Synthesis of Application-Specific
Multiprocessor Architectures

BY
Shiv Prakash and Alice C. Parker

CEng Technical Report 90-25

Electrical Engineering Systems
University of Southern California

Los Angeles, CA. 90089-0781

Synthesis of Application-Specific Multiprocessor
Architectures

Shiv Prakash and Alice C. Parker
Electrical Engineering — Systems
University of Southern California

Los Angeles, CA 90089-0781

November 5, 1990

Synthesis of Application-Specific Multiprocessor
Architectures

Abstract

This paper describes a formal technique for automated synthesis of multiproces-
sor systems for given applications. The application task is specified in terms of a
graph, and the architecture synthesized includes a set of processing elements and the
interconnection architecture between them. The technique generates a task execu-
tion schedule along with the architecture. The technique involves creation of a Mixed
Integer-Linear Programming (MILP) model and solution of the model. A primary
component of the model is the set of relations that must be satisfied to ensure proper
ordering of various events in the task execution as well as to ensure completeness
and correctness of the system. Some example architectures have been synthesized,
and these results are reported.

This work was supported in part by the Department of Air Force, the Department of Army and the
Department of Navy, Contract No. N00039-87-C-0194 and in part by the Defense Advanced Research
Projects Agency and monitored by the Federal Bureau of Investigation under contract No. JFBI90092.
The views and conclusions considered in this document are those of authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of Defense Advanced Research
Projects Agency or the U.S. Government.

1 Introduction

Application-specific systems have become so complex that system-level design decisions
cannot be made without the aid of computer tools. As system complexity and size have
increased, designers have relied increasingly on analysis techniques like simulation and
queueing models for assistance during the design process. However, in most cases, system
design decisions have been left to the human designer, who often uses a “generate and
test” approach to confirm the validity of his or her decisions. There is a growing need
to develop tools for system-level design. This paper addresses a technique for design of
multiprocessor systems for given applications.

Our focus is on the design of the system architecture, which is the first step in the de-
sign of an application-specific multiprocessor system. We assume the application domain
is specified in terms of a task data flow graph. The task data flow graph specifies a set
of subtasks (nodes in the graph) that need to be performed and the data precedence be-
tween them (arcs in the graph). Given the task data flow graph, the goal is to synthesize
a multiprocessor architecture which meets various cost and performance requirements
and constraints. Synthesizing an architecture involves making decisions about the num-
ber and types of processing elements selected, the overall interconnection between the
processing elements, and the scheduling of subtasks on the processing elements.

This paper describes a new approach which is aimed at producing a custom multipro-
cessor architecture, as well as mapping the subtasks onto the architecture and providing
a schedule for the task execution. This research focuses on the automatic design of the
multiprocessor architecture itself, not merely the mapping of tasks onto a given architec-
ture. A distinguishing feature of the research is the fact that we are designing a truly
heterogenous system, in terms of the functionality and the cost-speed characteristics of
the processing elements, which allows a more precise tailoring of the synthesized archi-
tecture to a specific application. Also, our approach can be used to explore different
interconnection styles; e.g., bus, point-to-point, ring, or a mixture of these. We assume
there is no global clock and communications between subtasks are asynchronous. With
the exception of some early work by Talukdar and Mehrotra [9], we believe this is the
first publication to describe a solution to this problem.

2 Previous Related Research

Our research builds on past research done by others in the areas of multiprocessor task
allocation and data path synthesis. Most of the previous related work on multiprocessors
‘is directed at the problem of task allocation for a given architecture.

