Evaluating Optimization Transformations
of Behavorial Descriptions

BY

Rajiv Jain and Alice Parker

Technical Report CENG 90-07
February 1990

Electrical Engineering - Systems Department
University of Southern California

Los Angeles, CA. 90089-0781

Evaluating Optimizing Transformations of
Behavioral Descriptions’

Rajiv Jain f and Alice Parker *

tDepartment of Electrical and Computer Engineering
1415 Johnson Drive
University of Wisconsin
Madison, WI 53706
(608)262-3610

*Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089-0781

November 3, 1989

1This research was supported by the Semiconductor Research Corporation (Contract 86-01-075),
and the Departments of Air Force, Army and Navy (Contract N00039-87-C-0194).

Evaluating Optimizing Transformations of
Behavioral Descriptions

Abstract

To enhance performance or reduce the cost of digital designs, RTL synthesis systems
apply high-level graph transformations. Many of these transformations are compiler
optimizations and their merits are well known. Benefits obtained from other trans-
formations are not very well understood and it is not clear when and where these
data flow graph transformations should be applied. In this paper we use models of
cost and performance to predict the effects of three data flow graph transformations
on both pipelined and non-pipelined designs. Results obtained using the models are
supported by experimental results.

1 Introduction

As a front end to high-level synthesis designers often apply optimizations which,
without altering the intended behavior, modify the input specification for a more
area-delay efficient implementation. These optimizations include several types of data
flow graph transformations [1] [2] (5] [10] [11] [12] [13] [14] including tree height reduc-
tion, dead code elimination, loop winding and loop unwinding. Other front-end tasks
such as choice of operation bit-width, hierarchical decomposition of operations into
sub-operations, design style selection, choice of arithmetic (for example, 2s comple-
ment vs. signed magnitude), choice of number system, and algorithm selection also
constrain the design. These front-end data preparation tasks are high-level design
decisions and must be done before the actual synthesis can take place.

Making correct high-level design decisions is important, as an erroneous decision may
result in a poor design despite lower-level efforts. The benefits of high-level decisions
are obvious for some transformations like dead code elimination, but are not so obvi-
6us for most other design decisions. Performing synthesis after every transformation
to obtain the actual design space is computationally expensive [8]. In this paper
we propose an analytical method for analyzing the impact of these transformations
on the area-delay tradeoff curve of the final design and apply the method to three
transformation types. This method would greatly help in reducing the design time
and in guiding the designer towards a better design. The method uses the area-delay
prediction models developed for pipelined and non-pipelined designs (3] [4]. These
models predict the lower-bound area-delay tradeoff curve for each design style. The
difference in the area-delay tradeoff curves for the original and the transformed data
flow graphs can then be computed easily. Thus, in our approach the designer can
select or reject the transformation based on the impact of the transformation on the
entire area-delay tradeoff curve and not just the impact on a single design. The
models used in this paper are restricted in that only functional area of the designs
is considered. In practice, register, multiplexer, and wiring area and delay estimates
need to be incorporated into the model. Estimators for register and multiplexer area
[6] and PLA based control area [7] exist and can be used along with the models used

in this paper.

The paper is organized as follows. First we review the lower-bound area-delay predic-
tion models for pipelined and non-pipelined designs (Section 1.1). In Section 2, we will
identify three transformations which will be analyzed in this paper, and then using
the area-delay models we will study these transformations and predict their impacts
on the final designs. In Section 3 we detail some experiments which were conducted

1

to verify the theory and conclude in Section 4 with future research problems.

1.1 The Lower-Bound Area-Delay Prediction Models

The basic model for pipelined designs [4] predicts the lower-bound clock cycle to be
¢p = mazimum(d;) (1.1.1)

and the area-delay product to be

m-—1

Axl:=0 Z(a; X n;) = constant (1.1.2)

1=0

Here ¢, is the clock cycle of the design, d; (a;) is the delay (area) of the module
which implements operation ¢, n; is the effective number of operations of type ¢ in
the data flow graph, m is the number of different types of operations in the data
flow graph, A is the functional area of the design, and T, is the delay between two
successive initiations of the input data (also a measure of throughput). The above
equations state that the lower-bound clock cycle is the delay of the slowest module
in the module set, and the lower-bound area-delay product of the pipelined designs

is a constant.

