)

call writeReg(&h304, O, &hOa)

call writeReg(&h305, O, &h2c)

call writeReg(&h306, 0, 0)

call writeReg(&h308, 0, 1)

GOSUB polling

call readReg(rxr, &h306)

PRINT "RXR="; bin$(rxr)

REM set IR = 011 -------=-=-=-------—-=-=-------------=-=-
call writeReg(&h308, 0, 0)

call writeReg(&h300, O, &h24)

call writeReg(&h301, O, &hOe)

call writeReg(&h304, O, &hOa)

call writeReg(&h305, O, &hOc)

rem ----- the above line : 0=0110 the 110 decide ir=011
call writeReg(&h309, O, 0)

call writeReg(&h308, 0, 1)

GOSUB polling

call readReg(rxr, &h306)

PRINT "RXR="; bin$(rxr)

REM ---- send 010 to the data register -------------------
call writeReg(&h308, 0, 0)

call writeReg(&h300, O, &h20)

call writeReg(&h301, O, &hOe)

call writeReg(&h304, O, &hOa)

call writeReg(&h305, O, &h3c)

TR, = s=—s=== the above : 2=0010, the 010 decide bs=010,
call writeReg(&h308, 0, 1)

GOSUB polling

call readReg(rxr, &h306)

PRINT "RXR="; bin$(rxr)

Figure D.4: Program that applies a test vector to the full adder.
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Abstract

It is well known that acyclic sequential structures are considerably easier
to test than arbitrary sequential circuits. Hence some partial scan techniques
attempt to simplify the test generation problem by ensuring that the portion
of the circuit effectively under test is acyclic. In such designs the test time is
dominated by the shifting of test patterns into and out of the scan path. We
present a compacting technique that minimizes the number of test patterns
required to detect an arbitrary fault. A modified test schedule is used in which
each compacted pattern is held in the scan path until the next pattern is
ready to be shifted in. An optimal test scheduling algorithm is presented
which determines the minimum possible number of compacted test patterns
required for an arbitrary fault based on the circuit structure. Using the optimal
schedule we derive a condensed combinational test generation model (TGM)
for combinational ATPG under a multiple fault model. This TGM replaces
the iterative array used in traditional sequential ATPG. This model allows the
detection of any arbitrary fault using a minimum possible number of distinct
test patterns.



1 Introduction

Automatic test pattern generation (ATPG) for acyclic sequential structures is known to
require substantially lower computation effort than for arbitrary sequential structures [1].
Partial scan approaches that make use of this fact have recently been proposed [2,3].
Essentially they select flip-flops (FFs) to be included in the scan path such that the portion
of the circuit effectively under test, the kernel, is either acyclic or close to acyclic. Test
generation is then carried out for the kernel to determine test sequences; the complexity of
this computation is similar to that for combinational circuits. This approach requires that
while in the test mode the clock signals for scan FFs should be controllable independently
of the clock signals for the non-scan FFs. A test sequence can then be applied to the kernel
using the following two steps alternately:

1. Serially shift a test pattern into the scan path while disabling the clock signal feeding
the non-scan FFs (this effectively puts the non-scan FFs in a HOLD mode);

2. While disabling the clock signal feeding the scan FFs (putting them in a HOLD
mode), activate the clock signal for the non-scan FF's for one clock cycle (this enables
test data to propagate through one level in the kernel).

A test sequence for a fault in a sequential circuit consists of a set of consecutive
time frames, in each of which patterns containing both specified and don’t-care values
may need to be applied at the various inputs. The length of a sequence is the total number
of time frames in it. For an acyclic structure the length is related to the depth or the
highest number of FFs in any path in the structure. If d is the depth of a structure, the
test sequence length is bounded by d 4+ 1. However, a given test sequence may contain
unassigned or don’t-care input values such that not all primary inputs need to be provided
with new data at each of the d + 1 clock cycles. If the inputs and outputs of the structure
under test are directly accessible, the time for applying the sequence is d + 1 clock cycles
and is not affected by the presence of don’t-care inputs. However, in a partial scan design
many of the inputs and outputs of the structure are accessed by shifting data serially.
Hence the presence of don’t-care input values could potentially lead to a great saving in
test time. In such circuits, where the length of the scan path is usually much higher than
d, the test time is dominated by the time to shift new patterns into and out of the scan
path.