The assignment of tasks to a fixed multiprocessor system was inspired by Stone’s work
on the two-processor problem [10]. More recently, Chu et. al. [2] have described an in-
teger 0-1 programming approach to the problem of task allocation in distributed data
processing. The problem they have considered involves the allocation of a set of m sub-
tasks to a set of p (fixed) processors already interconnected in some fashion. Their model
does not consider the data precedence relations among the subtasks. Houstis [6] describes
task allocation for real-time applications with concurrent selection of the optimal number
of processing elements. She does consider data precedence, but assumes identical process-
ing elements and does not consider timing constraints. Indurkhya et.al.[8] use random
models for distributed programs, and confirm intuitive results for the 2-processor and
n-processor cases. Haddad[3] described a load allocation problem solved with continuous
partition sizes to minimize total execution time. An early study mapping algorithms
such as the Fast Fourier Transform onto the CM* multiprocessor in order to meet real
time constraints was undertaken by Brantley [1]. Talukdar and Mehrotra [9] describe a
problem which is a simplified and similar version of our problem. They also model the
problem using mathematical programming, though they use heuristics to solve it.

Mathematical programming has also been applied to the data path synthesis problem.
Hafer and Parker [4] used a mixed-integer linear programming approach to automatically
synthesize register-transfer level datapaths, given a data flow/control flow graph descrip-
tion of the hardware. The approach involves developing various timing relationships to
be satisfied, but does not include interconnection styles or delays, and does not consider
the detailed timing of multiple outputs. Hwang et. al. [7] have described an integer linear
programming model for the scheduling problem in data path synthesis under resource
constraints, and they present a heuristic technique called Zone Scheduling for solving

large size problems.

3 The Problem Definition

We are addressing the problem of multiprocessor architecture synthesis for a given ap-
plication task. Our approach involves creation of a formal model of the multiprocessor
' ‘synthesis problem and the solution of this model, using mathematical programming.

The task consists of a set of subtasks. Each subtask requires certain input data and
produces certain output data. Inputs to a subtask may come from other subtasks and
outputs from a subtask may go to other subtasks. The set of subtasks and the input-
output relationships among them can be expressed by a task data flow graph as shown
in Figure 1. The subtask nodes are labeled Sy, S, etc. (S, in general). The input end
of a data arc is labeled 7, if it provides b** input to subtask S,, and the output end is
labeled o, if it transmits the c¢** output from the subtask S,. Although we represent
our task by a data flow graph, there is a subtle distinction between our meaning and
the traditional meaning attached to a data flow graph. With the traditional meaning, a
subtask would require all the inputs before starting its execution and none of the outputs
would be available until after its exection is over. However, in our model subtasks do not
require all the inputs before starting their execution and they may produce some outputs
even before their completion. To express this possibility, each input ¢, has a parameter
fr(ias) associated with it which specifies that up to fr(iss) fraction of the subtask S,
can proceed without requiring the input ¢,. Similarly, each output o, . has a parameter
fa(0a,c) associated with it which specifies that the output oq, becomes available when
fa(0a,) fraction of the subtask S, is completed.

The multiprocessor architecture is specified in terms of the processors selected and the
interconnection architecture between them. A simple example multiprocessor system is
shown in Figure 2. The specific model described in this paper assumes point-to-point
interconnection; i.e., if a processor ps needs to send data to another processor- pa,
then there must be a direct communication link from pg; to pgs. However, it must be
emphasized that the approach is capable of handling other styles of interconnection.

For each subtask S,, a set P, represents the set of processors capable of executing
it. However, only one processor actually performs the subtask in the synthesized archi-
tecture, and the execution time for the subtask depends on the processor on which it
is performed. A parameter, denoted as D,s(pa,Sa), specifies the execution time for the
subtask S, if the processor py; is selected to perform it.

A data arc from node S,; to node S,; implies that some data is transferred from

the subtask S,; to the subtask S;;. The volume of data transferred varies from arc to
arc, and a parameter V,1 42 specifying the volume is associated with each arc. The data
transfer maybe a remote transfer (if the two subtasks are mapped to different processors
in the synthesized system), where the data is transferred from a proccesor to another;
~ or it maybe a local transfer within the same processor (if the two subtasks are mapped

to the same processor). Delay associated with a data transfer depends on whether it is
a remote transfer or a local transfer. Local transfer delay could be negligible compared
to the remote transfer delay. In any case, the local transfer delay is represented by
the parameter Doy which specifies the time taken in transferring a unit volume of data
locally. The remote transfer delay is represented by the parameter Dgr which specifies
the time taken in transferring a unit volume of data remotely.