A factor which affects the throughput of pipelined designs is resynchronization. Per-
formance degradation due to resynchronization depends on the number of time steps
the data flow graph is partitioned into. From [8], we know that with resynchroniza-
tion rate of p, 0 < p < 1, the average performance of a pipelined design is given
by p

.TP—aug = (1 o P([T-i = 1))ICP (113)

where P is the number of stages of the pipeline, and [is the initiation interval of the
pipeline. In this case, the area-delay product of the pipeline is given by

m—1

AX Tyoag = (L+p([7] = D)iey x Y (@ % 0) (1.1.4)

i=0
Since n;/l is a lower-bound for o; we can substitute for o; to obtain
m—1

AXTyany = (140151 = D) x 2 (a1 X 1)

1=0

The lower-bound clock cycle for designs with resynchronization cannot be computed
using Equation 1.1.1. However, we can bound ¢, (clock period with resynchroniza-
tion)

C

¢pr = mazimum(—, d;)
p

where C is the critical path delay. We can enumerate p from one to the number of
operations in the data flow graph and can enumerate [from one to p for each value
of p, in order to generate the AT curves.

For non-pipelined designs the model [3] predicts the clock cycle to be
Cig =2 mazimum(C/N, mazimum(d;)) (1.1.5)

and the area-delay to be

m—1
A X Trp = Cnp (@i X ;) = ¢ X constant (1.1.5)

1=0
where Ty, is the circuit delay, C is the critical path delay, and N is the number of
 time steps that the data flow graph is partitioned into. Computation of critical path

can be performed in two ways.

1. Summation of delays along the path having maximum delay in the data flow

graph.

9. Decomposition of the data flow graph operations into bits and summation of
bit operations along the path having maximum delay. This method is desirable
in special cases where composure delays are less than the sums of individual
delays. An example of this is the chaining of two additions into one time step.
The second addition can start as soon as the lowest-order bit of the first addition
becomes available, making the total delay slightly longer than the delay of single
addition, but smaller than delay of two consecutive additions.

If any module is pipelined d; includes delays of individual stages in the module. If
modules can be carried over several time steps, the clock cycle can be arbitrarily
small, and in this case the clock cycle is usually selected a priori and the effective

number of modules is 0; = [I‘i—’;—ghl ,where k = [for pipelined designs and k = N for

non-pipelined designs.

2 Evaluating Transformation Impact

2.1 Transformations Under Consideration

The evaluation technique presented in this paper is general enough to be applied to
many transformations and design style. The following three transformation types are
analyzed in this paper.

1. Transformations which alter the number of operations in data flow graph (for
example, common subexpression elimination, strength reduction and dead code

elimination [1]),

9. transformations affecting critical path delay (for example, a tree height reduc-
tion transformation [13]), and

3. hierarchical decomposition of operations into sub-operations.

We will now characterize the effects of the above mentioned transformations on the
area-delay curves for each design style.

2.2 Altering the Number of Operations

First, we analyze the transformations which alter the number of operations in the data
flow graph as their impact is easiest to quantify. These transforms always improve the
best-case cost and/or performance if the number of operations is decreased. We use
our models to verify this intuitive result. From Equations 1.1.2 and 1.1.6 we observe
that the area-delay product of the design is proportional to the number of nodes in
the data flow graph. Any increase (decrease) in the number of nodes of a given type in
the data flow graph increases (decreases) the area-delay product of the design. That
is, for the same performance requirement, more area will be required if the number
of operations is increased. This is true for both pipelined and non-pipelined design
styles (assuming there is no change in the critical path delay).

