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Abstract: In this paper, a new adaptive method is presented for dynamic load balancing on
a message-passing multicomputer. The method is based on using easy-to-implement heuristics
and variable threshold in migrating processes among the multicomputer nodes. This adaptive
method uses a distributed control over all processor nodes as coordinated by a host processor.
Based on this method, a distributed load balancer has been developed and implemented on a
32-node iPSC/386 multicomputer. Several benchmark programs were executed using this load
balancer. Benchmark programs include recursive functions and backtracking search, which are
often used in Al applications. Encouraging benchmarking results are herein reported, verifying
the effectiveness of the new load balancing scheme. This adaptive load balancer is implementable
on any multicomputer topology, although the reported benchmark results were generated from
experiments on a 386-based hypercube machine.

Key Words: Multicomputer, load balancing, adaptive heuristics, distributed operating system,
process migration, recursive functions, backtracking search, and distributed Al processing.
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1 Introduction

A multicomputer is a multiprocessor system with distributed local memories. Each
computer node in the system consists of a processor, a local memory and a switch connected
to an interconnection network. The distributed local memories are not shared by the node
processors. The communication among processor nodes is done via message passing. The
entire ensemble is controlled by a distributed operating system. A multicomputer is used to
involve all processor nodes working together in solving large scale problems. The purpose
is to achieve time-critical execution of large-scale computations in either numeric or Al
applications [10].

In using a multicomputer, a user program is often partitioned into subprograms and
distributed to multiple processor nodes. At run time, each node starts with an initial process,
which may create many child processes during the execution cycle of each subprogram.
A processor continues to execute these child processes, until the entire subprogram gets
executed. Even if starting with a fairly balanced initial allocation of subprograms, these
initial processes may create vastly different numbers of child processes at run time. Figure
1 shows the unbalanced creation of processes in a 4-node multicomputer. To improve the
resource utilization, processes created at local processor need to be remapped into remote
processor nodes by means of migration. Such a dynamic load balancing is intended to keep
equal amounts of workload on all nodes throughout the execution cycle [13].

The problem of dynamic load balancing has been studied by many researchers. Some
methods use a queueing theoretic approach [5], [13], [19], where the system mean response
time is to be minimized. Other methods use distributed control to balance the activities

among multiple processor nodes [2], [17], [18]. In sender-initiated methods, the load balanc-



Figure 1: Unbalanced creation of processes in a multicomputer system.

ing activities are initiated by busier nodes [9] [11]; while in receiver-initiated methods, load
balancing activities are initiated by lightly loaded nodes [12], [14]. A good dynamic load
balancing method should reduce the overhead in collecting load indices and in process migra-
tion [6], [7]. The communication costs incurred in these operations depend on the message
routing scheme used. In this paper, we present four easy-to-implement heuristic methods
for dynamic process migration to achieve balanced load among multicomputer nodes. These
heuristics avoid frequent load indices exchanges among nodes with the coordination of a host
processor, such as the cube manager used in the iPSC system.

The term threshold has been used to decide when load balancing operations should be
exercised [8]. Most load balancing methods use some fixed threshold values (3], [11], [14].
If the threshold is too low, the thrashing caused by excessive load balancing activities may
degrade the performance of the entire system. If the threshold is too high, effective load
balancing cannot be achieved at all. Recently, Pulidas et al. [15] proposed a gradient

method to optimize the choice of threshold value. Their model requires frequent exchange



of load indices among all nodes without a centralized supervisor.

We propose a new scheme where each node updates the threshold on a periodic basis
under the supervision of a host processor [21]. This idea is inspired by the supervised
distributed message routing scheme implemented in Aparnet [16]. However, the Aparnet
scheme was meant to minimize the switching path delays between source and destination.
Our scheme is designed to balance load among multicomputer nodes; which has a different
set of optimization objectives. Efe and Groselj [7] have also proposed a supervised load
sharing model. They use fixed threshold and a controller node, which will execute the
extra load transferred from the remaining nodes or transfer them back to the idle nodes for
balanced execution. Our scheme differs from their approach in using adaptive thresholds at
all nodes and in restricting the host processor to perform only the collection and broadcasting
of load indices from all computer nodes. Our host does not participate in the decision of
process migration or actual execution of user jobs, which are entirely distributed to local
nodes. Our scheme does not require load information exchange among nodes as done in [15].
The distributed decision in our method is based on sender initiation, but using an adaptive
threshold which requires no handshaking among nodes as suggested by Krueger and Finkel
[9]. Our approach improves from the above methods and greatly reduces the implementation
and control overheads, which leads to high performance at lower cost.

