VHDL2DDS:
A VHDL Language to DDOS Data
Structure Translator

Chih-Tung Chen*

CEng Technical Report 91-21

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA. 90089-2562

July 26, 1991

*Supported by the Department of Navy, Contract Mo. NO0039-87-C-0194

Abstract

This document describes VHDL2DDS, a VHDL (VHSIC Hardware Description Language)
to DDS (Design Data Structure) translator. VHDL2DDS is a part of the designer interface
of the USC ADAM system, and is used to generate DDS behavioral designs from the parsed
VHDL specifications. In order to translate the von Neumann-type VHDL description to the
data flow-type DDS representation, VHDL2DDS uses several analysis techniques known as
control flow analysis, data flow analysis, and graph optimization to achieve this process.
The objective of the VADL2DDS is to generate an optimized DDS behavioral design which
accurately captures the necessary and sufficient information of the input VHDL specification.

The specific focuses of this document are on the usage of VHDL2DDS, the restricted
subset of VHDL, the DDS representation of VHDL constructs, and the interpretation of

the VHDL2DDS output. The various analysis and optimization techniques performed by
VHDL2DDS are briefly described.

Key words - design specification, behavioral design, control flow analysis, data flow
analysis, graph optimization.

Contents

1 Introduction
1.1 OverviewdI VHDL2DDS : = 5 5 3 5 5 5 s 26 o = 6 56 5 § i 6 8 o & ¢ ww s
19 TheProbBlem . . v v oo woms « s aid 5 0 isid@asidssdmgsem s
1.3 The Approach o o i it i e et e e

2 Using VHDL2DDS
2] Requir€ents . : - o o s 5@ s ¢ 8 9% ¢ 5 = w0 & v o e ww wiw w o omwon o w e
29 The VHDLBabselt o o 5 5 5 = % sis 6 8 s » 5 o % & o e o o e o 8 miom s
2.3 Representing VHDLinDDS oo
231 Declarabions « : » v s s 3w s s 3w s 9 vow s B
939 SLafeents . . . e s v 2@ 58 B B HE EE S S E e e s e e

3 Example
3.1 AR Lattice Filter o o o o i i i e e e e e e e e e e e e e e e

4 Conclusions

A Naming Convention
A.l1 The Naming Convention
A2 Predefined Names . . . o ¢ v v v v v v v o et e e e e e e e e e

B Error Messages
B.1 Error-Level Error Messages oo o v v i v v v v v i
B.2 Fatal-Level Error Messages - o v v v v v v v v v v o v v v o e e e e

C Known Bugs and Limitations

23

24
24
25

27
27
28

29

Chapter 1

Introduction

The goal of high-level synthesis of digital systems is to automate the design process from
a behavioral description to the structural implementation, to speed up the design process,
and to reduce design errors. The ADAM (Advanced Design AutoMation)[15] system at the
University of Southern California is developed to achieve these aims.

The synthesis process typically involves three stages: description processing, structural
synthesis and physical layout generation. In the ADAM system, the description processing
is done by the Designer Interface subsystem. The design specifications, constraints, and
the design library are entered and translated to a unified multilevel design representation
called DDS (Design Data Structure)[16] through this subsystem. Then, the Structural Syn-
thesis subsystem and the Physical Layout Generation subsystem (future) can be invoked in
sequence to transform the behavioral specifications to RTL (Register-Transfer Level) struc-
tures, and later physical layouts.

VHDL2DDS is a part of the Designer Interface subsystem. It is responsible for translating
the behavioral specification written in VHDL to the DDS representation.

1.1 Overview of VHDL2DDS

In ADAM, the task of VHDL to DDS translation is divided into two parts, parsing and
translating. A commercial VHDL parser[11] from CAD Language Systems Inc. (CLSI) is
used to ease the implementation of the VHDL to DDS translation and provide better syntax
analysis ability. All VHDL input shall first be parsed and transformed into an intermediate
representation® by the VHDL parser. VHDL2DDS performs its translation and optimizations
on this intermediate structure and finally generates the corresponding DDS representation.

VHDL[14] is much like a programming language. It can be used to express both the
behavior and the structure of a hardware design. However, only the behavioral aspect of
VHDL is chosen as the input language of the ADAM system. The allowed VHDL constructs
are described in Section 2.2. DDS, on the other hand, is more akin to the compiled internal
form of a ‘design language’. It partitions design information into four subspaces. These
four subspaces represent respectively the dataflow behavior, the timing behavior, the logical

1Basically, it is a syntaz tree, and is stored in form of the CLSI DLS (Design Library System)[10] infor-
mation model.

structure and the physical structure of a design. The VHDL to DDS translation performed
by VHDL2DDS involves the ‘behavioral subspaces’ only; namely, the dataflow subspace
and the timing subspace. The objective is to generate a DG (Data Flow Graph), a CTG
(Control Timing Graph) and a set of bindings which together represent the same behavior
as described in the given VHDL input.

1.2 The Problem

Basically, the VHDL to DDS translation is similarly to the translation[3] of a von Neumann-
type high-level language to a data flow language[l, 6]. They are both required to analyze
the data dependencies and the control flow which exist between statements in a high-level
program and to construct a graphical form of code which describes the same behavior as in
the high-level program. The main difference is that the order of execution of a data flow
program is implied by the partial ordering of the computations and the data availability,
whereas in DDS, the order of execution of a DFG is stated in the associated CTG through
operation bindings between the DFG and CTG.

The major difficulty faced in this kind of translation is how to map variables of a high-
level program into values of a single-assignment DFG. In general, a variable may have more
than one value associated with it during its lifetime. In order to track the uses of every
variable in the program, some data flow analysis technique[2, 5, 13] must be used to identify
the data dependencies between statements. This problem is complicated even more when
control flow constructs such as conditional statements, loops and branches are involved.

In fact, the VHDL to DDS translation is even harder due to several additional constraints
imposed by DDS. First, the DFG must be acyclic, which makes loops and branches difficult
to be handled because feedback edges are not allowed. Next, all control information must
go to CTG; as a result, the control flow constructs in VHDL have to be modeled by several
pieces of the DFG with proper bindings to the associated CTG.