Analyzing the impact of a transformation on the area-delay tradeoff curve is the same
as performing a sensitivity analysis of Equations 1.1.2 and 1.1.6. For example, for

non-pipelined designs varying n; while keeping other parameters of Equation 1.1.6
constant implies that nodes of the existing operation type are deleted or added to
the data flow graph without changing the critical path delay. Here we perform the
analysis only on the non-pipelined design style as the pipelined design style can be
similarly analyzed. We have seen that the non-pipelined area-delay tradeoff curve
consists of two parts, namely, C/N > mazimum(d;) which is given by a vertical
line and C/N < mazimum(d;) which is the sloping line. If we fix all parameters in
Equation 1.1.6 and vary n; alone, we note that the sloping part of the AT curve shifts
away from the origin if n; is increased or moves towards the origin if n; is decreased.
The vertical line does not appear to move although individual design points shift
up the curve. Figure la shows the lower-bound area-delay tradeoff curves before
and after an increase in n;. In this figure we observe that increasing n; has moved
the sloping part of the area-delay tradeoff curve away from the origin towards the
inferior part of the design space. Further, all design points of the transformed data
flow graph are inferior to the design points of the untransformed data flow graph.
Similar results are obtained when n; and m are increased, keeping other parameters
constant, is shown in Figure 1b. Figure lc shows the results of increasing n;, m and
mazimum(d;) simultaneously.

In general, one can state that any transformations which reduce the number of op-
erations in the data flow graph without changing the critical path are favorable, and
ones which increase the number of operations with no change in critical path are
unfavorable.

2.3 Reducing Critical Path Length

Reducing critical path delay has interesting effects on the predicted area-delay curves.
In order to analyze the critical path reduction transformation we first assume that
the number of nodes of each operation type remains unchanged before and after the
transformation. Evaluating the effects of varying ni, m, mazimum(d;) and critical
path delay C in the area-delay equations simultaneously can be analyzed similarly.
Figure 2 shows an example of reducing critical path delay in which the number of
nodes in the data flow graph remains unaltered. We show in this section that tree
height reduction has no impact on the pipelined design style unless resynchronization
is considered. For pipelined designs, the lower-bound area-delay product is dependent
only on the area and delay (as clock cycle is dependent on the delay) of the modules
used for implementation, and the number of nodes of each type in the data flow graph,
and is independent of the critical path delay. This implies that a change in the critical

(2) o (b) ;

Area

¢

Y

(c) o

Figure 1: Effect of Increase in Node Count for Non-Pipelined Designs

(a) before (b) after

Figure 2: A Critical Path Reduction Transformation

“““““ before
-after

Y

Y

T, Ty

(a) Pipelined (b) Non-Pipelined

Figure 3: Predicted effect of Critical Path Reduction

path delay does not impact the area-delay tradeoff curve for pipelined design. Figure
3a shows the impact of critical path reduction on the pipelined design style, i.e. there
is no difference. Changes to the critical path will only affect the area-delay curve of
the pipelined design if resynchronization occurs. Figure 2 was synthesized by Sehwa
for different resynchronization rates. These results are tabulated in Table 1 and show
that by reducing the critical path delay, performance of a pipelined design can be
improved as the resynchronization rate increases.

For non-pipelined designs, the clock cycle depends on the critical path delay. From
Equation 1.1.5 we know that c,, = mazimum(C/N, mazimum(d;)). By reducing
the critical path delay C, C/N will approach mazimum(d;) for a smaller number of
partitions N. Also, reducing the length of the critical path increases parallelism in
the data flow graph allowing more high-performance designs to be generated [13]. Re-
ducing critical path delay and increasing parallelism in the data flow graph increases
the number of possible designs which can be generated and a larger design space can
be explored for a faster design. Figure 3b shows the impact of critical path reduction
on the non-pipelined design style. However, whereas the scope for parallelism in the
data flow graph has increased, the lower-bound A X T, remains same (assuming there
is no change in the number of nodes in the data flow graph).

It has been observed in the two examples from Trickey [13] (Figures 27 and 35) that
reduction in tree height increased the number of nodes of the data flow graph, which
moves the lower part of the area-delay tradeoff curve away from the origin towards
the inferior design space. It is not clear if tree height reduction will always increase
the number of nodes in the data flow graph.