The performance of the proposed new method was evaluated by the parellel event_driven
simulation [21]. In this paper, we present a dynamic load balancer, which implements the
load balancing mehtod, on a 32-node iPSC/386 hypercube multicomputer at USC. The load
balancer is written in C' language and built on top of the NX/2 OS in each i386 node.
Benchmark programs are executed in parallel at the process control level. By inserting run

and suspend OS directives to source programs, the invocation of each C function call will



create a new process. Each process is allocated to create child processes or be suspended. The
dynamic load balancer averages the system load by process migration. We have performed
extensive benchmark experiments to verify the effectiveness of this load balancing scheme.
The rest of the paper is organized as follows: Section 2 describes the adaptive model
for distributed load balancing under supervision. Four heuristic migration methods are
presented in Section 3. We then describe how to translate sequential programs into the
parallel versions in Section 4. The dynamic load balancer developed on iPSC/386 is described
in Section 5. In Section 6, we evaluate the performance of those heuristic methods by showing
the speedups obtained from executing benchmark programs. The results are analyzed with
the corresponding load distributed to all nodes. The final section summaries the research
contributions and comments on the impacts of applying the proposed method in executing AT

programs, which especially demand load balancing due to unpredictable program behaviors.

2 A New Adaptive Method

We focus our study on multicomputers using point-to-point interconnection networks.
A multicomputer is represented by n processor nodes N;, 0 < i < n, interconnected by a
network characterized by a distance matriz D = {d;;}, where d;; shows the number of hops
bet\yecn node N; and N;. It is assumed that d; = 0 and d;; = dj; for all 7 and 7. The
immediate neighborhood of node N; is defined by the subset G; = {NV; | d;; = 1}.

A multicomputer is modeled in Fig.2. The host processor is connected to all computer
nodes. The workload or load indez [; is indicated by the number of ready-to-run processes
in each node N;. The load index [; is passed from each node N; to the host. The system
load distribution L, = {l; | 0 < ¢ < n} at each time window (t, t + W), is broadcast

by the host to all nodes on a periodic basis. All nodes maintain their own load balancing
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Figure 2: An abstract model of a multicomputer with n processor nodes and a host processor.

operations independently and report their load indices to the host on such a regular basis.
The host broadcasts the system status periodically using a variable time windows between
tow adjacent updates, depending on traffic situation. The invocation of load balancing
activities are totally distributed to all the nodes. Each node N; has an input port I; and an
output port O;. These ports are connected to an interconnection network. Processes created
at each node can be either executed locally or migrated via the network to some remote
nodes for execution.

The load distribution L, is described by a mean value [, = Z*u::_“l—[ and a variance o(L,) =
Z:i—":f[—_n Let Ly, and Ly, (£ > 1) be the load distributions at two adjacent update times ¢,

and ¢, respectively. The time windowis defined as W,, = t, — ;. Let r be the load variation

factor defined by:

. I J(sz) _ J(Lf-i) I
¥ = (1)
mam(U(Ltl )3 O-(Ltz))
The parameter 7 indicates the incremental change in two successive system load distributions.

Assume the initial time windows W, = W,,. Consider two adjacent update times ¢, and ¢,

and choose 0 < k; < k; < 1, we compute the time window W,, from the earlier window W,

()]



a(L;) = o(L;) =38 o(L3) =338 o(L4) =4.8
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Figure 3: Example variation of the time window function W, with k; = 0.01 and k, = 0.1,
note that W, = W, and W, is obtained from W;,_, using Eq.2 for 7 > 2.

recursively as follows:
(1—r)- Wy, ik <7<k
Womi Qriywe feok ®
Wy, if Wy, <ky-W,,
¢ When the system enters a ready state, the system load distribution becomes virtually

unchanged. This implies that the time window becomes much longer in a steady state.
When the system load changes rapidly, the difference between the load variances becomes
significant. Thus the time window will become shorter é,ccordingly. This implies that the
system state will be updated more frequently. The parameters k, and k, are introduced
to avoid rapid changes in W, especially during the initiation period. In Fig.3, we show an
example with initial condition k; = 0.01, k; = 0.1 and W,, = 5000 ms. The successive time
windows Wy, are calculated from the earlier window W,, | using Eq.2 recursively.

At each node NV;, we use a sender-initiated load balancing method, where heavily loaded
nodes initiate the process migration. The sender-initiated method has the advantage of faster
process migration, as soon as the load index of a processor node exceeds certain threshold.
We use an adaptivé tﬁreshold, which is updated periodically according to the variation of

system load distribution. As modeled in Fig.4, new processes will be put into one of two

queues: the ready queue R; or the migration queue M;. Let p be a process, we define a cost
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Figure 4: A queueing model describing the operations of distributed load balancer at each
processor node.

function F(p) = e(p) + m(p), where e(p) is the estimated ezecution time of p and m(p) is
the estimated memory demand of p. The values of ¢(p) and m(p) are estimated at the time
of process creation using information available after compile time. The accurate values of
e(p) and m(p) can be measured during its life cycle by a monitor. These measures can be
used to validate future estimates the same code or with similar behavior. The load index l;
is determined by counting the number of processes in the ready queue R; at node N:.