1.3 The Approach

As discussed in the previous section, there are two major issues to be dealt with; namely,
how to analyze data dependencies and how to model control flow constructs in DDS. In
addition, these two issues are inter-related, and cannot be solved independently. To make
the problem tractable, VHDL2DDS uses the following approach:

1. develop a control flow analysis procedure[2, 4] to extract the control information from
a given VHDL description and construct a flow graph[2] for later data flow analysis. A
flow graph is a directed graph. Each node, called a basic block, in the graph represents
a sequence of computations, and each edge represents the flow of control. The flow of
control enters at the beginning of a basic block and leaves at the end without halt or
possibility of branching in the middle. The reasons for building the control flow graph
are to separate the computations from the control flow and to enable efficient analysis
and code generation techniques to be applied.

2. Since the flow graph isolates the computations within a basic block from the control
flow information, the data flow analysis can be performed in two steps. First, we use
a local data flow analysis procedure to collect intra-block data dependencies. Then,
a global data flow analysis procedure is used to analyze the inter-block dependencies.
After this phase adding data flow information, the annotated flow graph becomes a

combination of a DFG and a CTG.

3. Though the annotated flow graph carries enough information to generate the DFG and
the CTG, it may contain a lot of copy operations of the form a = b which must be
eliminated in order to produce an optimized? DFG. A technique called value tracing
and a set of graph reduction rules are developed for this need.

4. Having set up the annotated flow graph, the code generation becomes straightforward.
It is done in two passes. In the first pass, the CTG is produced, and information about
DFG and bindings is collected as well. Finally, the DFG and operation bindings are
generated during the second pass.

The above discussion is only an overview to the VHDL to DDS translation. It’s too brief
to fully understand how the translation works. However, it’s the basic knowledge which must
be kept in mind by the users of VHDL2DDS. For more on this topic, refer to [8].

2]t does not mean optimal because only copy propagation elimination is performed by VHDL2DDS.
However, the flow graph can facilitate all other optimizations[2] such as constant folding, code motion, code

hoisting, etc.

Chapter 2

Using VHDL2DDS

This chapter is devoted to the use of VHDL2DDS. The emphases here are on the require-
ments of the VHDL to DDS translation, the VHDL input and its restrictions, and the DDS
representation of various VHDL constructs. No attempt is made to describe the VHDL
language, the DDS data structure, and how to invoke VHDL2DDS or the VHDL parser. For
details on this topics, see the proper documents[14, 16, 9, 11].

2.1 Requirements

A successful VHDL to DDS translation depends on many prerequisites. In fact, some of the
requirements are not imposed by VHDL2DDS but by the specification of the USC ADAM
system.

e Only the behavioral type VHDL description is allowed, and its syntax must conform to
the restrictions described in Section 2.2.

e All VHDL descriptions have to be parsed by the CLSI VHDL parser prior to running
VHDL2DDS. The parsing task is expected to be integrated to VHDL2DDS in the

future.

o After parsing a VHDL description, an intermediate data is generated for each design
unit within the description. Each design unit has to be translated by VHDL2DDS
separately. The order in which these design units are translated must be consistent
with the partial ordering defined by the following rules:

1. A primary unit whose name is referenced within a given design unit must be
translated prior to the given design unit.

2. A primary unit must be translated prior to the translation of its corresponding
secondary unit.

where the primary unit is either an entity declaration or a package declaration and the
secondary unit is a separately analyzed body of a primary unit such as an architecture
body or a package body.

e The output of VHDL2DDS shall be stored in a DDS database. No other output format
is supported by the current version of VHDL2DDS.

e In general, the DDS graphs generated by VHDL2DDS are hierarchical. They must
be further processed by the flattener and colorer programs before being used by the
synthesis and area estimation subsystems.

As one might expect, these requirements introduce unnecessary overhead to the translating
task. Some future enhancements to VHDL2DDS are discussed in Chapter 4 to improve the
usability of the ADAM VHDL interface.

2.2 The VHDL Subset

The VHDL used in ADAM is a subset of the IEEE Standard VHDL[14] since we are only

concerned with representing behavioral specifications in VHDL. This subset was carefully

defined to devoid features incompatible with the notion of behavioral description or unable

to be represented in DDS, while still giving sufficient expressive power for most applications.
The allowed VHDL constructs are limited to the following;:

1. Design Entities

The primary hardware abstraction in VHDL is the design entity. A design entity is
defined by an entity declaration together with a corresponding architecture body.

e Fntity Declarations

The entity declaration basically defines the inputs and outputs of the design entity.
A given entity declaration is restricted to be used by only one design entity; that
is, it can not be shared in this VHDL subset. The restrictions described in Item 5
are applied accordingly to the entity header and the entity declarative part of a
given entity declaration'. The entity statement part must be empty in each design
entity; in other words, the behavior of a design entity must only be specified in
the corresponding architecture body.

o Architecture Bodies

There are three general styles of descriptions possible within an architecture body:
structural, dataflow and behavioral. However, only the behavioral one is allowed.
Behavioral descriptions specify data transforms in terms of algorithms for com-
puting output responses to input changes. The feature of multiple asynchronous
processes is not yet supported in the current version of VHDL2DDS; therefore,
each architecture body is required to have one and only one concurrent statement
in the architecture statement part.

2. Subprograms

n fact, this rule is applied to all declarative parts in this VHDL subset. It will not be stated explicitly
in the rest of the VHDL subset definition unless additional restrictions are required.

Since the configuration is not included in the VHDL subset, subprograms shall serve
as the major mechanism for building the desired design hierarchy®. The definition of
a subprogram can be given in two parts: a subprogram declaration and a subprogram
body. Subprograms without subprogram bodies shall be used as the break-away points
for the design hierarchy or the interfaces of the modules in the system library. Both
procedures and functions are allowed. The subprogram overloading is not supported,
and the operator overloading is limited to once for each scope of declarations.