An example of acyclic structures which need less than d + 1 input patterns are
balanced structures [2]; these are a class of structures that require only a single-pattern
test for any fault. The BALLAST methodology uses this fact by selecting scan path FFs
so as to make the kernel balanced, i.e., every path between any two points in the kernel
has the same number of FFs. Each test pattern is held in the scan path for d + 1 clock
cycles. (In some cases the need to hold the test data can be eliminated by ordering the
scan path appropriately and manipulating the test data [4].) This technique guarantees



that every detectable fault is single-pattern testable. Test patterns are obtained simply by
replacing all FFs in the kernel by wires and running combinational ATPG on the resulting
combinational equivalent. The number of FFs to be placed in the scan path in this
approach, however, is higher than that required to just make the kernel acyclic.

In this paper we study the implications of using a kernel that has an acyclic structure
but may be unbalanced. A branch-and-bound algorithm for determining a minimal set of
registers to be made scannable such that the kernel is acyclic can be found in [2]. Clearly the
area overhead for this case is lower than for a balanced kernel. But a simple combinational
equivalent cannot be used for ATPG. Further, any given fault may require up to d +1
patterns to detect it.

For example, consider the circuit shown in Figure 1(a) consisting of combinational
logic blocks A, B, C interconnected with registers. Each connection shown may consist of
any number of wires. Registers R3 and R4 are selected to be made scannable since the
resulting kernel, shown in Figure 1(b), is acyclic. Note that the kernel is obtained from
the original circuit simply by removing the scan registers and replacing them by pseudo-
inputs/outputs. In the kernel, inputs/outputs connected to the same combinational logic
block are merged together; thus the kernel effectively has one output at C which feeds scan
path registers and the primary output O1, and inputs at both A and B are fed by scan
registers and/or the primary input I1. The depth of this kernel is 2.

Typical sequential ATPG programs would construct an iterative array consisting
of up to 3 copies of the kernel, each representing one time frame, and attempt to find a
test sequence for a given fault (if one exists) within these time frames. Since the kernel
has only one primary output at C, any test sequence for a fault must propagate an error
to this output. Assume that the error is visible at the output at time frame 2. Because
of the topology of the circuit this output value must depend only on the input values at
A at time steps 0 and 2 and on the input value at B at time frame 1. All other input
values are essentially “don’t-cares” in all possible test sequences and are indicated by ‘x’
in the input sequences in Figure 1(b) (to be applied in the order from left to right). Note
that each ‘X’ represents a vector of don’t-care values. An ATPG program would normally
assign random logic values to these inputs. This means that approximately half the test
time in this case could be taken up in shifting random data into the scan path.

The effectiveness of this test process can be improved in two ways. First, the test
pattern generator can be enhanced to fill in the unassigned input values with deterministic
patterns that detect one or more additional faults, rather than with random data. In gen-
eral there is no guarantee that any additional faults can be detected in this way, especially
if most of the circuit faults have already been covered. Second, the test sequence can be
compacted so that the shifting time is reduced without reducing its effectiveness. The
latter approach is the subject of this paper. In the simple example of Figure 1, A has its
input value specified at time frame O but not at 1, while B has its input value specified at 1
but not at 0. Hence we can combine the first two patterns by shifting ap and b, simultane-
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ously into the scan path, holding them there for two clock cycles instead of one, and then
shifting in a;. This is a modification of the basic test procedure described in Section 1.
Thus the number of shift cycles of the scan path (i.e., the number of times a new pattern is
shifted in) is reduced from three to two without losing any of the deterministic part of the
test sequence. Note that this applies irrespective of which fault is under test. Intuitively,
the fact that there are two “unbalanced” paths from A to D with unequal delays indicates
that in general two distinct input patterns at A will be required to guarantee detection of
an arbitrary fault.