=2 F(p) (3)

PER;

The variation of the threshold §; at each node N; is described in the next section. When a
process is ready to run at node NV;, the load index [; is compared with the local threshold §;.
If l; < b;, the process is put into the ready queue and [; is incremented by F(p); otherwise it
is put into the migration queue. After entering the ready queue, the process will be executed
on a the First-Come First-Serve (FCFS) basis. Processes in the migration queue will be

migrated to remote nodes eventually. The input port I; accepts processes migrated from



other nodes and puts them into its ready queue. The output port O; migrates processes to

other nodes.

3 Heuristic Process Migration

Four heuristic methods for migrating processes are formally introduced below. These
heuristics are used to invoke the migrating process, to update the threshold, and to choose
the destination nodes for process migration. These methods are based on using the load
distribution L,, which varies form time to time. Two attributes are identified below to
distinguish the four process migration methods. By considering four combinations of these

two attributes, we propose four different heuristic methods for process migration.

"1. Maigration and decision range: The process migration can be restricted to those nodes
in the neighborhood set G; adjacent to each IV;, or involve all the multicomputer nodes
in the system. The threshold is updated by either using the local average load among

neighboring nodes or using the global average load among all nodes in the system.

2. Heurustics used in process migration: Either a Round-Robin (RR) method or a minimum-
load (ML) method will be used in selecting the destination node for migration. The RR
method uses a circular list with a pointer to indicate the front end. The ML method

chooses a node with minimum load as the destination node.

A. Localized Round-Robin (LRR) Method

Each node N; uses the average load among immediate neighboring nodes to update the
threshold and migrates processes only to the immediate neighboring nodes from set Gi.
The Round-Robin discipline described above is used to select a candidate node for process

migration. T'wo requirements are stated below:



1. After receiving system load distribution L, from the host at time ¢, the node N; resets
its threshold é; to the average load among immediate neighboring nodes. That is,

I"+ y -‘. . 5
bi=[1+a)- —%‘-’If_—fl—’], where 0 < a < 0.2 is a normalized constant chosen.

2. We use an ordered candidate list C; from which we select the destination node. As a
set, C; = G; and each entry in C; is a data structure representing a neighboring node
of N;. The entries in C; are ordered by the increasing load indices involved. Within

each time window W,, C; is updated in a Round-Robin fashion.

In Table 1, we show an example of using the LRR method in an 8-node hypercube.
The normalized constant « is set to be 0.1 in updating each local threshold. The list C;
is‘increa,sing.ly ordered, and the migration queue at each node is initially empty. After a
ready process arrives, and the local load index is updated. But the threshold will not be
updated until the next L., is broadcast from the host. For simplicity, we assume one unit
cost for each newly created process. At node Nj, since l; > &, it puts the ready process
in the migration queue and keeps the load index I; unchanged. The process at the front of
the migration queue is migrated to node N3. After that, N5 is put back to the end of C;.
At node Nj, since I3 < §3, it puts the ready process into the ready queue. Since N; also
receives 2 processes migrated from nodes Ny and Ny, its load index 5 is totally incremented
by 3. The candidate list C3 remains the same because no process needs to be migrated at

this point of time.

B. Global Round-Robin (GRR) Method

Each node N; uses a globally determined threshold and migrates processes to any ap-
propriate node in the system. The selection from candidate list for process migration is

again based on the Round-Robin discipline. After receiving the load distribution L, from

9



Table 1: Example Load Distributions Before and After the Application of the Local Round-
Robin Method

ITimeINl]NU[Nl|N21N3|N4’N5|N5JN7I
L2108 |16 |3 |5 |15
b; | 8 | 5 5 |10 5 |10 |10 | 7
Ny | Ny | Nog | Ny [Nog | Ny | Ny | Ny
Ci | Ny | No | N3 | Ny | Ng | Ny | Nz | Ny
N1 Ns Nﬁ N7 NG N7 N7 Ns

[ |5 |10 8 | 4| 6 4 | 6 |15
N4 Ng N3 Nz N5 N4 N4 N5
C; | No | Ns | Ng | Ny | Ng | Ny | N2 | Ng
Ny | Ny | Ny | Ny | Nog [Ny | Ny | N,y

JTEEHEPERORET

the host, the global threshold §, is set to the system average load among all nodes. That is
el . . :
e=[(14«a)- Z’:“—] within the time window W,. The candidate list C; operates the same

as in the LRR, except C; = {N; | j # }.

C. Localized Minimum Load (LML) Method

The way to determine the threshold and to set up migration ports is the same as that
in LRR. The difference between LML and LRR methods is in the policy of selecting a
destination node. At node N;, there is a load table to store the load index of each node in
G;. The LML method uses the node with the minimum load index in the load table as a
destination node. After a process is migrated to the selected node, its load index in the load

table is incremented accordingly.