3. Packages

Packages provide a means of defining declarations which can be shared by different
design units. One of the major usages of packages in ADAM will be to define the
interfaces of some implementation-dependent module libraries. In such a case, the
package declaration has no corresponding package body. No special restrictions except
those in Item 5 are imposed on packages.

4. Types

In VHDL, a type is characterized by a set of values and a set of operations. All
implicitly declared operations for a given type declaration are supported and will be
translated automatically by VHDL2DDS. However, they are not recommended to be
used in the VHDL descriptions because there may be no corresponding modules in
libraries for bindings. As a result, the explicitly declared subprograms for a type are
more appropriate in terms of module bindings. Two classes of types are allowed with
restrictions; namely, scalar types and composite types.

e Scalar Types
Scalar types are limited to the predefined types BIT, BOOLEAN, and INTEGER
only. Currently, users can not define their own scalar types. The INTEGER type
is assumed to be a 32-bit implementation.

o Composite Types :

The composite type is the only user-definable type class in this VHDL subset.
It is further limited to array types only. An array object is a composite object
consisting of elements that have the same type. Its primary usages are to model
different bit-width values and memories. The maximal dimensionality of an ar-
ray type is limited to 2. Both unconstrained array types and constrained array
types are allowed. The index definition of an unconstrained array type must be
INTEGER, and the indez constraint of a constrained array type must be ranges.
BIT_VECTOR is the predefined array type supported by VHDL2DDS.

Since subtypes are not supported, there are several limitations on the uses of array
types. First, it is not allowed to define a constrained array type from an existed
unconstrained array type. This makes the unconstrained array types of little use.
A constrained array type is no longer defined as an unconstrained array type and
a subtype of this type. It itself is a ‘type’.

21 fact, this limitation makes the design entity unsuitable for describing internal blocks because there is
no way to bind a collection of design entities into a design hierarchy without using a configuration declaration.

7

For each array type, two additional operations are implicitly defined by this VHDL
subset. They are array read operations and array write operations. If an indezed
name appear at the right (left) hand side of an assignment statement, an array
read (write) operation will be used. This feature is well suited for modeling
memories; however, it can not model the extraction of a subvalue from a multi-
bit value.

5. Declarations

In addition to design entities, subprograms, packages and types, the other kinds of
declarations allowed are object declarations and interface declarations.

e Object Declarations

All three classes of objects are allowed; namely, constants, signals, and variables.
An object declaration declares an object of a specified type. The feature of de-
ferred constants is not supported. Signals will be treated as variables; that is,
only the syntactical aspect of signals is preserved, but their semantics will be
identical to variables in terms of the VHDL to DDS translation. Therefore, a
signal declaration is not allowed to have a resolution function, guards, and the
signal kind.

e Interface Declarations
Interfaces objects include constants, signals, and variables, too. The restrictions
described above are applied accordingly. In addition, the mode of an interface
object is limited to either in or out.

6. Names

All forms of names, except attribute names and slice names, are allowed. The identifier
for an entity, a package, a subprogram, or an interface object shall have only first 5
characters significant after translation. An index name is considered to be an array
read (write) operation instead of simply denoting an element of an array.

7. Ezpressions

An expression is a formula that defines the computation of a value. It consists of
a set of operators and their operands. Though all VHDL predefined operators are
supported by VHDL2DDS, VHDL2DDS does not assume any specific implementation
to a predefined operator, nor is it aware of the availability of any library module for
binding. Care must be taken not to use any predefined operator unless the user can
make sure there exists some corresponding module in the library or the operator in
question will somehow be implemented. In ADAM, a more appropriate approach will
be to define a package for each available module library using function declarations
or overloaded operators and use these functions or operators in expressions instead of
predefined ones.

The allowed operands in an expression include names, literals, and function calls. In

addition, an expression enclosed in parentheses may be an operand in an expression.
A literal is either a integer literal, a boolean literal, a bit literal, or a bit string literal.

8. Sequential Statements

Sequential statements shall be the major means for describing the behavior of the
component under design. The allowed sequential statements are:

e Signal assignment statement.

e Variable assignment statement.

e Procedure call statement.

e [f statement.

e Case statement.

e Loop statement.

e Nezt statement.

o Fzit statement.

o Return statement.

e Null statement.
Statement labels can be used whenever necessary. A signal assignment statement is
considered like a variable assignment statement. Hence, transport delay is not sup-
ported and the waveform at the right hand side can consist of one element only. In

addition, a waveform element is not allowed to have a after clause. The iteration
scheme of a for loop must be a range of type INTEGER.

9. Concurrent Statements

The process statement is the only form of concurrent statement allowed in this VHDL
subset®. A process statement defines an independent sequential process representing
the behavior of the design. The execution of a process statement is modeled by the
endlessly repetitive execution (an implicit loop) of its sequence of statements. Hence,
a process statement is not allowed to have a sensitivity list.

2.3 Representing VHDL in DDS

In this section, the correspondence between VHDL and DDS is given. Understanding this
section relies on a basic knowledge of DDS. The major difficulty in representing a VHDL
description in DDS is they (VHDL and DDS) use ‘incompatible’ models for representing the
behavior of a design. Basically, there is no one-to-one relationship between them. Though,
by using extensive flow analysis techniques, VHDL2DDS can generate a DDS representation
which mimics the behavior of a given VHDL design, it is not easy to know what the output
of VHDL2DDS will be. Therefore, the objective here is to give the VHDL designers some
extent of ability to predict the output of VHDL2DDS.

3Gince the feature of multiple concurrent processes is not supported, the inclusion of the process statement
in this VHEDL subset is merely for syntactical reasons.

Before the discussion of the relationship between VHDL and DDS, we assume the readers
already have some basic knowledge of DDS[16]. The discussion will be organized accord-
ing to various VHDL constructs, and the DDS terminology shall be used without further
explanation.

