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Abstract

Generating tests for CMOS circuits using a switch level model is both
more realistic and difficult than using the conventional gate level model. In this
dissertation a systematic approach to deal with the various problems associated
with switch level test generation (SLTG) is presented. This approach divides the
SLTG process for combinational circuits into three parts: circuit manipulation,

fault analysis and a test generation framework.

The circuit manipulation part includes circuit partitioning, complex and
primitive gate identification, level computation for circuit partitions, and signal
flow direction assignment for transistors. This work can be applied to other
VLSI design problems such as timing verification, logic simulation and design

rule checking.

The faults considered include bridging, transistor stuck-on/open, breaking
and stuck-at faults. An extensive analysis on IDDQ testing is given. A set of
design and test rules are provided under which all irredundant single and multiple
bridging faults can be detected using IDDQ testing. Test invalidation for stuck-
open faults due to circuit delay and charge sharing is considered. A novel and
efficient “robust” test generation algorithm is developed. Stuck-on and breaking

faults are modeled as bridging and stuck-open faults, respectively.

A PODEM-based test generation framework is developed that consists of
five major components: objective selection, backtracing, logic implication, back-
tracking and fault propagation. All algorithms developed can be shared by each

individual test generator. Fundamental work such as multiple objective selection,

XV



search-based backtracing and incremental event-driven logic implication has been

completed.

The problems associated with sequential circuit testing are also considered,
with emphasis on the testing of scan registers. All possible bridging faults in a
scan register are systematically analyzed. Based on this analysis a universal test

sequence for CMOS scan registers is derived.

A switch level test generation system called SWiTEST has been imple-
mented in C on a SUN Sparc workstation. Experimental results show that
SWITEST is quite efficient in both CPU time and memory size. For example
“robust” test vectors for over 95 % of stuck-open faults in a circuit containing
15,396 transistors can be generated in less than 0.21 seconds per fault, using 2.556

M bytes of memory.

xvi



Chapter 1

Introduction

The objective of this study is to generate tests for various classes of faults in
scan-based CMOS circuits modeled at the switch level. In this introductory
chapter a brief description of CMOS circuits is given and the various test problems
associated with CMOS circuits are discussed. An overview of this dissertation is

given at the end of this chapter.

1.1 Advantages of CMOS Circuits

Designing VLSI circuits using CMOS technology has many advantages: the static
power dissipation is almost zero; gate outputs settle at the voltage of VDD or
GND in steady state; transmission gates pass both logic 0 and 1 with little signal
loss; rise and fall times can easily be made to have about the same values; and the
noise margin is large 1, 2]. These advantages make CMOS a popular technology.
As the complexity of CMOS circuits increases, the probability of having physical
defects in circuits also increases. These defects can change the behavior of a
circuit and result in functional errors. To ensure proper circuit operation, these

defects must be detected.



1.2 CMOS Circuit Representations

A CMOS circuit can be described at various levels including functional level,
gate level, switch level and circuit level. At the functional level a circuit is
either described by its functional behavior (such as truth tables) or is represented
as functional blocks (such as multipliers, adders and multiplexers). This level
provides the information about the circuit functions but does not describe the

detailed circuit structure which is often required in testing.

Most previous work dealing with test generation employs the gate-level
description, where a circuit is described using a number of primitive logic gates
including NAND, NOR, AND, OR, inverters and sometimes exclusive-OR and
exclusive-NOR gates. Though being able to describe most structural information
of a circuit, this level cannot represent certain circuits such as pass transistors.
With today’s VLSI technology where unconventional “customer-designs” may
be used to achieve some special objectives, the gate-level representation is often

inadequate.

At the switch level a CMOS circuit consists of a number of N-type and P-
type MOS transistors and a number of circuit nodes connecting these transistors.
Each transistor is considered as an ON/OFF switch whose status depends on the
logic value at its gate terminal. Since the basic unit of a circuit is a transistor,

all the structural information of a circuit can be described.

Another level of description for a circuit is at the circuit level where many
circuit parameters such as those used in SPICE simulation can be included. The
problem with this level is that, even for a small circuit, unacceptable computation
time is required to accomplish a much simpler task such as simulation, not to

mention test generation.

From the practical point of view, the switch level is probably the best rep-
resentation for CMOS circuits. This is especially true when testing is considered,

as will be shown in this dissertation.

(SV]



1.3 Physical Defects and Fault Models

Physical defects in a CMOS circuit are caused by many factors, including (1)
faulty processes during manufacture such as overetching, poor contacts and inac-
curate diffusion; and (2) environmental or electrical stress during operation such
as electromigration, electrostatic discharge and avalanche breakdown. The effects
of these physical defects on circuits have been studied extensively [3, 4, 5, 6, 7, 8].
It has been shown that these effects can be characterized using several fault mod-

els.

A fault model is an abstraction of how a fault mechanism may affect
the functional operation of a device. With these models test patterns can be
generated to specifically test for the fault mechanism. The reliability of a test
highly depends on the accuracy and effectiveness of the fault models. Commonly
used fault models for CMOS circuits include line stuck-atl faults, node stuck-at
faults, transistor stuck-on/off faults, node-to-node bridging faults, line breaking
faults and delay faults. The definitions of lines and nodes are as follows. A
line is a maximal segment of wire without a branch. A node is a collection of
segments of connected wires which always have the same voltage value. Figure
1.1(a) illustrates a circuit at the gate level with 10 lines, [y, ..., ljo, and 6 nodes,

ny,...,ne. Note that we often use a point to denote a node.

When a switch level circuit description is used, the number of lines in-
creases dramatically. Figure 1.1(b) shows the NAND gate of Figure 1.1(a) at
the switch level. There exist at least ten more lines inside the gate, but only
three more nodes ( VDD, GND and n7) exist. Since VDD and GND are common
to the entire circuit, only one additional node for this NAND gate needs to be

considered.

The definitions of the various fault models are as follows. The line stuck-
at fault model, which is the most commonly-used fault model applied to gate

level circuit descriptions, assumes that the physical defect(s) cause a line to be

R

permanently “stuck” at a logic high (stuck-at-1) or logic low (stuck-at-0) value.
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Figure 1.1: Definitions of nodes and lines

The node stuck-at fault model is the same as the line stuck-at fault model except
that the fault is assumed to be on the node. The relations between various node
and line stuck-at faults can be explained using Figure 1.1(a). Node n4 stuck-at-1
implies lines ly, s, l7, ls and ljo are all stuck-at-1; line Iy stuck-at-1 implies Is,
l7, lg and [}y are stuck-at-1; l7 stuck-at-1 implies lg and ;o are also stuck-at-1; I5

stuck-at-1 does not imply any other line stuck-at-1.

The transistor stuck fault model assumes a transistor either permanently
conducts (stuck-on) or does not conduct (stuck-off ). A transistor stuck-off is
also called stuck-open, which is the term used in this dissertation. A bridging
fault between two nodes consists of an unwanted, zero-resistance line connecting
these two nodes. The line breaking fault model assumes a line is permanently
broken. Delay faults can be defined in two ways: element delay and path delay
faults. The former assumes the transition time from an input to an output of
an element (such as a transistor, a gate or a functional block) is larger than its
specified upper bound, while the latter assumes the excess delay time is along a

path (a series of transistors, gates or functional blocks). Note that all the above



definitions assume the physical defects cause permanent, not intermittent faults.

In this study only permanent faults are considered.

The fault models used depend on the level at which a circuit is tested.
For example stuck-at and bridging fault models can be used at any level while
stuck-on/off fault models are used only at the switch level. Many researchers have
shown the inadequacy of gate level fault models for CMOS circuits [3, 4, 5, 6].

Thus more realistic fault models should be used if high-qualify tests are required.

Physically the defects in a CMOS circuit can be classified into two cate-
gories: device faults and connection faults. Device faults are the faults due to
the defects in transistors, which can be modeled using stuck-open faults, stuck-on
faults and bridging faults between device terminals. Connection faults include
shorts and breaks on lines or nodes. Bridging, transistor stuck on/open and
breaking faults can be considered as “physical” faults since they represent cir-
cuit defects in a manner that is very close to the actual physical structure of the
circuit. The stuck-at and delay fault models, on the other hand, are more likely
“logically” defined fault models. The stuck-at fault model assumes that when
some defects occur in a circuit, the “logical” result is that some line or node will
always have a logic high or low value while the delay fault model assumes that
the defect causes the propagation time of “logic values” to fall out of a specific

range.

In this study problems in generating tests for “physical” faults at the
switch level are of major concern. These include analysis and development of test
generators for transistor stuck-open faults, transistor stuck-on faults, bridging
faults, and line breaking faults. To compare the performance of our switch level
test generators with that of a gate level test generator, a switch level test generator

for stuck-at faults is also implemented.



fundamental steps may be accomplished by one test vector or by a sequence of
test vectors, depending on the “sequential behavior” of the circuit and the fault.
It is possible for a combinational circuit to have sequential behavior when certain
types of faults are present. For example it is well known that a CMOS stuck-open
fault may result in some “memory” effect and thus two or more test patterns are

required to detect such a fault.

Classical TG methods mainly concentrate on the detection of line stuck-at
faults at the gate level. Even for this simple fault model, the TG problem is NP-
complete [23]. Most problems encountered in detecting switch level faults can be
shown to be NP-hard [24]. Thus heuristics must be employed to generate tests for
large circuits. Test generation can be modeled as a search problem [25], in which
an appropriate test pattern(s) for detecting a given fault is sought. Two factors
are important for searching: effectiveness and efficiency. The former is concerned
with the correctness of the solution. The latter deals with the computation time.
In test generation these two factors correspond to whether the test pattern(s)
really detects the given fault and how much computation is needed to generate

the test pattern(s).

Many gate level TG algorithms have been developed and implemented,
including the D-algorithm [15], PODEM [16], FAN [17], TOPS [19], Socrates [20]
and the system described in [21]. These algorithms have been applied to some
benchmark circuits containing up to tens of thousands of primary gates(AND,
OR, NAND, NOR, Inverter gates, etc.) [26], and have been shown to be very
efficient in generating tests for stuck-at faults. For example the system described
in [21] is able to generate a complete test set for all stuck-at faults in a circuit
containing more than 24,000 gates within 3 CPU minutes on an Applo DN3550

workstation.
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1.4 Test Generation Problem

Test generation (TG) is the process of generating test vectors such that the ap-
plication of these vectors to a circuit under test (CUT) enables the detection
of faults [9]. TG can be achieved by three methods: random, exhaustive and
deterministic. Random and exhaustive methods do not consider the functional-
ity or structure of the CUT. The test lengths for these two methods are often
large, even for a moderate size circuit, e.g., with 30 inputs. Deterministic TG
methods construct a test pattern (or a sequence of test patterns) for a given fault
by employing structural and/or functional information. Depending on whether
or not the functionality of a circuit is considered, we may have algorithmic or
functional TG. Test patterns can be generated manually or automatically (using
a computer). Functional TG methods often involve high level knowledge; thus
a manual method is usually better than an automatic one. Although many re-
searchers have tried to apply artificial intelligence (AI) techniques to solve this
problem [10, 11, 12, 13, 14], the practicability of automatic functional TG is still
questionable. On the other hand, many automatic algorithmic TG methods have
been successfully developed for gate level circuits [15, 16, 17, 18, 19, 20, 21]. Thus
it is natural to consider this approach for switch level TG. In this study we focus
on automatic and algorithmic TG methods. In the rest of this dissertation, test

generation shall refer to an automatic algorithmic method.

Test generation for a fault consists of two fundamental steps: activate the
fault and observe the fault effects. A fault can be activated by setting certain
nodes to some specified logic values. Fault effects can be observed by monitoring
the logic values on the primary output and/or by monitoring the current through
the power supply. These two methods are referred to as logic monitoring and
current monitoring, respectively. In the literature current monitoring is often
called IDDQ testing [22]. Taking conventional methods for detecting line / s-a-0
as an example, fault activation attempts to find a test vector for which [ is set to 1
in the fault-free circuit but “stuck” at 0 in the faulty circuit, and fault observation

attempts to propagate the fault effect (error) to a primary output. These two



1.5 Switch Level Test Generation

When only gate level stuck-at faults in a combinational circuit are of concern,
many properties can be used to guide the search for test patterns: each gate is
a primitive (minimal) element for the test generation process; the interface lines
of a gate are unidirectional, i.e., each is either an input or an output of the gate;
the relationship among gates are well defined, i.e., it is known exactly whether
the output of a gate can affect another gate; and the distance between a gate
and the closest primary input or primary output is easy to obtain. All these
properties are not well defined when a circuit is described at the switch level.
Since a MOS transistor is intrinsicly bidirectional, the signal flow direction (to
be defined later) is usually unknown. A transistor can be used as the smallest unit
of circuitry during test generation. However this often results in unacceptably

large computation time.

Thus for switch level circuits, the following three problems must be ad-
dressed: partition, direction, and level. Partitioning is the process of dividing a
circuit into subcircuits such that each subcircuit is easier to handle or has some
special properties. The direction problem deals with assigning signal flow direc-
tions to transistors inside a subcircuit and the interfaces among subcircuits. The
level problem deals with determining the relative positions of subcircuits in a

circuit.

These problems along with new fault types, such as transistor stuck-on/off
faults and bridging faults inside a gate, make switch level test generation a very
complex process. Note that the term “switch level” is sometimes referred to as
“transistor level” [27, 28]. In this dissertation these two terms are used inter-

changeably.
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Figure 1.2: Sequential behavior of a stuck open fault

1.6 Special Properties of CMOS Circuits in
Testing

There are several unique problems to be considered in testing a CMOS circuit.
First, a stuck-open fault may force a combinational circuit to behave like a se-
quential one [29]. Referring to Figure 1.2, assume a stuck-open fault occurs on
transistor PA. Let a sequence of two vectors (A, B) = (1,1) and (A, B) = (0,1)
be applied to this circuit. The first vector sets the value of output O to 0. When
the second vector is applied, in a fault-free circuit the output becomes 1, while in
the faulty circuit the output remains at 0 since there is no conducting path from
VDD to Q. In general the state of output O of this faulty circuit depends on its
previous state if the current input is (A, B) = (0,1). To detect such a fault a
sequence of two test vectors is necessary. The first vector sets the faulty circuit
to a required state, and the second one distinguishes the fault-free circuit from

the faulty circuit.

A second problem deals with the detection of bridging faults (BFs). Con-
ventional methods for detecting a BF adopt a wired-AND or wired-OR model,
which assumes that when two nodes with complementary values are shorted,

the resulting voltage on both nodes is either logic high (wired-OR) or logic low



(wired-AND). This model has been successfully applied to TTL and ECL logic.
However a BF in a CMOS circuit usually force both shorted nodes to take on an
intermediate voltage value between VDD and GND. This value cannot always be
interpreted as a logic high or logic low. As a result the wired-AND or wired-OR
model is inadequate for use in the detection of BFs in CMOS circuits. Again
consider Figure 1.2. Assume a BF occurs between node O and node X and no
stuck-open fault on PA. When a vector (A, B) = (0,1) is applied, O and X
are respectively connected to VDD and GND through conducting transistors. If
the size of an P-type transistor is twice the size of a N-type transistor, then the
resultant voltage at O will be close to VDD /2 which, depending on the physical

parameter of the next stage, can be interpreted as either 1 or 0.

Another consideration is that many CMOS circuits are implemented using
Jully complement MOS gates (FCMOS). An FCMOS gate consists of a P-net and
an N-net which contain only P-type transistors and N-type transistors, respec-
tively. There exists a duality relation between the P-net and N-net which ensures
that for a fault-free circuit a conducting path between the output node and VDD
or GND, but not both, always exists during steady state. This duality property
is very useful when developing tests for CMOS circuits. For example, to have a
value 0 at the output of a FCMOS gate, the output must be connected to GND
through one or more paths of conducting N-type transistors, and once a node is

connected to GND, all paths connecting this node to VDD must be cut.

1.7 Invalidation of Test

As described before, a stuck-open fault may result in sequential circuit behavior
and thus a two-pattern test is necessary: the first pattern is used to initialize
the circuits and the second one is used to differentiate the faulty and fault-free
circuits. Due to the effects of transient behavior and charge sharing, the state
established by the first vector may be destroyed when the second vector is being

applied, and thus the test may be invalidated. These effects can be classified into
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four categories, namely transient strong charging, steady state charge sharing,
transient charge sharing and static hazard. Transient strong charging and static
hazards are due to circuit delays, and static charge sharing is due to charge
sharing only. Transient charge sharing is due to both circuit delays and charge

sharing. These effects are described next.

1.7.1 Transient Strong Charging

Refer to Figure 1.3(a). Assume transistor PB is stuck-open. Consider a pair of
test vectors Ty = (A, B,C') = (1,0,1) and T = (0,0, 1). T} sets the output O to 0
in both fault-free and faulty circuits. T3 is supposed to set O to 1 in the fault-free
circuit and retain O at 0 in the faulty circuit. However during the transition from
Ty tp Ts, the control signal to PA may change before the control signal to PA.
Thus a transient state of input (A, A, B,C) = (0,0,0,1) may exist. During this
time both PA and PA are conducting and thus a conducting path from VDD to
O exists. This results in node O being charged to 1 in both the fault-free and
faulty circuits, and thus the test is invalidated. This transient strong charging is
so named since the invalidation is caused by a transient conducting path from a

strong power source to the output node.

1.7.2 Steady State Charge Sharing

Again consider transistor PB stuck-open in Figure 1.3(a), and the pair of test
vectors Ty = (1,0,1) and Ty = (0,0,1). Assume for this case the control signal
to transistor PA changes before the control signal to transistor PA. There is no
transient strong charging from VDD to O. Consider node K which is inside the
P-net. The value of K is set to 1 by T; since a conducting path from VDD to K
through PA exists. When T} is applied to the faulty circuit, /' is connected to O
through transistor PA. Thus the charge between K and O will be shared. This

may result in an intermediate value between VDD and GND and thus the test
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Figure 1.3: Invalidation of tests for stuck open faults

may be invalidated. Because this charge sharing occurs when both the control
signals to PA and PA have changed to their final states, it is called steady state

charge sharing.

1.7.3 Transient Charge Sharing

Another possibility for invalidation of a test is transient charge sharing. Consider
Figure 1.3(b) where X and O are two nodes other than VDD or GND, and there
are two transistors, PA and PB between them. Assume O is set to logic 0 by
Ty, and is to be set to 1 in the fault-free circuit while retaining a 0 in the faulty
circuit. If 7} sets PA to conduct and PB to open, and T, sets PA to open and
PB to conduct, then it is possible that during the transition both transistors are
conducting. Thus transient charge sharing may occur between X and O if they

have different logic values after 7} is applied. Again, this may invalidate the test.
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1.7.4 Static Hazard

The preceding three situations assume that the control signals to transistors
(for both N-type and P-type) are hazard-free. If the circuit in Figure 1.3(a) is
embedded in a large circuit, then it is possible to have static hazards at transistor
inputs. For example the control signal to transistor PC' may have a static-1
hazard. Again consider Ty = (1,0,1) and 75 = (0,0,1). If the input to PC has a
static-1 hazard, then depending on the state of transistor PA when the hazard
occurs, either a transient strong charging path from VDD through PA and PC
to O is formed (if PA is conducting), or a transient charge sharing between K
and O occurs (if PA is not conducting). In both cases the state established by
T, is destroyed.

All the above situations must be carefully considered when generating
tests for a stuck-open fault to ensure the detection of the fault. A test which
can detect a fault under any circuit delay or charge sharing condition is called a

robust test. In this study the generation of robust tests is considered.

1.8 Sequential Circuit Testing

Test generation for sequential circuits is an extremely difficult problem. The
complexity of this problem can be reduced by using design-for-test techniques
[30]. One popular design-for-test technique is to connect all the storage elements
into a long scan register. Test vectors can then be scanned into the scan register
and test responses can be scanned out for observation. This method, called scan-
based design [31], reduces the sequential circuit test generation problem to one of
generating tests for a combinational circuit. However, the scan register itself may
have faults as well. Thus it is necessary to detect faults involving the scan register

in order to guarantee the proper function of a scan-based sequential circuit.
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1.9 Overview of the Dissertation

From the previous sections, it is clear that test generation at the switch level
contains many complex problems. To systematically deal with these problems,

the reminder of this dissertation is organized as follows.

Chapter 2 provides a background and surveys the previous work in this
area. Due to the huge amount of research that has been carried on in this area,
it is impossible to survey all previous work (e.g., more than 120 papers on stuck-
open faults alone have been published). However we have tried to include most

of the related and important work.

Chapter 3 discusses the overall strategies for dealing with the various prob-
lems associated with switch level test generation. These strategies can be divided
into three parts: circuit manipulation, fault analysis and a test generation frame-
work. We also present an overview of a switch level test generation system, called

SWIiTEST, which has been implemented using C on a SUN Sparc workstation.

Chapter 4 details the circuit manipulation part of this study, which in-
cludes circuit modeling, partitioning, complex and primitive gate identification,
assigning levels to each circuit partition, and assigning signal flow direction to
MOS transistors. Most work presented in this chapter can also be applied to
other VLSI design problems such as timing verification, logic simulation and de-
sign rule checking. The signal flow direction assignment work will be described
in great detail since it may be of interest to the readers who are not in the testing

area.

Chapter 5 deals with the analysis of fault models. The faults analyzed
include bridging faults, transistor stuck-on faults, transistor stuck-open faults
and line breaking faults. The conditions for using IDDQ testing are explored.
A set of design and test rules are provided which guarantee the proper use of
IDDQ testing. It is shown that all single and multiple bridging faults in a circuit
satisfying these rules can be detected using IDDQ testing. A new test generation

method for stuck-open faults is developed. This method is quite efficient in
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solving the test invalidation problem. All four possible sources of invalidation
described in Section 1.7 are considered. The line breaking and stuck-on faults

are modeled as transistor stuck-open and bridging faults, respectively.

Chapter 6 describes the test generation framework. The framework is
PODEM-based, thereby consisting of several major components such as objec-
tive selection, backtracing, logic implication, backtracking and fault propagation
algorithms. All these algorithms consider both switch and gate level information
and can be shared by any test generator developed for a specific type of fault.
Some fundamental results such as backtracing at the switch level, efficient logic
implication and objective selection via the help of signal flow direction informa-

tion are presented.