D. Global Minimum Load (GML) Method

10



In this case, the way to set up the threshold and migration ports is the same as that in the
GRR method. But the destination node is determined by finding the node with minimum
load on a global basis. That is the node with a minimum load index in the global load
table will be selected as the destination node. The GML method requires more computation
overhead to search for the node with global minimal load index. With the help of the host

processor, this overhead can be minimized and becomes almost negligible.

4 Operating System Support

We exploit parallelism in user programs at the process control level, where each process
is considered an atomic execution unit. A process is represented by a Process Control Block
(ECB). Each process can be executed at the creating node, or be migrated to a remote
node for execution. The creation and suspension of a process is controlled by two operating
system directives: run and suspend. In this section, we describe the state transition, process
control block, and the use of PCBs, run and suspend OS directives.

Each process may be in one of five states: new, ready, running, waiting and halted.
The state transitions are implemented with three queues: ready, suspend and migration
queues. Figure 5 (a) shows state transitions among these queues. The process in the ready
queue will be dispatched for execution. When a process is suspended, the process enters
the waiting state in the suspend queue. A suspended process can be awakened and becomes
ready again. Processes in the migration queue will be transferred to remote nodes, and

processes migrated from other nodes will be put into the ready queue.

A. Process Control Block

There are two techniques that can be used for process migration: complete copying

11



Migratioﬁ: ‘.
Port

Y

¢ (a) Process transitions among various queues

PID (pid,pnode)

Parent PID

Port ID

Executable Code Address

Number of Arguments

Argument Counter

Argument  Array

(b) Component fields in a Process Control Block (PCB)

Figure 5: State transitions of a process and the structure of a process control block.
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and code migration. In complete copying, all copies of user codes have to be allocated to
each processor node. The operating system is identically distributed to each node. Each
process generated in a user program is represented by a Process Control Block (PCB). It
is the PCB that will be migrated rather the actual program code. In a code migration
approach, different user codes are distributed to disjoint nodes. When a process is migrated,
its actual executable code has to be passed to a destination. The complete copying has an
advantage of lower migration cost, but requires higher memory demands. It is suitable for
a homogeneous multicomputer system. The code migration has lower memory demands but
higher process migration cost. There is a tradeoff between these two methods. For parallel
processing with a multicomputer, it is often to duplicate application code and distribute
tly:m to all nodes working on different data sets. In this work, we will use the complete
copying approach.

The structure of a PCB is shown in Fig.5 (b). A process is identified by its Process
IDentification (PID), denoted by (pid,pnode). The pid is an integer and the pnode is the
parent processor node where a process is created. Thus a PID is a unique identifier of each
process. The parent PID identifies the process which creates this process. The port ID
determines the port where the results of a process should return to its parent. When a
process is halted, the return value along with its parent PID and port ID, is stored in a
data structure called Process_Halting_Result (PHR). By the semantics of the OS directives
defined below, each process is created at a node where its parent process is suspended. Thus
a PHR is always returned to its pnode by message passing. At the pnode, the parent process
in the suspend queue is identified by the parent PID. The actual value is returned to the
appropriate port of the parent process. The argument counter counts the number of returns

required from the child processes. A process is ready when its argument counter indicates

13



all the required arguments are available. The argument array stores the data set required
by a process. In our process migration scheme, the required data set is migrated within the

PCB to the destination node.

B. Operating System Directives

We modified the run and suspend OS directives, originally suggested by Chowk-
wanyun to exploit parallelism in concurrent Lisp program execution [3], to a UNIX/C pro-
gramming environment. The run creates a new process, and the suspend suspends an
existing process. When a process is dispatched from the ready queue to run, it becomes a
current process. By inserting run and suspend into a user program, the running current
process can create several new processes for parallel execution. A process is always created
a.t‘ a node where its parent process is suspended. When a process is dispatched from the
ready queue to run, it becomes a current process. By inserting run and suspend into a user
program, the running current process can create new child processes then be suspended. A
process is always created at a node where its parent process is suspended. The semantics of

the run and suspend primitives are show in Fig.6.

e The run Primitive

The run primitive creates a new process by assigning it a PCB in the ready queue
or the migration queue as shown in Fig.6 (a). The current process is the parent of this
newly created child process. The port_id identifies the return port at the parent process.
The data specifies the arguments to run with this process. The actual arguments are
passed within the data. The PCB is set to be ready, and the number of available
arguments matches with the number of arguments required for the process. The run

primitive does not execute the process immediately but only creates a ready process.