In Section 2 we present a more formal and general discussion of how to test unbal-
anced acyclic structures. We use a formal model to compute a lower bound on the number
of shift cycles required to test for an arbitrary fault, and present a test compaction algo-
rithm that achieves the lower bound. In Section 3 we study the problem of simplifying
the iterative array model used for ATPG by making use of the fact that the kernel is
acyclic. For example, Figure 1(c) shows a test generation model (TGM) consisting of a
reduced iterative array that is sufficient for any fault in the kernel. The TGM can be
further condensed based on the compacted schedule that will be used for test application,
as described in Section 3. Conclusions are presented in Section 4.

2 Optimal Test Scheduling

A given test sequence for a partial scan design whose kernel is an acyclic structure of depth
d may consist of up to d + 1 time frames. Our objective is to find a way of compacting
the patterns in a test sequence so as to minimize the number of time frames at which new
data needs to be applied. This ensures that when the test patterns are applied using the
scan path, the shifting time (which usually dominates the test time) is minimized. Assume
that the time frames are numbered from 0 (the earliest) to d (the latest, at which the fault
gets detected). We define the schedule as the list of time frames in the test sequence that
require new data to be shifted in, in ascending order. Thus a schedule (0,1,2,...,d) means
that new data is shifted in at every time frame, while (0) represents a single-pattern test.
In the example of Figure 1 presented earlier time frames 0 and 1 are combined together,
hence the schedule is (0,2).

We shall refer to each element in the schedule as a shift step, since in the cor-
responding time frame a new pattern needs to be shifted into the scan path, and each
element not in the schedule as a hold step, since it requires the contents of the scan path
to be held for an additional clock cycle. Note that the test pattern scanned in during a
given shift step ¢ in the schedule (...,7,7,...) is actually the result of compacting the test
patterns for time frames s, ¢ +1, 1+ 2, ..., 7 — 1.



The Compaction Principle

In our earlier example using Figure 1, we combined the test patterns for time frames 0 and
1 because neither of the inputs at A or B need to have a value specified in both frames. This
compaction applies to all test sequences in this example. Before studying more complex
cases we state the following principle that governs our compaction problem. The term
minimal test sequence refers to a test sequence in which all unspecified input values are
left as don’t-care values.

Compaction Principle: A set of consecutive time frames in a minimal test sequence
may be compacted together into a single shift step in a schedule only if no input is required
to be assigned values in more than one of these time frames.

We will apply this compaction principle before test pattern generation is actually
carried out. Note that the principle does not make use of the actual values of the test
patterns; it uses only the information, derived from the circuit structure, about which
input values can be specified and which must be don’t-cares in various time frames. In
a single-output acyclic structure, such as our previous example, the required information
about the input values can be derived using the following rule: An input can be assigned
a value in time frame z if there exists a path from that input to the output that passes
through d — z FFs (assuming the error is first observed at the output in time frame d).
Later in this section we describe how to determine an optimally compacted schedule that
satisfies the compression principle based on this information.

Modeling Schedule Constraints

Let us now consider the multi-output structure in Figure 2 in which blocks A, B, C, etc.
are combinational and unlabeled blocks are registers. Its depth d is 4 and it has three
inputs and four outputs, all of arbitrary width. As before the inputs and outputs are
accessible only through a scan path which is not shown. Given an arbitrary fault in the
circuit, a test sequence may propagate the fault to any of the outputs. At some outputs
it may be possible to detect a fault at a time frame earlier than d. However, note that
the same test sequence displaced in time can be used to detect a fault at different time
frames. Hence we shall assume without loss of generality that a fault is to be detected at
time frame d. This is justified since any fault that is propagated into the scan path at
time frame d will be observed during the first shift step for the subsequent test sequence.
This assumption will lead to a simplified test generation model discussed in Section 3.

The patterns shown at each input in Figure 2 indicate the time frames at which an
input may possibly need to be specified in order to detect a fault at one of the outputs at
time frame d. This information is determined in the same way as in the single-output case,
except that for a given input, paths to all outputs have to be taken into account. Thus
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Figure 2: Example of acyclic kernel.