2.3.1 Declarations

Most of the VHDL declarations have obvious counterparts in DDS. In general, they are
translated into the definition part of a DDS representation; e.g., the value definitions and the
operation definitions of the DDS dataflow subspace®. The generalized scheme is enumerated
below:

1. Design entities

The fundamental structure of DDS is the component. A component under design is
identified by an entity declaration and its associated architecture body. For each entity
declaration being translated, a DDS component is created, and the interface objects
declared in the entity header become the input (output) values of the component’s
DFG. The translation of an entity declaration defines the primary inputs and outputs
of the component only. The DFG body and the CTG are null until the associated
architecture body is translated. The process statement within the architecture body
provides the behavioral information of the design to fill the DFG and CTG.

2. Subprograms

Subprograms are also transformed into DDS components. In fact, subprograms and
design entities are treated in the same way by VHDL2DDS, where subprogram declara-
tions correspond to entity declarations and subprogram bodies to architecture bodies.
However, the component being generated from a subprogram usually is not the final
component under design. The primary use is for building the design hierarchy and
defining the interfaces of some implementation-dependent operations (modules).

3. Packages

A package is a declarative region in which a set of sharable declarations are grouped.
It has no physical meaning, and is primarily related to the scope and the wisibility of
declarations. On the other hand, a single uniform naming space is shared by all objects
created in DDS. That is, every object in DDS is globally ‘visible’. In order to represent
the concept of packages and the visibility of names in DDS, the uniform naming space
is divided into several naming subspaces. A package, a design entity, or a subprogram
defines a naming subspace in DDS. In general, declarations within different declarative
region in VHDL shall reside in different naming subspaces in DDS®.

4Values and operations are sometimes termed links and nodes respectively in DDS.

5For example, an identifier named ‘X’ defined in both package ‘A’ and package ‘B’ could be named
differently as ‘A.X’ and ‘B.X’ in DDS. For details on the naming convention used by VADL2DDS, refer to
Appendix A.

10

4. Types

A type in VHDL corresponds to a dataflow wvalue definition in DDS. Both of them
are used to define a set of possible values for a particular application. The value
definitions provide the characteristic information, e.g., the bit width, to the values in
a DFG, which is essential to several synthesis steps such as register allocation and
memory allocation.

Each predefined scalar type is translated into a primitive value definition according
to its characteristics. For example, BOOLEAN is assumed to be the type of 1-bit
flag and INTEGER uses a 32-bit implementation. An array type is transformed into
a hierarchically-defined value definition which is organized like a tree structure. The
elements of an array type are represented by the constituents® of the corresponding
value definition”. The kind of the constituents is defined by another value definition
derived from the array element type. For a constrained array type, the structural
dimension is calculated by multiplying the first index range by the structural dimension
of the element type.

5. Objects

The DFG in DDS is a single assignment graph; that is, a value can only be generated
once. This is in contrast to the common notion of a variable that may have more than
one value associated with it during its lifetime. Instead, an object is modeled by a
sequence of values, each of which is bound to a different range of the associated CTG.
The determination of the values for an object depends on how the given object is used
in the statement part. Each new assignment to an object defines a value in the DFG.
In general, this information is collected by the dataflow analysis. Except the interface
objects, the declaration of an object does not mean there will be a value in the DFG.
It simply provides the value definition (type) information to those values that will be
bound to the object.

2.3.2 Statements

In VHDL, the behavior of a design is described algorithmically by a sequence of statements.
These statements are contained in a process statement or a subprogram body. As discussed
in Section 1.3, to translate a sequence of statements into a equivalent DDS representation
several analysis techniques must be applied. First, the sequence of statements are partitioned
into several basic blocks in order to build the flow graph. Each basic block represents a
sequence of consecutive statements without the possibility of branching in the middle. The
basic blocks are identified as following:

e Determine the set of leaders in the sequence of statements.

6They are sometimes called sublink constituents or subvalues. Basically, the constituents of a value
definition are a set of value references defined by some other value definitions.

TDue to the limitation of the current DDS schema, the constituents are only created for the bounding
elements of a constrained array type. For an unconstrained array type, an abstract constituent is used to
represent all possible elements.

11

| Type | Input and Output Sets for Statement S |

assignment | I(S) = {z|z is referenced by S}
O(S) = {z|z is defined by S}

procedure | I(S) = {z|z is an input parameter of the procedure}

call O(S) = {z|z is an output parameter of the procedure}
condition | I(S) = {z|z is referenced by S}
O(S) = null

Table 2.1: Calculation of input and output sets for a statement.

— The first statement of a basic block is a leader.

— Any statement that is the target of a conditional or unconditional branch is a
leader.

— Any statement that immediately follows a branching statement is a leader.

o For each leader, its basic block consists of the leader and all statements up to but not
including the next leader or the end of the given statement sequence.

By constructing the flow graph, the computations are confined to the basic blocks and the
control flow information is represented by the inter-block relationship®.

1. Basic Blocks

A basic block is a computational unit. The output of a basic block is deterministic
in terms of its inputs. The only forms of statements which exist in a basic block are
assignment statements, procedure calls, and conditional expressions. Each statement
can be modeled as a set of input values, a set of operations, and a set of output
values. The calculation of the input and output sets for a statement is illustrated in
Table 2.1. The input and output sets for basic blocks are somewhat more complicated.
Let B = Sy,--+,S, be any basic block. Its input and output sets are defined to be

1(8)=1(5)U {U (1(5:-) -U 0(5,.)) }

and

n

O(B) = | 0(5)

i=1

8In other words, the edges of the flow graph.

12

This means that the input set for B consists of values which are used before their
redefinition and the output set contain all values defined within the block.

The definition of an input value can be found by a backward scan of the preceding
statements until the value appears either in an output set of a statement or in the
input set of the enclosing basic block. For each output value, a list of statements
where that value is used before its redefinition can be found similarly by a forward
scan. Following the analysis described above, it is conceptually easy to generate the
DFG for a basic block. The inter-statement dependencies have been established by
the use and definition analysis, and the intra-statement dependencies are established
according to the syntax trees of the expressions within the statement. By transforming
each operation® into a node and each data dependency into a link between nodes, the

DFG is built.