A set P represents the set of all the processors available for selection as part of the
synthesized architecture, where
Pl 1%

Associated with each processor pg € P is a parameter Cy which specifies the cost of the
processor. Another cost parameter is C which specifies the cost of creating a commu-
nication link between two processors.

Certain constraints related to the cost of the system as well as timing of arbitrary
events may also be specified. In summary, the following are the problem inputs and

outputs:

e Problem inputs:
— A task data flow graph specifying the overall application task, along with the
associated parameters
— A set of processing elements with varying functionality, cost and performance
— Communication link characteristics: cost and performance .
— Constraints on total system cost
— Constraints on timing of arbitrary events

e Problem outputs:
— A multiprocessor architecture, including
* the chosen set of processing elements
* the interconnection style for the elements
— A schedule for the subtasks
— Detailed timing information for computation and transfer of data

4 The Problem Approach: Formal Model

Our approach is a natural outgrowth of the work described by Chu [2], Talukdar [9], and
Hafer [4]. We are using mathematical programming to produce a formal model for the
problem. Such a mathematical model allows us a deep understanding of the problem
and allows us to verify our software more easily, even if future run-time problems with
larger examples force us to resort to heuristics. Such an approach allows us to modify,
extend and enhance the model to include more design possibilities and variations without
significant reconstruction of existing code. Also, the approach offers a great degree of
flexibility in handling arbitrary constraints.

4.1 The Model

A complete mathematical programming formulation of the problem requires specification
of an objective function that has to be optimized and a set of constraints that have to
be satisfied. The objective function can be whatever the designer wishes; e.g., the total
system cost, or the overall system performance. The set of constraints consists of the
constraints that must be satisfied for the overall task to be performed correctly as well
as the arbitrary timing and cost constraints imposed by the designer.

4.1.1 The Constraints

The constraints that must be satisfied for the overall task to be performed correctly
consist primarily of the relations that ensure proper ordering of the subtasks and the
data transfers taking into account the timing involved in carrying them out and the
relations that express the conditions for complete and correct system configuration. In
order to express the various constraints, one needs to define certain variables related to
the system. The necessary variables fall into two basic categories:

e Timing variables: These are real variables which represent timings of various critical
events in the operation of the system. There are three classes of timing variables
defined:

— Data availability timing variables:

* Input data availability, Tr4(2.p): Time when the data required by input 7.,
of subtask S, is available for use.

* Output data availability, Toa(0s.): Time when the output data value B
computed by subtask S, has become available.

— Subtask execution timing variables:

% Subtask ezecution start, Tsg(S,): Time when the execution of subtask S,
actually begins.

* Subtask ezecution end, Tsg(S,): Time when the execution of subtask S, is
completed.

— Data transfer timing variables:
% Data transfer start, Tcs(ias): Time when the communication/transfer of
the data required by input i,; of subtask S, actually begins.

% Data transfer end, Tog(ia3): Time when the communication/transfer of the
data required by input ¢, of subtask S, ends.

e Binary variables: These are 0-1 variables which represent the implementation deci-
sions regarding the system configuration. There are two types of binary variables
defined:

— Subtask-to-processor-mapping variable, 04q.: The variables of this type spec-
ify the mapping between the subtasks and the processors. 044 =1 indicates
processor pg will implement subtask S,.

— Data-transfer-type variable, Ya142: The variables of this type specify the data
transfer type for the various data arcs. 741,02 = 1(0) indicates that data transfer
from subtask S,; to subtask S, is a remote (local) transfer.