Chapter 7 concentrates on problems associated with sequential circuit test-
ing, with emphasis on the testing of a scan register. A systematic method is used
to analyze all possible bridging faults in a scan register. Based on this analysis a

universal test sequence for CMOS scan registers is derived.

Chapter 8 discusses the implementation issues and experimental results
for SWiTEST. The SWiTEST system consists of three suites of software: pre-
processor, test generation framework and individual fault manipulators. The
preprocessor part reflects the work done in circuit manipulation as presented in
Chapter 4. All the algorithms described in Chapter 6 are implemented which
form the test generation framework. Three individual test generators (for bridg-
ing, stuck-open and stuck-at faults) are implemented. Experiment results for

each type of fault are reported and discussed.

Chapter 9 concludes this dissertation and gives a list of future research

topics.
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Chapter 2

Background and Previous Work

This chapter provides the necessary background and surveys previous work on
switch level test generation. The background emphasizes gate level test genera-
tion since most previous test generation efforts have been focused on this level and
many concepts on this level will be used in our switch level test generation. The
previous work covers a wide range of research, which includes circuit represen-
tation and partitioning, transistor signal flow direction assignment, switch level
simulation, IDDQ) testing, test generation for bridging, stuck-open and stuck-at

faults, and testing for sequential circuits.

2.1 Test Generation at the Gate Level

Although the inadequacy of gate level test generation for testing CMOS circuits is
well known many test concepts used at this level are still valuable for switch level
testing. Thus a brief review of gate level test generation concepts and algorithms

is given in this section.

Test generation can be modeled as a search problem. Depending on the
search space employed, two major classes of algorithms, D-algorithm like [32, 15,
33] and PODEM like [16, 17, 19, 20, 21] can be defined. For the former the

searching spaces contain all lines in the entire circuit, i.e., during test generation,
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the decision-making of a logic value assignment may occur on any line of the
circuit. For the latter the decision is made on the primary inputs or some other
lines whose values can always be justified. Due to this distinction the searching
mechanisms are different. Next the D-algorithm and PODEM are described,

followed by a brief discussion of their variations.

The four major components of the D-algorithm are line justification, logic
implication, backtracking and fault propagation. Line justification refers to the
process of satisfying the conditions for which a line can be assigned a specific logic
value. If the assignment is impossible, it should return a conflict message so that
backtracking can be triggered. Backtracking is a process of “undoing” a previous
line value assignment to resolve any inconsistencies. Fault propagation attempts
to propagate a fault effect to an observable primary output. When a fault effect
is propagated through a gate, some conditions may be generated which need line
justification. For example to propagate a fault effect from an input to the output
of an OR gate, all other inputs of this gate must not have a value of 1. Logic
implication propagates the effect of an assignment through a circuit. For example
if one of the inputs of an AND gate is assigned a 0, then the output must be 0 too.
Conversely if the output of an AND gate is to be assigned a value of 1 then all
its input lines must have a value of 1. Inconsistencies may be found during this
process, in which case backtracking is also necessary. These four processes (line
justification, logic implication, fault propagation and backtracking) are repeated
until a fault effect appears on a primary output and all line assignments have been
justified, or until all possible input combinations fail to satisfy the requirement.
In the first case the fault is detected by the resulting input combination, and in

the second case the fault is undetectable.

The PODEM algorithm does not use the concept of line justification. It
just repeatedly generates input assignments and checks whether the given fault
is detected. A binary decision tree is used for this purpose. Each node in this
tree represents a primary input and each child of a node represents a logic value
assignment to the node. The most important task in PODEM is to find a promis-

ing input such that when a specific value is assigned to this input, the fault is
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likely to be detected. The main components of PODEM are objective selection,
backtracing, logic implication, fault propagation and backtracking. An objective
is a “local” goal to be achieved. For example the initial objective of detecting
line I stuck-at-1 would be to set [ to 0, and to propagate a fault from an input
of a primitive gate to its output, the objective would be to set all other inputs
to non-control values (i.e., 1 for an AND gate). Backtracing is a heuristic step
which tries to find the most promising input assignment to achieve the selected
objective. In the original PODEM algorithm the inverse parity of the backtracing
path is used to determine the value to be assigned. Some measurements such as
the distance between a line and its closest primary input or the controllability of
the line can be used to determine the backtracing path. Logic implication used
in PODEM is similar to the one used in D-algorithm, but is performed only when
a new value is assigned to an input. Thus only forward implication is necessary.
Backtracking is employed whenever it is identified that current assignment can-
not lead to a test for the fault. Due to the “forward implication only” property of
PODEM, the backtracking process is simply a forward implication starting from

the input whose value is changed.

Two factors affect the efficiency of a test generation algorithm: the size of
its search space and the ability to quickly discover potential inconsistencies. The
advantage of the D-algorithm is that the values assigned to lines can be justified
immediately and directly. The PODEM algorithm, however, has the advantage
of smaller search space because only the values at the primary inputs need to be
determined. Experiments have shown that in general PODEM is more efficient

than the D-algorithm.

The 9-value algorithm [33] is similar to the D-algorithm. The difference
between them is in the composite logic values they use. A composite logic value
of a line consists of a pair of values, one representing the value in the fault-free
circuit and the other in the faulty circuit [9]. A composite logic is denoted by
u/v, where v and v are the fault-free and the faulty values, respectively. This
notation not only simplifies the representation of logic values but also enables

the concurrent manipulation of both the fault-free and faulty circuits. In the
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D-algorithm, u/v may be one of 1/1, 0/0, 1/0(D), 0/1(D) and x/z, while for the
9-values algorithm, u/v may be one of 1/1, 0/0, 1/0(D), 0/1(D), z/z, 1/z, 0/z,

z/1 and /0, where z represents don't care.

PODEM like algorithms include PODEM [16], FAN [17], TOPS [19],
Socrates [20, 34] and the system described in [21]. Among these algorithms, PO-
DEM is the basic one. The others simply add more “intelligent” procedures to
PODEM. For example FAN used a multiple backtracing mechanism to reduce the
replicative backtracing efforts which may be required when backtracing through
the same path several times. Also the concept of immediate assignment of neces-
sary logic values is employed such that potential inconsistence can be identified
quickly, thereby reducing the work of backtracking. The “intelligent” procedures
used in FAN are further extended in Socrates where intensive preprocessing is

carried out to record as many necessary assignments as possible.

It has been shown that the most time-consuming part of PODEM like
algorithms is the backtracking process. Thus minimizing backtracking usually
leads to better results. In [20] and [34] it has been shown that a near minimal
number of backtracking steps has been achieved. In the implementation of [21]
most concepts used in Socrates are employed and an extremely fast test genera-

tion system has been reported.

2.2 Transistor Circuit Representation and

Partitioning

2.2.1 Gate Level Equivalent Model

Due to the success of gate level test generation, to detect faults in a circuit at the
switch level some test generation algorithms use a preprocessing step to construct
an equivalent gate level circuit [3, 35, 36, 37, 38, 39, 40]. Switch level faults are

represented by gate level line stuck-at faults in the equivalent circuit. These
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Finally, most techniques do not consider the possible invalidation effects
when dealing with stuck-open faults. In [37] and [40] the invalidation due to

circuit delay is considered, but the charge sharing effects are ignored.

2.2.2 Graph Representation and Circuit Partitioning

In contrast to the transistor-to-gate level transformation, many researchers have
carried out the test generation process directly at the switch level. Here the basic
idea is to consider (explicitly or implicitly) a switch level circuit as a directed or
undirected graph. Two different relations between the graph and the circuit exist.
The first one uses a tree to represent a circuit [41, 42, 27], where each terminal
node of the tree is a control signal to a transistor and each internal node of
the tree is a binary operation AND or OR, which represents a serial or parallel
connection of transistors, respectively. The second relation treats each transistor
as an edge in a graph, and each circuit node as a vertex in a graph [43, 44]. This
correspondence captures the natural feature of the transistors and thus is used

by most researchers.

One advantage of this second model is that it leads to a natural scheme
for circuit partitioning. By breaking the control line to the gate terminal of each
transistor, all nodes which are still connected to one another through the drains
or sources of transistors form a fransistor group [45]. This partitioning has the
property that charge sharing can only occur inside a transistor group, and each
interface (interconnect) line among the groups is unidirectional. Each transistor
group is analogous to a logic gate in a gate level circuit, which is the smallest unit
to be processed in a gate level test generator. In this thesis a formal definition

for this representation will be given.

Because of the existence of pass transistors (or transmission gates), all
logic gates which feed the same transmission gate network are assigned to the
same group when the above partitioning scheme is used. This may lead to the

loss of some information concerning the directionality of a logic gate. Thus a
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more detailed partitioning scheme may be necessary in order to obtain more
information to aid the test generation process. In this study we will present an

algorithm to further identify the complex and primitive gates inside a transistor

group.

2.3 Transistor Signal Flow Direction

A MOS transistor is inherently a bidirectional device. Signals can propagate
either from source to drain, or from drain to source when the transistor is in the
ON state. The actual signal flow direction is determined by such factors as the
capacitances of the source, drain, and the other nodes connected to them via ON
transistors, and the conductances of these ON transistors. When a transistor is
turned on, either its source or its drain terminal acts as the source, and the other
as the target or destination of signal flow. The direction of a transistor is defined

as the direction from signal source to signal destination.

In practice, most MOS transistors operate in a unidirectional mode, i.e.,
only one direction of signal flow through the transistor is feasible at all times.
For example, in the fully complementary CMOS NOR gate shown in Figure 2.1
each transistor can be assigned a direction as shown in the figure. Nodes u and

v are, respectively, the source and destination of signal flow through transistor

PA.

For many computer-aided design and analysis tools, it has been found that
if the direction of signal flow through transistors is known a priori, then both the
computational effort and the accuracy of results can be considerably improved
[46, 47, 48, 49]. Jouppi [46] used the transistor direction to guide the search for
critical paths in a circuit to obtain accurate timing simulation data. He also used
direction information for electrical design rule checking. Cirit [47] used direction
information in calculating the controllabilities and observabilities of signal nets

(or nodes). Chen et al. [48] have suggested using direction information to reduce
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Figure 2.1: A NOR gate with transistor directions

the search time in switch level test generation. Barzilai et al. [49] used a similar

concept to speed up switch level simulation.

Previous methods for assigning signal flow direction rely on rule-based
systems [46, 47). The most important rule-based system is probably the one
developed by Jouppi [46] for timing simulation application. Eight safe rules and
5 unsafe rules are given. This system, though empirically shown to have good
transistor coverage, has the following problems. First, the applications of rules
rely on pattern matching techniques that are often time-consuming. Second, only
local effects are considered. Thus some transistor directions that require global
circuit information cannot be assigned. For example transistors PB, PC and PD
in Figure 2.2(a) are unidirectional (as shown in the figure), but none of the rules
proposed in [46] can assign these directions. Third, since the rules are verified
through informal arguments rather than formal techniques, some “safe” rules may
turn out to be unsafe in some special cases. For example Figure 2.2(b) shows a
six transistors memory cell whose equivalent circuit diagram is given in Figure
2.2(c). Transistors A and B are both bidirectional but the system developed in
[46] will identify them as unidirectional because, according to “safe” rule 6, all

transistors fed by the output of an inverter are considered as unidirectional.
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Figure 2.2: Problems associated with rule-based systems: (a) PB, PC, PD

cannot be assigned a direction. (b)(c) Transistors A and B in a memory cell are

assigned incorrect directions.
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In [47] the direction rules of [46] are augmented based on the analysis of
some special patterns such as transmission gate adders and Manchester carry
chains. In addition Kirchoff’s current rule is repeatedly applied to propagate
the direction information throughout the circuit. This method requires that all
transistors in the circuit be unidirectional, and thus cannot be applied to a general
circuit. In this study we have developed a novel, graph-theoretic approach for

assigning signal flow direction to transistors.

2.4 Switch Level Simulation

Logic implication is required during test generation. A major part of this process
is logic simulation. Many switch level simulation algorithms exist. A nice survey
in this area was done in [50]. In this section we shall only describe and discuss

the MOSSIM II [51] and COSMOS [52, 53] systems.

As a switch level simulator, MOSSIM II models a MOS circuit as a network
of nodes connected by ideal switches. Each switch corresponds to a transistor, and
the state of a switch is determined by the node connected to the gate terminal of
the transistor. Nodes can be either input nodes which include VDD, GND and all
primary inputs, or storage nodes which are not input nodes. Ternary logic (0,1,X)
is used for representing the state of a node or a switch. Node states 0, 1, and X
represent low, high, and invalid (or uninitialized) voltages, and transistor states
0, 1, X represent open, closed, and indeterminate states. A novel mathematical
analysis for ternary logic is used to prove the correctness of the model. Nodes
are assigned different sizes (w, ki, kq, ...) to model the effects of their relative
capacitances in charge sharing, and transistors are assigned different strengths
(r1, r2, ...) to model the effects of their relative resistances in ratioed circuit. An
input node has the size of w and a storage node has a size of k;. The node sizes
(or strengths) and switch strengths are totally ordered according to the relations
ki < ky < ... <1 <7y <...<w. A concept of rooted paths is used to compute

the new state of the circuit given the old state and the current input. A rooted
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path pis a triple < R(p), D(p), E(p) > consisting of a root (or initial) node R(p),
a destination node D(p) and a sequence of switches E(p) from R(p) to D(p).
The strength of a path p is defined as the minimum of the size of R(p) and the
minimum switch strength in £(p). The new state of a node v is determined by
the states of the root nodes of the strongest paths to v. The equations for finding
the strengths of paths are formulated as fized-point equations. An algorithm of
complexity O(s +1) is then developed for solving these equations, where s is the

total number of node and switch strengths and ¢ is the number of transistors.

COSMOS [52, 53] uses a similar model as MOSSIM 1. It also uses the con-
cepts of node sizes, switch strengths, and ternary logic. The difference between
COSMOS and MOSSIM 1II is in their solution algorithms. The correspondence
between MOSSIM II and COSMOS is much like that of an interpreter and a com-
piler for programming languages. COSMOS converts the solution equations for
a circuit into a C program which is then compiled into executable machine code.
The work required for equation formulation is done only once as a preprocessing

step. The simulation process is then carried out via the execution of object code.

COSMOS represents a ternary variable n using two boolean variables n.1
and n.0 such that n =0+ (.1 =0,n0=1),n =1 <= (n.1 = 1,n.0 =0),
and n = X <= (n.1 = 1,n.0 = 1). The path equations can then be represented
by symbolic boolean equations which contain only boolean operations, AND, OR
and NOT. These equations are solved using Gaussian elimination to obtain a set
of boolean formulas which contain O(n®) operations in the worst case. It has
been shown that all but a limited set of dense pass transistor networks lead to
formulas which contain O(n) operations [52, 53]. These formulas can then be

compiled into machine code for execution.

COSMOS is one or two orders of magnitude faster than MOSSIM II. How-
ever, this speed-up is due to extensive preprocessing. It is not clear how this

methodology can be incorporated into a test generator where each fault gives a
different faulty circuit. In MOSSIM II and COSMOS, faults can be represented
by inserting fault transistors [54, 55] and fault variables [50], respectively. These
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modeling methods make the CUT more complex if many faults are processed
concurrently. It is reported in [56] that 15 M bytes of memory is required to

process a circuit containing 770 transistors using the method suggested in [50].

Another consideration is that the transient effect in circuits is ignored.
Both COSMOS and MOSSIM II solve the path equations only for the steady
state condition, and assume all input signals change at the same time. For a
well-designed, fault-free circuit this generally causes no problem. However for a
faulty circuit, where transient or hazard effects may affect the validation of the

test, these simulators may fail to give accurate results.

It is stated in [51] that most transistors in CMOS circuits can be assigned
the same strength. This statement is certainly applicable to COSMOS. However
an analysis of bridging faults shows that even for an exhaustive test set, most
bridging faults cannot be detected by COSMOS (so is MOSSIM II) if only one
transistor strength is used [57]. This is because most bridging faults result in an
“X" state for both shorted nodes.

Another disadvantage of MOSSIM II or COSMOS is the requirement of
the total ordering of node sizes (strengths). From an electrical standpoint it
makes sense to resolve charge sharing in favor of a node of greater capacitance.
For example if a node u has eight or more times the capacitance of another node
v, u should dominate the charge sharing [58]. However assigning strengths to
nodes using a total ordering may encounter the following problem. Let S(n)
be the strength associated with node n. Consider three nodes n;,n; and njs
with relative capacitances 1, 4, and 16, respectively. Since the capacitance ratio
between n; and n,, and between ns and ns are both 1:4, the assignment of
strengths satisfies the following equalities: S(n;) = S(nz) and S(nz) = S(na).
Now the total ordering requires that if S(ny) = S(n2) and S(ng) = S(ng), then
S(n1) = S(na). Thus the same strength is assigned to all three nodes. This is
undesired since if charge sharing only occurs between n, and ns, then nz should
dominate the result. Agrawal el al. [58] proposed a partial ordering method

to solve this problem. However their method can only resolve the problem of
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charge sharing between two nodes. If more than 2 nodes can share charge, then
the problem is not resolved. For example if charge sharing occurs among three
nodes nq,ny and ny which have relative capacitance values of 1, 1, and 8, and
n3 has a different logic value than n; and n,, the resulting voltage should be
“undetermined,” while the partial ordering method will assign all three nodes

the value of njs.

2.5 IDDQ Testing

Classical methods for testing digital integrated circuits mainly use logic monitor-
ing, i.e., a fault is detected by observing the logic values at the primary outputs of
a circuit. This approach is often inadequate when a fault results in intermediate

logic values.

Another feasible approach for detecting CMOS faults is by monitoring
the current supplied by the power line [59, 60, 61]. This approach, often called
IDDQ testing or current supply monitoring (CSM), makes use of an important
property of CMOS circuits, namely during steady state the current supplied by
the power source should be relatively small. When a fault results in a conducting
path between VDD and GND, the supply current becomes quite large. If this

abnormal current can be measured, then the fault can be detected.

One important advantage of IDDQ testing over conventional logic mon-
itoring is that no fault propagation is necessary. The fault effect is observed
directly through the VDD or GND line. Thus a fault is detected as long as it
results in a conducting path from VDD to GND during steady state. There-
fore only the controllability, but not the observability of the circuit is relevant
when IDDQ testing is used. This obviously reduces the test generation efforts

dramatically.

Due to insufficient resolution, IDDQ testing may not be directly applied to

a large circuit that normally consumes a large steady-state current. This difficulty
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can be overcome by using built-in current measurement devices [62, 63, 64, 65].
A new testing methodology called built-in current testing using buill-in current
sensors (BICS) has been described in [64, 65]. By partitioning a circuit into
modules and using a separate BICS for each module, this methodology not only
makes CSM applicable to large circuits but also facilitates on-line self-testing.
Thus IDDQ testing appears to be a promising method for detecting some CMOS

faults that may result in large current consumption.

A significant amount of research on IDDQ testing has been done recently
[62, 63, 64, 65, 66, 67, 68]. However one fundamental problem associated with this
method has not been thoroughly explored, namely to characterize those circuits
for which IDDQ testing can be applied. In this study we shall derive a set of

design and test rules under which the IDDQ) testing can be used “safely.”

2.6 Test Generation for Bridging Faults

The conventional approach for detecting bridging faults (BFs) is based on the
wired-OR and/or wired-AND model which assumes that both shorted nodes will
always have a logic 1 (wired-OR) or logic 0 (wired-AND) value [69]. The feasi-
bility of this method has been examined by many researchers. In [70] the effect
of BFs inside a logic gate is discussed. Both feedback and non-feedback BFs be-
tween two logic nodes (i.e., inputs or outputs to logic gates) are analyzed in [71].
A comparison of switch level and circuit level models of BF's is presented in [72].
These studies have shown the inadequacy of logic testing for CMOS BF's that may
result in indeterminate logic levels. More work that shows that the wired-OR or
wired-AND is unrealistic for CMOS circuits can be found in [73, 74, 75, 76].

Detecting bridging faults in CMOS circuits using IDDQ testing was intro-
duced in [59, 60, 61], and developed further in [77, 71, 72, 73, 74]. Most of this
work deals with bridging faults between gate inputs or outputs. Bridging faults
inside a gate are usually ignored. Also none of the previous work has formally

shown the feasibility of IDDQ testing in detecting bridging faults.
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2.7 Test Generation for Stuck-open Faults

Tremendous efforts have been made to address the problem of stuck-open fault
testing. It is reported that more than 120 papers dealing with this problem have
been published [75]. Due to this huge amount of research results, it is impossible
to give a complete survey here. In this section the discussion will focus primarily
on the “true” switch level test generation. Methods using gate level equivalent

circuits are not included here because of the problems described in Section 2.2.1.

Detecting a CMOS stuck-open fault is difficult because a CMOS combi-
national circuit may become sequential when a stuck-open fault occurs. In [78] a
circuit design technique is proposed that guarantees no sequential behavior can
occur due to stuck-open faults. This technique converts each CMOS gate to be
either a pseudo-NMOS or a pseudo-PMOS gate during testing by inserting two
additional transistors to each gate. Although this method enables the detection
of stuck-open faults using single-vector tests, it requires high area overhead. In
general two-vector tests are necessary for detecting stuck-open faults. The first
vector, known as an initialization vector, establishes an initial circuit condition,
and the second vector, known as a test vector, activates the fault effect so that

it can be observed.

El-ziq has published several papers dealing with testing of MOS circuits
(79, 80, 81, 82, 83]. In [79] he deals with the problem of test generation for
CMOS circuits consisting only of primary gates (NAND, NOR, AND, OR). Two
test generation algorithms are given. The first one is actually a fault simulator
which identifies the stuck-opens faults that can be detected using an existing
stuck-at test set. The second one is a test generation procedure using classical
path sensitization techniques. This work has been extended to deal with circuits
containing complex gates and transmission gates [80]. Problems dealing primarily
with NMOS circuits are considered in [81, 82, 83]. These papers do not consider

the problems of test invalidation due to circuit delay or charge sharing.
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Chiang and Vranesic [84] use a planar graph to represent an NMOS com-
plex gate. Algorithms in graph theory, such as finding cutsets and dual graphs
are used in test generation. This approach is applied to FCMOS complex gates
in [43]. Again no test invalidation is considered. Chandramouli [85] considers
the problem of detecting stuck-open faults in a circuit consisting of primitive
gates. He shows that all stuck-open faults in an internal fanout-free circuit (a
circuit with no fanout on lines that are not primary inputs) can be detected by
rearranging a complete stuck-at fault test set for that circuit. Circuit delay and

charge sharing effect are again not considered.