Basically, the CTG generated by VHDL2DDS is an initial scheduling of operations
and values in the corresponding DFG. The underlying model has been simplified and
assumes no time and cost constraints. The objective here is to produce a correct
CTG which provides all necessary control and timing information. At later stages of
synthesis, the DFG can be rescheduled or the CTG can be improved according to the
given constraints.

In this model, each statement corresponds to one or more sequential ranges'® in the
CTG. The ranges of a statement are generated as following:

e The expressions within a statement are evaluated from left to right. Each of them
is scheduled separately and sequentially. For each expression, it is evaluated by
traversing its syntax tree in postorder.

¢ According the evaluation order of an expression, all function calls are bound to
their own ranges, and the primitive operations'' up to the first function call or
between any two function calls are bound to the same range.

e All ranges are concatenated sequentially according to the evaluation order.

Each value is considered to be live from the range where the operation, which defines
it, is bound to the range where the last operation, which uses it, is bound. The final
CTG of a basic block is built by concatenating sequentially the ranges of all statements
within the block.

2. Conditional Statements

Conditional statements include if statements and case statements. The case statement
is transformed into an if statement and no further reference to it is made in the following
discussion. If any elsif part is present in an if statement, the if statement is viewed
as a nested if-then-else construct. By doing these transformations, the translation of
a conditional statement is reduced to the analysis of simple if-then-else constructs.

9Tt can be a call to an operator, a function, or a procedure.
10A range can be viewed as a iime step in terms of scheduling.
11A primitive operation is a call to an operator or a function without a function body.

13

Basically, an if-then-else construct consists of a condition, a then body, and an optional
else body. The condition is a Boolean expression which determines the flow of control.
Both the then body and the else body are sequences of statements!?.

To represent an if-then-else construct in DDS, we collect the dataflow and control-
timing information from the condition, the then body, and the else body respectively,
and build the DFG and CTG by gluing'® these subgraphs together as show in Fig. 2.1.

Two special operations, distribute and join, have been introduced into the DFG. These
operations allow us to describe the conditional sequencing in the DFG; that is, they
are the ‘control’ operations in the data flow subspace. Their presences are required
by the colorer program to detect mutually exclusive operations and values in a DFG.
An analogy of these operations can be drawn to the switch and select operations in
some data flow languages[12]. However, they do not necessarily correspond to a piece
of hardware after the synthesis. A distribute operation is created for each condition-
dependent value'* used by the if-then-else construct, and a join operation is used for
each value that is defined by both the then body and the else body.

The CTG of an if-then-else construct is straightforward. A pair of or-fork and or-join
points are created to form a 2-way branch. The choice of branch is based on the value
of the condition that is attached to the ranges emanating from the or-fork point. The
True branch and the False branch are actually the sub CTGs representing the then
body and the else body. In fact, the CTG provides another way, perhaps easier, to
detect the mutual exclusive operations and values in the DFG by using the operation
bindings. For example, if two operations are bound to the True branch and the False
branch respectively, they are certainly mutual exclusive.

3. Iterative Statements

In VHDL, an iterative statement consists of a loop body and an optional iteration
scheme (while or for). To simplify the analysis, the for loop is transformed into a
while loop, and a loop without an iteration scheme is considered as a while loop with
a True value as the condition. Therefore, every iterative statement is modeled by a
while construct. The loop body of a while construct is a sequence of statements that
is to be executed repeatedly, zero or more times, until the condition becomes false.

The DDS representation describes the while construct using an a-w loop in the CTG
with a distribute operation and a join operation in the DFG. Fig. 2.2 shows the gen-
eralized graph template of a while construct. Both the CTG and the DFG of a while
construct can be viewed to consist of three parts: loop entrance, loop exit, and the
loop body. In DFG, the loop entrance is for the evaluation of the loop condition, and
the loop exit is a set of distribute operations for loop-dependent values'®. On the other

12Readers should recall the translation of a sequence of statements discussed in the beginning of this

section.
13The actual process is not as simple as it sounds. It depends on the global flow analysis which has been

intentionally left out to simplify the discussion.
14Cyurrently, a condition-dependent value is assumed by VADL2DDS to be the value used by both the

then body and the else body.
15A Joop-dependent value is considered to be the value used and redefined by the loop body.

14

DFG:

| : Input set
O: Output set
D: Distribute
. J : Join
Pred Pred: Predicate

then bod
m
0= ONNNO=

else body

n: simple point
y. or-fork point
W or-join point

Figure 2.1: The DDS template of an if-then-else construct.

hand, the o point in the CTG represents the loop entrance, and the or-fork point in
the middle is the loop exit which branches to either the w point or whatever follows
the loop.

If next or exit statements are used within the loop body, they are considered as either
conditional or unconditional branches, and are handled by the basic block analysis.
In another view, a conditional next or exit statement is transformed into an if-then-
else construct where the else body is the remaining statements in the loop body. The
then body is null in an exit statement or a branch to the loop entrance in a next
statement. Next or exit statements can easily result in intertwined conditional paths
in the DFG and CTG if they are not used in a structured way. The resulted graph
cannot be colored properly to detect mutual exclusion. This problem can be solved by
using proper loop transformation techniques[18]. However, no attempt is made by the
current VHDL2DDS to do loop transformations of any kind.

Looping traditionally involves the re-use of values and operations, but this cannot be
done in a single-assignment DFG. The way we indicate the correspondence between
the successive operations and values of a loop is by the use of subscripts. A subscript
indicates a temporal sequence of values or operations; e.g., a stream of values could
be described as bg, - -+, by where b; would precede b;4; in a sequence. An analogy of
subscripts would be the tags proposed in[7]. A fized loop'® can be easily handled by
assigning constant subscripts to values and operations in DFG. In fact, this loop can
be viewed to be unrolled in the DDS. Unfixed loops, on the other hand, cannot be
unrolled. In order to deal with this situation, a symbolic subscript[17] is used. Any
value or operation may have attached a subscripting symbol or expression, such as z;
and z;_3, in order to be made explicitly distinguishable.