2.4 Hierarchical Decomposition

The effect of transformations which decompose operations into sub-operations is more
complicated. Figure 4 shows an example hierarchical decomposition where a 16-bit
multiplication node can be replaced by a subgraph composed of 8-bit multiplication
and addition nodes. '

Resynchronization | Area Delay (73)
(%) (A) | Before | After
29400 340 340
16800 680 680
0 12600 1020 1020
8400 1360 1360
4200 | 2380 2380
29400 544 408
16800 884 748
10 12600 1224 1122
8400 1496 1360
4200 | 2380 2380
29400 748 476
16800 1088 748
20 12600 1428 1224
8400 | 1632 1360
4200 | 2380 2380
29400 952 544
16800 1292 884
30 12600 1632 1326
8400 | 1768 1360
4200 { 2380 2380
29400 | 1156 612
16800 | 1497 952
40 12600 | 1837 | No Result
8400 1905 1360
4200 | 2380 2380

Table 1: Effect of tree height reduction on an example with resynchronization

10

(b) 16-bit multiplication using 8-bit multipliers

(a) Complex multiplication

Figure 4: Hierarchical Decomposition '

11

2.4.1 Pipelined Designs

Let us examine the pipelined case first. Pipelined designs are characterized by Equa-
tions 1.1.1 and 1.1.2. Let the data flow graph before and after the transformation be
represented by the following two equations respectively:

ml-1

A; X Tpl = Cp1 E (a,- X TL,‘) (2.47)
=0
m2-1

Ay X Tha = ¢ Z (a; x ny) (2.4.8)

1=0

where ml is the number of operation types before decomposition and m2 is the
number of operation types after decomposition. Decomposition of an operation may
produce a change in the clock cycle, in the number of different types of operations
in the data flow graph and in the area of the design. The lower-bound clock cycle is
equal to the delay of the slowest operation in the data flow graph. A change in the
clock cycle will occur if the slowest operation in the data flow graph is decomposed
and the sub-operations produced by the decomposition have a smaller delay than the
original operation. Further, as each new sub-operation will have a delay less than or
equal to the delay of the original operation, the new clock cycle ¢; will be less than
or equal to the old one, ¢;. Whenever ¢; < ¢;, then the new data flow graph might
allow designs with higher throughput. The area-delay characteristic of the new data
flow graph will depend on the amount of increase in the summation term on the right

hand side. If

m2-1 Cp ml-1
3 (@i xm) <= Y (@i x ng) (2.4.9)
i=0 Cp2 i=p

then the new design will be more area-delay efficient than the original data flow graph.
Further, if S5 a; > Y74 g;, then cheaper designs might be generated for the new
data flow graph. For each hierarchical decomposition employed, the effects can be
computed using Equation 2.4.9.

The design characteristics can be improved by decreasing the clock cycle if the areas
of the designs before and after the transformation are related by Equation 2.4.9.
For pipelined designs, we know that the clock cycle is equal to the delay of the
slowest module in the module set (Equation 1.1.1). Decreasing the clock cycle can be
achieved either by using a faster module for the slowest operation or decomposing the
slowest node of the data flow graph into faster sub-operations. For example, in a data
flow graph with 16-bit multiplications and 16-bit additions, the 16-bit multiplication
nodes may be decomposed into 8-bit or 4-bit multiplication and addition nodes. As

12

our example does not consider the register and multiplexer area/delay the example
suggests an indiscriminate decomposition of the current biggest operation till the data
flow graphs contains nothing but basic primitives. This, of course, is not necessarily
true in practice.

The main advantage of decomposing operations into sub-operations is the increase
in potential parallelism and resource sharing which helps the designer in searching a
Jarger design space for a higher performance design or a cheaper design.