14



run(func, port id, data)

Create a new PCB and put it in the ready queue
3

pid_count, node —— > PID (pid,pnode)

PID of current process —> Parent PID
port_id = Port ID
ready Status
func

Executable Code Addess

data — Number of Arguments
Argument Counter

Argument Array

(a) Semantics of run

suspend(func,data)

Modify currrent PCB and put it in the suspend queue

PID (pid,pnode)

Parent PID
Port 1D
wallng > Status
func Executable Code Addess
data Number of Arguments

Argument Counter

Argument Array

(b) Semantics of suspend

Figure 6: The semantics of the run and suspend OS primitives.



execution by calling run(fib,0,1,4), where “1,4” indicates the number of available arguments
and the actual argument value used, respectively. The process creation tree is used to
illustrate the control flow of processes. The actual implementation is represented by a set
of PCBs as shown in the example. The invocation of run(fib,0,1,4) creates the first process
P(0,0) to run with pid = 0 and pnode = 0. The process p(0,0) is suspended, waiting for
two additional data arguments. Two child processes p(1,0) and p(2,0) are then created.
When these two child processes halt, the results will become the new arguments of “plus()”
for the execution of the suspended p(0,0). A similar situation happens to p(1,0). The pair

id,pnode) is used to identify the process during the migration process.
pid, Y p g g p

C. Control Level Parallelism

. By inserting the run and suspend primitives into a user program, each ma jor function
call is treated as a process. When recursive call occurs, the execution of the current process
1s suspended and a new child process is created. This was illustrated by the example in
Fig.7. Without process migration, each process is created, executed and suspended at the
local processor node. In a multicomputer system, parallelism can only be achieved by static
allocation which distributes computation to each processor node. If the run time conditions
are unpredictable, then the operating system has no control to balance the workload.

For the example shown in Fig.1, the contents of the ready and suspend queues are far
from balanced without applying load balancing (Fig.8 (a)). There are 12 processes waiting
for execution at node N; and only 1 processes in the ready queue at node N. Clearly,
the total execution is bounded by the time at node N;. Therefore, parallelism cannot be
fully exploited in this case. By applying the process migration technique, processes can be

migrated to remote nodes for execution. The variations of the contents in the ready and

18
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Figure 7: The process creation tree and the PCBs used in the invocation of the fibonacci
function fib(4), at node 0 of a 32-node multicomputer system.
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Figure 8: Exploiting parallelism by process migration among 4 computer nodes as examplified
in Fig.1 (R: ready queue, S: suspend queue).
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suspend queues are shown Fig.8 (b). These queues at four nodes will end up a balanced
distribution of having almost equal number of processes in each. The purpose is to keep all
nodes busy during the entire execution time. Note that the processes at the suspend queue

can be awakened, when results are returned from child processes.

5 Implementation of the Load Balancer

To show the effectiveness of the proposed heuristic load balancing methods, we have
implemented a prototyping dynamic load balancer on a 32-node hypercube system. The
load balancer is written in C using iPSC/386 message passing library calls. It consists of a
host program and many distributed nodal programs. The host program is executed at the
host processor with Unix. The nodal programs are executed 1386 processor nodes on using
the NX/2 operating system. We first describe the construction of the load balancer, then
discuss the message passing mechanisms used in the implementation.

The host program consists of a loader, a window adjuster, a load information updater,
an asynchronous mailman and a reporter as shown in Fig.9. The loader loads in the load
balancers and distributes partitioned user programs into local nodes. The time window
adjuster updates the time window with inputs from the load information updater. The load
information updater periodically collects system load distribution from all nodes, severing the
host processor. The reporter displays the necessary messages during the program execution
and reports the user program execution result and the performance data. When all expected
results of a user program are received from distributed nodes, the reporter sends a stop
message to each node. Then the kernel at each node will stop the execution. All message
passing to/from distributed nodes are coordinated by an asynchronous mailman in the load

balancer.
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Figure 9: The supervision kernel in the host processor.

The distributed load balancers are identical among all nodes. Figure 10 shows the con-
struction of the load balancer and the process flow under its control. The kernelis the control
m;dule of the load balancer. It initiates the execution of a user program by creating an initial
process and assigning processor to it. The kernel then repeatedly calls the dispatcher, the
load transfer and the mailman, until receiving a stop message from the host. The mailman
sends and receives messages asynchronously. A message can be a request for local load index
[; from the host, the local load index [; reporting to the host, the system load distribution
L, broadcast from the host, a migrated processes from/to the remote nodes, a return result
of a halted process from/to remote nodes, and display or debug messages to the host.

The execution of a process may end up with one of the following cases: 1) being halted
with a return result, 2) being suspended, 3) creating some new child processes and being
suspended. A newly created or an awaken process is in the ready state. The decision
maker uses updated threshold §; to decide whether a ready process should be put into the
ready queue or migration queue. A process will be dispatched by the dispatcher and get

the processor for its execution. The processor scheduling discipline is implemented by the
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Figure 10: The load balancer program at each node processor.

dispatcher. The threshold updater updates the threshold §;. The load information updater
calculates the local load index I; by checking the ready queue, sends it to the host through
the mailman and receives the system load distribution L from the host.

The migration destination is decided by a load transfer. It implements the load transfer
policy and handles the candidate list and the load table. The halting result of a process
execution is sent to an awaker. The result can be directly obtained from local process
execution or through mailman from the process execution at the remote node. The awaker
finds the parent process identified by the parent PID of the result, and puts the return value
to the appropriate port. When the argument counter of a suspended process researches the
required number, it is changed to a ready state.