In the current VHDL2DDS, all loops are assumed to be unfixed loops. A symbolic
subscript is defined as 7 : 0--- I, where I denotes the final value of the subscript and i
represents the current iteration. For example, if a variable b has an initial value before
the loop begins and is redefined within the loop body, then bo, b;—1, b;, and by are used
to denote the initial value, the previous iteration value, the current iteration value, and
the final value of variable b. If loops are nested, the inner loop is given a new subscript
plus the one currently in the outer loop.

165 fixed loop is a loop with a fixed number of iterations. On the other hand, an unfixed loop is a loop
with an unknown number of repetitions.

16

DFG:

while
loop entrance

i ‘ID:(I)nput set

: Output set
Pred D: Distribute
J : Join
Pred: Predicate

. loop entrance,

7 simple point
v. or-fork point
o alpha point

®: omega point

Figure 2.2: The DDS template of a while construct.

17

Chapter 3

Example

In this chapter, an example is given to illustrate the uses of VHDL2DDS and its capabilities.
This example is a digital filter which serves as a running example in ADAM.

3.1 AR Lattice Filter

A major field of the application of the data path synthesis is digital signal processing, where
the computations are intensive but regular. Here we use the AR lattice filter as an example.

The AR lattice filter is very regular and suited for supercomputing using systolic array
processors. An array element of the AR lattice filter is show in Fig. 3.1. The operations of
the four modules in an array element are summarized as the following:

| Module | Operations |

A a; = inl * M)
ay = ?:Tl.l * pPa
B b] = ing -4 as
C outy = by * p3
¢y = ouly * py
D outy = a1 + ¢
where py, - - -, ps are constant parameters and all values and operations are complex.

Before writing a VHDL description for this example, the following assumptions must

hold:

e A complex value is represented by a real part and an imaginary part, and both of

which are 32-bit integers.

o The standard integer ‘+’ and “** operators are used and there exist appropriate modules

in the library for bindings.

e The constant parameters are supplied externally by the system.

Fig. 3.2 shows a VHDL description for an array element of the AR lattice filter. In this
description, there is only one basic block in the architecture body; therefore, only the local

18

d

%4

b

Figure 3.1: An array element of the AR lattice filter.

flow analysis is needed. After collecting the input and output sets of each statement and
generating the use and definition sets, we have the use/definition table shown in Table 3.1
Both ‘cmult’ and ‘cadd’ procedures are analyzed similarly. From. the information provided
by the flow analysis, it is easy to generate the DFGs since the use/definition table provides
all the inter-statement data dependencies and can be viewed as a linear representation of
the DFG. The actual DFGs generated by VHDL2DDS are shown in Fig. 3.3. Some remarks
on this figure are worth making:

e The copy statements of the form o = y are eliminated by VHDL2DDS during the
graph generation, and the DFGs have been optimized.

e The DFG of the AR filter array element is hierarchical and needed to be flattened.

e Each link in the DFG of the AR filter array element represents a complex value; i.e.,
it actually consists of two integer values, a real part and an imaginary part.

e The value names and the operation names are simplified and do not reflect the actual
identifiers generated by VHDL2DDS. For the exact names, refer to Appendix A.

Since there are no conditional or loop statements in this example, the CTG generated by
VHDL2DDS is simply a sequence of ranges, where each range corresponds to a statement in
the architecture body® and is hierarchically defined by the CTG of either ‘crult’ or ‘cadd’.
The binding table? is shown in Table 3.2. In other words, the initial schedule provided by
VHDL2DDS is based on the order of the statements in the VHDL description and assumes
neither time nor cost constraints.

IThere are some dummy ranges being generated by VHDL2DDS in the actual CTG.
2In this table, the range numbers do not reflect the actual identifiers generated by VHDL2DDS.
3This field shows the range in which the value is last used.

19

-- An array element of the AR Lattice Filter using type | complex mutiplier.
entity ARF_ELEM is

port(
in1R, in1l, in2R, in2l: in integer; -- the inputs from neigboring elements.
out1R, out1l, out2R, out2l: out integer; -- the outputs to neigboring elements.
p1R, p1l, p2R, p2l, p3R, p3l, p4R, p4l: in integer -- the constant parameters.

end ARF_ELEM;

architecture BEHAVIOR of ARF_ELEM is
-- Type | complex multiplier
procedure cmult(a, b, ¢, d: in integer; x, y: out integer) is

begin

X :=a"c-b'd; -- the real part

y :=a'd + b*c; -- the imaginary part
end cmult;

-- complex adder
procedure cadd(a, b, ¢, d: in integer; x, y: out integer) is
begin
Xi=a+C; -- the real part
y:=b+d; -- the imaginary part
end cadd;

begin
process
variable a1R, all, a2R, a2l: integer;
variable b1R, b1l: integer;
variable ¢1R, c1l: integer;
variable tmpR, tmpl: integer;

begin
-- module A
emult(in1R, in1l, p1R, p1l, a1R, all); --al =in1 " p1
cmult(in1R, in1l, p2R, p2l, a2R, a2l); --a2 =ini*p2
-- module B
cadd(in2R, in2l, a2R, a2l, b1R, bi1l); -b1 =in2 + a2
-- module C
cmult(b1R, b1l, p3R, p3l, tmpR, tmpl); —-tmp =b1 *p3
cmult(tmpR, tmpl, p4R, p4l, c1R, c1l); -cl =tmp* pé
out1R <=tmpR; out1l <=tmpl; -- outl =tmp
-- module D
cadd(alR, all, ¢1R, c1l, tmpR, tmpl); --tmp =al +ci
out2R <= tmpR; out2| <= tmpl; -- out2 = tmp
end process;

end BEHAVIOR;

Figure 3.2: A VHDL description for an array element of the AR lattice filter.