Agrawal [44] has developed a D-algorithm based switch level test genera-
tion algorithm. D-drive (fault propagation), forward and backward implications,
as well as two pattern tests for stuck-open faults are described. It is not clear
how this algorithm can be applied to a circuit containing pass transistors. The
invalidation of tests for stuck-open faults is considered, but only as a post exam-
ination process, i.e, no consistency checking is done until a pair of test vectors

are generated.

Reddy et al. [28] and Chen et al. [48] both present a test generation al-
gorithm based on extending Bryant’s MOSSIM II simulation model. In Bryant’s
model [51] an uninitialized state and a conflict (or undetermined) state are both
represented by the state X. This can cause some confusion on when to frig-
ger backtracking during test generation. Reddy et al. extends the model by
introducing a larger state set so that state ambiguity can be eliminated. An
IMPLY process of linear complexity is used to perform logic implication based
on the larger state set. The test generation procedure is again based on the D-
algorithm. An ordered triplet [;5/5 is used to represent the states of a transistor
or a node during the initialization, transition, and test time frames. This notation
simplifies the examination of test invalidation. However no program implemen-
tation issues have been reported. Thus it is not clear how the various D-cubes
used in the D-algorithm are generated. Also test validation checking appears to
be done after a pair of test vectors have been generated. Chen et al. [48] use a

similar state set to represent the states of nodes and transistors. They employ the
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PODEM test generation strategy. Their backtracing process works in both space
and time using a single transistor as the basic unit of circuitry. A time domain
expansion is performed only when no further space domain expansion is possible.
Though this algorithm aims at generating tests for any sequential circuit, it is not
complete as it assumes fault effect can be propagated from the cite of the fault to
a primary output in one time frame. This algorithm was implemented in the C
language. A typical run shows that for a 238 transistor circuit, the average time
to generate a test is around 100 CPU seconds on a Pyramid 90X minicomputer.
This performance does not seem impressive when compared with gate level test
generators. As discussed in [48], many enhancements are possible. Unfortunately

no further work has been reported.

Najm [86] describes a D-algorithm based test generator which is capable of
generating robust tests that cannot be invalidated by any circuit delay or charge
sharing effect. However this algorithm has the danger of diagnosing a fault-free
circuit to be faulty when a test requires electrical charge to be established and
held in the fault-free circuit. This is because certain approximations involved in
the switch level simulator may fail to predict the charge loss. Another problem
with this method is that it requires the explicit enumeration of all possible subsets
of the set of nodes in a transistor group in order to deal with the charge sharing
problems. This results in exponential computational complexity. Experiments
indicate that to generate a test for a four-bit adder with about 200 transistors
requires a total time of from less than one second to about one minute on a VAX
11/780.

A universal test set for CMOS stuck-open faults is given by Gupta and
Jha [87]. They use a concept similar to that of Akers [88] and Reddy [89] who
derive universal test sets for gate level circuits. The major problem for these
methods is the serious constraint imposed on the circuit, namely all the paths
starting from the primary inputs and meeting at the same gate must have the

same inversion parity.
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Some more work [56, 90, 91] dealing with test generation for stuck-open

faults in sequential circuits will be discussed in Section 2.9.

Because of the complexity of switch level test generation, the design of
testable CMOS combinational circuits is an important research area. Here a
circuit is realized according to some design rules so that tests can be more easily
generated for the circuit. However to date all proposed testable designs can only
realize circuits using primary gates (AND, OR, NOR, NAND, etc.) or using only
a large single complex gate [92, 93, 94, 95, 96, 97]. Using only primary gates has
the disadvantage of increasing the total layout area and realizing a circuit using
a complex gate is not practical for large circuits. Design for test may simplify the
test generation problem, but does not eliminate it. Thus in this study we assume
that designs do not adhere to the various design for test technologies which have

been suggested.

Another possible solution for the stuck-open fault problem is to lay out
circuits under some guidelines. This is a relatively new research area. In [94]
several layout rules are suggested which may reduce the possibility of stuck-open
faults. Unfortunately this method cannot be used if the layout of a circuit is
fixed or only allows for minor modifications. Two other layout techniques are
described in [75], namely, 1) simply widen the metal where possible, and 2)
use parallel VDD (GND) paths to the source connections, called substrate-ties.
These two techniques are more practical as they try to prevent the occurrence of
stuck-open faults with only slight modification to the layout. Two recent papers
use layout information to generate more realistic fault sets [74, 98]. Because
actual physical defects are highly related to circuit layout, these methods provide
an improvement in the quality of testing over conventional methods. In this study
it is shown that the layout information can be very helpful when dealing with the

invalidation problem due to charge sharing.
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2.8 Test Generation for Stuck-at Faults

Robinson [99, 100] presents a test generation algorithm for switch level node
stuck-at faults based on the D-algorithm. Here a CMOS combinational circuit
is partitioned into a set of subcircuits via the help of test engineers. The pro-
gram then generates various D-cubes for each subcircuit and constructs the test
vectors using a 9-value logic based D-algorithm. This method does not consider
sequential faults in combinational circuits, e.g., a stuck-at 0 on the gate terminal
of an N-type transistor is equivalent to a stuck-open fault. Also the requirement

for users to partition the circuit makes this method less attractive.

Cho and Bryant [56] develop a complete switch level ATPG for all stuck-
at faults at the I/O of transistor groups. No stuck-at faults inside a transistor
group is considered. Also this method can only deal with a very small circuit as

described before.

2.9 Sequential Circuit Testing

Recently some work has been done in the area of test generation for a generic
sequential circuit described at the switch level [56, 90, 91]. However from the
reported experimental results, all of this work either takes large computation
time [90, 91] or requires excessive memory space [56]. Thus they can be applied
to small circuits only. Also these algorithms rely solely on logic monitoring.
No IDDQ testing is employed. In [91] possible extension to IDDQ testing is
mentioned. However since the proposed algorithm may rely on charge sharing or
charge retention to detect a fault, it is possible that a fault-free circuit will be

identified as faulty. Details of this fact will be described in Section 5.1.

The problem of test generation for sequential circuits can be reduced to
the problem of test generation for combinational circuits by using a scan-based
design. However faults may also occur inside the scan registers. These faults

must be detected to guarantee the proper functionality of scan-based systems. A
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test procedure for scan registers is described in [101]. Two test sequences, 010
and 01100, are applied to the scan register and the scan outputs are observed.
This technique may not detect some bridging faults (BFs) that occur between
some specific nodes in the scan path. To achieve high fault coverage an extensive

analysis on all possible BF's is necessary.



Chapter 3

Strategies and System Overview

From the discussions in Chapters 1 and 2 it is obvious that a significant amount of
research has been conducted for switch level test generation but many problems
still remain unsolved. In this chapter a general overview of this study is given.
First the basic considerations that lead to the final decision on the scope of
the switch level test generation system will be discussed. Based on these basic
considerations, an outline of the approaches used in this study is then given. The
approaches can be divided into three parts: circuit manipulation, fault analysis
and a test generation framework. These three parts will be described in details in
the next three chapters respectively. An overview of the test generation system,

SWIiTEST, will be given at the end of this chapter.

3.1 Basic Considerations

3.1.1 Test Generation Algorithms

Due to the success of gate level test generation, it is natural to consider making

use of the gate level test generation concepts to deal with the switch level test
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generation problem. A comparison of existing gate-level test generation algo-
rithms was made and it was concluded that PODEM like algorithms are more

efficient than the D-algorithm for switch-level test generation.

This conclusion is drawn not only because gate-level experiments have
shown the superiority of PODEM over the D-algorithm, but also because the
nature of switch-level circuits generally makes it difficult to define some major
concepts used in the D-algorithm such as propagation D-cubes and primitive D-
cubes of faults [32]. In addition, the D-algorithm requires backward propagation
of signals (line justification and implication), while PODEM employs only forward
implication. Furthermore, it was found that the backtracing and logic implica-
tion, which are two major procedures in PODEM, can be efficiently implemented

at the switch level.

Another reason to select PODEM is due to the evolution of gate level test
generation. The D-algorithm was developed in 1966 [32]. At that time many
people thought that the test generation problem was well solved, even though
the D-algorithm was quite inefficient for large circuits. It took almost 15 years
before the PODEM algorithm was conceived in the early 80’s. After PODEM
was published [16], it was found that not only is PODEM more eflicient than the
D-algorithm, but also it has provided a very nice framework for test generation
and many improvements are still possible. Since the publication of the PODEM
algorithm, every few years a new and more efficient test generation algorithm has
been developed [17, 18, 19, 20, 21]. These algorithms are PODEM-based, i.e.,
they all make use of the basic concepts of PODEM such as objective selection,

decision tree, backtracing and logic implication.

It is believed that a PODEM-based switch level test generation framework
will be most useful and expandable. Thus the present implementation focuses on
how to modify the gate level PODEM algorithm into a switch level test generation

framework.
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3.1.2 Circuits and Faults Under Consideration

Many different design styles for CMOS circuits exist, such as precharged logic
(e.g., Domino logic), cascade voltage switch logic, and FCMOS gate design [1].
Various fault models can be used in each design style. The goal of a test generator

may be to

1. generate test for any possible fault in all styles of circuits,
2. generate test for a specific fault model in all styles of circuits,
3. generate test for any possible fault in one style of circuits, or

4. generate test for one specific fault model in one style of circuits.

A test generator which attempts to detect all possible faults in all styles
of circuits is impractical. A test generator aimed at generating tests for only one
fault model is not a stand alone system since it requires extra effort to detect
other faults. Thus a test generator which can detect as many faults as possible for
a specific design style seems more durable and useful. Theoretically any circuit
function can be implemented using any design style. Thus from the testing point
of view it is quite reasonable to place some restrictions on circuits so that certain
special circuit properties can be used during test generation. The restrictions on
circuits in this study, which can also be considered as design or test rules, will be

discussed in detail where appropriate.

The fault models analyzed in this study include the following.

All bridging faults, which include both single and multiple BFs. A bridging

fault can occur between any pair of circuit nodes.

e All stuck-on faults, which include both single and multiple stuck-on faults.

All single stuck-open faults.

All single line breaking faults.
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All single and multiple bridging and stuck-on faults are considered while
only single stuck-open and line-breaking are considered. This is because by em-
ploying IDDQ testing, multiple bridging and stuck-on faults can be detected
using single fault tests, but the same argument does not hold for stuck-open and

breaking faults.

All faults are assumed to be permanent faults. Though stuck-at faults are
not analyzed in this study, a test generator for stuck-at faults is still implemented
so that a comparison between our test generation system and the existing gate

level test generation systems can be made.

3.1.3 Fault Effect Observation Methods

As described before, for the bridging faults that result in intermediate logic values,
the only way to guarantee their detection is by using IDDQ testing. Thus IDDQ
testing is necessary if all bridging faults are to be detected. On the other hand,
since IDDQ testing cannot detect faults that do not result in large current, logic
monitoring is still required. In this study both logic and current monitoring will

be used to enhance the detectability of faults.

3.2 Outline of Approaches

The approaches used in this study can be divided into three parts: circuit manip-
ulation, fault analysis and a test generation framework. The basic idea of circuit
manipulation is to extract useful information from switch level circuit descrip-
tions such that the concepts used for gate level test generation can be extended
to the switch level. The fault analysis part aims at discovering the most efficient
way to deal with each fault model. It also tries to reduce the number of faults
that need to be considered. The objective of the test generation framework part
is to identify the most important components that can be shared by each individ-

ual test generator for each fault model. Once these components are implemented,
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the test generation efforts can be focused on the specific properties of each fault
model. Also it will be much easier to extend the test generation system to extra

fault models that are not considered in this study, e.g., delay faults.

3.2.1 Circuit Manipulation
3.2.1.1 Circuit Representation and Partitioning

Comparing gate and switch level circuits, it is easy to find that the basic com-
ponents of gate and switch level circuits are primitive gates and transistors, re-
spectively. Assume each gate consists of, say, 6 transistors, then using a gate to
switch level transformation the problem size becomes 6 times larger if transistors
are used as the basic units during test generation. Also at the gate level the I/O
relations between any two gates are well defined, while at the switch level each
transistor is a bidirectional device. To make efficient use of PODEM concepts
such as backtracing, transistors must be clustered into groups so that during test
generation each group can be considered as a basic unit and the 1/O relations
among groups is well defined. A circuit partitioning scheme will be used to solve

these two problems.

3.2.1.2 Complex Gate Identification

Switch level circuits basically consist of complex gates and pass transistors, where
complex gates are made up of a P- and an N-type transistor networks and one
output node. It is clear that to have a logic 1 (0) at the output of a complex gate,
a conducting path of P(N)-type transistors must be turned on. Thus the inputs
affecting the output must have the complementary logic values of the output.
This information will help in both backtracing and logic implication during test

generation.

Moreover, many complex gates are in fact primitive gates which include

NAND gates, NOR gates and inverters. The input/output of a primitive gate
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is even more precise than a generic complex gate, e.g., to have a logic 1 at the
output of an NOR gate, all inputs must be 0. Thus the test generation efforts
can be further reduced. In this study information about complex gates as well

as primitive gates will be extracted.

3.2.1.3 Transistor Group Leveling

The gate level PODEM algorithm requires information about “how easy” it is to
set a circuit line to a specific logic value, or “how far” a circuit line is from its
closest primary input or output. This information is very useful for determining
the next objective to be achieved for backtracing and fault propagation. At the

switch level a similar concept based on the partitioning of circuits can be used.

3.2.1.4 Transistor Signal Flow Direction Assignment

The partitioning scheme used in this study only identifies the I/O relation among
partitions. The signal flow direction inside a partition is yet to be defined. This
information is also useful for determining the objective to select and the direction
to backtrace. A novel algorithmic method to deal with this problem will be

presented.

3.2.2 Fault Analysis
3.2.2.1 IDDQ Testing

IDDQ testing has been identified as an efficient and effective test method, but
no formal proof for its effectiveness exists. In this study a set of design and test
rules under which IDDQ testing can be “safely” used are derived. The strategies

to deal with circuits which do not satisly these rules are also discussed.
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3.2.2.2 Bridging Faults and Stuck-on Faults

IDDQ testing will be used to detect bridging faults in this study. Several new the-
oretic results have been obtained which include 1) all irredundant single bridging
faults in a circuit satisfying a given set of design and test rules can be detected
by using IDDQ testing; 2) if a test detects a single bridging fault f, then it also
detects all multiple bridging faults which contain f; and 3) if any of the rules
is removed, then some circuits exist for which IDDQ testing cannot give correct
results. Results 1) and 2) illustrate the sufficiency of the set of rules for using

IDDQ testing, while 3) shows the “minimality” of the set of rules.

A stuck-on fault is modeled as a bridging fault between the source and

drain terminals of the faulty transistor.

3.2.2.3 Stuck-open Faults and Breaking Faults

The difficulty in detecting CMOS stuck-open faults is due to the possible invali-
dation of a test, either caused by charge sharing or circuit delay. A very efficient
test generation procedure to generate stuck-open tests that cannot be invalidated
by any circuit delay is developed. For the charge sharing problem an extensive
analysis has been conducted which shows that this problem can be solved by
using IDDQ testing. Finally an algorithm that can generate “robust” tests for

stuck-open faults is given.

Once the test generation for stuck-open faults is done, the detection of line
breaking faults can be dealt with by modeling these faults as transistor stuck-open

faults.

3.2.2.4 Sequential Circuit Testing

In this study it is assumed that scan-based sequential circuits are used. All

possible bridging faults in a scan register are analyzed and a test sequence is
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derived for each fault. A universal test sequence for all bridging faults has been

derived based on the information for each individual fault.

3.2.3 PODEM-based Test Generation Framework
3.2.3.1 Objective Selection

The goal of objective selection at the switch level is the same as that at the gate
level: to select an objective that is likely to lead to the discovery of a valid test.
The actual implementation of objective selection at the switch level is harder due
to the lack of I/O relations among transistors and signal flow information of each
transistor. Thus the information obtained in the circuit manipulation part of this

study becomes very important.

Another problem is that different faults may require different objectives.
For example the objectives of detecting a bridging fault between two nodes would
simply be to set these two nodes to complementary logic values, while the objec-
tives of detecting a stuck-open fault could be much more complex. The strategy
for this problem, in addition to making use of the information obtained in the
circuit manipulation part, is to use an “objective array” in which a list of objec-
tives are kept. Each objective in this array is then selected and processed until

all objectives in the array are satisfied.

3.2.3.2 Backtracing

Similar to objective selection, backtracing at the switch level also faces the prob-
lem of the lack of I/O relations among transistors and the signal flow information
of each transistor. Thus the information obtained from the circuit manipulation

part is also very useful here.

Switch level backtracing does have two problems that do not exist at the

gate level, namely at the switch level backtracing may fail to find an unassigned
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primary input, and loops inside a partition may exist. Thus the concept of gate
level backtracing cannot be directly used at the switch level. A new method to

deal with these problems will be presented.

3.2.3.3 Logic Implication

Logic implication for PODEM is basically a good circuit simulation. This is true
for either gate or switch level. Existing switch level simulation may be used to
accomplish the logic implication process during test generation. This, however, is
inefficient because of the nature of the PODEM algorithm that assigns only one
primary input at a time. In this study an event-driven, incremental algorithm
will be presented. The worst case complexity of this algorithm is linear in the

number of transistors inside the transistor group to be evaluated.

3.2.3.4 Backtracking

At the gate level backtracking can be done simply by re-evaluating each gate that
is affected by the new-assigned primary input because the I/O relation of a gate
is well specified. It is not necessary to record which primary input assignment
causes the status change of each internal node of a circuit. This is not true at
the switch level as will be explained in Chapter 6. To efficiently deal with this
problem in terms of both memory usage and CPU time, some “elegant” program

tricks in C have been developed.

3.2.3.5 Fault Propagation

The concepts used in fault propagation at the switch level is again similar to that
used at the gate level. The information obtained during circuit manipulation also
plays an important role. The difference between gate and switch level fault prop-
agations is that the fault effects at the switch level always “fork™ and “merge,”

i.e., the fault effects from one node to another node always go through two paths,
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one through P-transistors and the other through N-transistors. Details will be
described in Chapter 6.

3.3 System Overview

A switch level test generation system, called SWiTEST, has been implemented
using the C programming language on a SUN Sparc workstation running SunOs
4.1 (a UNIX-based operating system). The block diagram of this system is illus-
trated in Figure 3.1.

The algorithms developed for circuit manipulation are used as the pre-
processor of the system. Data obtained are stored in files so that they can be
repeatedly used. The box containing “others” is for future extension, e.g., to
implement the concepts used in FAN or Socrates. The algorithms for the test
generation framework are implemented as modular routines. Each of these rou-
tines can be accessed by each individual fault manipulator. Three individual test
generators, for bridging, stuck-open and stuck-at faults, are implemented. The
stuck-on faults are considered as bridging faults. In the future the system can be
extended to include other faults such as delay faults and can be tied to a fault
simulator so that a complete automatic test pattern generation system (ATPG)

can be developed.
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Chapter 4

Circuit Manipulation

In this chapter various manipulations on switch level circuits are described.
Though the original objective of these manipulations is for test generation, they
are also useful in many other CAD fields such as circuit verification, timing anal-
ysis, logic simulation and design rule checking. The algorithms to be described
include CMOS circuit modeling and partitioning, complex gate identification,
level assignment to each circuit partition, and transistor signal flow direction
assignment. The work of assigning signal flow direction to MOS transistors is

particularly novel and unique. Thus it will be described in great detail.

4.1 CMOS Circuit Modeling and Partitioning

As described in Section 1.2, a switch level CMOS circuit consists of a number of
N- and P-type transistors and a number of nodes connecting these transistors. A
commonly-used partitioning method for MOS circuits [45] as described below is

adopted in this study.

A MOS circuit is mapped into an undirected graph whose edges corre-
spond to transistor channels and whose vertices (or nodes) correspond to nodes
in the circuit. The VDD and GND circuit nodes are then replicated so that
each transistor connected to VDD or GND has its own copy of a VDD or GND
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node in the graph. These procedures naturally partition the graph model of a
circuit into a number of disjoint “channel-connected” components. By merging
all VDD and GND nodes in a connected component into a “VDD-node” and a
“GND-node,” respectively, a transistor group (T'G) is formed. Figure 4.1 shows
a circuit and its T'Gs. Note that a primary input may form a TG by itself, e.g.,
B and C. The TG containing the nodes that control the pass transistors, i.e.,

are connected to the gate terminals of the pass transistors, are not shown.

The relationship between two T'G's can be defined by the interconnections
through the gate terminals of transistors in the original circuit. Due to the
property that the gate voltage controls the conducting status of the channel but
not vice versa, each interconnection between two T'(s is unidirectional and can be
considered as an input or output of the corresponding T'Gs. A transistor group
TA is said to have direct control on another transistor group TB if one of the
outputs of TA is one of the inputs of TB. If there exists a sequence of transistor
groups T1,T5,...,Tn, n > 2 such that TA = Ty, TB = T, and T;_; has direct
control on T} for i = 2, ...,n, then it is said that TA can contrel TB. For example,
in Figure 4.1 TG, has direct control on T'G> (through O,) and TG, has direct
control on T'G3 (through O3), hence T'Gy can control T'G5. Two T'Gs are said
to be related if one of them can control the other. If neither of them can control
the other, they are unrelated. If both can control each other, then a control loop

exists.