Input values on which the output depends
Output || Sequence at A I Sequence at C ] Sequence at H

A X X X X a4 — -
C X X @y X X X X X X ¢4 —
D ag a3 X XX X X XegX Xhi hy X X
E X X XagX — —

Table 1: Relationships among inputs and outputs.

for example the input to C has values at time frames 3 and 4 but is always unspecified
at all other times. The input to A may need specified values at any time frame, because
corresponding to each time frame there is some path with the appropriate number of FFs
ending in time frame d at one of the outputs. Hence it appears at first glance that the
compaction principle will not allow a reduced test schedule.

However, to detect any fault it is sufficient to propagate it to just one of the outputs.
If some test sequence for a fault propagates an error to more than one output, this implies
that there may exist a reduced form of the same sequence that propagates it to only one
output. Table 1 shows, for each output, what input values need to be specified such that
the fault is observed at that output at the end of the 4th time frame. The table shows that
no test sequence would require all 5 values at A to be specified. Also it is clear that all 5
frames cannot be compacted together, since the output at D (which we shall refer to as D
for short) requires two different values at A and also two different values at H. Under these
constraints it seems intuitively clear that a bare minimum of two shift steps will be needed
in the schedule for an arbitrary test sequence in order to satisfy the compaction principle
stated earlier. A model for representing the schedule constraints is described below.



Given an input = and an output y, let o(z,y) be defined as the ordered list of time
frames at which the input sequence at z for output y can have specified values. Thus
for example Table 1 shows that o(4,D) = (0,1) and o(H,C) = (). |o(z,y)| denotes the
number of elements in o(z,y). We shall attempt to find a minimal schedule by constructing
a schedule constraint graph (SCG). We define an SCG as a directed graph G = (V, A)
where V = (0,1,2,...,d) represents the set of time frames and an arc (f1, f2) in A implies
that frame f; must occur strictly before frame f; in any compacted test sequence. An
SCG is constructed using the following procedure, which takes as input the values o(z,y)
for all inputs z and all outputs y.

procedure constructSCG (o): Returns schedule constraint graph, G =
(V, A).
{
V «{0,1,2,...,d}, where d = depth of the circuit;
A+45
For all input-output pairs (z,y) of the circuit such that |o(z,y)| > 2 do:
/* Add constraints corresponding to this input-output pair */
{
L —o(z,y);
While |L| > 2 do:
{
t +— first element of L;
J « second element of L;
Remove 1 from L;
/* Time frames ¢ and j cannot be compacted together */
For each k, 0 < k <1, do:
A — AU{(k,5)};
For each k, 5y < k < d, do:
A+— AU {(i, k)},
}
}

} O

For the circuit of Figure 2 the construction of the SCG is illustrated in Figure 3.
We begin with the set of nodes V = {0,1,2,3,4} and no arcs in A. Referring to Table 1,
there are two input-output pairs that may contribute to arcs in the SCG: ¢(H, D) = (1,2)
and o(A,D) = (0,1). The fact that o(H, D) = (1,2) implies that there must be a shift
step separating time frames 1 and 2 since distinct test patterns may be required at input
H. In terms of constraints on the schedule, this implies that:

1. All time frames up to and including time frame 1 must occur before time frame 2 in
the schedule; and

2. All time frames including 2 and beyond must occur after time frame 1 in the schedule.
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Figure 3: Construction of schedule constraint graph.

The first item above contributes arcs (0, 2) and (1, 2), while the second contributes arcs (1,
3) and (1, 4). Thus the constraints due to the input-output pair (H, D) translate into the
arcs shown in Figure 3(a), which is the result of the first iteration of the outer “for’ loop in
the procedure. In the second iteration the constraints due to the pair (A, D) are added,
resulting in the completed SCG shown in Figure 3(b). Note that in the above example it
is not sufficient to have only the arcs (0, 1) and (1, 2) in the SCG. By adding the other
arcs we are explicitly encoding the fact that although some time frames represented by
nodes in V may be compacted with others, they can never be scheduled in reverse order.

In the procedure constructSCG, the outer ‘for’ loop may be repeated for all Ny
inputs and all Np outputs. Within the loop the time complexity is O(d?), hence the overall
time complexity is O(NyNod?).

Picking a Schedule

The SCG is essentially a representation of information on which time frames may be
compacted together and which may not. Based on the SCG we are in a position to make
the following statements about the schedules resulting from compaction.