20

Statement Input Set || Output Set
val | def || val | use

1: @y = tng * py iy |0 ay 7
P1 0

2: ay =1ng ¥ Py iy |0 as 3
P2 0

3: bl = ?:ng + aq in2 0 bl 4
%) 2

4: tmp = by *p3 | by 3 tmp | 5, 6
ps |0

5:cp =tmp*xpy || tmp | 4 ¢ 7
P4 0

6: outy = tmp tmp | 4 outy | 0

T:tmp=a1+¢ || & 1 tmp | 8
C1 5

8: outy = tmp tmp | T outy | 0

Table 3.1: The Use/Definition table of the AR filter example.

range || op || val | die?
0 begin || in,y
19
P
D2
P3
P4
ay
as

*

outl
€1
Outz

* * 4+
o
&

*
=IO~ (WO AN = WD

-+

]| | Ot > | Qo DD —

end

Table 3.2: The Binding table of the AR filter example.

21

I cNoNNoNo

cadd:

ARF:

24
cmult cadd
P1

Figure 3.3: The data flow graphs of the AR filter example.

22

out2

Chapter 4

Conclusions

In this document, we have introduced the VHDL2DDS program which is part of the USC
ADAM system. The underlying VHDL subset used was defined and the corresponding DDS
representations were also given. In addition, the analysis techniques used in the translation
process have been briefly described.

We believe the principal concepts developed for VHDL2DDS could be applied to translate
general high-level languages to a data flow language [3] which is more suited for today’s
highly parallel machine. This application is valuable because the inherent parallelism in
a conventional program can be exploited by this kind of translation without resort to the
parallel constructs, e.g. parbegin/parend, or recoding using a special parallel language.

Several enhancements to VHDL2DDS could be made to improve the usability and the
capacity. VHDL2DDS currently is only a prototype program whose primarily goal is to
demonstrate an approach to translate the VHDL descriptions into the DDS representations.
Thus, very little optimization has been done. However, prior to the synthesis, there is plenty
of scope to optimize the input specifications because of the use of high-level constructs. The
main objective of the high-level optimization is to generate optimized behavioral designs
for the synthesis system so that hopefully better structural designs can be obtained after
the synthesis. In order to make VHDL2DDS more usable, the VHDL parser could be im-
plemented in VHDL2DDS instead of using a separate program, and a much larger VHDL
subset should be used (at least the structural constructs must be allowed) to provide better
expressive power for the design specification.

23

Appendix A

Naming Convention

This appendix describes the naming convention used by VHDL2DDS to name its DDS
output. Currently, the output of VHDL2DDS is directed to ADAM’s DDS database. This
database is an object-oriented database where every object has an unique identifier. However,
only a global naming space is provided for all objects in the database, and the length of an
object identifier is limited to 25 characters. Therefore, hierarchical naming and identifier
scoping is not possible unless some mapping mechanism or naming convention is used. Since
the interactive access to database objects is required, the naming convention approach is
used.

A.1 The Naming Convention

In DDS, the fundamental structure is the component. Each component is described in
terms of four models, the dataflow, control-timing, structural, and physical models. Hence,
it is natural to divide the single DDS naming space into several subspaces based on the
components. All objects related to a component share the same naming subspace. The
naming template is given below:

<component identifier>[<model flag>[<model-specific object identifier>]|

i.e., each object identifier may consist of three parts: the component identifier that indicates
the particular naming subspace, the model flag that denotes one of the four models, and the
model-specific object identifier.

1. Component Identifiers
The component identifier is derived directly from the identifier of an entity, a package,
a subprogram, or an operator in VHDL. Identifiers longer than 5 characters are trun-
cated. A component identifier is recursively made by the following naming template:

[<the component identifier of the enclosing contezt>]\ <the truncated identifier>

e.g., if a subprogram named ‘SUB’ is declared within package ‘PACK’, the correspond-
ing component identifier of the subprogram will be ‘PACK\SUB’.

24

2. Model Flags

The model flag is a special character used to denote one of the four models. Currently,
the model flags for the dataflow model and the control-timing model are ‘.” and ‘#’.
For example, the control-timing model of the subprogram given in previous item will
be named as ‘PACK\SUB#’. In addition, ‘§’ is used as the flag for operation binding.

3. Model-Specific Object Identifiers

(a)

Data Flow Model

There are three object types within this model. They are value definition, value
reference, and operation reference. The operation definition is the data flow model
itself. The object identifier of a value definition is derived from the corresponding
type name in VHDL, and the type name is truncated as well. For example, the

type BOOLEAN in package STANDARD is named ‘STAND.BOOLE'.

If the value reference is an interface value for a given component, its object iden-
tifier is the truncated name of the corresponding interface object in VHDL; oth-
erwise, it will be given an internal value number in ‘AV<number>’ format. The
associated net if present is named by appending ‘:N’ to the object identifier of the
value reference.

All operation references within a dataflow model are given an internal operation
number using ‘AQ<number>". The pins of an operation reference are numbered
and named by appending ‘:P<number>’ to the object identifier of the operation
reference.

Control-Timing Model

The control-timing model is actually a range definition. In this model, all point
definitions are primitives and are given a predefined name'. Both range references
and point references are numbered and their object identifiers are ‘AR<number>’

and ‘AP<number>’ respectively.

Operation Bindings

An operation binding represent a relationship between a dataflow element, a time
range, and a structural element. In VHDL2DDS, only the the dataflow part and
the control-timing part are given to an operation binding. Operation bindings are
also numbered, and the identifier format is ‘AB<number>’.

A.2 Predefined Names

There are some constructs which are unique to DDS and don’t have any counterpart in
VHDL. Their names, therefore, are given by VHDL2DDS. The following is a list of the
object identifiers of these constructs in the DDS database.

1Gee Section A.2 for the complete list of predefined names.

25

| DDS Object Identifier | Description

STAND\D distribute operator

STAND\J join operator

STAND#SIMPLE simple point definition

STAND#ALPHA « point definition

STAND#OMEGA w point definition

STAND#ORFORK | or-fork point definition

STAND#ORJOIN or-join point definition

STAND#ANDFORK | and-fork point definition

STAND#ANDJOIN | end-join point definition

26

Appendix B

Error Messages

The following error messages may be emitted by VHDL2DDS. The severity of the error can
be either “Error” for detected violations of the VHDL2DDS’s semantic rules, or “Fatal” for
error conditions from which it is not possible to continue. The error messages are listed in
the alphabetical order and their text is mostly self-explanatory. The error text may contain
the string %s which indicate that the string is replaced by some location-specific text.