The following procedure is used for the partitioning scheme described
above. This procedure is based on a non-recursive depth-first search algorithm
[102]. Step 2 is used to identify all primary input nodes that are not connected
to the drain or source of any transistor. FEach of these nodes forms a frivial
transistor group. Step 3 identifies each non-trivial transistor group with the help
of a first-in-last-out stack S which is used for recording the nodes that have
been visited but not yet expanded. When a search branch encounters the VDD,
GND or a used node, it stops. After procedure Partition terminates each trivial

TG contains a PI node and each non-trivial 7'G' contains transistors that are
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Figure 4.1: Partitioning of a CMOS circuit: (a) original circuit (b) partitioning
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“channel-connected.” Charge sharing can occur only between nodes in the same

TG,

Procedure Partition(C' = (N,T,1))

Inputs: C is the circuit to be partitioned which is described by its set of nodes NV,
set of transistors T and set of primary inputs /. Each node v in N is associated
with a list of transistors connected to v. Each transistor is associated with its
drain, source and gate nodes.

Outputs: Each primary input not connected to any transistor drain or source be-
comes a trivial transistor group. All other transistors are clustered into channel-
connected components.

1. Mark all nodes in N and transistors in T as unused.

2. 1=0;
For each primary input node v in I, if no transistor drain or source is
connected to v, do:
(a) =i+ 1;
(b) Mark v as used;
(¢) TTG; = {v}.

3. 4 =0;
While there exist unused transistors, do:
(a) j=7+1;
(b) TG; = @ (empty set);
(c) Get one unused transistor ¢. Let its source and drain nodes be @ and
b;
if (¢ # GND) and (a # VDD), do:
i. mark a as used;
ii. push @ into node stack S
else:

1. mark b as used;
ii. push b into node stack S;

(d) while (S is not empty), do:

i. pop a node v from S;
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il. for each unused transistor ¢ connected to v, do
a. TGJ' = TG_,‘ U {t};
b. mark t as used;

c. let the other end node of ¢ be u.
if u is unused and w # VDD or GND, mark u as used and
push u into stack .S;

End Partition

4.2 Complex and Primitive Gate Identification

Partitioning divides a circuit into a number of disjoint groups such that each of
the interface lines for a group is unidirectional. This enables logic implication,
fault propagation and backtracing procedures used during test generation to be
directed, and hence more efficient. The partitioning method described in Section
4.1 guarantees that any two nodes which can be connected to each other through
conducting transistors are in the same group. This, however, may not establish

the direction of all the lines in the circuit.

For the purpose of test generation it is possible to identify more unidirec-
tional lines in the circuit. For example, the output line of a primitive or complex
gate should never be treated as an “input” to this gate. Thus if complex gates
and primitive gates inside transistor groups can be identified, then the I/O re-
lation of these gates can be used to speed up the switch level test generation.
In practice many transistor groups are actually complex gates or even primitive
gates, therefore the identification of these gates can potentially reduce the switch
level test generation complexity to an extent that is close to the gate level test

generation complexity.

The following procedure identifies all complex and primitive gates inside
a nontrivial transistor group. The input 7'G = (V, E) can be easily constructed
from each T'G; obtained in procedure Partition. The breadth-first search mech-

anism used in the procedure is similar to the depth-first search mechanism used
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in procedure Partition. The only difference is that the first-in-last-out stack
used in depth-first-search is replaced by a first-in-first-out queue in breadth-first
search. A critical node in the procedure is defined as a node which connects both

N-type and P-type transistors.

Procedure Gatelden(TG = (V, E),CV)

Inputs: T'G is a nontrivial transistor group. CV contains all critical nodes in
TG.

Outputs: All complex and primitive gates in T'G.

1. Starting with the VDD node, do a breadth-first search through P-type tran-
sistors with each search branch stopping at a traversed node or at a critical
node. When a branch b stops at a traversed node v that is in a different
branch from b, the subgraph that has been traversed by b (connected to
b without going through VDD) is merged with the branch containing v.
When all branches stop, each branch containing exactly one critical node
in C'V forms a pull up network (PU). If a PU consists of only one path
from VDD to the critical node, then mark this PU as a pull up part of a
NOR gate. If all transistors in a PU connect both VDD and the critical
node, then mark this PU as a pull up part of a NAND gate.

2. Starting with the GND node, do a similar breadth-first search as in Step
1 through N-type transistors. This step forms a set of pull down networks
(PDs). If a PD has only one path from GND to its critical node, then
mark this PD as a pull down part of a NAND gate. If all transistors in a
PD connect both GND and the critical node, then mark this PD as a pull
down part of a NOR gate.

3. For each visited critical node, if both of its corresponding PU and PD exist,
then form a complex gate as the union of the corresponding PU and PD.
If the following conditions are satisfied then mark this gate as an inverter.

(a) Both PU and PD of the complex gate contain only one transistor.

(b) The nodes connected to the gate terminals of these two transistors are
the same.

Else if the following conditions are satisfied, then mark the complex gate
as NOR (NAND) gate.

(a) The PU and PD have the same number of transistors.
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(b) Both PU and PD are marked as a part of a NOR (NAND) gate.

(¢) Each node connected to the gate terminal of a transistor in PU is also
connected to the gate terminal of a transistor in PD, and vice versa.

End Gatelden

4.3 Level Assignment of Transistor Groups

During test generation it is often required to know the distance between a node
and the closest primary input or output. To provide this information at the

switch level, the following method is used.

A directed graph DG is formed whose vertices correspond to the transistor
groups and whose edges correspond to the interface lines among transistor groups.
Each trivial transistor group is also a vertex. Each edge in DG is directed since
each interface line among transistor groups in the circuit is unidirectional. The
distance between two vertices in the graph is defined as the minimum number
of edges required to traverse from one vertex to the other vertex. The following
procedure computes the distance between any vertex and its closest primary input
vertex, where a primary input vertex corresponds to a transistor group containing
a primary input node. A similar procedure can be used to assign the distance

between transistor group and its closest primary output.

Procedure Level(DG = (V, E))

Inputs: DG is a directed graph with each vertex corresponding to a transistor

group and each edge corresponding to an interface line between two groups.
Outputs: A level to each transistor group.

1. Add one source vertex s to DG and add new edges from the source vertex
to each primary input vertex.

2. Starting with s do a breadth-first search and assign the breadth-first search
level to each vertex, where the breadth-first search level is defined as follows:
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(a) The level of s is 0.

(b) When traversing through an edge from a vertex u to a vertex v, if v
has not been assigned a level and the level of u is z, then assign level
1+ 1 to vertex v.

End Level

After assigning levels to all transistor groups, each transistor and node
inside a transistor group are assigned the same level as the transistor group to
indicate the distance between individual node or transistor and its closest primary

input or output nodes.

4.4 Transistor Signal Flow Direction

Assignment

4.4.1 Introduction

In this section a novel approach to the signal flow direction assignment problem
(DAP) is presented. The DAP is modeled as a two-paths problem (TPP) in an
undirected graph, called the ST-graph. A general TPP is defined as follows:
Given 4 nodes $1,11,82,t2 in an undirected graph G, determine whether there
exist two vertez-disjoint paths in G, one from sy to ty and the other from s, to
ty. If there exists an edge e between t; and s, then the TPP is equivalent to
the problem of determining the existence of a simple path from s; to ¢; which
traverses e from #; to sy. Existing algorithms for the TPP and the deficiencies in

applying them directly to the DAP will be discussed in Section 4.4.2.

Instead of using existing algorithms for a general TPP, a sequence of effi-
cient algorithms to deal with the TPP in an ST-graph have been developed. The

algorithms take into account the following facts: 1) in practice, most transistors
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are designed to be unidirectional; and 2) most circuits have a series-parallel struc-

ture. For example, to implement a function f = C; + C3 + ... + C,, where each
Ci= Ll ool

be constructed by connecting n C; networks in parallel, where each C; network

iim 18 @ product term of input literals, the pull-down network will
is formed by serially connected transistors controlled by {;,,l;,, ..., ., . It will be
shown that all transistors in a circuit constructed in a series-parallel manner can
be identified as unidirectional in linear time by the first algorithm, called PS-
reduction, if the number of transistors connected to each circuit node is bounded

by a constant.

Even for a circuit that is not constructed in this manner, it is still pos-
sible that its corresponding ST-graph has the series-parallel property, and thus
the direction assignment problem for this circuit can be solved in linear time.
For a circuit whose corresponding ST-graph is not a series-parallel graph, the
algorithm still manages to assign directions to most transistors in linear time.
In addition, for all these circuits the ST-graphs will be reduced to much smaller
graphs, thereby simplifying the task of solving the TPP for the remaining tran-

sistors.

If the reduced graph obtained by applying PS-reduction to the original
ST-graph contains more than one edge, further processing is needed. The sec-
ond algorithm uses a divide and conquer approach to recursively partition the
reduced graph into smaller components and identify a set of special nodes called
local articulation points. It is shown that all the transistors connected to these
special nodes are unidirectional. This step, called the LA P-identification (local
articulation point identification), takes O(ejn;) time, where e; and n; are the

numbers of edges and vertices in the reduced graph, respectively.

The third algorithm, called AE-cut, is then used for each remaining tran-
sistor to identify more unidirectional transistors. AE-cut works on the compo-
nents identified by LAP-identification. It runs in O(ey) time, where e; is the

number of edges in the smallest component containing the edge.
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It is possible that the above algorithms may fail to assign directions to
certain unidirectional and bidirectional transistors. Two theorems presented in
this section make it possible to use the direction information obtained by the
above algorithms to assign direction to some of these transistors. These theorems
lead to two simple yet powerful procedures, called neighbor-triggered assignment,

which can identify most bidirectional transistors immediately.

For the remaining transistors, it is viable to use a computationally ex-
pensive algorithm because, having used the algorithms just mentioned, (1) the
graph to which the TPP to be applied is considerably simpler than the original
ST-graph, and (2) only a few unassigned transistors rather than all the transis-
tors in the circuit need be dealt with. Several approaches for dealing with these

transistors will be discussed.

The algorithms presented in this section can be applied to all static cir-
cuits and most non-static circuits. A design criteria is given which, when met,

guarantees the applicability of these algorithms to non-static circuits.

All the techniques mentioned so far are based solely on the structural in-
formation of a circuit. It is found that for some circuits such as a barrel shifter, all
the above techniques will fail to identify some unidirectional transistors because
no semantics are considered. We have developed another technique to overcome
this problem. This technique can solve the direction assignment problem in bar-
rel shifters as well as many circuits whose transistor directions rely on circuit

semantics.

4.4.2 Existing TPP Algorithms

Polynomial time algorithms for the TPP have been proposed in the literature
(103, 104, 105]. In [103] the emphasis is on the derivation of the worst case
complexity. A complex analysis is given to show that the TPP can be solved in
O(ne) time for each edge in the graph, where n and e are the numbers of nodes

and edges, respectively. This analysis involves six successive reductions each of
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which has the form “One may assume the graph has a property X, otherwise
the problem is either already known to be solvable or can be transformed into a

solvable one.”

Another algorithm for the TPP has been proposed in [104]. This algorithm
requires a procedure that repeatedly examines whether there exists a subgraph
G' = (V', E') of G = (V, E) such that (1) G’ is connected, (2) V' does not contain
51,11, 82,1, and (3) [6(V")| < 3, where §(V') = {z|(z,v) € E,a & V',v € V'}.
In addition this algorithm requires a modified planarity check on a transformed
graph in order to determine the existence of two vertex-disjoint paths. Though
easier to implement, this algorithm is more computationally intensive than the
one described in [103].

In [105] an O(ne) algorithm is developed which can solve the TPP for
all edges in an undirected graph. This algorithm is probably the most efficient
algorithm that can be developed since any further improvement implies a better
algorithm for a general TPP exists. However this algorithm again is quite difficult
to implement. In this dissertation the emphasis is on the direction assignment for
practical circuits. Therefore circuit properties are taken into account and efficient

and easy-to-implement algorithms are developed.

4.4.3 Circuit Model and Problem Formulation

For ease of exposition, it is initially assumed that the circuits under consideration
are static, i.e., the operation of circuits does not rely on charge retension or charge
sharing effects. Thus, whenever a node affects the circuit operation, it must be
connected to a power source ( VDD, GND, or a primary input) through a path
consisting of conducting transistors. The extensions of this method to non-static

circuits will be discussed in Section 4.4.8.

A circuit is modeled as follows. After the partitioning procedure described
in Section 4.1, for each non-trivial T'G (i.e., a T'G containing at least one transis-

tor), the sets of input and output nodes are defined as follows. The input node set
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contains nodes that act as the source of signal flow to the corresponding T'G. For
static circuits an input node is either VDD, GND or a primary input connected
to the drain or source of a transistor in the TG. The output node set contains
nodes that act as the destination of signal flow. An output node is either a pri-
mary output or a node which controls (i.e., is connected to) the gate terminal of
some transistor. In Figure 4.1, A is a bidirectional port of the circuit and thus is
both an input and an output node of T'G; O, is an output node of T'G'y; O, and
O3 are output nodes of T'Gy; and Oy is an output node of T'G3. Both VDD and
GND are input nodes to all non-trivial T'Gs.
ST, STy

s VDD
0 t GND

O4

X Os

Figure 4.2: The ST-graph for T'G:y, TG4 and T'G5 of Figure 4.1.

4.4.3.1 ST-graph and Direction of Edges

Throughout this section, all graphs can be multiple graphs, i.e., two distinct
nodes can have more than one edge between them. However a self loop, i.e., an

edge whose two end nodes are the same, is not allowed.
An ST-graph can be defined as follows.
Definition 1 [ST-graph] An undirected graph G is an ST-graph if it contains two

distinct nodes s and t, and each edge in G is on at least one simple path between

s and t.

This definition characterizes some properties of an ST-graph: it must con-

tain at least two nodes; it must be connected; by removing node s or ¢, but not
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both, it is still connected; the removal of a node can divide an ST-graph into
at most two subgraphs, and s and ¢ must be in two different subgraphs if the
graph is disconnected. By this definition it is easy to see that a tree with one
vertex having degree greater than or equal to 3 cannot be an ST-graph. We next

describe how to construct an ST-graph for a transistor group.

Let T'G; be a nontrivial transistor group. Let I and O be its input and
output node sets, B = I N O be the set of its “bidirectional i/0” nodes, and
I'=1-0 and 0" = O — I be the sets of its “input only” and “output only”
nodes, respectively. An ST-graph ST; for T'G; is constructed as follows.

Remove all transistors (edges) whose source and drain are both in I'.
Merge nodes in I’ into a new node s.

Add a new node t.

Connect each node in O’ to t by a new edge.

Connect each node in B to s and to ¢ by two new edges.

B B R o o =

Remove all edges that are not on any simple path between s and .

It is clear that the above procedure will generate an ST-graph for any
nontrivial transistor group. Figure 4.2 shows the ST-graphs of T'Gy, TG, and
T'G3 of Figure 4.1(b). An intuitive rationale for this construction procedure is as
follows. For any static circuit, during steady state operation a node in I’ (an input
only node) always acts as an “active” node while a node in 0" always acts as a
“passive” node (driven by an input node). In the above procedure, any transistor
connecting two active nodes is removed because such a transistor is either the
result of a design error or is redundant. After removing these transistors, all
nodes in I’ are merged into one node s because any transistor connected to these
nodes must be unidirectional (outward from these nodes). For nodes in O’, the
situation is different. It is not uncommon for two nodes in O' to be connected by
a transistor (e.g., nodes Oy and O3 in Figure 4.2). To preserve these transistors
while retaining only one destination node as required by the TPP, an additional
destination node t is introduced into the ST-graph. When a node is both an

input and output node, two edges are added such that its bidirectionality can
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be preserved. Finally all edges that are not on any simple path between s and ¢
are removed because the transistors corresponding to these edges are obviously

redundant.

It will be assumed that for each ST-graph constructed from a transistor
graph, the degree of each node except s and ¢ is bounded by some constant C.
This is true for most circuits because of the underlying technological considera-
tions. The degrees of s and ¢ are not restricted because they represent a collection

of nodes rather than any single “physical” node.

A formal definition of the direction of an edge in an ST-graph is given

next.

Definition 2 [Direction] An edge (u,v) in an ST-graph can be assigned a direc-
tion from u to v if and only if there exists two simple vertex-disjoint paths, one
between s and u and the other between v and t. (u,v) is bidirectional if and only if
both directions from u to v and from v to u can be assigned. If only one direction

can be assigned, then the edge is unidirectional.

This definition captures the essential nature of signal flow direction of a
transistor in a static circuit where each output node of a transistor group is driven
by an input node through a path of conducting transistors. For an edge (u,v) in
an ST-graph to have a direction from u to v, it is essential that there exist two

vertex-disjoint paths, one between s and u and the other between v and {.

The correct construction of an ST-graph is critical to the direction as-
signment. Figure 4.3 shows how an erroneous direction may be assigned if all
input only nodes were not merged into one node. Figure 4.3(a) is a T'G with two
input nodes I; and I, and one output node O. Clearly both (I1,z) and (Iz,z)
are unidirectional. Figure 4.3(b) shows the situation where instead of merging I,
and I, into one node, a new node s and two new edges, (s, ;) and (s, I5), were
added. Because of the existence of the vertex-disjoint paths s to I; and z to t,

and s to z and I to t, edge (I;,z) would be assigned as bidirectional according
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to Definition 1. A similar argument holds for the edge (I3, z). Figure 4.3(c) is

the correct ST-graph in which all edges can be assigned a correct direction.

g 8

Figure 4.3: The importance of merging input nodes while forming an ST-graph

4.4.3.2 Notation

The following notation and symbols are used throughout this section.
(G,s,t): An ST-graph G with source s and destination ¢. Sometimes only G is
used if no confusion is possible because of the context.
(u,v): An edge of an ST-graph with u and v as its end nodes.

w — vor v — u (u,v) can be assigned a direction from u to v; the other

direction (from v to u) is unknown.

u — vor v« u: (u,v) can be assigned a direction from u to v but the other

direction is impossible.
u + vor v« u: (u,v)is bidirectional.

x <=> y: There exists a simple path between nodes @ and y. <= x is always

true.
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x <& y: These exists a simple path p between nodes x and y. The length of p,
denoted by |p|, is the number of edges in p.

(z <= u,v < y): There exist two vertex-disjoint paths, one between z and

u and the other between v and .

4.4.4 PS-reduction

This subsection describes the PS-reduction algorithm which, in general, reduces
the problem size significantly. PS-reduction consists of two basic operations:
P-reduction and S-reduction. It will be proved that the resulting graphs ob-
tained from an ST-graph through different PS-reductions are isomorphic. A lin-
ear time algorithm for PS-reduction is then described. The relationship between
the edge directions in the original graph and the “reduced” graph obtained after
PS-reduction are established. In Section 4.4.5 we shall prove a theorem which
shows that an ST-graph can be reduced to a single edge if and only if all edges

in the ST-graph are unidirectional.

PS-reduction is formally defined as follows.

Definition 3 [S-reduction] A node v in an ST-graph (G,s,t) is S-reducible if
v € {s,t} and deg(v) = 2. Let the two neighbors of v be u and z. The S-
reduction on v (or on (u,v) and (v,z)) in G is the operation of replacing (u,v)

and (v, ) with one new edge (u,z), and removing v from G (see Figure 4.4).

Definition 4 [P-reduction] If two edges e; and ey of an ST-graph (G, s,t) have
the same two end nodes u and v, then these two edges are P-reducible in G; the
P-reduction on e; and ey in G is the operation of replacing these two edges with

one new edge es which has the same two end nodes (see Figure 4.5).
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Figure 4.4: S-reduction
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Figure 4.5: P-reduction
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the closer an AP is to ¢, the earlier it is identified. Let FAPy, =, FAP;, = AP,
fori=1,...,n—1, and EAP, = 5. Then each pair of FAP; and EAP, ;1,1 =

0,...,n — 1 are consecutive.

s (EAP,) 5

Gos
AP, (EAP, )
' (EAPis1) .

e b,

Figure 4.11: (a) Biconnected components and articulation points, and (b) slices

Definition 7 [Biconnected component (BCC)] A BCC of an ST-graph G is a
connected subgraph G' of G such that G' contains at least one edge, and for any
two distinct edges ey, ey in G, if ey is in G', then ey is also in G' if and only
if there exists a simple loop (i.e., a loop that contains no preper sub-loops) in G

that contains both e, and ey.

By definition, each pair of consecutive EAPs defines a BCC and each BCC
is by itself an ST-graph with the two EAPs as its source and destination. A BCC
is called induced by two consecutive EAPs if the BCC contains these two nodes.

For example in Figure 4.11(a), each G} is induced by EAP; and EAF,t =
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0,...,n—1. One can think of articulation points as defining “vertical” partitions
of an ST-graph. The next definition, slices, defines the “horizon™ partitions of

an ST-graph.

Definition 8 [Slice (SLC)] A SLC of an ST-graph (G,s,t) is a connected sub-
graph G" of G such that G" contains at least one edge, and for any two distinct
edges ey, e in G, if ey is in G”, then ey is also in G" if and only if there exists
a simple path (i.e., a path in which no nodes is visited twice) in G that contains

both e; and eq, bul not s ort except as end nodes.

Figure 4.11(b) shows the SLCs of an ST-graph. Like a BCC, each SLC of
an ST-graph (G, s, t) is itself an ST-graph with s and ¢ as source and destination,

respectively.

An ST-graph can either be “vertically” or “horizontally” divided, but not
both. Since each BCC is an ST-graph, it may be horizontally divided into sev-
eral SLCs. FEach of these SLCs can then be horizontally divided into several
BCCs, and again each of these BCCs can be divided into SLCs, and so on. This
procedure can continue until no further partitioning is possible. The following

recursive definitions formalize these structures.

Definition 9 [Local biconnected component (LBCC)] A LBCC of an ST-graph
G is a BCC of G oris a BCC of a LSLC (defined below) of G.

Definition 10 [Local slice (LSLC)] A LSLC of an ST-graph G is a SLC of G
oris a SLC of a LBCC of G.

Definition 11 [Local articulation point ((LAP)] A LAP of an ST-graph G is a
source or destination node of a LBCC of G.