The necessary constraints have been classified into ten categories:

e Processor-selection constraint: For each subtask S,, a set of processors P, is available
to implement it. In order for the implementation to be correct, one and only one
processor should be selected to implement the subtask. Thus, for each subtask S,
the following must be satisfied:

Y 0aa=1 (4.1.1)

dlpdepa

Data-transfer-type constraint: =, 42 is a variable which indicates whether the data
transfer from the subtask S,; to the subtask S;; is a local transfer or a remote
transfer. Now, if the subtasks'S,; and S,, are mapped to the same processor (say
p4, where ps € Py; and pg € P,3), then we know that it is a local transfer, and
thus 7a1,02 = 0. However, if they are mapped to different processors, then the data
transfer is remote, and thus 7,142 = 1. Thus, the defining equation for Yaiaz 18

Yal,a2 =1— Z 0d,0104d,a2 (4.1.2)
dlpdepalAPdEPa‘J

We will have such an equation for each pair of subtasks communicating with each
other.

Input-availability constraint: Tra(is) is the time the data required at input 7, will
be available, which will be the time T¢g(155) when the data transfer has ended. So,
for each input 7,3, we have:

Tra(tap) = Tog(tap) (4.1.3)

Output-availability constraint: Once execution of the subtask S, begins, a certain
time elapses before an output data value o,. produced by the subtask becomes
available. The time elapsed would be the time taken in executing fa(0a,.) fraction
of the subtask; and so the time Tp4(0s,.) must satisfy the following relation:

Toa(0ae) = Tss(Sa) + fa(0ae)(Tse(Sa) — Tss(Sa)) (4.1.4)

We will have such a relation for each output.

Subtask-ezecution-start constraint: Tss(S,) is the time the subtask S, begins execu-
tion. There must be a certain relationship between the time a given subtask begins
its execution and the times at which its various inputs become available. Since
fa(iap) fraction of the subtask S, can proceed without requiring the input 44, the
following relation must be satisfied for all the inputs 7, to the subtask:

Tra(iap) < Tss(Sa) + fa(tap)(Tse(Sa) — Tss(Sa)) (4.1.5)

Subtask-ezecution-end constraint: Once execution of a subtask begins, a time equal
to the execution time of the subtask must elapse before the subtask is completed.
Execution time of the subtask depends on the processor being used for it. A priori
we do not know which processor a given subtask S, is going to be mapped to.
Any processor from the set P, could be selected to execute the subtask S,. The

uncertainty can be expressed by the following relation. The summation acts as a
selection since only one 04, = 1 for each a:

TSE(SG) == TSS(SCI) + Z Ud,aDpS (Pd, Sa) (4-16)
d|p4EP,

For each subtask S,, we need such a relation.

o Data-transfer-start constraint: The time at which transfer of data begins must be
after the output data is produced. For each input data (except for external inputs)
ta2,52 (to the subtask S,;) being supplied by another subtask’s output, if the output
supplying the data is 04,1, the following relation must be satisfied by Tcs(¢a2,2):

Tes(tazp2) > Toa(0a1,e1) (4.1.7)

e Data-transfer-end constraint: The time at which transfer of data ends depends on
whether the transfer is remote or local. A priori we do not know which case will
occur. However, the two possibilities can be combined into one single relation using
the variable 741,42. Thus, for each input data 1,32 being supplied by another subtask
S,a1, we have:

Tor(tazp2) = Tos(Tazp2) + Yar,02DcrVat,a2 + (1 — Ya1,02) DorVai a2 (4.1.8)

The next two categories of constraints ensure that the hardware resources (proces-
sors, communication links) are shared correctly. These constraints ensure that the same
hardware resource is not scheduled to perform more than one function during any given
time interval. In order to express these constraints concisely, we need to define a special
function called an overlap function L (as defined in [4]). The function is defined on two
closed intervals of time, [t1,t2] and [t3,¢4] (where t1 < 2 and t3 < t4), as:

1, if the intervals overlap
L([t1,¢2], [¢3,24]) = { 0, otherwise

e Processor-usage-exclusion constraint: If two subtasks S,; and S, are being executed
by the same processor pg, then the two subtasks must not be scheduled to be

" executed at the same time. The situation that two subtasks S,;; and S;, are being
implemented by the same processor py implies 0441 = 04,52 = 1. For each processor
pg and each pair of subtasks S;; and S,; such that the sets of processors F,; and
P,, available to implement the subtasks contain the processor p;, the following
relation ensures that the overlap in the usage of the processor by the two subtasks
is prevented:

04,0104,02L([Ts5(Sa1)s Tse(Sa1)], [Tss(Saz), Tse(Saz)]) = 0 (4.1.9)

e Communication-link-usage-exclusion constraint: If the data required by two inputs
ta11 and 14232 are being transmitted over the same communication link, then the
two data transfers must not be scheduled at the same time. Let us say the input
data 1411 is supplied by the subtask Sys and the input data #4342 is supplied by the
subtask S,4. The two inputs 74 3; and 2,422 will be transmitted over the same com-
munication link if the two subtasks S;; and S,2 are mapped to the same processor,
say paz, and also the subtasks S;3 and S,4 are mapped to the same processor, say
pa1 (in that case, both the inputs will be transmitted over the communication link
from processor pa; to processor pg;). For each processor pair (par, paz) and each pair
of inputs 24141 and 74942 (to subtasks S;; and S, respectively, and from subtasks
Sa3 and Sy respectively) such that the sets of processors P,; and P,; available to
implement the subtasks S,; and S,z contain the processor ps, and the sets of pro-
cessors P,3 and P,y available to implement the subtasks S,s and S,4 contain the
processor pg;, the following relation ensures that the overlap in the usage of the
communication link from processor pg; to processor pgs by the two data transfers is
prevented:

0d2,01042,0204d1,a39d1,a4 L ([Te5 (Ta1,61), ToE (ta1,01)], [Tos (Tazp2) s ToE (Taz,p2)]) = 0
(4.1.10)

The set of constraints described here should be treated as an example set. The ezact
form of constraints used can be tailored to meet the characteristics of the design problem
at hand. Our approach offers a great degree of flexibility in this regard.

4.1.2 Objective Functions

Two of the most important goals that the designer may wish to optimize are the overall
system performance and the total system cost.

Overall System Performance: The performance is usually measured by how fast
the system can perform the task. So, it can be represented by the time at which the task
is completed (or all the subtasks are completed). If Tr is a real variable representing the
time at which the task is completed, then the objective is to minimize Tr.

To ensure that Tp represents the time at which all the subtasks are completed, we

need to introduce the following constraint in the model (for each subtask Sa):

Tr > Tsg(Sa) (4.1.11)

Total System Cost: The total cost of the system can be expressed as the sum of the
‘costs of the processors selected and the costs of the links created. In order to do so, we
need to define two types of binary variables:

o Processor-selection variable, f;: The variables of this type specify which processors
have been selected in the synthesized architecture. 8; = 1 indicates the processor
P4 is being included in the system.

e Communication-link-creation variable, Xg142: The variables of this type specify
what communication links are present in the synthesized architecture. xg4142 = 1
indicates there exists a communication link from the processor py; to the processor
paz in the designed system.

Using the variables defined above, the objective is to:

MINIMIZE Y. B4Ca+ Cy(> Xd1,d2)

d|psEP d1,d2|pg; EPApg2EP

where C; is the cost of a processor pg and Cyp, is the cost of building a communication
link between two processors, as defined in Section 3. The variables of type 4 are related
to the variables of type 044. A processor py will be included in the system if and only if
at least one of the subtasks S, (ps € P.) is mapped to it, which implies that the variable
Ba is the logical OR of all the o4, variables. This can be expressed by introducing the
following constraint in the model (for all a such that p; € P,):

Bd 2 0da (4.1.12)