2.4.2 Non-Pipelined Designs

The only difference in the analysis for pipelined and non-pipelined designs is the
critical path delay factor which occurs in the non-pipelined model. If the delay of the
operation being decomposed is the same as the critical path delay of the decomposed
sub-graph then the non-pipelined design is similar to the pipelined case. Otherwise,
. .the effect of the change in critical path delay can be easily understood by considering
the area-delay equations for the two data flow graphs:
ml-1
Ay X Tnp1 = mazimum(Cy/N, mazimum(d;)) 3 (@ x ng)
=0

m2-1
Ay X Tppa = mazimum(Cq/N, mazimum(d;)) Z (a; x n;)
=0
An analysis similar to that for pipelined design can be easily done and the break
point for the improvement in the area-delay characteristic occurs when

ml-1

mz- (@ x) mazimum(Cy /N, mazimum(d;)) N fas 0) (2.4.10)

mazimum(Cy/N, mazimum(d;)) =

=0

Similar to the pipelined case, decomposing operations helps in exploring a larger
design space for faster and cheaper designs. An example analysis for bit-width hier-
archical decomposition (Figure 4) for pipelined and non-pipelined designs is given in
the next section.

Figure 5a (Figure 5b) shows the predicted effect of hierarchical decomposition on the
pipelined design style where the slowest operation has been decomposed into smaller
suboperations with an increase or decrease in area-delay product of the design. In

. ' _ ' S
Figure 5, A} = Y05 a;, and 4, = Y75 a;.

13

A
Ag F---
A b---
.
A, F--or
T,
(a) Increase in area
A

P
S

!
C2 1 Ty s i

(b) Decrease in area

Figure 5: Effect of Hierarchical Decomposition on Pipelined Designs

14

Function Area | Delay | Bit
mil* | nS | Width
addition 2000 | 225 8
addition 4200 | 340 16
subtraction | 4200 | 340 16
multiplication | 13800 | 250 8
multiplication | 49000 | 375 16

Table 2: Design Library

3 Experiments and Results

Experiments were conducted to verify the ideas given in the preceding section. For
every transformation type a data flow graph was selected and synthesized before
applying the transformation and again after applying the transformation. For every
such pair of data flow graphs pipelined and non-pipelined designs were synthesized.
Sehwa [8] and MAHA [9] were the pipelined and non-pipelined synthesis tools used
in the experiments. All experiments were conducted using 16-bit modules given in
Table 2, except in hierarchical decomposition experiments where 16-bit and 8-bit
components were used.

To demonstrate the effect of increase in number of nodes in the data flow graph we
used the presum computation and the data flow graphs given in Figures 32 and 35
of [13]. The number of addition nodes in the data flow graph prior to applying the
transformation was seven and after the transformation it was twelve. The critical
path had seven addition nodes before the transformation and three addition nodes
- after the transformation. The results for pipelined and non-pipelined synthesis are
given in Figures 6 and 7 and the effects are as predicted.

To evaluate the effect of reducing the critical path delay we used the simple data flow
graphs given in Figure 2. The results produced by Sehwa, MAHA and prediction
models are shown in Figures 8 and 9 respectively. The results are in consonance with

the prediction.
The 16-bit complex multiplication data flow graph shown in Figure 4a is used to

demonstrate the effect of hierarchical decomposition. Figure 4b shows the decom-
position of a 16-bit multiplication node into 8-bit multiplications. The original data

15

flow graph has four 16-bit multiplication, one 16-bit addition and one 16-bit subtrac-
tion node. After substituting Figure 4b for all 16-bit multiplication nodes, the data
flow graph has 16 8-bit multiplications, 20 8-bit additions, one 16-bit addition and
one 16-bit subtraction node. The critical path delay of the original data flow graph
consists of one 16-bit multiplication and one 16-bit addition delay (assuming a 16-bit
addition delay is equal to a 16-bit subtraction delay). The transformed data flow
graph has a critical path delay of one 8-bit multiplication, five 8-bit additions and
one 16-bit addition delay.