Lemma 1 Given a sequence of frame numbers, S = (f1, f2,..., fn), where 0 = f1 < fo <
<o+ < f, < d, the compacted schedule denoted by S satisfies the compaction principle if for
any arc (a,b) in the SCG, there is some f; in S such that a < f; < b.

Proof Assume that for all arcs (a,b) in the SCG, there is some f; in S such that ¢ <
fi < b. Assume for the purpose of contradiction that the compaction principle is violated
by S. Then there must be some input of the circuit that needs distinct values in some
time frames a and b that are compacted into the same shift step in S. This implies that
the SCG has an arc (a,b). But the fact that a and b are in the same shift step also implies
that there is no f; in S such that a < f; < b, which is a contradiction. O

"With these constraints encoded explicitly, our problem is actually a special restriction of the equal
execution time job scheduling problem [5|[p. 402] with the number of processors not less than the number
of jobs.



The above lemma essentially means that a given schedule S is valid, i.e., does not
violate the compaction principle, if no two time frames that have an arc between them in
the SCG are merged within the same shift step.

Lemma 2 The number of nodes in the longest directed path in the schedule constraint
graph 15 a lower bound on the number of steps in any schedule that satisfies the compaction
principle.

Proof Let P be a longest path in the SCG and let it consist of the é nodes fi, fa, ..., fs
in sequence. From the construction of the SCG, every arc (f;, fi+1) implies that if the
frames f; and f;;; were compacted into the same shift step, the compaction principle
would be violated. Hence there cannot be less than é shift steps in any valid schedule. O

In Figure 3(b) the path consisting of nodes 0, 1, 2 is the longest, hence at least
three shift steps are required in any compacted schedule.

Our problem is now to find a schedule (fi, f2,..., fs) of minimum length that sat-
isfies the following condition: given any arc (a,b) in A, the nodes a and b must not be
compacted into the same shift step in the schedule, i.e., there must be an f; in the schedule
such that a < f; < b. We present below a greedy algorithm that achieves the lower bound
of Lemma 2. It essentially places the nodes of the SCG in levels such that the nodes in
the longest path lie in consecutive levels, and all arcs that begin at a particular level end
at some higher-numbered level. Then all nodes (time frames) at the same level can be
compacted into the same shift step in the schedule.

algorithm schedule (G = (V, A): schedule constraint graph): Returns S, a
schedule of minimum length satisfying G.
{
[+ 0;
While |V| > 0 do:
{
l—1+1;
Ry + nodes in V' having no incoming arcs;
/* Ry consists of consecutively numbered time frames starting with the
lowest-numbered time frame in V; see proof of correctness */
Remove the nodes in R;, along with adjacent arcs, from G;
}
/* Final value of [ represents number of steps in schedule */
Return schedule S = (my, mg,..., m;) where
m; = lowest-numbered time frame in B;, 1 <1 < [.
} O

The sets R, determined by this algorithm for the SCG of Figure 3 are {0}, {1} and
{2, 3, 4}, hence the schedule is (0, 1, 2). The computation involved in computing R; in



each iteration is of order O(d?) assuming that an adjacency matrix is used to represent
the SCG. Since the number of iterations is bounded by d, the overall complexity is O(d?).
Below we demonstrate that the algorithm schedule works correctly in all cases.

Proof of Correctness We need to prove two assertions: first, that S is a schedule
satisfying the compaction principle; second, that the resulting schedule is optimal.

Consider the first iteration of the ‘while’ loop. By construction, the lowest-numbered
node in G (i.e., 0 for { = 1) cannot have incoming arcs, hence it must be included in R;.
Let this node be r;. Let the highest-numbered node in R, be r,. We will now show that
all nodes r such that r; < r < r; must be in E;. Assume that there is in fact a node v,
ry < v < rp, that is not in R;. Then there must be a node v < v with an arc (u,v) in G.
Then by construction of G, v must have outgoing arcs to all nodes v' > v. Hence there
must be an arc (u,r;) in G, which is a contradiction since r; is in R;. Thus R, represents
a group of consecutively numbered time frames starting with the lowest-numbered one
currently in V.