The variables of type x41,42 are also related to the variables of type 044. A communication
link is created from processor pg; to processor pg; if and only if at least one of the subtasks
Sa1 (pa1 € Pa1) mapped to the processor ps; needs to send data to at least one of the
subtasks S,z (pa2 € Paz) mapped to the processor pg;. So, the variable xa; 42 is the logical
OR of all the product terms of the form (041,41042,a2), Where the subtask S,; supplies some
data to the subtask S,;. This condition leads to the introduction of following constraint
in the model (for all al, a2 such that pg; € Ps; and pg; € Poz and subtask S,; sends data
to subtask Sgs):

Xd1,d2 2 0d1,a104d2,a2 (4.3:13)

10

The essence of the model has been presented. It is easy to see that arbitrary constraints
imposed by the designer can be expressed using the timing and binary variables defined
in the model.

4.2 Synthesis Using the Model

Several constraints comprising the formulation presented in Section 4.1 are non-linear
relations. These relations were linearized and the model was converted into a MILP
(Mixed Integer-Linear Programming) formulation. Bozo (5], a branch-and-bound pro-
gram to solve an MILP problem has been developed by L. J. Hafer of Simon Fraser
Univ. Bozo invokes a commercial linear programming package, XLP, developed by XMP
Software, Inc. We are using this program to solve our MILP model. Architectures for
some small example tasks have been synthesized by solving the MILP problem. These
results are discussed in Section 5.

5 Experiments and Results

We have considered two example task graphs. The first example consists of four subtask
nodes, while the second consists of nine. Some of the data related to these examples is

taken from [9)].

5.1 Example 1: Four-Node Task Graph

This example data flow graph is shown in Figure 1. Associated fr and f4 parameters
are also given in the figure, constraining input/output timing for the subtasks.

We assume we have available three types of processors: p;, ps, ps. The costs of these
processors and the execution times of various subtasks on the processors are given in
Table 1. An entry of ‘—’ in the table implies that the particular processor is functionally
not capable of performing the particular subtask. As is obvious from the table, different
processors have different cost-speed-functionality characteristics.

In this example the volume of data that needs to be communicated is one unit at each

11

14,2

011

2'3'1
fr(#1,1) = 0.25 fa(01,1) = 0.50
fr(t21) = 0.25 fa(o12) =0.75
fR(iS,l] =0.25 fA(Oz_l) = 0.50
fR(is,z) = 0.50 fA(Oz'z) =0.75
fr(141) = 0.25 fa(os1) =0.75
fr(i12) = 0.50 fa(041) =0.75

Figure 1: Four-Node Task Graph

12

022

Execution Time

Proc. || Cost || S1 | S2 | Ss | Sy
P1 4 1| 1
P2 5 3] 1| 2| 1
Ps3 2 = 3 1 -

Table 1: Execution Time and Cost Table for Four-Node Graph

Design || Runtime || Cost | Performance
1 11 14 2.5
2 24 13 3
3 28 7 4
4 37 5 7

Table 2: Architectures for Four-Node Graph

arc in the graph. Local transfer delay is given to be negligible; i.e., Dgr, = 0. We are also
given the communication link characteristics. The cost of a link, Cp, is one unit; and the
remote transfer delay for a unit volume of data over a link, D¢g, is also one unit.

The MILP model for the example consists of 93 variables, 21 timing and 72 binary,
and 174 constraints. Bozo was used to generate 4 non-inferior architectures. These
different architectures were generated by changing the constraint value for the total cost
of the system, and optimizing the overall performance of the system. Bozo’s runtime to
generate each of these designs is of the order of a few seconds. These runtimes are on
a system with CPU type Solbourne Series5e/900 (similar to Sun SPARCsystem 4/490)
with 128 MB of memory. Cost, performance and runtime (in seconds) for the four designs
are given in Table 2.