Asynchronous message passing mechanism is used in the implementation of the load

balancer. We have developed a generic message pattern which can be passed among nodes
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easily. A generic message has its own type defined as G.TYPE. It is a data structure
consisting of a type, a header and a body. The type is a flag to identify the kind of actual
message. The header specifies the source, destination and the length of the message body.
The body can be a PCB, a computational result, a system load distribution L, a node load
index [;, etc; each is represented by a dedicated data structure. The service routine irecv()
is invoked within the control loops at host and node load balancers. It checks to see if
there is any generic message arrivals. Upon the arrival of a message, the routine crecv() is
called to receive the message. By checking the message type, appropriate actions will be
taken. Using this asynchronous mechanism, the distributed load balancing at each node acts

independently. Each node works on its own without waiting for responses from other nodes.

6 Experimental Benchmark Results

The performance of four heuristic methods for load balancing was evaluated by par-
allel execution of selected benchmark programs on a 32-node iPSC/386 hypercube system.
In this section, we describe the computational and communication characteristics of those
benchmark programs used, report the software experiments performed, and then conclude

on the performance results obtained.

A. Benchmark Programs

The benchmark programs chosen have the following common characteristics: 1)
strong data dependency on the argument set used and 2) unpredictable program behavior at
run-time. These are C programs inserted with run and suspend OS directives for explicit
control of parallel activities. We have implemented three Al-related programs namely: the

tak, the fibonacci and the n_queen programs. The programs tak and fibonacci are recursive
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functions, where tak takes three arguments and fibonacci uses only one argument. The
N _queen is a nondeterministic backtracking search program, using a one-dimensional data
array. The execution times of these programs are all data dependent, and their behaviors are
not predictable at compile time. This phenomenon can be seen from examining the following
sample programs with different argument values.

o tak
tak(18,16,9) needs 11842 function calls.
tak(18,16,15) needs 7 function calls.

e fibonacct
fibonacci(20) needs 13529 function function calls.

fibonacci(3) needs 3 function calls.

e N_qUEEN
¢ n_queen(10) needs 34815 backtracking searches and has 724 solutions.

n_queen(4) needs 15 backtracking searches and has 2 solutions.

The benchmark program fibonacci fib() was parallelized as illustrated earlier in Fig.7.
Programs tak and n_queen can be written in a similar fashion. Using the OS support
introduced in Section 4, these programs generate different process invocation trees depending
on the arguments used. Both the tak and fib programs calculate the summation of a set of
functions. The n_gqueen program counts all possible results from a set of nondeterministic
searches. The execution of each function call or each search call is initially assigned to one
node in the multicomputer. After each node finishes its computation, the result is reported
to the host. The host has to receive results from all nodes, before summing them up at
the very end. We purposely chose special data arguments causing very unbalanced process
creations at various nodes. Two types of experiments were carried out. Let n be the number
of processor nodes used in a multicomputer. Our experiments cover machine sizes ranging

from 2 to 32 processor nodes.
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Case 1: Ezxtremely Unbalanced

o Tak: calculate X = Y1~ tak(18,16, 15)+tak(18, 16,9)
— Execute tak(18,16,9) at node N, ( 11842 calls )
— Execute tak(18,16,15) node N;, 7 # 1, ( 7 calls )
o Fibonacci: calculate X = Y7-2fib(3)-+fib(20)
— Execute fib(20) at node Ny, ( 13529 calls )
— Execute fib(3) at node N;, 2 # 1, ( 3 calls )
e N _queen: calculate the X = 37" ’n_queen(4)4n_queen(10),

where n_queen() returns the number of possible solutions.

— Execute n_queen(10) at node Ny, ( 34815 searches )

— Execute n_queen(4) at node N;, i # 1, ( 15 searches )
Case 2: Random Load Distribution

e Tak: calculate X = Y7 tak(18,16,5), 9 < j < 15

Execute tak(18,16,j) at each node N;, such that j = random(9,15)
o Fibonacci calculate X = 327 fib(5), 1 < 5 <20

Execute fib(j) at each node N, such that j = random(1,20)
o N _gqueen calculate X = 377 n_queen(j), 4 < 7 < 10

Execute n_queen(j) at each node N;, such that j = random(4, 10)

In Case 1, special arguments were chosen to yield extremely unbalanced load distribu-

tions. Case 2 uses some randomly generated load distributions. Without load balancing,
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the total execution time required is dominated by the node creating the maximum number
of processes. Let T; be the compute time of each node N;. Let S, be the speedup factor of

using n processor nodes defined as:

_ ! _ ?.—__01 T
Sn = P, maz(T;) ®)

where P; is the time to execute the program on one processor node and P, is the time to
execute the same program on a n-node multicomputer. Since the atomic processes created
in these benchmark program execution are homogeneous with the same executable code and
the same memory demand, the execution time e(p) and the memory demand m(p) of each
process p will be the same. Thus T; can be approximated as T; = e(p)x (the number of
processes executed at IN;). We first analyze the these two Cases without any load balancing.