Definition 12 [Indivisible ST-graph] An ST-graph is indivisible if it contains
only one LSLC.
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Figure 4.10 illustrates the above definitions. Figure 4.10(a) shows an ST-
graph G with an articulation point D. D divides G into two ST-graphs (or BCCs)
G and G, as shown in Figure 4.10(b). Node D becomes both the destination
node of GG} and the source node (denoted as D') of GY,. G} can be further divided
into three SLCs GY,,GY,, and GY; as shown in Figure 4.10(c). While GY, is
indivisible, G, and G, can each be divided into 4 BCCs as shown in 4.10(d).
Each of these BCCs are indivisible. All the nodes that are denoted by double
circles are LAPs of G.

The following three lemmas are used to prove Theorem 4, which guarantees

that each edge connected to a LAP is unidirectional.

Lemma 6 All edges connected to an EAP of an ST-graph (G, s,t) are unidirec-

tional.

Proof: Edges connected to s and ¢ are clearly unidirectional with edge directions
away from s and towards ¢. Thus only APs need be considered. Let u be an AP
of G as shown in Figure 4.12. u divides G into two parts, one contains s and the
other contains ¢. Without loss of generality consider an edge (u,v) in the part
containing ¢. Obviously there exists two disjoint paths, one between s and u and

the other between v and . Thus u — v can be assigned. However any two paths

p1 and p; such that s <= v and u <= ¢ will not be vertex-disjoint since both

of them must contain u. Hence u — v is established. O

Lemma 7 Let EAP;,i =0,...,n be the EAPs of an ST-graph (G, s,t) and G'. be
the BCC induced by EAP; and EAP;y,. For any edge (u,v) in G., the direction
of (u,v) in (G, EAP41, EAP;) is the same as the direction of (u,v) in (G, s,t).

Proof: Refer to Figure 4.11(a). Clearly (s <= u,v <= t) in (G, s,1) is equiva-
lent to (EAP;y; <= u,v <= EAP) in (G}, EAP;4,, EAP;) since any path from
s to u (v to t) can be divided into two paths, s <= FAP;;; and FAP; <= u
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Figure 4.12: Unidirectionality of edges connected to articulation points

(v <= EAP; and EAP;, <= t). The path s <= EAP,; (EAP; <= 1) always
exists and is independent of any path from EAP;; to u (from v to EAF;). Simi-
larly (s <= v,u <= 1t) in (G, s, 1) is equivalent to (FAP;4; <= v,u <= EAF;)
in (G}, EAP.;,, EAP,). |

Lemma 8 Let GY,GY,...,GY be the SLCs of an ST-graph (G, s,t), and (u,v) be
in GY. The direction of (u,v) in (G,s,t) is the same as the direction of (u,v) in
(G4, s,1).

399

Proof: Refer to Figure 4.11(b). This lemma holds since (s <= u,v <= 1) in
(G,s,1) is equivalent to (s <= u,v <= 1) in (G, s,1), and (s <= v,u <= t)

in (G, s,t) is equivalent to (s <= v,u <=>t) in (G, s,1). O

Theorem 4 FEach edge connected to a local articulation point of an ST-graph is

unidirectional.
Proof: By induction based on Lemmas 6, 7 and 8. O
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Theorem 4 establishes the importance of LAPs. In Figure 4.13 a procedure
for identifying all the LAPs and assigning direction to the edges connected to
LAPs is given.

Procedure LAP _identification(G, s,1)
Inputs: An reduced ST-graph G with source s and destination 2.
Outputs: The directions of edges connected to LAPs.
{ EAR =1
Start with s, do depth-first search on G to find the sequence of
extended articulation points EAP;, EAP,, ..., EAP,_1, EAP,(= s).
For each BCC G induced by EAP;y; and EAP;,,+=0,1,...,n—1, do
{ Split G} into GY,GY,..., G where each G = (V]', EY) is a SLC of G
If m = 1 assign directions to edges connected to EAP; and EAP;, in G},
else for each G do
if |EY| =1 then assign the direction EAP;y; — EAP; to this edge,
else do LAP_identification(G%, EAP,y,, EAPF;) }

Figure 4.13: Local articulation point identification

LAP-identification recursively divides an ST-graph into smaller and
smaller ST-graphs until no further division is possible. All the EAPs of G are
first found using a depth-first search algorithm [102]. Each BCC induced by
two consecutive EAPs is then split into slices. If only one slice exists, then the
edges connected to the EAPs are assigned an appropriate direction. Otherwise
for each trivial slice (i.e., a slice containing only one edge) a direction is assigned,
and for each non-trivial slice LAP_identification is invoked again. This procedure

continues until all local slices become indivisible.

The exact complexity of procedure LAP-identification is clearly prob-
lem dependent. Here only the worst case complexity is considered. Let the level
of a LAP v in an ST-graph G = (V, E), denoted as I(v), be the minimum number
of recursive calls to the procedure LAP_identification that are required to mark
v as a LAP. The LAP level of G, denoted by L(G), is defined as max,ev [(v).
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For example in Figure 4.10, {(s) = (t) =0, (D) = 1, {((A) = (B) = l(C) = 2
and L(G)=2. The complexity of procedure LAP-identification is bounded by
O(|E|- L(G)). In the worst case L(G) = O(|V|) since there are at most |V| recur-
sive calls. Thus the worst case complexity of LAP-identification is O(|E||V|).
Since this procedure is performed on a reduced graph that has considerably fewer
edges than the original ST-graphs, the expected complexity is much less than that

obtained by directly solving the TPP for the original ST-graph.

PS-reduction in conjunction with the LAP-identification procedure pro-
vides a fairly useful direction assignment technique. Their utility is enhanced by
the fact that most transistors operate in a unidirectional mode. In particular it
will be proved in Theorem 5 that all the edges in an ST-graph are unidirectional
if and only if PS-reduction can reduce the graph to a single edge and thereby
assign direction to all edges. First a completely reducible ST-graph is defined and

a lemma to show an important property of a partially reducible graph is given.

Definition 13 [Completely and partially reducible ST-graphs] An ST-graph is
completely reducible if and only if its reduced graph contains only one edge, oth-

erwise it is a partially reducible graph.

Lemma 9 An ST-graph is not completely reducible if and only if the graph shown
in Figure §.14(a) is embedded in it such that there exist two vertex disjoint paths
s < A and D < t; i.e., an ST-graph is not completely reducible if and
only if it contains 4 distinet nodes A, B,C,D (A may be s and D may be t)
with B,C & {s,t},A # t,D # s, and 7 paths s <<= A, A<= B, A <= C,
B« C, B+ D, C < D, D<= t, such that these paths are mutually
vertez-disjoint excepl at the ends (e.g., B <= C and B <= D share node B)
(see Figure 4.14(b)).

Proof: Let G be the reduced graph of a partially reducible ST-graph.

First, it will be proved that there exists an indivisible LSLC in ¢ which contains
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Figure 4.14: (a) Graph structure embedded in every partially reducible ST-graph,

and (b) the seven paths used in Lemma 9

more than one edge. Assume every LBCC in G contains only one edge. Let v be
one of the LAPs with the largest level. If v = s or v =1 then the largest level of
LAPs is 0. This, however, is a contradiction as the reduced graph would contain
only one edge while GG is not completely reducible. Now consider the case when
v# s and v # t. Let (G",s',1') be the smallest LSLC of G for which v is an AP,
and let v and w be two EAPs of G” which immediately precedes and follows v
respectively, as shown in Figure 4.15. Let G} and G be the LBCCs induced by
u, v and v, w, respectively. Since v has the largest level, no SLC of (] is further
dividable. Thus each SLC of G| contains at most one edge. This implies that G
contains only one edge because G is a reduced graph. Similarly G, contains only
one edge. Thus v is S-reducible. This contradicts the fact that G is a reduced
graph. The contradiction is due to the assumption that each LSLC of ¢ contains
only one edge. Thus there exists at least one indivisible LSLC that contains more

than one edge.

Let K be such an indivisible LSLC. Refer to Figure 4.16. Let the source

and destination nodes of K be s; and # respectively. s; must have at least two

81



Figure 4.15: The smallest LSLC containing a LAP with the maximum level



neighbors in K, otherwise the only neighbor of s; in K is a LAP and hence K is
divisible. Let a and b be two neighbors of s in K. Since K is indivisible, there
must exist one path, say p, from « to b which does not contain s; or tx. This is
because if all paths from « to b pass through either sy or ¢, then K can be divided
into two slices, one contains a and the other contains b. Furthermore since K is

indivisible, no node on p can be a LAP. Thus there must exist two distinct nodes,

say ¢ and d on p such that ¢ 4:1’; tr and d izpi t; and py, p2 contain no nodes on
p except ¢ and d, respectively (¢ or d may be the same as a or b). Let e be the
node on both p; and p; which is closest to ¢. This node must exist since p; and
po intersect at least at ¢;. Now let s = A, ¢ = B, d = C, e = D then these 4

nodes satisfy the requirement in this lemma. O

Figure 4.16: Proof of Lemma 9 and Theorem 5

Theorem 5 All edges in an ST-graph are unidirectional if and only if the graph

is completely reducible.

83



Proof:

If part: By Theorem 3 if an ST-graph G is completely reducible then all edges
in GG are unidirectional.

Only if part: From Lemma 9, it is easy to see that every edge on the path

B <= (' is bidirectional. O

Theorem 5 provides a fundamental result on the reducibility of an ST-
graph. Much like the well-known conditions for the non-planarity of a graph, it
provides the minimum sub-structure that stops an ST-graph from being reduced

to an edge via a PS-reduction.

4.4.5.2 AE-cut

PS-reduction and LAP-identification assign direction to most but not nec-
essarily all unidirectional transistors. For example, edges 5 and 6 in Figure 4.10
are actually unidirectional but remain unassigned. An additional algorithm that
may be used to assign direction is described next. The definition AFE-cut is first

given and it will be shown that an edge in an AE-cut is unidirectional.

Definition 14 [AE-cut] An AE-cut consists of an edge ¢ and a node z in an
ST-graph (G, s,t) such that if e is removed from G, z becomes an articulation

point which separates s and t.

Theorem 6 Any edge in an AE-cul of an ST-graph is unidirectional.

Proof: Consider Figure 4.17 where (z,y) is such an edge and z is the articulation
point when (z,y) is removed. Without loss of generality, assume = and s are in
the same connected component and y and ¢ are in the other connected component
of the graph when both (z,y) and z are removed. It is impossible to have two

vertex-disjoint paths, one from s to y and the other from @ to ¢ because each
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Figure 4.17: Unidirectional transistor in an AE-cut

path from s to y must go through = or z, and in either case all paths from ¢ to =

are “blocked.” Thus the direction from y to z is impossible. O

For an edge in an ST-graph with |E| edges, a depth-first search can find
whether it is in an AE-cut in O(|E|) time. By virtue of Lemmas 7 and 8 and the
fact that an LBCC or a LSLC is also an ST-graph, the AE-cut algorithm only
has to be applied to the smallest subgraphs that cannot be further divided using
the LAP-identification procedure. Thus |E| can be very small as compared to
the number of edges in the original ST-graph. For example, edge 5 and node H
in Figure 4.10(d) form an AE-cut of the ST-graph induced by A" and B. Thus
edge 5 is unidirectional and can be assigned £ — (. Similarly edge 6 can be

assigned ' — H.

4.4.5.3 Edges with Directed Neighbors

It is possible to assign directions to more edges if their neighbors have been
assigned directions via the algorithms discussed so far. Consider for example the
ST-graph shown in Figure 4.10(d). No direction has been assigned to edges 4,
34, 7,12, 19, 24. In fact these edges are all bidirectional. Consider edge 34. By
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definition two disjoint paths A’ <= F and H <= B to ensure £ — H, and
two disjoint paths A"’ — H and F <= B to ensure H — F must be found. The
following theorem, however, enables the immediate assignment of directions to

some edges that were not identified earlier.

Theorem 7 After PS-reduction, LAP-identification and the AE-cut algorithms,
if an edge (u,v) satisfies the following conditions, then the direction of u — v can

be assigned.

1. (u,v) has not been assigned a direction.
2. There exists a neighbor w of u such that w — u has been assigned.

3. There exists a neighbor x of v such that v — z has been assigned.

Proof: Since (u,v) has not been assigned a direction, neither u nor v i1s a LAP.
Thus w, u, v and & must be in the same indivisible LSLC, say (G',s',t). v —
can be assigned only due to (1) z is a LAP (¢ may be the same as t), or (2) (v, z)
is in an AE-cut of G'. If z is a LAP it must be the same as ¢'. Similar statements
hold for (w,u). Thus only two mutually disjoint cases need be considered: (1)

both w and z are LAPs, or (2) at least one of w and = is not a LAP.

Case 1: w = s,z =t": Since (' <> u,v <= 1') in (' is true, thus v — v in
follows. By Lemma 8, u — v in (G is also true.

Case 2: w # s or ¢ # t": Without loss of generality, assume z # t'. Refer to
Figure 4.18(a). Let y be the AP and G} and G}, be the two parts of G’ separated
by y when (v,2) is removed. There must exist a path, say p;, from z to ¢’ in G,
that does not go through y, otherwise G, will be separated into two disjoint parts
by y and so will G’ (see Figure 4.18(b)). This implies that y is an articulation
point of G’ , which contradicts the assumption that GG’ is indivisible. There must

also exist a path, say ps, from s’ to u in G} which does not pass through v in G,
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otherwise v will separate (7} into two disjoint parts making it an AP of G’ (see

Figure 4.18(c)). Clearly p, and p, are vertex-disjoint and the theorem follows. O

By virtue of this theorem, all the remaining unassigned edges in Figure 4.10
can be immediately identified as bidirectional. Since in general most transistors
in real circuits are unidirectional, the probability that Theorem 7 can be applied
to an unassigned edge is quite high. It should also be pointed out that despite its
simplicity, this theorem is by no means trivial. The following apparent “counter

example” will highlight the difficulty.

Refer to Figure 4.19 where w — u and v — & have been assigned. Be-
cause of Theorem 7, it appears that one may assign u — v. However this is
not true as only v — wu is possible. This “contradiction” arises because in this
example the direction of (u,v) would have been assigned while PS-reduction,
LAP-identification or the AE-cut algorithm are executed. Thus condition 1 of

Theorem 7 is not satisfied.

Figure 4.19: An apparent “counter” example to Theorem 6

It can be verified that when proving Case 2 of Theorem 7, only condition

2 or condition 3 of the Theorem, but not necessarily both, is required. In other
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words, if one of the two edges (w,u) and (v,2) has been assigned a direction
(w — uor v — ) by the AE-cut algorithm, then no matter whether the direction
of the other edge has been assigned or not, u — v can be assigned. The following

theorem formally states this fact.

Theorem 8 After PS-reduction, LAP-identification and the AE-cut algorithm,
if an edge (v,z) was assigned a direction v — z by the AE-cul algorithm, then
any unassigned edge (u,v) can be assigned a direction u — v and any unassigned

edge (z,y) can be assigned a direction x — y.

4.4.6 Remaining Edges

For most real circuits that have been studied, all the transistors could be assigned
a direction using the procedures discussed so far. However, in some patholog-
ical cases unassigned edges may still exist after all these procedures have been

executed. These remaining edges can be dealt with in several ways.

One can simply regard the unassigned edges as bidirectional (as was done
in the case of rule-based systems [46]). Clearly, the over-all result will be pes-
simistic but not wrong. Or one can determine the existence of two disjoint paths
via exhaustive search. Since it is possible to efficiently count the number of paths
between two nodes—though enumerating them is computationally intensive—
one may wish to first count the number of paths from s to u and v to ¢ before
deciding how to proceed. If the product of these two counts is not very large,
one can determine the existence of two disjoint paths via exhaustive search. An
advantage of this approach is that it can use the direction information obtained
by earlier procedures to guide the search for disjoint paths and prune the search
space. Another approach might be to use an existing algorithm for the TPP.
Because the problem size has become much smaller, it is likely that the largest

indivisible LSLC containing unassigned edges is quite manageable.
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4.4.7 Recovery of Reduced Edges

After all edges in a reduced graph have been assigned directions, it is necessary
to assign directions to the edges that have been reduced by PS-reduction. The
recovery procedure is described in Figure 4.20. The basic idea is to keep a last-
in-first-out stack that contains information about each reduction, viz., the type

of the reduction and the edges involved. The procedure is self-explanatory.

4.4.8 Extension to Non-static Circuits

So far it is assumed that the circuits under consideration are static. In this
subsection the applicability of the methods to non-static circuits is discussed. A
non-static circuit is defined as a circuit whose operation relies on charge retention
or charge sharing effects. Two types of non-static circuits will be discussed: non-

static logic gates and non-static memory cells.

4.4.8.1 Non-static Logic Gates

According to the classification used in [1], there are mainly 4 types of non-static
circuits: (1) dynamic logic, (2) clocked CMOS logic (C*MOS), (3) CMOS domino
logic, and (4) cascade voltage switch logic (CVSL). The basic structure of these
logic gates are shown in Figure 4.21(a)—(d). Detailed description of their oper-
ations is beyond the scope of this study. In this study only those properties of

these circuits that affect the signal flow directions of transistors are examined.

In general a non-static logic gate operates in two phases. During the
precharge phase the precharge node is connected to a power source (usually
VDD). During the evaluation phase the output node (which may or may not

be the precharge node itself [1]) of the gate is either connected to an opposite
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Modifications to the PS-reduction algorithm for recovery:

after line 2 (Initialization):
stack_index = 0;

after line 8 (when executing an S-reduction):
stack_index = stack_index 4+ 1;
stack[stack_index].type = 'S,
stack[stack.index].el = (u,v);
stack[stack_index].e2 = (v, z);

after line 13 (when executing a P-reduction):
for i =2 to k, do {
stack_index = stack_index + 1;
stack[stack_index].type = "P’;
stack[stack_index].el = ey;
stack[stack_index].e2 = ¢;; }

After completing all direction assignment:

Procedure Recovery
Inputs: A stack containing the information about PS-reduction.
Outputs: The directions of edges that have been reduced.
{  for i = stack_index to 1, do {
if (stack[stack.index].type = 'S’) then
(u,v) = stack[stack.index].el;
(v,z) = stack[stack index].e2;
dir = direction of (u,x);
E' = (E'U (u,v) U (v,2)) — (u,z); V' = V'U {v};
direction of (u,v) = direction of (v,z) = dir;
else
(u,v) = stack[stack_index].el;
(u',v") = stack[stack_index].e2;
E'=E'U (v,v");
if (u' = u) then direction of (u’,v') = direction of (u,v)
else direction of (u',v') = reverse direction of (u,v) }

Figure 4.20: The “recovery” and direction assignment of the reduced edges
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power source (usually GND) or is dominated by the precharge node, depend-
ing on whether a conducting path exists from the opposite power source to the

precharge node.

Most precharge logic circuits share a common property: any precharge path
and any evaluation path (any path that connects the precharge node to a power
source that is complementary to the power source for precharge) are disjoint except
Jor sharing the precharge node(s) [1]. Thus if a precharge node is not the output
node of a gate, then it can be considered as an intermediate node of signal flow.
If the precharge node is the same as the output node, then it is the signal flow
destination. In both cases the signal flow destination is always the output node
and thus the presented algorithms are applicable. For example all circuits shown

in Figure 4.21 can be processed using these algorithms.

A special circuit can be used to illustrate the above arguments. Figure
4.22(a) shows a dynamic Manchester carry chain [1] that satisfies the criteria
that precharge and evaluation paths are disjoint except for sharing the precharge
nodes. For the left transistor group, the only signal flow destination is node Cl.
The two corresponding ST-graphs are shown in Figure 4.22(b). Both can be
reduced to a single edge by PS-reduction. Thus all transistors can be assigned a
proper direction by PS-reduction. This circuit also illustrates an interesting point
mentioned earlier, viz., the original circuit graph need not be a series-parallel

graph in order to obtain a series-parallel ST-graph.

4.4.8.2 Non-static Memory Cells

A typical dynamic D flip-flop design is shown in Figure 4.23 where A and B are
two storage nodes. Since A and B are both connected to the gate terminal of
the inverters, they are the output nodes of the corresponding transistor groups.

It can be seen that A and B only serve as the signal flow destination. Thus the
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presented direction assignment algorithms assign correct directions, as shown in

Figure 4.23, to the pass transistors.

Figure 4.23: A dynamic Flip-Flop

In some designs a storage node can serve both as a source and a destination
of signal flow. Consider, for example, the circuit in Figure 4.24(a) which shows
a typical design of a dynamic RAM. The source and drain of transistor M are
connected to form a capacitor. The value of node v can be read or written through
the pass transistor PA. The reading process relies on the charge sharing between
nodes v and w and the fact that v dominates u if u is not driven by any other
source. While writing, u is controlled by a strong power source and the voltage
value at u can overwrite the value at v. Since v can serve as both a signal flow
source and destination, PA is used as a bidirectional transistor in this design. In
order to correctly model this circuit two new edges incident on v are added when
constructing the ST-graph. One edge connects v to s and the other connects v
to ¢, as shown in Figure 4.24(b). Note that v is not merged into s but is just
connected to s via an extra edge. The presented algorithms will now identify
transistor PA as bidirectional. In general for a non-static circuit that relies on
charge sharing, any storage node that dominates the charge sharing effect (e.g.,

v in the above example) can be modeled in this manner.

4.4.9 Experimental Results

The algorithms presented in this section have been implemented in C on a SUN

3/60. The experimental results for some sample circuits are shown in Table
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Figure 4.24: A dynamic RAM cell

4.1. The first 5 circuits (starting with a “c”) are switch-level descriptions of
the ISCAS-85 benchmark circuits [26]. s/ and nmul are an 8-bit square/square-
root processor and a 8 x 8 multiplier, respectively. The reduced ST-graph of f13
was shown in Figure 4.10. memlIk is a 2-dimensional 1k bit memory chip that
contains 32 dynamic input/output latches, sense amplifiers, row decoders and

column decoders, and 1024 static memory cells (shown in Figure 2.2(b)(c))[106].

The results of the ISCAS-85 benchmark, s1 and nmul circuits demonstrate
the gain of performance due to the linearity of the PS-reduction algorithm. All
transistors in these circuits were correctly identified as unidirectional by PS-

reduction.