Using Equations 2.4.7 and 2.4.8 for pipelined designs the area-delay characteristic of
the two data flow graphs can be easily computed. For the original data flow graph
given in Figure 4a,

Al X Tpl = Cp'l(4 X A16-bitmultiplier + ai6-bitadder T alﬁ—bitsubiractor)

Using the area and delay of modules (ay,m;) given in Table 2, ¢;1 = mazimum
(340,375) = 375 and

Ay x Ty = 375(4 x 49000 + 4200 + 4200) = 2.15 x 10"mil’ns
Similarly, for the data flow graph with the decomposed operations, we have

AZ X Tp2 = Cp2(16 X @g_bitmultiplier + 20 X ag—_bitadder + G16-bitadder + alﬁ-—-b{tsubtractor)

— 340(16 x 13800 + 20 x 2000 + 4200 + 4200) = 9.15 x 10"mil’ns

From the above analysis of the two data flow graphs we see that the original design has
a better area-delay characteristic than the second. However, the second design has
the potential for a higher throughput than the first and it allows to user to explore
a larger design space, especially in the spectrum of designs with cheap area, for a
design satisfying the area constraint. The results of the pipeline synthesis program
Sehwa are given in Figure 10 and support the analysis.

Figure 11 shows the results produced for the hierarchical decomposition transforma-
tion by MAHA. The original graph had a critical path delay of C1 = 71515, and cpp1 =
mazimum (715/N, mazimum(375,340)). The critical path delay of the new data flow
graph is Cy = 1815nS, and cnp = mazimum (1815/N, mazimum(225,250,340)).
Thus,

Ay X Tapt = Cap (4 X 49000 + 4200 + 4200) = 204400 X crpn
A X Topz = Capa(16 x 13800 + 20 x 2000 + 4200 + 4200) = 269200 X cup

16

For any N < 5, cap1 < Cnpz and Ay X Ty < Ag X Tpp2. For p >4, cop1 = 375nS and
Cnp2 = 340nS. Substituting these values we again get the result Ay X Ty < A2 X Thypo.
Thus, the original design has a better lower-bound area-delay product than the design
for the new data flow graph. However, it is possible that the decomposition would
allow more actual module-optimal designs to be synthesized.

4 Summary

In this paper we have demonstrated a technique for evaluating the impact of data
flow graph transformations on pipelined and non-pipelined design styles. We have
analyzed three transformations and verified the theoretical predictions with experi-
mental results. The method is general enough to be applied to several other data
flow graph transformations as well.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[2] E. Girczyc. Loop Winding - A Data Flow Approach to Functional Programming.
In Proceedings of the IEEE International Symposium on Circuits and Systems.

IEEE, May 1987.

[3] R. Jain, M. J. Mlinar, and A. C. Parker. Area-Time Model for Synthesis of Non-
Pipelined Designs. In Proceedings of the International Conference on Computer-
Aided-Design. ACM/IEEE, November 1988.

[4] R. Jain, A. C. Parker, and N. Park. Predicting Area-Time Tradeoffs for Pipelined
Designs. In Proceedings of the 2{th Design Automation Conference. ACM/IEEE,

June 1987.

[5] D. J. Kuck. The Structure of Compulers and Computations - Volume 1. John
Wiley & Sons, New York, 1978.

[6] M. J. Mlinar and A. C. Parker. Estimating Register and Multiplexer Costs in
VLSI Design. Technical report, Department of Electrical Engineering, University
of Southern California, 1988.

17

(7l

(8]

[9]

[10]

[11]

[12]

[13]

[14]

M. J. Mlinar and A. C. Parker. PASTA: A Model for Estimating Control Area.
Technical report, Department of Electrical Engineering, University of Southern
California, 1988.

N. Park and A. C. Parker. Sehwa: A Software Package for Synthesis of Pipelines
from Behavioral Specifications. IEEE Transactions on Computer-Aided-Design,

7(3), March 1988.

A. C. Parker, J. Pizarro, and M. J. Mlinar. MAHA: A Program for Datapath Syn-
thesis. In Proceedings of the 28rd Design Automation Conference. ACM/IEEE,

June 1986.