After the nodes in R; are removed from G, the resulting graph is similar in form
to G since only a consecutive set of lowest-numbered nodes has been removed. Hence
the arguments above can be applied recursively to the resulting graph for the subsequent
iterations. Thus every set F; consists of consecutive time frames. Note also that for any
arc in G, the two adjacent nodes cannot be in the same R;. From Lemma 1 it follows that
S is a valid schedule satisfying the compaction principle.

Since all nodes with no incoming arcs are removed in each iteration of the ‘while’
loop, the length of the longest path must decrease by 1 each time. Thus the number of
iterations is equal to the number of nodes in the longest path. According to Lemma 2, this
is in fact a lower bound on the number of steps in any valid schedule. Hence the schedule
S returned by the algorithm is optimal. 0

In this section we have shown how to determine an optimally compacted schedule
based on the structure of the acyclic circuit under test. This schedule can be utilized in
two ways. First, it can be used in conjunction with a traditional sequential ATPG program
to compact each test sequence produced before random data is used to fill in unspecified
input values. In the sequences produced by ATPG, the time frame at which the fault is
detected may be treated as frame d, and the sequence can be compacted according to the
schedule. Some test sequences produced by ATPG may propagate a fault to more than
one output. Such sequences should be preprocessed by selecting any one of those outputs
and then forcing any input value to don’t-cares if the value in that time frame does not
influence the selected output at the time of detection.

The second and more efficient way to utilize the schedule is to use it as a guide for
test generation itself. In the following section we will show how to construct a restricted
test generation model to replace the traditional iterative array used in sequential ATPG.
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Test generation on this model will directly result in compacted test sequences for the
desired schedule.

3 Test Generation Model

We now turn to the problem of test pattern generation for an acyclic structure. Given an
optimized schedule with the smallest number of shift steps, we shall use it to influence the
test generation process and simplify it if possible.

In test generation for general cyclic circuits, sequential ATPG programs typically
construct an iterative array containing repeated copies of the circuit in order to represent
the behavior of the circuit in different time frames [6]. With cyclic circuits the size of
the iterative array required to detect an arbitrary fault may grow exponentially with
the number of FFs in the circuit. However, in an acyclic circuit every irredundant fault
must be detectable within d 4 1 clock cycles, where d is the depth of the structure, and
the complexity of the test generation process is comparable to that for combinational
circuits [1]. In fact a simple combinational test generation model (TGM) can be derived
from the circuit structure, and any combinational ATPG program capable of dealing with
multiple faults can be used. Not only is a sequential ATPG program unnecessary, this also
avoids the execution overhead in maintaining iterative arrays of various lengths.

The concept of combinational TGMs is illustrated in Figure 4. Figure 4(a) shows
a simplified version of the structure in Figure 2. It has three outputs at C, D and E
respectively. We assume that any fault under test will be detected at one of the outputs
at time frame 4. Figure 4(b) shows both outputs placed in time frame 4, and the portion
of the circuit that feeds each output is laid out in a levelized fashion corresponding to the
time frames. Blocks that are required to be in more than one time frame are replicated;
thus for example A occurs at several different time frames in the expanded structure since
the output values may depend on the behavior of A in various time frames.

Each copy of a repeated block has been pruned to remove any logic that will not
be used for test generation; this is indicated by shaded regions but will not be explicitly
shown from now on. The subscripts on Ao, E;, etc. refer to the time frames in which the
corresponding instances of the logic blocks exist; the highest subscript is clearly the depth
d = 4. All registers in the expanded structure have been replaced by wires and the resulting
TGM is combinational. This is the general form of the TGM before any compaction; we
shall refer to it as the basic TGM and it represents the schedule (0,1,2,...,d).

In order to generate a test for a fault in the original sequential circuit, the fault
must first be mapped to the set of corresponding fault instances in the combinational TGM.
(This is analogous to the modeling of faults in iterative arrays.) Ordinary combinational
ATPG can now be carried out on the TGM. The test pattern obtained can be transformed
into a test sequence for the sequential circuit using the following rule: all input patterns
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Figure 5: Balanced structure and its test generation model.

at logic blocks with subscript + must be used as the 7th pattern in the test sequence. This
of course applies if the schedule (0,1,2,...,d) is used with no compaction.