A brief discussion of these designs follows:

e Design 1: This design consists of 3 processors: pj, - a processor of type pi, p2a -
a processor of type pz, and ps, - a processor of type ps. Processor p;, performs

13

P1a P2a

lla,zu
zla,Sa £2a 3a
P3a
Toa(o01,1) Tse(S1)
.0 a5 .
Pia - T 5 T 1
Tss(S1) To4(01,2)
Toa(02,1) Tse(S2) Toa(04,1)
pma: O a5 1.5 2.5_ .
T 0 T 1 1‘ 2.25
Tss(S2) Toa(02,2) Tss(Sq) Tsk(Ss)
TOA(03,1)
1.5 2.5
a -+ t
£ T 225 |
Tss(Ss) Tse(Ss)
Tcsi(?ﬁ,l) Ter(14,1)
1024 ¢ t
o 75 1.75
Tes(ts,1) TCIi(’:&I)
lta;8q ¢ -
e 5 1.5
Teos(is,2) Tci(is,z)
l2a.3q : t
e 1 2

Figure 2: Synthesized Multiprocessor System I and Schedule for Four-Node Graph

14

subtask Si, processor p,, performs subtasks S, and Sy in that order, and processor
psa performs subtask S3. There are three communication links: 1424, /14,34, and
l3a,30. Data 14, gets transmitted on link [y, 2,4, data 15 ; gets transmitted on link Fiasis
and data 13, gets transmitted on link /s, 3,. As an illustration, this architecture is
shown in Figure 2. A detailed schedule for the various events is also shown in the
figure.

o Design 2: This design is similar to design 1, and also consists of 3 processors: p;,,
P24, and ps,. However, it has only two links: l14,94, and l14 3,. Presence of fewer links
forces a change in the mapping between the resources and the events. Processor py,
performs subtasks S; and S; in that order, processor p,, performs subtask Sy, and
processor ps, performs subtask Ss. Data 24 gets transmitted on link /14 24, data #3;
and data 73 get transmitted on link /4,3, in that order.

e Design 8: This design consists of 2 processors: py, - a processor of type p;, and ps, -
a processor of type ps. Processor p;, performs subtasks S; and Sy in that order, and
processor p3, performs subtasks S, and Ss in that order. There is a communication
link: l14,3,. Data 73; gets transmitted on link /y, 3,.

e Design 4: This design consists of just 1 processor: py, - a processor of type p;. The
processor performs the subtasks S, S;, S3, and Sy in that order.

5.2 Example 2: Nine-Node Task Graph

The data flow graph is shown in Figure 3. For this example, we assumed that a subtask
requires all the inputs before it can start and that none of the outputs from a subtask
become available until its execution is over. Again, there are three types of processors,
with the costs and the execution times given in Table 3. The volume of data is one
unit for each arc. We are given: Dgr = 0, Do = 1. For this graph, we synthesized
architectures for two different styles of interconnection. -

5.2.1 Point-to-Point Interconnection

Here, as before, if two processors need to communicate, then there must be a direct link
between them; and the cost of building a link Cp = 1.

The MILP model consists of 272 variables, 47 timing and 225 binary, and 1081 con-
straints. We generated 5 non-inferior architectures by changing the constraint value for

15

171

S

Sy

Sz

04,2

18,1

Ss

05,2

191

Figure 3: Nine-Node Task Graph

16

Ss

Se

So

09,1

Og,2

Execution Time
Proc. || Cost || S1 | Sy | Ss | Sy | S5 | Se | S7 | Sg | S
D1 4 2 2| 1| 1| 1| 1] 3|—-|1
D2 B 3| 1| 1| 3| 1| 2| 1| 2(1
D3 2 1| 1| 2| —| 3| 1| 4| 1| 3

Table 3: Execution Time and Cost Table for Nine-Node Graph

Design || Runtime || Cost | Performance
1 62.2 15 5
2 445.17 12 6
3 538.67 8 7
4 75.18 i 8
5 6416.87 5 15

Table 4: Architectures for Nine-Node Graph (Point-to-Point)

the total system cost, and optimizing the system performance. Bozo’s runtime for each
of these designs is of the order of a few hours, except for design 5. Cost, performance and
runtime (in minutes) for the five designs are given in Table 4. Discussion of the designs
is omitted.