B.1 Error-Level Error Messages

“%s not allowed for discrete range specification”
“%s not allowed for iteration scheme”

“%s not allowed for specifying the aliased object”
“%s not allowed in a static expression”

“%s not allowed in a static operation”

“%%s not allowed”

“%s operator not allowed in a static operation”
“%s type definition not allowed”

“after clause not allowed”

“aliasing an alias object is not allowed”

“array dimension too large”

“bad index expression %s”

“bad 1-value”

“bad r-value”

“concurrent statement %s not allowed”
“constraint not allowed in type indication”
“declaration type %s not allowed”

“illegal data type for index definition”

“illegal data type for iteration scheme”

“label not allowed in exit statement”

“label not allowed in next statement”

“more than 1 choice for a case alternative”
“more than one process in architecture body %s”

27

“multi-element waveform not allowed”
“no process in architecture body %s”
“process sensitivity list not allowed”
“resolution function not allowed”
“statement part of entity %s not empty”
“statement type %s not allowed”
“subtype declaration not allowed”
“transport delay not allowed”
“unreachable code”

B.2 Fatal-Level Error Messages

“bad argument %s”

“can’t create object %s”

“can’t open DDS database %s”
“can’t open DLS library %s”
“can’t open DLS unit %s”
“can’t open log file %s”

“can’t open rec file %s”

“can’t open sta file %s”

“can’t relate %s to %s”

“illegal option %s”

“illegal view type %s”
“internal bug of vhdl2dds %s”
“no DDS database given”
“primary unit %s not translated”
“unit %s has been translated”
“unit type %s not allowed”

28

Appendix C

Known Bugs and Limitations

The following bugs or limitations are known to be present in VHDL2DDS version 1.7. Where
possible, a workaround is given:

e If a subprogram is declared to be the interface of a module in the library, its formal
parameters must be named ‘OPN1’, ‘OPN2’, - - -, etc., in order to facilitate the module
bindings.

o Occasionally, VHDL2DDS will generate unequal numbers of distribute operations and
join operations in a DFG, which is not acceptable by the current coloring algorithm.
This is due to the limited expressive power of the distribute/join mechanism and the
naive rules used by VHDL2DDS to identify the conditional dependent values.

Workaround: If a variable is used by both the then body and the else body
of a conditional statement, and not redefined by either the then body or the
else body, add a copy statement like & := z after the conditional statement
if it is no longer being used afterward. In general, a new coloring technique
should be developed to color the DFG according to the CTG and bindings.

e The identifiers of interface objects, types, subprograms, packages, or design entities
are truncated after the translation. It is possible to have naming conflicts in the DDS
database if identifiers with a same 5-character prefix are used.

Workaround: Don’t declare identifiers having a same prefix longer than 5
characters within a declarative region.

29

Bibliography

[1] W. B. Ackerman and J. B. Dennis. * VAL - A value oriented algorithmic language,”
Lab. Comput. Sci., Massachusetts Inst. Technology, 1978.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[3] S. J. Allan and A. E. Oldehoeft. “A flow analysis procedure for the translation of high-
level languages to a data flow language,” IEEE Trans. on Computers, pp. 826-831, Sep.
1980.

[4] F. E. Allen. “Control flow analysis,” ACM SIGPLAN Notices, vol. 5, pp. 1-19, Jul.
1970. i

[5] F. E. Allen and J. Cocke. “A program data flow analysis procedure,” Comm. ACM,
vol. 19, pp. 137-147, Mar. 1976.

[6] Arvind, K. P. Gostelow, and W. Plouffe. “An asynchronous programming language and
computing machine,” TR-114a, Dep. Comput. Sci., Univ. of California, Irvine, Dec.
1978.

[7] Arvind and K. P. Gostelow. “The U-Interpreter,” IEEE Computer, pp. 42-49, Feb. 1982.

[8] C. T. Chen. “The Translation of VHDL Language to DDS Data Structure,” Dept. of
Elect. Engi. - Systems, Univ. of Southern California, 1990.

[9] C. T. Chen. “Manual Pages for the VHDL Language Interface,” Dept. of Elect. Engi. -
Systems, Univ. of Southern California, 1990.

[10] Design Library System, CAD Language Systems Inc, 1989.
[11] VHDL Analyzer User’s Manual for Sun/SunOS, CAD Language Systems Inc, 1989.

[12] J. B. Dennis and K. S. Weng. “First version of a data flow procedure language,” Pro-
gramming Symp.: Proc. Colloque sur la Programmation, pp. 362-376, Springer-Verlag,
Apr. 1974.

[13] M. S. Hecht and J. D. Ullman. “A simple algorithm for global data flow analysis prob-
lems,” SIAM J. Comput., vol. 4., pp. 519-532, Apr. 1975.

30

[14] IEEE Standard VHDL Language Reference Manual, The Inst. of Electrical and Elec-
tronics Engineers Inc, 1988.

[15] R. Jain, K. Kucukcakar, M. J. Mlinar, and A. C. Parker. “ Experience with the ADAM
Synthesis System,” Proc. of the 26th Design Automation Conf., ACM/IEEE, Nov. 1988.

[16] D. Knapp and A. C. Parker. “ A Unified Representation for Design Information,” Proc.
of the IFIP Conf. on Hardware Description Languages, Aug. 1985.

[17] M. McFarland and A. C. Parker. “An abstract model of behavior for hardware descrip-
tion,” IEEE Trans. on Computers, vol. 32, pp. 621-637, Jul. 1983.

(18] M. Mlinar and A. C. Parker. “Loop Transformations for Acyclic Data Path Synthesis,”
Tech. Report, Dept. of Elect. Engi. - Systems, Univ. of Southern Cal., May 1989.

31