J. Rabaey and H. De Man. Computer Aided Design of Digital Signal Processing
Systems: The IMEC View. In Proceedings of the International Conference on
Computer Design. ACM/IEEE, October 1987.

E. A. Snow, D. P. Siewiorek, and D. E. Thomas. A Technology-Relative
Computer-Aided Design System: Abstract Representations, Transformations,
and Design Tradeoffs. In Proceedings of the 15th Design Automation Confer-
ence. ACM/IEEE, 1978.

D. Thomas. The Design and Analysis of an Automated Design Style Selector.
PhD thesis, Department of Electrical Engineering, Carnegie-Mellon University,
April 1977.

H. Trickey. Compiling Pascal Programs into Silicon. PhD thesis, Department of
Computer Science, Stanford University, July 1985.

R. A. Walker and D. E. Thomas. Behavioral Transformation for Algorithmic
Level IC Design. IEEE Transactions on Computer-Aided-Design, 8(10), October
1989.

18

-

@ e : synthesized: before
=T ® : synthesized: after
45900 1 O: predicted: before
4 @ : predicted: after
40800 1 X: Tp (ns)
T Y: A (mil?)
35700 1
306001 g
25500 ¢ ®
20400 +
4 5 e
15300
+ Bl @ @
10200t
i = 0 @ & © © © &
5100 1 = ®

T410 820 1230 1640 2050 2460 2870 3280 3690

Figure 6: Pipelined Designs: Increase in Node Count

19

X

1 @ o : gynthesized: before
F ® : synthesized: after
45900 + O: predicted: before
5 @ : predicted: after
40800 1 X: Tpp (ns)
i Y: A (mil?)
35700 1
30600 + P
25500 1 ®
20400 +
L & &
15300 1
4 e @ O
10200 +
4 ® 8 o © & &
5100 1 =) ®

410 820 1230 1640 2050 2460 2870 3280 3690

Figure 7: Non-Pipelined Designs: Increase in Node Count

20

1 e : gynthesized: before
I ® : synthesized: after
27000 1 O: predicted: before
- @ : predicted: after
24000 1 X: T, (ns)
¥ Y: A (mil?)
21000 +
18000 +
1 &
15000 1
12000 4 ®
9000 T 6 @ @
6000 1
1 8
3000 1

550 | 500 750 1000 1250 1500 1750 2000 2250

Figure 8: Pipelined Designs: Tree Height Reduction Transformation

21

I 6 D
27000 +
24000 +
21000 +
18000 1
4 @ o
15000 +
| O
12000 1 %
T e : synthesized: before
9000 1 ® : synthesized: after -
- O: predicted: before ® ® ®
6000+ @ : predicted: after
i X: Ty (ns) &
3000 + Y: A (mil®)

T80 500 750 1000 1250 1500 1750 2000 2250

Figure 9: Non-Pipelined Designs: Tree Height Reduction

22

Y

2 e : synthesized: before
1 ® : synthesized: after
243000 1 O : predicted: before
T @ : predicted: after
216000 1 X: T, (ns)
T Y: A (mil?)
189000 +
162000 +
135000+ @
108000 + @ g
T
81000 +
1 ®
54000 1 “ ®e
T POPe0000 0
27000 + @& DD g
e —— -ttt X
700 1400 2100 2800 3500 4200 4900 5600 6300

Figure 10: Pipelined Designs: Hierarchical Decomposition

23

Y

' 3

243000 +

216000 1

=+

189000 +

162000 +

135000

108000 +

81000 +

54000

-+

27000 +

& o : synthesized: before
@ ® : synthesized: after
O: predicted: before
@ : predicted: after
X: Thp (ns)
W Y: A (mil?)
@
®
-
0 @ @ ®
& o
O &g @
b0o0BBo00e
OO0 g ®

L L 1 L 1

L 1 1 i I il L E P | 1 1) B

" 820 1640 2460

"3980 4100 4920 5740 6560 7380

Figure 11: Non-Pipelined Designs: Hierarchical Decomposition

24