5.2.2 Bus-Style Interconnection

In this interconnection style, the system consists of a set of processors and a bus con-
necting all the processors to each other. So, the cost of the system is dominated by the
costs of the processors selected. Our approach is capable of modeling such a system.

The MILP bus-architecture model consists of 200 variables, 47 timing and 153 binary,
and 416 constraints. Three non-inferior architectures were generated by changing the
constraint value for the total system cost, and optimizing the system performance. Run-
time for each of these designs is of the order of a few hours. Table 5 gives the statistics

17

Design || Runtime || Cost | Performance
107.3 10 6
2 89.53 6 7
3 61.52 5 15

Table 5: Architectures for Nine-Node Graph (Bus-Style)

for the three designs (runtime in minutes). Discussion of the designs is omitted.

6 Conclusions and Future Work

In this paper, we have presented a formal model for the multiprocessor synthesis problem.
It has been shown that the model can be solved fairly quickly for small size problems.
Even for larger problems, the runtime is not prohibitive but there is much room for
improvement. The model offers a great degree of flexibility. The model described in the
paper should be treated as an example. The overall approach has potential to be applied
to model more generalized design situations (e.g.; more design parameters, more design
styles, etc.). Further research is required in two directions:

e Enhancing the model to handle a more generalized multiprocessor design problem.

o Designing techniques to improve the runtime for solution of the model.

Work is in progress at USC in both the directions. Memory design and mixed-style inter-
connect design are some of the aspects related to the multiprocessor synthesis problem
that are being addressed. Incorporation of some heuristics for performing the branch-
and-bound search seems to be a promising idea for improving the runtime.

18

7 Bibliography

References

-[1] W. C. Brantley. Automatically Decomposing Signal Processing Applications on Mul-
tiprocessors. PhD thesis, Carnegie-Mellon University, 1979.

[2] W. Chu, L. Hollaway, M. Lan, and K. Efe. Task Allocation in Distributed Data
Processing. Computer, 13(11):57-69, November 1980.

[3] E. K. Haddad. Optimal Load Allocation for Parallel and Distributed Processing.
Technical Report TR 89-12, Department of Computer Science, Virginia Polytechnic
Institute and State University, April 1989.

[4] L. Hafer and A. Parker. A Formal Method for the Specification, Analysis, and
Design of Register-Transfer Level Digital Logic. IEEE Transactions on Computer-
Aided Design, CAD-2(1), January 1983.

5] L. J.Hafer. Bringing up Bozo. Technical Report, Department of Computing Science,
Simon Fraser University, May 1990.

[6] C. E. Houstis. Module Allocation of Real-Time Applications to Distributed Systems.
IEEE Transactions on Software Engineering, 16(7):699-709, July 1990.

(7] C. Hwang, Y. Hsu, and Y. Lin. Optimum and Heuristic Data Path Scheduling
Under Resource Constraints. In Proceedings 27th Design Automalion Conference,
pages 65-70, ACM/IEEE, June 1990.

[8] B. Indurkhya, H. S. Stone, and L. Xi-Cheng. Optimal Partitioning of Randomly
Generated Distributed Programs. IEEE Transactions on Software Engineering, SE-
12(3):483-495, March 1986.

[9] R. Mehrotra and 8. Talukdar. Task Scheduling on Multiprocessors. Technical Re-
port DRC-18-55-82, Department of Electrical Engineering, Carnegie-Mellon Univer-
sity, December 1982.

[10] H. S. Stone. Critical Load Factors in Two-processor Distributed Systems. IEEE
Transactions on Software Engineering, SE-4:254-258, May 1978.

19