Condensing the Test Generation Model

When the test schedule is compacted as described in Section 2, not only is the test time
per test sequence minimized, but we can also take advantage of the compacted schedule to
condense the TGM. For the special case of balanced structures [2] such as the one shown
in Figure 5(a) it has been shown that a single pattern is always sufficient for detecting
any fault, i.e., the optimal schedule is always (0). The TGM for this class of structures
is simply the combinational equivalent of the structure formed by replacing all FFs by
wires as shown in Figure 5(b). Thus each logic block appears only once in the TGM,
and only single faults need to be considered during combinational ATPG. However, this is
not the case with general unbalanced structures. Given the schedule to be used, we shall
show how a maximally condensed TGM can be derived. We shall prove that provided the
schedule satisfies the compaction principle, the condensed TGM is sufficient for complete
test pattern generation.

In condensing the TGM we begin with the basic TGM for the schedule (0,1,2,...,d)
and modify it based on the schedule provided. We essentially utilize the fact that each
input pattern applied to the kernel at a shift step in the schedule is also applied during
the subsequent hold steps. The condensation process can be carried out by repeating the
following two steps which are illustrated in Figure 6 for the circuit of Figure 4. The term
schedule interval refers to a shift step and its subsequent hold steps.

Step 1: Repeat the following for each schedule interval. If any input signal
occurs at more than one time frame in the same interval, connect the different
copies together by fanning out the earliest copy of the signal (i.e., the one
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occurring in the lowest-numbered time frame) to the other copies so that only
one copy of the input signal remains within the interval.

For example, consider the circuit of Figure 4(a) for which (0,1) is an optimal sched-
ule. Figure 4(b) shows the basic TGM which is to be condensed. The schedule (0,1) has
only one interval containing more than one step, namely the one consisting of time frames
1, 2, 3 and 4. In this interval the input feeding logic block A occurs three times, hence
these inputs are connected together as shown in Figure 6(a). Similarly the inputs to C
in time frames 3 and 4 are connected together. Note that A;, A; and A3 now receive
identical inputs and in fact they represent exactly the same behavior extended over three
clock cycles. The following operation will replace them with one merged copy in A;.

Step 2: Repeat the following operation until no further changes can be made
in the TGM. Let B be a logic block in the circuit and let 5;,,B:,,..., 0, be
different copies of § such that z; < ¢3--- < 1,, and every signal feeding an input
of f3;, also fans out to the corresponding input of each of f;,,...,08i,. Then
remove f;,,..., 0, from the TGM and fan out each output of f§;, to all the
signals originally fed by the corresponding outputs of g;,,..., fi,.

At first this step can be applied to remove Ay and A3 and fan out the output of
A; to By and F4 as well. Because block A must have exactly the same behavior in time
frames 1, 2 and 3, we have simply combined the three copies for the purpose of ATPG,
and fanned out the outputs appropriately. Note that this does not alter the execution of
the test in any way; it only incorporates some information present in the test schedule into
the test generation process, reducing the amount of analysis carried out during ATPG. In
the resulting structure both B; and Bj are fed by A;, hence they can be merged into Bs.
Finally in a similar way Cy4 can be merged into C3. No further merging is possible and the
final condensed TGM for the schedule (0, 1) is shown in Figure 6(b).

The condensation steps can be applied to any basic TGM, given a schedule, to yield
a condensed TGM. Figure 5(a) shows an acyclic structure that has the balanced property,
for which the optimal schedule is (0); Figure 5(b) shows the condensed TGM resulting
from the procedure described above. As expected the TGM is a simple combinational
equivalent of the original structure.