‘ For the experiments in Case 1, node IV; will create a large number of processes, while
other nodes will create only a few. After all nodes other than N} pass their computational
results to the host, the host must wait for N} to finish its execution before summing up all

the results. For the example fib() program, obviously Tj > T, since T; = 13529 - ¢(p) and

T; = 3-e(p). Thus we can write

LipnLitTh  (n—1)-3-p(e) +13529-p(e) (n—1)-3+13529 =1

Sn = 5
T 13529 - p(e) 13529 (5)

This indicates the fact that no appreciable speedup can be achieved in Case 1 experiments
if load balancing is not applied.

For those experiments in Case 2, the speedup S, depends on the randomness of data
arguments generated. Since the number of processes created at each node N; is dependent
on the argument value, the computing time 7; also depends on the randomly generated data

argument. Therefore S, = ;‘E%—j will become linearly proportional to n.
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We assume a unit time for executing each atomic process. The load index at node N is
thus calculated as I; = |Ry|, the cardinality of the set R; in the ready queue. The initial time
window Wy is set to be 2 sec before the first update, and the constants used are: k; = 0.001,
k2 = 0.1 and @ = 0.1. Now, we are ready to analyze the performance timing results obtained

in benchmark runs.

B. Ezperimental Results
The speedup factor is calculated as s, = }—},)t using the actual values of P, and P,
measured from parallel execution of benchmark programs. The speedup factor measures the
actual performance improvement achieved. The effectiveness of load balancing is analyzed
based on the actual number of processes executed at various nodes. The four heuristic meth-
ods are compared with the NLB (No Load Balancing) and the GRD (GRaDient) methods,
in order to show their relative merits. By NLB, we mean that processes created at each
node must be executed locally without process migration. The GRD method is based on
sender-initiation with a fixed threshold as originally proposed by Lin and Keller [11]. This
method requires frequent load index exchange among communicating nodes. The method
forms a gradient in which the loads are always transferred from busier nodes to idle ones.
However the GRD method is ineffective when the system is heavily loaded, since the fixed
threshold will continue swapping the load almost without stop.
The results from Case 1 experiments are shown in Parts (a) of Figs. 11-13. Without load
balancing, there is no speedup (S, = 1). As analyzed before, this is due to the fact that the
total execution time is determined by the execution time at node N;. The speedup obtained

from using four heuristic methods increases sublinearly as the multicomputer increase its

size. Comparing with the GRD method, our heuristic methods are superior. The GRD
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method has linear speedup, when the system has fewer than four processor nodes. When
the system size becomes larger, it performs worse than any of the heuristic methods used.

The results from Case 2 experiments are shown in Parts (b) of Figs. 11-13. Being different
?mm Case 1, moderate speedups are obtained even without load balancing. This is due to the
random distribution of the data sets. The total compute time is still determined by the node
which executes most of the processes. F;r example, if £ak(18,16,9) is executed at node N, and
tak(18,16,10) is executed at node Ny, then node Ny executes most of the processes, and the
compute time at node No becomes immaterial. The speedup is improved significantly, when
dynamic load balancing is applied. The improvement was obviously obtained by reducing
the compute time at those heavily loaded nodes via heuristic process migration.

. The ef ficiency, defined by the ratio "’;—“, of our load balancing methods varies from
60% to 100% as shown in Fig.14 from executing the fib() program. Similar results can be
derived from the speedup curves associated with executing the tak and n_gueen programs.
The efliciency decreases with occasional fluctuations, as the multicomputer size increases.
However, our methods maintain a 60% lower bound. The NLB method shows a very efficiency
as expected.

A snap short of the load distribution in 32 nodes is shown in Table 2 for the balanced exe-
cution of the three benchmark programs. The entries of this table are based on experiments
in Case 1, using the LRR method. The load ind.exv indicates by the number of processes
actually executed at each node. Let T, o and p be the mean value, the variance and the
standard deviation of the load distribution to all nodes respectively. Since we use the number
of processes resident in the ready queue as the load index, the system load distribution is rel-
atively balanced as demonstrated by the table entries. Note that if only one processor node

is used, all spawned processes have to be executed at that node. Therefore the summation
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Figure 11: Speedup obtained from balanced execution of the tak program.
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Figure 12: Speedup obtained from balanced execution of the fib program.