There are 27 unidirectional and 8 bidirectional transistors in f1.3 (each

of the edges 29, 30 and 31 corresponds to a transmission gate consisting of a
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| Circuit | # trans. | # uni | # bi | cpu sec. ||

c880 1802 | 1802 0 0.717
c1908 3446 3446 0 1.367
c2670 5668 | 5668 0 2.400
c3540 7504 | 7504 0 3.233
c7552 15396 | 15396 0 6.350

sl 1215 1215 0 0.483
nmul 4828 | 4828 0 1.833
f13 35 27 8 0.033
memlk 7752 5608 | 2144 7.833

Table 4.1: Result of the direction assignment

P-FET and an N-FET; edges 32 and 33 were added when constructing the ST-
graph because Y and Z are output nodes of the circuit). PS-reduction and LAP-
identification identified 25 and AE-cut identified 2 unidirectional transistors. The
8 bidirectional transistors were all identified by the neighbor-triggered assignment

algorithm.

In mem1k each memory cell or input latch has two bidirectional transistors
and the sense amplifier has a bidirectional transistor. All these were correctly
identified. The computation time for this circuit is higher than for the other
circuits because 1) the degree (> 32) of the node on each Bit (or Bit) line is
much higher than that of any node in any other circuit that was considered, and

2) this circuit contains many bidirectional transistors.

From the table it is clear that the performance of the presented algorithms
is much better than that of the rule-based system described in [46] , which typi-
cally resolve about 20,000 transistors per VAX 11/780 CPU minute.

It is worth mentioning that the algorithms, when applied to the circuit
nmul, found that several inverters did not have an output node, i.e., the TGs

corresponding to these inverters did not have a destination node as their outputs
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were floating. It turned out that these inverters were redundant, a situation that
occurs quite often in circuits designed using standard cells. Thus, to a limited

extent, the programs can also aid in circuit-debugging.

4.4.10 Semantics Consideration

One limitation of the method described in this section is that it is based solely
on the circuit structure and does not consider circuit semantics. It is possible
that a path from s to ¢ contains transistors that cannot be turned on at the same
time. Consider, for example, the circuit shown in Figure 4.25. The existence
of paths p; and p, does not guarantee the direction X — Y because transistors
Ty, T> and T3 cannot be turned on simultaneously. This problem, in general, is
very difficult to solve for two reasons. First, it is difficult to derive the boolean
function which encodes the conditions that cause a transistor to turn on or off
purely from a structural description of the circuit. Second, even if the activation
condition for each transistor were known, determining whether all transistors
in a path can be turned on simultaneously is equivalent to solving the general

satisfiability problem [107], a well-known NP-complete problem.

Fortunately since the goal of direction assignment algorithms is to iden-
tify as many unidirectional transistors as possible, the above problem does not
invalidate the direction assignment results. By disregarding the semantics of cir-
cuits the results obtained may be pessimistic, but never wrong, i.e., it only results
in some unidirectional transistors being assigned as bidirectional, but never the
other way. Furthermore once a transistor is identified as unidirectional by the
algorithms, the assigned direction must be correct because the other direction is

impossible.

For some circuits it is possible to consider the semantics to a limited extent.
In the following a special “rule” that has been found very useful is described. By

using this rule along with the techniques described in this section a well-known
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Figure 4.25: An example showing the effect of circuit semantics on TPP

difficult problem, namely assigning directions to transistors in a barrel-shifter,
can be solved. Next we use a 4 to 4 barrel shifter shown in Figure 4.26(a) as an

example to illustrate this method.

The circuit graph of this barrel shifter is shown in Figure 4.26(b) and
consists of a 4 to 4 bipartite complete graph with 4 bus lines (nodes) on the top
and 4 output lines on the bottom. Each edge is controlled by a shift line (not
shown in Figure 4.26(b)). Depending on how the circuit is implemented either
the 4 bus lines can be considered as primary inputs and can be merged into one
source node S when constructing the ST-graph, or the 4 bus lines are driven by
other gates and therefore are internal nodes rather than input nodes. The ST-
graphs for these two cases are shown in Figure 4.26(c) and 4.26(d), respectively.
For Figure 4.26(c) it is easy to identify all transistors as unidirectional. For
Figure 4.26(d), since a new S node must be added, none of the transistors can be

identified as unidirectional if only structural information is used.
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Figure 4.26: Direction assignment for a barrel shifter
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Definition 5 [PS-reduction, reduced graphs] A PS-reduction on an ST-graph G
is a sequence of P-reductions and S-reductions on G such that no further P-
reduction or S-reduction can be applied to the resulting graph. The resulting

graph is called a reduced ST-graph of G.

From the above definitions it is easy to verify that all ST-graphs corre-

sponding to non-trivial 7'G's in Figure 4.2 can be reduced to a single edge.

Since each P- or S-reduction reduces the number of edges in the graph
by one, uniform termination is guaranteed. Next it will be proved that any two
different PS-reductions will reduce an ST-graph into isomorphic graphs, which
establishes the desired unique termination property. To prove this, the following

lemmas are needed.

Lemma 1 Let G' be the reduced graph obtained from G via a PS-reduction PS.
For each e; = (u;,v;) in G, there exists a corresponding subgraph G; in G such
that G; is itself an ST-graph with v; and u; as its source and destination nodes.

In addition, all G's are mutually edge-disjoint.

Proof: Each edge e¢; = (u;,v;) in G’ is an ST-graph by definition. Consider the
reverse procedure of PS which recovers G from G’. To undo one S-reduction
that created an edge e = (u,v), a node z is added which splits e into two edges
(u,@) and (x,v); to undo a P-reduction that created (u,v), one more parallel
edge (u,v) is simply added. Clearly, these two operations simply transform an
ST-graph into another one with the same source and destination nodes, and any
two ST-graphs recovered from two edges in G' must be edge-disjoint (see Figure

4.6. Thus, the lemma follows by induction. 0

Lemma 2 Let G’ be the reduced graph of G, and v be any node of G' (also of
(). Then no S-reduction in any PS-reduction on G can be applied to v.

Proof: If v is s or t then it cannot be S-reduced by definition. Thus it can be

assumed v # s and v # t. Since v cannot be further reduced in G', deg(v) = 3
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Figure 4.6: An ST-graph (a) and its reduced graph (b)

(see Figure 4.6). There must exist three distinct edges in G', say e; = (v,vi),
e; = (v,v;) and ex = (v,vx), such that they all have v as one end node (Figure
4.6(b)). From the previous lemma, ¢;, €¢; and e, in G’ correspond to three edge-
disjoint subgraphs G;, G; and Gy in G. TFor v to become S-reducible, all the
edges in one of these subgraphs must be completely reduced (removed) to make
deg(v) = 2. Thus one of v;, v; and vy must be S-reduced. It can be proved by
induction on the total number of P- and S-reductions that none of v;, v; or v

can be S-reduced by any sequence of P- or S-reductions. o

Lemma 3 If there exists a PS-reduction that reduces an ST-graph G to a single

edge, then any PS-reduction on G will reduce it to a single edge.

Proof: This lemma can be proved by induction on |F|, the number of edges in
the original ST-graph. The lemma obviously holds when |E| = 1. Assume it
also holds when |E| = n > 1. Let PS; be a PS-reduction that reduces a graph

with |E| = n + 1 into an edge (u,v). PS; must contain n P-reductions and
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S-reductions in total. Consider the two edges e; and e, in the graph just before
the last reduction of PS;. The original graph must contain two subgraphs G
and G (either in “parallel” or in “series”) such that G} and G5 can be reduced
to e; and e, respectively. Obviously all reductions of P.S; involving edges in Gy
are independent of those involving edges in (3. By the induction hypothesis, any
PS-reduction on Gy (or (G3) reduces it to one edge. Thus any PS-reduction on
G that first reduces Gy and G, individually to one edge will also reduces G to a
single edge.

Now consider a PS-reduction that does not first reduces GGy and G in-
dividually to one edge, i.e., it contains one or more reductions that involve one
edge from G¢ and another from G¢, where ¢ and G4 are obtained from G and
(5. Let R be the first such reduction in this PS-reduction. R has the effect of
removing one edge from G¢ and has no effect on G or vice versa. Without loss
of generality assume R removes an edge ¢; from GY. If R is an S-reduction then
Figure 4.7(a) and (b) show this situation right before and after R is executed. It
is clear that R cannot affect the applicability of any reduction on any edge in G
(the graph obtained by removing e; from G%) and G¢. Thus by induction, G}
and G¢ (which both have less edges than |E|) can both be reduced to one edge
and hence the lemma holds. Similar arguments show that the lemma also holds

when R is a P-reduction. ]
Theorem 1 All reduced graphs of an ST-graph are isomorphic.

Proof: Let G’ be a reduced graph obtained from an ST-graph G, and e;,7 =
1,2,...,m be the edges of G' which are reduced from the subgraphs Gj,i =
1,2,...,m of G, respectively. By Lemma 2, no node in G’ can be reduced. In
addition, every node in G’ is also in . By Lemma 3 all edges in a (; can
be reduced to one edge by any PS-reduction on G;. Since no node in G’ can be
reduced, no PS-reduction on (G can involve two edges from two distinct Gjs. Thus
an arbitrary PS-reduction on (¢ is equivalent to some permutation of individual

reductions on Gjs. Since reductions on G; are independent of those on Gj, 1 # j,
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Figure 4.7: Proof of Lemma 3, where the S-reduction on e; and e; does not affect

G4 and G%

an arbitrary PS-reduction will independently reduce each G; to a single edge.

Thus all reduced graphs are isomorphic to G'. O

This theorem guarantees that different PS-reductions lead to the same
result, i.e., the result is independent of the order in which individual P- and S-
reductions are applied. By virtue of this theorem one way to obtain the reduced
graph of an ST-graph is by iteratively checking whether any nodes or edges are
S- or P-reducible. If either reduction can be applied, it is executed. The process
continues with the new graph until no further reduction is possible. This method,
however, is inefficient as it requires several passes over the graph. In Figure 4.8
a linear time algorithm that accomplishes the same task with only one pass over
the graph is presented.

In this algorithm, G(V, E) is the original ST-graph, U’ is a list of nodes
that need further processing, and V' and E’ are temporary sets of nodes and

edges during processing. At the end of PS-reduction V' and E’ represent the

final reduced graph.
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Algorithm PS-reduction
Inputs: An ST-graph G = (V, £) with source s and destination ¢.
Outputs: The reduced graph of G.
Procedure PS_reduction(G,V, E, s,1)
{ 1) V'=V;U'"=List of nodes in V — {s,t}; E' = E;

2) Mark all nodes in U" as unreduced

3) while ( U’ # null) do

4) { remove up to the first unreduced node v from U’,

if no such v exists, go to (7)
) else { if deg(v) = 2 then S_reduction(v)
6) else for each neighbor u of v do
if Parallel(u, v, p-list) then P_reduction(u,v,p_list);}}

ot

7) Remove from E’ all but one edge whose two end nodes are s and ¢.

}

Procedure S_reduction(v)
{ 8) Mark v as reduced; Let u,z be such that (u,v),(v,z) € E'
9) E'=(E'—(u,v)—(v,2))U(u,2); V' =V'—{v};
10) if Parallel(u, z, p_list) then P_reduction(u,z,p-list)
11) elseif (u # s and u # t and deg(u) = 2) S_reduction(u)
12) else if (2 # s and @ # t and deg(z) = 2) Sreduction(z)
}
Procedure P_reduction(u, v, p_list)
{ 13) Let p_list = {e1,e€,..., €k}
14) E’=E’—62—63—...—8k
15) deg(u) = deg(u) — k + 1; deg(v) = deg(v) — k + 1
16) if (u # s and u # ¢ and deg(u) = 2) then S_reduction(u)
17) else if (v # s and v # ¢ and deg(v) = 2) then S_reduction(v)
}
Function Parallel(u, v, p_list): Boolean
{ 18) If (u=s and v=1) or (u =1 and v = s) then return(false)
19) else
) { if (u#sandu#t)then
) for each edge e connected to u, if the other end
22) node of ¢ is v then put this edge in p_list
) else for each edge e connected to v, if the other end
) node of ¢ is u then put this edge in p_list
) return(|p_list| > 1) }

Figure 4.8: PS-reduction algorithm
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The algorithm is event driven with P- and S-reductions driving each other
as long as possible. Procedure PS_reduction examines each node in the list U’
to initiate a P- or an S-reduction. Whenever a node is examined it is removed
from U’ (line 4). Due to the event driven nature of the algorithm, a node may
already have been marked as reduced when it is examined. In this case the node
is simply removed. Thus it is guaranteed that each node is examined at most

once (as a v in lines 4-6).

An S-reduction can be performed on a node v if 1) it is not s or ¢ and 2)
it has only two neighbors. If v is S-reducible, the procedure S-reduction marks
it as reduced, removes it from V' and replaces the two edges connected to it with
an edge which connects its two neighbors. After reducing a node, the procedure

S-reduction initiates another P- or S-reduction if possible.

The function Parallel(u, v, p_list) determines whether a P-reduction should
be applied to the edges connecting u and v. It returns a true value only if 1)
{u,v} # {s,t} and 2) the number of edges whose two end nodes are v and v is
greater than 1. p_list is used to stored these edges. Because the degrees of s and
t are not restricted, all edges which connect both s and ¢ are not examined until
the final step of PS-reduction (line 7). If only one of v and v is s or ¢, then only
the edges connected to the non-s (or non-t) node are examined. These two steps

are necessary to guarantee the linearity of the overall PS-reduction algorithm.

Procedure P-reduction(u, v, p_list) removes all but one edge in p_list and
reduces the degrees of u and v appropriately. It also initiates another S-reduction

when possible.
The correctness and linearity of this algorithm is proved in the following

theorem.

Theorem 2 The reduced graph of any ST-graph G = (V,E) can be obtained
using algorithm PS-reduction in O(|E|) time.

Proof of correctness: The correctness of the algorithm be proved by consid-

ering the possible sources of P-reductions and S-reductions. Two edges can be
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P-reducible because: (1) they are P-reducible in the original graph, or (2) one or
both of these two edges are created by an S-reduction. Note that an edge created
in a P-reduction cannot be involved in another P-reduction immediately since
all edges in parallel with this edge have just been removed. Both categories of
P-reductions can be processed either in procedure PS_reduction or in procedure
S_reduction. Note that nodes s and ¢ are not explicitly examined in procedure
PS_reduction since any P-reduction involving either s or ¢, but not both, will
be processed when the neighbors of s and ¢ are examined, and the P-reduction
involving both s and ¢ is processed after all other reductions have been executed.
A node can undergo an S-reduction because: (1) it is S-reducible in the original
graph, (2) it becomes S-reducible due to a P-reduction, and (3) it is S-reducible
and an S-reduction was just executed on one of its neighbors. All these cases are

taken care of by procedure PS_reduction.

Proof of linearity: Consider procedure PS_reduction first. The while loop can
be executed at most |V| — 2 times since each node is examined at most once.
Line 4 contributes at most |V| — 2 time steps for the while loop. If the condition
of line 5 is true, then an S-reduction is executed. In each iteration of the while
loop, line 6 is checked a constant number of times since it is assumed that the
degree of each node (except s and t) is bounded by a constant. Line 7 contributes
at most O(|E|) time steps. Now consider the total time taken by procedures S.
and P_reduction. Since each type of reduction eliminates one edge, there are at
most |E| — 1 S- and P-reductions. Hence procedures S_ and P_reduction can be
executed at most |E| — 1 times. Since each of these procedures takes constant

time, the total time taken by them is at most O(|E|). o

Next the relations between the directions of edges in an ST-graph and its

reduced graph are discussed.

Lemma 4 If G' is the ST-graph obtained by executing an S-reduction on v in
(G,s,t), and u and x are the two neighbors of v in G, then u — x in G' if and
only ifu = v andv — 2 in G, and v — z in G' if and only if u — v and v — z

in G.



Proof: Refer to Figure 4.4. It is obvious that the following three conditions are
equivalent (s and ¢ may be interchanged).

l. (s<=u,v<=1t)inG.
2. (s<=v,z<=1)inG.

3. (<= u,z<1t)inG.

Thus by Definition 2 the lemma follows. a

Lemma 5 If G' is the ST-graph obtained after a P-reduction on e, and ey in
(G,s,t), and e is the new edge, then e, and ez in G have the same direction as

es has in G'.

Proof: Refer to Figure 4.5. Since the following two conditions are equivalent (u
and v are the two end nodes of ¢;,e; and e3; s and ¢ may be interchanged), the

lemma follows directly from Definition 2.

l. (s<=u,v<=1t)inG.

2. (s<=uv<=1t)in G m

Theorem 3 Let G' be the graph obtained by executing a PS-reduction on an
ST-graph G. If a subgraph of G, say Gy, is reduced to an edge e in G' by this
PS-reduction, then all edges in Gy are unidirectional in G if and only if e is

unidirectional in G'.

Proof: By induction based on Lemmas 4 and 5. a

After PS-reduction, all edges that are connected to s or ¢ in the reduced
graph can be assigned as unidirectional. By applying Theorem 3 the directions of
all edges (in the original graph) that have been removed during the PS-reduction

can be determined. The “recovery” of these edges can be achieved by maintaining
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a first-in-last-out stack at the time of PS-reduction. This procedure will be

discussed after finishing all the other direction assignment algorithms.

Example: Figure 4.9 shows a static carry lookahead gate [1] and its correspond-
ing ST-graph. It is easy to see that this ST-graph can be reduced to a single

edge. Thus each transistor in this circuit is unidirectional. a

4.4.5 Manipulating the Reduced Graph

If an ST-graph cannot be reduced to one edge by PS-reduction, further processing
is needed to assign directions to all edges. This subsection describes a sequence

of procedures for manipulating the reduced graphs.

4.4.5.1 Local Articulation Points

Consider the reduced ST-graph shown in Figure 4.10(a). Only the edges that are
connected to s or ¢ (i.e., edges 1, 16, 28, 32, 33) can be assigned as unidirectional
by PS-reduction. Many other unidirectional edges exist in this graph. In fact all
edges connected to the nodes with double circles are unidirectional. A systematic
method to find all these unidirectional edges is given next. First articulation

points and some related terms in an ST-graph are defined.

Definition 6 [Articulation point (AP), extended articulation point (EAP) and
consecutive EAPs] An AP of an ST-graph is a node whose removal disconnects s
and t. An EAP of an ST-graph is either s, t or an AP of this graph. Two EAPs

are consecutive if every path between these two nodes contains no other EAP.

Using a depth-first search algorithm [102] starting with s, all APsin an ST-
graph can be identified in O(|E|) time. Since the removal of any AP disconnects
s and ¢, all paths from s to { must pass through all APs. Thus the depth-first

search algorithm identifies all APs in the order shown in Figure 4.11(a), where
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Figure 4.27: Direction assignment using implication

To make use of the semantic information, the following procedures can be
applied after all direction assignment procedures using structural information are
executed. For each unassigned transistor ¢; = (u,v) do the following: Assign a
logic value to the gate terminal of ¢; so as to turn it on. Imply this logic assign-
ment throughout the circuit. This implication will turn off some transistors. If
all non-off transistors except ¢; that are connected to u are incoming to (outgoing

from) u, then ¢ can be assigned as undirectional u — v(v — u).

Example: Refer to Figure 4.27. Assume w — u has been assigned and (u,v),
(u,2), (u,y), (u,z) are unassigned as shown in Figure 4.27(a). When turning
on ab, the other three transistors must be turned off due to logic implication.
Therefore u — v can be assigned as shown in Figure 4.27(b). Similarly v — =z,

u — y, u — z can be assigned.

Logic implication throughout the circuit can be done by using a method
similar to those used in some test generation algorithms such as FAN and

Socrates. Referring again to the ST-graph shown in Figure 4.26(d), all edges
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will be assigned as unidirectional since each edge connected to s is unidirectional
and turning on one shift line implies that all other shift lines be turned off. The
implication should be easy to carried out because the control to the shift lines of
a barrel shifter is usually implemented by a demultiplexer for which logic impli-

cation can be easily done.

4.4.11 Summary

A new method for assigning directions to MOS transistors is presented. This
method is based on formal graph theoretic results rather than ad hoc techniques.
A new circuit model and a sequence of efficient algorithms are given. All static
circuits and most non-static circuits can be processed using this method. By
slightly modifying the model, the direction problem for some special dynamic
circuits can also be solved. The experimental results show the superiority of this
method over a pure rule-based system in both accuracy and computation time.
Finally a special rule can be used along with the algorithms presented so that

some direction assignments that require circuit semantics can be determined.
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Chapter 5

Fault Analysis

This chapter deals with various fault models for CMOS circuits. An extensive
analysis on IDDQ testing is given and a set of design and test rules are presented.
Under these rules it is guaranteed that IDDQ testing can be safely used to detect
all irredundant bridging faults. The invalidation problem that occurs when using
two-pattern tests for stuck-open faults is analyzed. IDDQ testing is shown to
be an effective way of solving the invalidation problem that occurs due to charge
sharing. An efficient algorithm that can generate tests that cannot be invalidated

by any transient effect is described.

5.1 IDDQ Testing and Bridging Faults

5.1.1 Introduction

IDDQ testing, or current supply monitoring (CSM), is an efficient and effective
method for detecting CMOS bridging faults (BFs). The applicability of this
technique, however, requires careful examination. Intuitively if a test vector can
set two circuit nodes to complementary logic values in the fault-free circuit then a

BF between these two nodes should be detected. Also a test that detects a single
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BF should detect all multiple BFs that contain this single BF. Unfortunately,
depending on the circuit under test, these two conclusions may be incorrect.
In this section several examples are used to show the problems that may arise
when using CSM. From these examples the importance of carefully analyzing the

applicability of CSM becomes obvious.

A set of design and test rules for CMOS circuits are then presented. It
is shown that if any one of these rules is removed, then there exist circuits for
which CSM will not give correct results. It is then formally shown that if circuits
are designed satisfying these rules, then all single irredundant BFs, i.e., BFs that
do not affect the logic function of the circuit, can be detected by CSM, and if a
test vector detects a single BF, it also detects every multiple BF that contains

this single BF.

The rules presented provide a guideline for using CSM. This result, how-
ever, does not imply that CSM should be discarded when encountering a circuit
that does not satisfy all the proposed rules. It will be shown that there exist cir-
cuits that do not satisfy all these rules, but due to certain other circuit properties,
CSM is still applicable. For a circuit to which CSM cannot be directly applied, by
adopting some strategies such as circuit partitioning, CSM is still applicable to
a large portion of the circuit. There do exist some circuits for which CSM is not

effective. The properties of these circuits that cause problems will be analyzed.