The computation complexity of the condensation steps depends on the implemen-
tation and on the level of description of the circuit. The computation in Step 2 can be
minimized by forming maximally connected clusters of combinational logic blocks, and car-
rying out the circuit manipulations on this form of the circuit. Later the lower-level logic
descriptions can be filled in for each high-level block, pruned where necessary as described
earlier.
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Test Pattern Generation

Given an acyclic structure C, a schedule S = (¢1,¢2,...,%n), and a condensed TGM T¢
for C based on the schedule S, the following procedure can be used to generate a test for
an arbitrary fault f in C. Let fo be the corresponding fault (possibly a multiple fault
since some logic may be replicated) in T¢. Let us assume that fc is detectable in T¢; then
ordinary combinational ATPG can be used to derive a test pattern for fo in T¢. Note that
due to the nature of the condensation process, any given input signal to C can occur in
Tc only at time frames ¢1, ¢q, etc. in S. For each ¢;, let p; be an input pattern containing
the values of all inputs that occur in time frame ¢; in T¢, and containing don’t-care values
for all other inputs. Then the sequence of patterns (p1,p2,...,Pn), if applied according to
the schedule S, will detect f in C.

In order to justify the use of the condensed TGM we need to validate the assumption
that if f is detectable in C then f¢ is detectable in T¢. This is done by the following

theorem.

Theorem 1 Given a fault f detectable in an acyclic circuit C, and given a schedule S
that satisfies the compaction principle, the corresponding fault fc (possibly multiple) is
detectable in the condensed TGM T¢.

Proof Let Tp be the basic TGM of C and let fg be the fault (possibly multiple) cor-
responding to f in Tp. Since f is detectable in C', fg must be detectable in T using
some test pattern 7p. Suppose the error is propagated to output 1y in T5. Then the cone
of logic feeding (1; in Tp has certain input values in 75 that constitute a sufficient test
pattern 73 for fp, irrespective of the other input values. Note that in 75, no input signal
takes on more than one distinct value within the same schedule interval, otherwise the
compaction principle would be violated by the schedule S. Hence for every input signal in
the condensed TGM T there is a unique value that can be applied to it in every schedule
interval in order to simulate the behavior of T. Let the input pattern formed by these
values be 7¢; note that it is a condensed form of 7. Since 7 detects fp, it must cause
different output values at 1y in the good and faulty versions of Ts. Hence 7o must cause
different output values at (14 in the good and vaulty versions of T. Thus f¢ is detectable
in Tc. O

The above theorem proves that for any detectable fault in C, a test sequence that
follows the schedule S can be generated using combinational ATPG on 7. This leads to
the following corollary.

Corollary Given an acyclic circuit C and a schedule S that satisfies the compaction
principle, a complete test pattern set for the condensed TGM T¢ results in a complete test
sequence set for C using the schedule S. O
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We have thus shown that the condensed TGM derived in this section is a sufficient
and complete model for test generation. The size of the TGM is lower than the cor.re—
sponding iterative array used by traditional sequential ATPG programs. By condensing
the TGM for the given schedule to be used in applying the test, some redundan.t fzom-
putations during the test generation process are eliminated. If the schedule is mlmr%'la.l,
the model guarantees that an arbitrary fault can be detected using the smallest possible

number of shift steps.

Note that in this paper we have focussed on the problem of generating minimal test
sequences for given faults. Test generation programs typically assign random values to
unspecified values in the input patterns, and then run fault simulation to drop additional
faults. The TGM derived here is not suited to fault simulation, except when the schedule
is (0), since it does not consider errors propagated to the scan path in intermediate shift
steps. Note however that sequential fault simulation is not as hard a problem as test
generation and any sequential fault simulation tool can be used in conjunction with ATPG
using the condensed TGM derived here.

4 Conclusion

In this paper we have studied the problem of testing acyclic structures in partial scan
designs. We have presented a new approach to test sequence compaction in which the
objective function is the number of distinct patterns to be shifted into the scan path per
test sequence. In our approach, each test sequence is compacted into the smallest number
of patterns needed to be shifted into the scan path. This leads to the lowest test time to
detect an arbitrary fault. An algorithm for determining the optimal schedule, based on
the structure of the circuit, was presented.

We have also presented a specialized test generation model (TGM) for acyclic struc-
tures. Like the iterative array model, this model reduces the ATPG problem to that of
combinational ATPG with multiple faults. A special feature of this model is that it uses the
optimal schedule determined separately in order to derive a condensed TGM. This leads
to fewer redundant computations during ATPG. However, a separate sequential fault sim-
ulator is required. The optimal scheduling algorithm and the test generation model can be
used to significantly reduce the testing costs in partial scan designs, especially for signal
processing and pipelined circuits.
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