30



32.0 4
*: ERR
il o: GRR
28.0 i IéML
L o: GML
40 *: GRD
Speedup 90 + >: NLB
16.0 +
12.0 +
8.00 +
4.00 +
1.00 = :? T s :’: +— 71
1 2 4 8 16 32
Multicomputer size
(a) Case 1 Experiments
Sn
20 ¢
3
28.0 1 ° LML
1 o: GML
240 +: GRD
Speedup 940 4 >: NLB

16.0 +
12.0 +
8.00 -

4.00 +

1.00

t t i —— T
2 4 8 16 32
Multicomputer size

(b) Case 2 Experiments

Figure 13: Speedup obtained from balanced execution of the n_queen program.
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Figure 14: Efficency obtained from balanced execution of the fib program.
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- Table 2: Load Distribution in 32 Nodes for Balanced Execution of Three Benchmark Pro-
grams.

| Program | Tak [ Fibonacci | N_gueen |

| T [376.8] 426 [ 1103 |

| o Ji41] 48 ] 65 |

L e« J107] 69 T 81 |
No 463 483 1115
Ny 688 495 1231
N, 382 485 1147
N3 583 473 1199
Ny 388 511 1251
Ns 523 433 1133
Ne 361 473 1164
Ny 367 389 1037
Ng 376 505 1204
Ny 496 451 1149
Nio 454 503 1155
Ny, 382 405 1096
Niz 379 407 1103
Nis 448 411 1000
Nig 427 363 1160
Nis 358 385 1025
Nig 346 505 1101
Niz 601 401 1044
Nig 340 383 1141
Ny 319 407 1105
Nao 304 359 1024
Ny 349 375 1009
N2 322 357 1090
Nas 307 461 1094
Ny, 262 407 1099
N3s 304 431 1092
Nzs 253 391 1080
Noq 388 375 1038
Nag 262 421 1039
Nag 307 403 1132
Nao 115 383 1017
N 205 391 1039
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of all processes executed at all nodes divided by the number of processes executed at the
busiest node gives a first-order approximation of the speedup expected. However, the actual
speedups measured by the execution times are higher than those guessed values. This is due
to the FCFS processor scheduling used, where the queue manipulation takes longer time to
complete for longer queue length. We view this only negligible constant an implementation
overhead. The results we obtained verify those heuristic dynamic load balancing methods
do perform better with low implementation overhead.

There exist no drastic differences in performance among the four heuristic methods. Two
explanations are given: 1) The system size n=32 used in the experiments is too small to make
a difference. 2) The hypercube network is restricted to only point-to-point communications.
As far as locality is concerned, the local migration methods (LRR and LML) are better than
the global migration methods (GRR and GML) for point-to-point network as the system
size grows. The global methods demand a higher cost in process migration in large point-
to-point systems. For a multiple-bus network, the communication cost between two nodes
is independent on the physical distance between them. Therefore, the global methods may
perform better, since the load is more balanced on a global basis.

As far as the use of heuristics is concerned, the Round-Robin methods (LRR and GRR)
perform better, when the system size bccomesAIa.rger. Both minimal-load methods (LML
and GML) are better for smaller system sizes. Basically, the minimum load methods use
more accurate information in selecting the destination node than the Round-Robin methods
do. However, the overhead to find a proper destination node with the minimal load becomes
higher, when the system size becomes very large. There is a tradeoff between the accu-
racy desired and the implementation cost. In summary, the choice among these methods is

sensitive to the size of the multicomputer, the interconnection topology, and the implemen-
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tation costs incurred. All of these factors contribute to the efficiency of the programming

environment to be used.

7 Conclusions

We have proposed four heuristic methods for dynamic load balancing in a multicomputer
system. These methods require less control overhead as compared with previously proposed
methods. This is accomplished by using a host processor to collect system load information
and to update the load balancing threshold on a periodic basis. Since the host operations
are overlapped with distributed executions at multiple nodes, the system overhead is merged
into the actual compute time. The threshold used by those heuristics is adaptively adjusted
using the most recently updated system information. We use either the Round-Robin disci-
pline or a minimum-load strategy to select the destination node for process migration. The
performance of these methods is evaluated by parallel execution of representative benchmark
programs. These benchmark programs reflect some behavior of Al-related operations.

A dynamic load balancer has been implemented on a iPSC/386 hypercube system. Bench-
mark programs are parallelized at the process control level by using the run and suspend
OS directives. The speedup after parallel execution is achieved by applying dynamic load
balancing. Although these experiments are performed on a hypercube architecture, the pro-
posed methods are implementable on other network topologies as well. The relative merit
of each method can be exploited on various multicomputer architectures. One can make
an intelligent and cost-effective choice among the four methods based on special commu-
nication characteristics in a multicomputer. Because most Al-oriented programs have an
unpredictable run-time behavior, distributed Al processing is hard to achieve without dy-

namic load balancing. Our benchmark experiments verify the effectiveness of using any of
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the four heuristic methods for dynamic process migration, especially applying to the do-
main of distributed AI applications. The particular choice among the four methods would
be more a concern of cost-effectiveness than an academic one. In an earlier paper [20], we
presented a static load balancing method for mapping rule-based production systems. This
present paper complements the earlier effort by solving the dynamic load balancing problem

for distributed AT processing at run time.
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