5.1.2 Examples Showing the Limitations of CSM

In this subsection four examples are presented to illustrate some of the limitations
of CSM. Throughout this section the notation (x,y) is used to denote the BF

between nodes = and y.

Example 1: This example shows that a circuit may be identified as faulty

by CSM even if no fault exists. Refer to Figure 5.1. The MUX output O = Oy if
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Sel =1, and O = O, if Sel = 0. When ABC = 100, both w and z are isolated
from VDD and GND. Since B = 0, charge sharing between z and w occurs and
the resulting voltage value v depends on their previous states. It is possible that
v may be greater than the threshold voltage of transistor N but not large enough
to cut off the transistor P [75]. Thus both P and N may conduct resulting in
a large current through the inverter. Therefore the circuit may be identified as
faulty when using CSM. However if the circuit is designed such that Sel = 0
whenever ABC' = 100, the circuit output is still correct if Oy is correct. This
type of problem may occur when implementing a circuit whose 1/O relation is
not completely specified, e.g., when there exist don't care terms in the Karnaugh
map of the circuit. O
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Figure 5.1: A good circuit that may be identified as a faulty circuit

Example 2: This example shows that a test that can set up two conduct-
ing paths in a fault-free circuit, one from VDD to z and the other from GND
to y, does not necessarily detect the BF between @ and y using CSM. Consider
the circuit shown in Figure 5.2(a) that contains a bridging fault (z,y). Without
(z,y), z and y can be set to complementary values by setting nodes a and b to
complementary values during ¢, and propagating these values to = and y, re-

spectively, during ¢;. The equivalent circuit of Figure 5.2(a) during ¢1 is shown
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in Figure 5.2(b). Because of (z,y), the two loops containing & and y are con-
nected together. Since there is no “external” control to these two loops, once the
transition from ¢, to ¢, is made, = and y may reach the same stable state (either
0 or 1) and no large current can be observed during steady state. Thus the fault

(z,y) cannot be detected by CSM. O
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Figure 5.2: A BF that cannot be detected by just setting two shorted nodes to

complementary values

Example 3: This example shows that in a sequential circuit the effect of
a single BF may be masked by the existence of another BF. Referring to Figure
5.3, to detect the single BF (z,y), = and y must be set to 1 and 0, respectively.
This requires A, B, C' to be set to 0, 1,0, respectively. C' can be set to 0 during ¢;
if z was set to 0 during ¢;. Now assume another BF (z, z) exists in the circuit.
z could still be set to 0 if A was 1 during ¢;. When entering #1, a feedback
loop that contains z, z, w, C' and y is formed. If A and B are now 0 and 1,
respectively, the final state of this feedback loop will be as follows: , y and z are
charged to 1, w becomes 0, and C' becomes 1. Thus no large current is consumed

during steady state since no conducting path exists between VDD and GND. O
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Figure 5.3: A BF that is masked by another BF in a sequential circuit

Example 4: This example shows that 1) the detection of a BF in a
combinational circuit may rely on charge retention and hence require a two-
vector test, and 2) even in a combinational circuit the detection of a single BF
may be invalidated by multiple BFs. Consider the circuit shown in Figure 5.4.
To detect the BF (z,y) both z and A must be set to 0 (A must be 1). However
when A is set to 0, z cannot be connected to GND. Thus the detection of (z,y)
must rely on the charge retention on z. Two vectors ABC = 111,010 may be
used to detect (z,y) where ABC = 111 sets z to 0 and ABC = 010 retains z at
0 and sets up a conducting path from y to GND. Now assume another BF (w, z)
exists in the circuit. z is still set to 0 when ABC = 111. However when the
second vector ABC = 010 is applied, z is charged to 1 due to (w, z) and thus BF

(z,y) cannot be detected. O

From the above examples it follows that detecting BFs using CSM needs
careful consideration. Next a set of design and test rules under which CSM can

be “safely” used will be presented.
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Figure 5.4: A BI that is masked by another BF in a combinational circuit

5.1.3 Design and Test Rules for IDDQ Testing

In this subsection a set of design and test rules to ensure the proper use of CSM

are presented. The circuit model for these rules was described in Section 4.1.1.
A1 The gate and drain (or source) node of a transistor cannot be in the same
transistor group.

A2 During steady state operation, there must be no conducting path from VDD
to GND.

A3 During steady state operation, each output of a transistor group must be

connected to VDD or GND through a path of conducting transistors.
A4 There are no control loops among T'Gs.

A5 The bulk (or well) of an n-type (p-type) transistor is connected to GND
(VDD).

A6 During testing, each primary input is controlled by a strong power source

whose current is also monitored.
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The rationale of these rules is as follows. Al is made to exclude the
possibility of “self-control” inside a transistor group. A2 is a common attribute
of CMOS circuits. A3 ensures that a circuit’s normal operation does not rely
on any “charge sharing” or “charge retention” effects. This rule excludes the
possibility of identifying a good circuit as faulty using CSM. A4 assumes no
feedback exists in the circuit. A5 ensures that a BF will not cause anomalous
reverse conduction that may occur at the drain-bulk junction when the bulk is
connected to the source [72]. This effect will be explained in Section 5.1.4. A6
makes sure that if a primary input is involved in a BF, it cannot change state
without consuming a large steady state current, and this abnormal current can

be detected. The reasons for these rules will become clearer later.

Among these rules, A1-A5 are design rules for CMOS circuits and A6 is
a rule that should be followed during testing. For brevity in later discussions,
rather than using the phrase “a circuit satisfies A1-—A5 and the test environment
A6 exists for testing this circuit,” it is simply said that “a circuit satisfies Al—
A6.” Some typical circuits that satisfy Al1—A6 are (1) all fully complementary
primary gates (NAND, NOR and inverters), (2) all fully complementary complex
gates, (3) all fully complementary pass transistor networks (e.g., multiplexers),
(4) any acyclic combination of 1, 2 and 3, and (5) the combinational part (CP)
of any sequential circuit if the CP satisfies 1, 2, 3 or 4, and all inputs to the CP
are controlled by strong power sources that cannot change values (due to faults)

without consuming an excessive current.

5.1.4 Minimality of the Set of Rules

In this subsection circuit examples are used to show that the set of rules A1—AG6
is minimal in the sense that if any rule is removed then circuits exist for which

CSM cannot give correct results.
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A1: Consider the circuit shown in Figure 5.5 that contains two transistor
groups T'Gy and TGy, TG, violates Al because the gate and drain nodes of
the P-type and N-type transistors of the inverters driving y and z are in the
same group. A2 is satisfied because no VDD-GND connection exists during
steady state operation (the two pass transistors connected to O are controlled by
complementary values). A4 is also satisfied because the loop containing y and =z
is an “internal loop” rather than a control loop. It is easy to verify that all other

rules are/can be satisfied.

Figure 5.5: A circuit that violates only Al

Assume T'G, satisfies A1—A6 and there exists a BF between a node  in
TG, and a node y in T'Gy. To detect this BF, 2 and y must be set to comple-
mentary logic values. If z and y become stable only when ¢ = 1, then due to
the internal loop that contains y, during steady state y will reach the same logic
value as 2 and no excess current can be observed. Therefore CSM will fail to

detect this fault.

110



A2: This rule is essential since otherwise an excess current will exist in a

fault-free circuit.

A3 and A4: The circuits shown in Figure 5.1 and Figure 5.2 only violate
A3 and A4, respectively.

A5: Consider the circuit shown in Figure 5.6(a) which contains a BF
(z,y). In a fault-free circuit if z = 0 then y must be 0 and if # = 1 then either
y = 1 or y is floating. Therefore no test can set z and y to complementary logic

values and BF (z,y) is considered as redundant.
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Figure 5.6: Anomalous reverse conduction

Now assume the substrate of transistor N B is connected to its source node
rather than GND as shown in Figure 5.6(b). When a vector zBC' = 101 is ap-
plied, node y and the substrate of NB will be set to 1 due to (z,y). Thus the
pn-junction at the drain node (Q) will be forward biased because O is connected
to GND through transistors NB and NC and an anomalous reverse conducting

path [72] forms from node x, through node y, the substrate of NB, node O,
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node z, to GND. This results in an excess current. However classical test gen-
eration procedures will not generate a test for this fault since it is considered as

redundant.

A6: If this rule is not satisfied, then a bridging fault that involves a
primary input may not be detected. Consider the circuit shown in Figure 5.7
that contains a BF (z,y) where y is a primary input driven by an external device.
If z =1 and y = 0 are set then there exists a large current flowing from VDD
through #, y to the driver of y. Since the current on the driver may not be

monitored, the fault may not be detected.

External
device

H_,
-

Figure 5.7: Current flowing through PI may not be detected

5.1.5 Sufficiency of the Rules

In this subsection it is formally shown that if all the proposed rules are satisfied
then each irredundant single or multiple BF can be detected by a single test
vector. Though intuitively the theorems hold, carefulness must be taken to make
sure that each step of the proofs is correct. Also it is useful to see how rules
A1—AG6 play a role in these proofs. The following basic approach is used in the
proofs: when an appropriate test vector is applied, if due to a fault there exists

one or more paths from VDD to GND such that at any time at least one of these

112



paths is conducting, then the fault is detected using CSM. This approach ensures
that CSM can detect a BF only if there exists conducting path(s) between VDD
and GND all the time, not just temporarily.

Without loss of generality the following discussion assumes that a test
vector for BF (z,y) will set @ and y to 1 and 0, respectively, in a fault-free

circuit.

Theorem 9 A single BF in a circuit satisfying A1—AG is either detected using
CSM or is redundant.

Proof: Three different cases of single BFs exist in circuits satisfying A1—AG6,
namely (1) BFs inside a TG, (2) BFs between two unrelated TGs, and (3) BFs
between two related TGs. For each case it will be proved that (a) if an input
vector T' can be found that simultaneously sets up a conducting path P, from
VDD to z and another conducting path P, from GND to y in a fault-free circuit,
then the fault (z,y) can be detected by using CSM, and (b) if no such input

vector exists, then (z,y) is redundant.
First assume such a T' can be found for each case.

Case 1: Refer to Figure 5.8(a). When T is applied and (z,y) is present,
the voltages of circuit nodes on P; and/or P, will be different from those in the
fault-free circuit since @ and y will have the same voltage level. If these new
voltage levels result in the opening of either P, or P,, then the short between
VDD and GND may not be observed. However, this is impossible since all the
transistors on both P, and P, are controlled by signals from other T'G's (assump-
tion A1), none of which can be controlled by nodes on P; or P; (assumption A4).

Thus P, and P, are always conducting and (z,y) can be detected by CSM.

Case 2: Refer to Figure 5.8(b). Similar to Case 1, where paths P and

P, cannot be broken.
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GND

VDD
. )

GND

Figure 5.8: (a) BF inside a TG (b) BF in two unrelated TGs (¢) BF between two
related T'Gs

Case 3: Let GX and G'Y be the two T'G's containing @ and y, respectively.
Since there is no loop containing GX and G'Yin the fault-free circuit (assumption
A4), only one of them can control the other. Without loss of generality, assume
GX can control GY as shown in Figure 5.8(c). When 7' is applied, if in the faulty
circuits the new voltages along P, and P, does not affect any output of GX, or
they only affect those outputs of GX that do not affect P, then both P; and
P, are always conducting and the fault can be detected. Now assume the new

voltages affect some outputs of GX and they in turn affect some transistors on

P,. Let O be a set consisting of such output nodes. Each element in O must be
connected to x through some conducting path. Now if no large current through
P, ever occurs, P, must have been broken since P; cannot be broken. But in
this case node 2 and all nodes in O will charge to their fault-free values. This
will cause path P, to once again become conducting. The net effect is a circuit
oscillation. But an oscillation means that at any instant of time at least one 7'G

is consuming a large current and the fault can be detected. Note that in the
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above proofs, if @ or y is a primary input then P; or P, may exist in the external

current measurement device whose current is also monitored (assumption A6).

If no input vector 7" exists that can set = and y to complementary values
in the fault-free circuit, then for any input vector, z and y are either at the
same state (0, 1, or floating) or one of them is floating. For the former case,
the bridging fault is obviously redundant. For the latter, the floating node will
be set to the same value as the other node. Since there is no anomalous reverse
conduction effect in the circuit (assumption A5) and a floating node cannot affect
the outputs of a transistor group (assumption A3), this fault cannot affect the

logic function of a circuit and thus is redundant. O

Theorem 10 IfT is a test vector for a single BF fy, then T is also a test vector
for every multiple BF that contains fi.

VDD

bridging
fault fi

===

I
[
I
|
I
|
|
I
1

55 VDD
VDD

GND GND
Figure 5.9: Detecting multiple bridging faults

Proof: Refer to Figure 5.9 where the bridging fault f; occurs between z and y.

Again assume 7' sets up conducting paths P; from VDD to z and P, from GND
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to y. Similar to Theorem 1, if any oscillation occurs in the circuit, then CSM will
detect the fault. Thus it may be assumed that no oscillation occurs. If during
steady state no large current flows through P, or P,, then at least one transistor
on Py or P, must be switched off. Without loss of generality assume transistor
ty on P is off. Let the input line to ¢; be l;. [; must be an output of another
transistor group (assumption Al) and 7' must set up another conducting path,
say P3, from a power source to [; (assumption A3) in the fault-free circuit. Now
the value of /; has been changed due to faults in the circuit. If Ps is not switched
off, then another path, say Py, from [; to an opposite power source must have
been formed, and the resulting voltage value of [y is under the threshold value
of t;. But if this is the case, a conducting path containing P; and Py from VDD
to GND must be formed and the faults can be detected. If Ps is switched off,
the value of one input, say ly, to a transistor on P3 must be the complement of
its fault-free value. By a similar argument, either a conducting path, say P,
set up by T from a power source to [ in the fault-free circuit is not cut but
another conducting path, say Ps, from [, to an opposite power source is formed,
or Ps is cut. In the former case, the fault is detected. In the latter case, the
above process may be continued. Since there is no control loop in the fault-free
circuit (assumption A4), eventually either a conducting path from VDD to GND
is found or a primary input is reached. Since a primary input is controlled by a

strong power source whose current is monitored (assumption A6) the fault can

be detected. O

Theorems 9 and 10 imply that all multiple BFs that contain at least one
irredundant single BF are detectable by using C5M, and a test set that detects
all single irredundant BF's is sufficient for detecting all such multiple BFs.
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5.1.6 Circuits not Satisfying A1—A6

It has been shown that A1—A6 is a minimal set of rules required to ensure the
detection of all irredundant BFs using CSM and there exist some circuits that do
not satisfy all of these rules. In this subsection several problems that may arise
when each of these rules is released are examined and, if possible, some strategies

to eliminate these problems are proposed.

The circuits to be discussed include (1) an Exclusive OR gate shown in
Figure 5.10, (2) BiCMOS circuits, (3) domino logic, (4) synchronous sequential
circuits and (5) circuits implemented by Silicon on Insulator (SOI) technology,
which are typical circuits that do not satisfy Al, ..., A5, respectively. A6 is
a rule for the test environment. However when dealing with sequential circuits,
A6 can also be considered as a design rule for the output gates of the storage

elements.

5.1.6.1 Release of A1 (Drain (or Source) and Gate Are Not in the
Same TG)

Without this rule the logic value of a node in an “internal” loop of a faulty TG
(i.e., a TG involved in a BF) may stabilize at an incorrect logic value without
consuming an excess steady state current. If it can be guaranteed that this situ-
ation will not occur, then Al can be released. For example in the Exclusive-OR
gate shown in Figure 5.10, though the drains (or sources) and gates of transis-
tors Ty,T5,Ts and Ty are in the same TG, CSM can still be applied. Next a
general method to identify this type of circuits is presented. First the following

definitions are needed.

Input-only node: A node v is an input-only node to a transistor group T'G, if

and only if 1) v is in 7'G'}, and v is a primary input node but not an output node
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Figure 5.10: A circuit that violates A1 but CSM can still apply

of TGy, or 2) v is not in T'Gy, but v is an output node of another TG and v feeds

the gate of some transistor in T'G.

Strong-node (S-node): A node is an S-node of a TG if and only if 1) it is
either VDD, GND or an input-only node to this TG, or 2) it is always connected

to some S-node of this TG through some conducting transistor controlled by an

S-node of this TG.

Changeable node: A node v is called changeable if and only if there exists an
input vector and some bridging fault(s) such that the logic values of v in a faulty
and fault-free circuit are different but there exists no excess steady state current

in the faulty circuit.

For the circuit shown in Figure 5.10 A and B are both input-only nodes
to this TG and thus are S-nodes. C' and E are also S-nodes because they are
connected to either VDD or GND through conducting transistors controlled by
A and B, respectively. D is an S-node because C is, and F' is an S-node because
C, D and E are S-nodes. Thus all nodes in Figure 5.10 are S-nodes. For the

circuit in Figure 5.5, y and z are controlled by each other. According to the
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“if and only if” property of the definition of S-nodes, neither of them can be an
S-node.

Lemma 10 For a circuit G that satisfies AI1-A6, the output nodes of each TG

in G are not changeable.

Proof: Since A4 is satisfied, no control loop exists in G. Thus the levels of all
transistor groups can be assigned such that if a TG, say T'G}, can control another
TG, say TGy, then the level of TG, is less than that of T'G5. The output nodes
of TGs at the first level are not changeable because each output node must be
connected to a power source through a number (> 0) of conducting transistors
controlled by primary inputs. By induction it is easy to prove, level by level, that

the output nodes of each TG in G are not changeable. O

Lemma 11 Let G be a circuil that satisfies rules A2-A6. An S-node of any TG

in G is not changeable if all input nodes to this TG are not changeable.

Proof: Let C be an S-node of a transistor group T'Gy. The lemma ob-
viously holds if C' is VDD, GND or an input node to T'Gy. Thus it may be
assumed that C' is not VDD, GND or an input-only node to T'Gy. Since C is an
S-node of T'Gy, for any input vector there always exists some S-node A of T'Gy
and some conducting transistor T that is controlled by an S-node B of T'Gy.
This is shown in Figure 5.11. By induction it may be assumed that A and B are
not changeable. Therefore transistor T must be conducting if no excess current
exist. Thus C cannot be disconnected from A due to a fault and hence C' is not

changeable. O

By using the next rule the following result is obtained.

R1: All nodes in a transistor group are S-nodes of this TG.
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Tg
Figure 5.11: Circuit used in proof of Lemma 2

Theorem 11 If a circuit G satisfies A2-A6, and either Al or R1 is satisfied for
each TG in G, then all irredundant BFs in G can be detected by CSM.

Proof: The theorem follows from Lemmas 10 and 11 based on the results

of Theorems 9 and 10. O

It is interesting to note that there exist circuits that satisfy Al but not
R1, and vice versa. Figure 5.10 indicates a circuit that satisfies R1 but not Al.
A circuit that satisfies A1 but not R1 is shown in Figure 5.12 where node z is

not an S-node because when input AB = 11, « is not connected to any S-node.

Fa

=
L1

|_

I

Figure 5.12: A circuit that satisfies A1 but not R1

5.1.6.2 Release of A2 (no Conducting Path from VDD to GND)

In general this rule must be followed because CSM cannot be applied to circuits

that consume large steady state current such as BICMOS circuits. However one

120



can partition a circuit into two parts BX and BY; BX containing all subcircuits
satisfying A2 and BY containing those that do not, as illustrate in Figure 5.13.
By using BICSs only for BX, BFs inside BX, i.e., BFs involving nodes in BX but
not the inputs to BX, can still be detected. If the inputs to BX are monitored

then BFs involving them can also be detected.

T T

:> BX: BY:
beircui 3
Subcircuits j Su E;Itcmts
C i <: satisfying C
A2 i
‘ T
BICS o
A

Figure 5.13: Partitioning of a circuit: one satisfies A2 and the other not

For example a BiCMOS circuit can be partitioned into CMOS circuitry
and bipolar circuitry. BICSs can be used to detect BFs inside the CMOS circuitry.
Since most bipolar circuitry in a BICMOS circuit are used for interface, e.g., I/O
drivers, one can still test a large portion of the circuit using CSM. A similar
concept can be applied to circuits implemented using “mixed” technology such
as CMOS/pseudo-NMOS or CMOS/pseudo-PMOS.

5.1.6.3 Release of A3 (no Floating Output Nodes)

All precharge logic circuits may contain floating output nodes during steady state
as explained next. The operation of a precharge logic circuit can be divided
into two phases: precharge and evaluation phases. During the precharge phase,
a precharge node is charged to some logic value (usually 1), and during the

evaluation phase, depending on the inputs, either the precharge node retains its
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precharged value or it is driven by an opposite power source (usually GND). For
the former case, the precharge node is neither connected to VDD nor to GND.
Thus A3 is not satisfied.

Consider the domino logic gate that consists of a precharge stage and an
inverter shown in Figure 5.14(a). For any BF (z,y) inside one evaluation block,
during ¢ = 0(1) neither & nor y can be connected to GND (VDD). Thus = and
y cannot be connected to complementary power sources at the same time and
hence (z,y) cannot be detected using CSM. This is also true if z and y are in
two distinct evaluation blocks. The only BFs that can be detected by CSM are
those involve VDD, GND or the output nodes of the inverters.
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Figure 5.14: A domino logic gate

Another problem is due to the charge sharing effect at the precharge nodes.
In Figure 5.14(a) if during ¢ = 1 there is no conducting path from O to A, then
O is a floating node and should retain its logic value 1. However due to charge

sharing between O and some nodes inside the evaluation block, the voltage value
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v at O may be less than VDD(5V). If v is larger than 4V, no problem exists.
If v is less than 4V but larger than VDD/2, due to the high noise immunity of
CMOS circuits it is likely that the logic value at the output of the inverter is still
at 0. Therefore logically no faults exist. Because of this when a designer designs
domino logic, he may allow the resulting voltages at O after charge sharing to
be at, say 3.5V. This voltage will turn on both N- and P-type transistors of the

inverter resulting in a large current.

Yet another problem is that the effect of one fault may be masked by the
existence of another fault. For example in Figure 5.14(b), to detect the fault
(z,y), O1 and O; must be set to complementary values. Assume O; and O, are
set to 1 and 0, respectively. Due to another BF (Oy, A), the value at O; will be

0 during ¢ = 1 and thus no excess current exists.

In summary the release of A3 may result in the following problems: (1)
many undetectable BF's may exist if only CSM is used; (2) a large current may
flow through a gate driven by a floating node (or the precharge node); and (3) the
detection of a single fault may be masked by the existence of other faults. These
problems are not easy to eliminate. The undetectability of BFs in precharged
logic is an intrinsic problem due to the “precharge” property of these circuits,
and appears to invalidate the use of CSM. The charge sharing problem may
be alleviated by using a larger precharge node (in terms of capacitance). This,
however, can result in performance degradation of the circuit. It seems that the

fault masking problem always exists and cannot be avoided.

From the above discussions it can be concluded that CSM is not an ef-
fective method for detecting BFs in precharge logic. However if a circuit can be
partitioned into non-precharge and precharge portions, then CSM can still be

used for the non-precharge portions.
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5.1.6.4 Release of A4 (no Control Loops)

Violating this rule may result in a feedback loop in which nodes may stabilize at
incorrect logic values without consuming excess current. However, to have this
erroneous situation two conditions must be satisfied. First, the feedback loop
must be a “real” loop, i.e., it must be a logically active loop, not just a physical
loop. Consider the circuit shown in Figure 5.15 that contains two nodes A and B.
When ¢ = 1(0), the data at node A(B) can be propagated to node B(A). There
exists a physical loop in this circuit. However, since the two pass transistors T}

and T, cannot be turned on at the same time, no logically active loop exists.

A control loop

Figure 5.15: A physical loop that is not a logical loop

The second condition is that there exists no external control to the loop
so that the logic values in the loop may change without consuming an excess
steady state current. Consider the Huffman model of a sequential circuit shown
in Figure 5.16(a). In the following discussions master-slave flip-flops are used as
storage elements. Similar arguments can be applied to circuits using other types
of storage elements. Figure 5.16(b) shows that both the master and slave latches
contain a control loop (indicated by dotted boxes). The control clock is shown in
Figure 5.16(c), which also shows when to measure the current. During C' LK =0

the slave level has an external control but not the master level as explained next.
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When C'LK =0, u = v = 1. Thus control loop 1 is not controlled by u or
v, i.e., the value of z(y) may stabilize at either 1(0) or 0(1). Any BF to either z
or y but not both can change the state of control loop 1 without consuming an
excess steady state current. For control loop 2 the situation is different. When
CLK =0 one of z and w must have a logic value 0 and thus the control loop 2
is under the control of z or w. The state of this loop cannot be changed without

consuming an excess current.

Thus the problem is on the BFs involving z or ¥ but not both. Two
strategies can be used to deal with this problem. First, the possibility of having
such BFs can be reduced by a careful layout. This can be done because both
and y are nodes within a FF. Another approach is using the clock as shown in

Figure 5.16(d). One can then measure the current near the end of CLK = 1.

It is important to note that the “global loops” (FI's—combinational part—
FFs) do not logically exist during steady state. Thus BFs involving either = or
y but not both are the only faults that may not be detected by CSM. This
observation can be generalized to all synchronous sequential circuits since during
steady state all global loops should not logically exist otherwise races in the

circuit will occur.

5.1.6.5 Release of A5 (Substrate Connected to VDD or GND)

A5 requires that the substrate or well of a N-(P-)type transistor be connected to
VDD(GND) so that no anomalous reverse conductance (ARC) effect can occur.
In general this is a feasible requirement. However if some well must be connected
to the source node of a transistor, e.g., to reduce body effects, then to use CSM
a more complex test generation strategy must be adopted. This test generation
procedure must be able to construct a test vector that can detect a fault that
creates an ARC effect. For example for the circuit in Figure 5.6, the test generator

may produce zBC = 101 as a test vector for the BF (,y).
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The above discussion focuses on circuits implemented using bulk-silicon
technology in which the substrate or well can be connected to either VDD (or
GND) or a source node. Figure 5.17 show a different technology, namely Silicon
on Insulator (SOI) [108]. SOI uses a layer of insulating material (e.g., oxide) on
top of a substrate (such as Si). The channel of a MOSFET is isolated from the
substrate, as shown in Figure 5.17, where a circuit node containing a channel is
called a body node. A body node can be either connected to a source node, left

to float, or connected to a power source. Therefore rule A5 may be violated.

Gat Gat
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Figure 5.17: Circuit implemented by Silicon on Insulator technologies

If all body nodes are floating or connected to a power source, then there is
no ARC effect and CSM is applicable. In some applications it may be desired to
connect the body node to a source node in order to eliminate the kink effect [109,
110]. The ARC problem then needs to be addressed by using a more advanced

test generation algorithm.

5.1.6.6 Release of A6 (PI Current Monitored)

As shown in Figure 5.7, without this rule some BF's involving primary inputs of a
combinational circuit may not be detected. However a more careful examination
of Figure 5.7 reveals that if 2 and y can be set to 0 and 1, respectively, then the
fault can be detected because there will be an excess of current through the BICS

on the GND line of the circuit, as shown in Figure 5.18(a). This observation can
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be generalized as the following: if BICSs are used to monitor the current through
the GND(VDD) line, then even without using external current monitors for Pls,
one can still detect a BF involving a PI and an internal node by setting the PI
to 1(0) and the other node to 0(1). This approach, however, may not be feasible
for all BFs involving Pls because there may exist some faults whose detections

require some PI to be set to 0(1).
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Figure 5.18: Detecting BF's involving Pls: (a) a fault detected by CSM and (b)
a fault not detected by CSM

Another problem is that the above method cannot be used to detect a BF
that involving two Pls. Refer to Figure 5.18(b). Since both shorted nodes are
connected to external power sources, the fault cannot be detected if the current
through Pls is not monitored. Fortunately since the problems due to the release
of A6 are caused by BFs involving Pls, one feasible strategy to alleviate these

problems is to use a careful layout to reduce the possibility of having BFs on Pls.

Next consider the Huffman model of a sequential circuit described in Fig-
ure 5.16(a). As mentioned in Section 5.1.3, CSM can be used to detect BFs in
the combinational part of a sequential circuit if the inputs to the combinational
part are controlled by strong power sources whose currents are monitored. The
inputs to the combinational parts can be divided into two parts: primary inputs

and the outputs of the storage elements. We shall only discuss the latter here
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since the discussion for Pls is the same as that for a combinational circuit. From
the discussion in Section 5.1.6.4, we know the outputs of the storage elements
are controlled by strong power sources. Now the problem is how to monitor the

current of these power sources.

A built-in current sensor can be used to monitor the VDD or GND line
of the combinational part of a sequential circuit. To monitor the current of an
input driven by a gate G of a storage element, as shown in Figure 5.19(a), either
the VDD or the GND line of GG; must be monitored. The site (VDD or GND)
to be monitored must be the same as that for the combinational part. Figure

5.19(b) shows why this is necessary.

s + i
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Figure 5.19: Monitoring the current at the inputs

The various strategies and/or suggestions presented in this section are

summarized in Table 5.1.

5.1.7 Summary

One major advantage of using CSM to detect CMOS BFs is that once a fault
is activated, the fault can be detected without observing the logic values at any
primary output. Thus the test generation process is simplified as no fault effect

propagation is required. The fault simulation process is also quite simple since
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| Release of rules | Problems | Strategies/suggestions |

A1l: Source and gate “Internal loop” in e Identify S-nodes
in the same T'G aTCG e Use R1 to replace Al
A2: Conducting path | Excess current in e Partition the circuit
from VDD to GND good circuits
A3: Floating nodes e Undetectable faults | @ Do not release this rule
e Charge sharing e Partition the circuit
e Fault masking
A4: Control loops Erroneous steady e Identify active loops
state logic values o Identify external control
e Careful layout
A5: Substrate or body | Anomalous reverse o Careful test generator
node not connect to conduction e Leave body nodes floating
VDD or GND or connect them to power
sources
A6: PI not monitored | BFs involving Pls e Careful test generation
not detected e Careful layout

Table 5.1: Summary of strategies for circuits not satisfying each rule

a bridging fault between any two nodes that are respectively connected to VDD
and GND can be easily identified as detected. These advantages, however, can

be achieved only when CSM is carefully analyzed.

In this section the applicability of CSM has been extensively analyzed.
In particular a set of design and test rules that guarantee the detection of all
possible irredundant BFs are presented. For those circuits that do not satisfy
these rules, problems that can arise are discussed and various strategies to deal
with these problems are proposed. The results can serve as a general guideline
for using CSM: to determine whether CSM can be applied to a circuit one first
checks whether the circuit satisfies rules A1—A6. If it does, then CSM can be
used safely. Otherwise depending on which rule is not satisfied, various strategies

can be applied.
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5.2 Stuck-open Faults

5.2.1 Introduction

This section deals with generating tests for stuck-open faults. It is assumed
that two-pattern tests are used. The invalidation problem due to circuit delay
and charge sharing are both considered. A necessary and sufficient condition
for a test to be valid under any circuit delay is given. This condition enables
the development of an efficient test generation algorithm. The charge sharing
problem is analyzed at the circuit level, i.e., the capacitances of various circuit
nodes are estimated such that the effect of charge sharing can be characterized.
It is shown that the charge sharing problem can be easily solved by employing
IDDQ testing. Finally a procedure for generating robust tests, i.e., tests that

cannot be invalidated by any circuit delay or charge sharing, is given.

A two-pattern test consists of two input vectors. The first vector, T, is
the initialization vector and the second vector, T5, is the test vector. A transient
vector, Ty, which is used to describe the transient input status, will be defined
later. The circuit model described in Section 4.1 is used and the rules presented in
Section 5.1.3 are followed. For simplicity in this section it is assumed that each
transistor group has only one output. The techniques described can be easily

modified and applied to circuits containing multiple output transistor groups.

5.2.2 Invalidation due to Circuit Delay
5.2.2.1 Strategy

To detect a stuck-open fault, the initialization vector 77 must set the output of
the faulty transistor group to a certain value and the test vector 75 propagates
the fault effect to a primary output. Since in general T is much easier to obtain
than 75, in most of the previous work T} is generated first, followed by a Tj that

guarantees no invalidation occurs [28, 48]. This method requires a validation
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checking procedure during each step of the generation of T, and thus can be

very ineflicient.

In [40] a new strategy is taken. Instead of generating T, before T}, an
intermediate vector called Tjn7 is first generated. T; and 7, are then generated
by adding more input assignments to Tyyr. Tynr has an important character-
istic, namely the invalidation condition due to circuit delay has been explicitly
considered, thus as long as Ty is obtained, no invalidation checking is necessary
when further generating T} and T5. This method apparently would lead to better

performance of test generation.

Unfortunately the work in [40] requires transforming a switch level circuit
to a gate level equivalent circuit, and thus has the problems described in Section
2.2.1. Also to derive Tiy7 in the gate level equivalent circuit, a sensitization
path from the fault site to the line corresponding to the output node of the
faulty transistor group must exist such that all the lines on the path are free of
static hazard under faulty condition [40]. This makes the problem even more

complex. Another problem of [40] is that no actual implementation is reported.

In this study a similar concept to [40], i.e., deriving the intermediate vector
first, and then generating T} and T3, will be employed. The difference between
this work and the one in [40] is that a true switch level model will be used, i.e.,
no gate level equivalent circuit is necessary. To guarantee that no invalidation
problem exists after the intermediate vector is generated, a different approach is
necessary for switch level test generation. The approach to be presented requires
the development of an algorithm to find all possible cutsets for an undirected

graph. Next a method for enumerating all possible cutsets is described.

5.2.2.2 Enumeration of All Cutsets

Given a connected and undirected graph G and two distinct vertices s and ¢ in
(i, a cutset that separates s and ¢ is defined as a set of edges C' that has the

following properties: 1) the removal of edges in C' disconnects s and ¢, and 2) for
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any edge e in C', the removal of edges C' — {e} cannot disconnect s from ¢. A

cutset separating s and # is sometimes called an st-cutset [111].

The problem of enumerating all st-cutsets is one of the most fundamental
problems in graph theory [112]. In [111] two algorithms (Algorithms 2 and 3 in the
paper) to enumerate all the cutsets in O(|V|+|E|) time per cutset are presented.
These two algorithms are the most efficient algorithms known to date. However
they are both recursive and will generate all possible cutsets when invoked. Since
for the test generation propose only one cutset is needed at a time, it is necessary
to modify these algorithms so that they become callable routines and each time

the algorithms are invoked, only one cutset is returned.

In this study Algorithm 2 [111] is adopted because it is easier to modify
it to suit our test generation requirement. Two major modifications have been
made: 1) the recursive mechanism of the algorithm has been replaced by a non-
recursive one, and 2) the algorithm has been modified such that multiple entrance
to the routine becomes possible. Making the algorithm non-recursive has the
advantage that both memory space and computation time are reduced. The
multiple entrance property of a routine refers to the property that allows for
repeated calls to the routine, and actions in the routine depend on the status
when the routine is called. Another minor modification is that for the purpose
of detecting a stuck-open fault, a cutset is not desired if it does not contain the
faulty transistor. Thus whenever a cutset is generated, it is necessary to check

whether it is valid or not.

After these modifications, each time the routine is called it returns a new,
valid cutset. This eliminates the necessity for storing all possible cutsets in mem-
ory as when a recursive algorithm is used. Also as long as a cutset leads to the
generation of a valid stuck-open test, no further generation of other cutsets is

necessary. Thus the computation time is also reduced.

Next a procedure based on the modified algorithm is presented. Since
many lemmas are required to fully understand the algorithm, the interested reader

should refer to the original paper [111].
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Procedure Find-cutset(G = (V, E), a, b, s, 1);

Inputs: V and E are the sets of vertices and edges, respectively; a and b are the
two end nodes of the faulty transistor; s and ¢ are the two nodes to be separated.
For P-(N-)network s is VDD(GND). t is the output node of the transistor group.
Outputs: A set of vertices such that the edges that have exactly one end node in

this set form a cutset, and edge (a, b) is in the cutset.

1. if (first_call) do the following, else go to Step 4;
(a) §={s}, T ={t}
(b) put (S,7) in queue;
(c) if ((a = s) or (b= s)) return(S); else goto Step 2;

2. if (queue is empty) return(“no more cutsets”);
else do:

(a) get and delete a pair (S,T) from queue;

(b) T' = {};
(c) Candidates = {v| there exists an edge (u,v)such that u € S, v & SUT,
and v is not an articulation point in G — S};

3. if (Candidates is empty) go to Step 2;
else do:

(a) select and delete one vertex v from Candidates;
(b) put (SU{v},T'UT") in queue;

(c)if (((a€ S)and (be G—S))or ((b€ S)and (a € G-S5)))
return(.S U {v}); else goto Step 4;

4. T' = T'U {v}; goto Step 3;

End Find-cutset

If a new, valid cutset is found, Procedure Find-cutset returns a set of
vertices. The cutset consists of the edges that have exactly one end node in this

set of vertices.
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5.2.2.3 Necessary and Sufficient Condition

In this subsection the necessary and sufficient condition for a pair of test vectors

< T1,T; > to be valid under any circuit delay is given.

Let TGy be the transistor group that contains the faulty transistor ¢;.
Without loss of generality, assume that ¢; is a P-type transistor. Also for sim-
plicity assume that ¢; is in a pull-up network of a complex gate. If ¢; is a part
of a pass transistor, then the ¢; stuck-open fault is obviously redundant. Let the
output node of T'Gy be t and the VDD node be s.

To detect t; stuck-open, T} must set ¢ to 0 and T, must set ¢ to 1 in the
good circuit and retain ¢ at 0 in the faulty circuit. To retain ¢ at 0 in the faulty
circuit no transient path from s to ¢t can exist during the transition from 73 to
T5. Thus if a cutset that contains ¢y can be found and each transistor except
ty in this cutset can be turned off during the transition, then no transient path
exists from s to ¢ and the test cannot be invalidated. This condition is in fact

necessary and sufficient as is formally described next.

First let the binary operator “A” on two vectors be defined as follows. Let
Td = T] N T2 Where Td(l) = if T](Z) = TQ(Z) = 0, 214(3) =1 lf Tl(l) = TQ(Z) =

and Ty(z) = X otherwise, and the index ¢ denotes the i-th bit of a vector.

In the following theorem, the sentence “a vector holds off a transistor”
means that when the vector is applied to the circuit under test using the simula-

tion procedure described in Section 6.3, the transistor is turned off.

Theorem 12 Let < Ty,Ty > be a test for a transistor t; stuck-open when no
circuit delay is considered. Let t be the output node of the transistor group con-
taining t; and let s be the power source that is connected to t in the good circuit

when Ty is applied.

If Ty =Ty ATy, then “< Ty, Ty > is a valid test for ty under any circuat
delay” if and only if “there exists a cutset C that separates s and t, C' contains

the faulty transistor t;, and Ty holds off all transistors in C — {ts}.”



The proof of this theorem will be presented in the next chapter after the

simulation procedure is discussed.

5.2.2.4 An Efficient Test Generation Procedure

With the results of the previous subsection, a test generation procedure for stuck-

open faults can be implemented as described next.

Procedure TG_SOP(t;);

Inputs: A circuit with a stuck-open transistor ;.

Outputs: A pair of test vectors for ¢y if it is detectable; otherwise reports t; is
undetectable.

1. Find a new cutset C' that contains the faulty transistor. If no such cutset
exists, return(“No valid test”).

2. Find a new vector Ty that holds off all edges in C' — {t;} with the following
constraints.

(a) Ty should not set ¢ to any logic value.
(b) T, should not turn off ¢; in the good circuit.

If no such Ty exists, go to Step 1.

3. Find a new T; based on Ty, i.e., copy all input assignments on Ty to Tj
and continue assigning values to more inputs until ¢ is set to the required
value v or it is found that ¢ cannot be set to v. If successful, go to Step 4.

Otherwise go to Step 2.

4. Find a new T, based on Ty, i.e., copy all input assignments of T to T3 and
continue assigning values to more inputs until the condition for 75 is satisfied
or it is found that the conditions cannot be satisfied. The conditions for 7%
are:

(a) t; is turned on in the good circuit, and

(b) a fault effect can be observed at a primary output.

If the above conditions are satisfied, return a test < Ty, 7> >; otherwise go
to Step 3.

End TG-SOP

136



5.2.3 Invalidation due to Charge Sharing

5.1 The invalidation of a stuck-open test due to charge sharing is difficult to
solve using conventional test strategies. This subsection presents a layout-driven
method to characterize this problem and shows that by monitoring the current
supply, the charge sharing problem becomes much easier to solve. The results
reveal that by slightly modifying the layout of a circuit the charge sharing problem

can be eliminated.

5.2.3.1 Problem and Strategy

The circuit shown in Figure 5.20 will be used throughout this subsection. The
invalidation problem due to charge sharing in this circuit can be explained as
follows. Assume that transistor PA is stuck-open. To detect this fault two vectors
must be applied: the first one sets node O, to 0 for both the fault-free and faulty
circuits; the second vector differentiates the output logic levels at Oy in the fault-
free and faulty circuits. Consider a two vector test < 17,7, >=< 1111,0001 >.
When ABC'D = 1111 is applied, O, is set to 0 and nodes z, y and O, are isolated
from each other. When ABC'D = 0001 is applied, O; should retain its value at
0 in a faulty circuit and change to 1 in the fault-free circuit. However since z, y
and O; are now connected through conducting transistors, charge sharing among
them occurs. In this subsection it will be shown that due to this charge sharing
the logic value at O; in a faulty circuit may become higher than the threshold of
an N-type transistor (= 1V) and thus there is no guarantee that this value will

be interpreted as a logic low by the next stage (or gate).

This problem is difficult to solve using conventional testing techniques
which only consider circuit structure information and only monitor the logic re-
sponse. Charge sharing certainly results in analog circuit behavior and thus un-
less the capacitance information of the circuit is available or can be characterized,

the charge sharing problem would be almost impossible to solve. Just analyzing
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Figure 5.20: Invalidation of tests due to charge sharing

this problem is difficult because most circuit simulators currently in use, includ-
ing SPICE, cannot precisely predict the results of charge sharing [113], not to

mention simulators which use only switch-level models.

Because of the problems discussed above, most previous research dealing
with CMOS stuck-open faults either totally ignores the charge sharing problem
(35, 92, 44, 97, 114, 40] or only considers the worst case, i.e, if charge sharing is
possible then the test is considered as invalid [48, 115, 86]. Neither of these two
approaches leads to a satisfactory solution. A new approach to this problem is

thus necessary if high quality tests are to be obtained.

The use of CSM for the detection of CMOS short faults has been discussed.
It can be seen that the only requirement for CSM to detect a fault is that when
an appropriate test vector is applied, a large current must exist due to the fault.
Thus CSM is not limited to the detection of short faults only. It has been shown
that some faults caused by an open conductor also result in large currents and
thus CSM is also applicable to these faults [73, 75]. For example in [75] it is

reported that after a long duration (e.g., 100 seconds) a floating node caused by
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a stuck-open fault may drift to an intermediate voltage that can turn on both
P- and N-type transistors. However within a normal clock period, a floating
node may retain its previous voltage value or may share its charge with other
nodes connected to it. The latter provides a clue to deal with the charge sharing

problem in testing stuck-open faults.

In this subsection the charge sharing problem is analyzed based on the
layout of a circuit. First a description of how to estimate the capacitances of
various components in a circuit and how charge sharing may indeed invalidate
a test is provided. This establishes the fact that if the charge sharing effect is
totally ignored, the resulting tests may not be reliable. It is then shown that if
the worst case situation is assumed, then the detectability of faults may be dra-
matically reduced. The capability of CSM in solving the charge sharing problem
is then examined. It is shown that by employing CSM in addition to conventional
logic monitoring, the detectability for stuck-open faults that may result in charge
sharing is greatly enhanced. In most cases, this problem can be easily solved.
For those few cases where charge sharing may indeed invalidate a test, a fault

may still be detected by slightly modifying the circuit layout.

5.2.3.2 Estimation of Capacitance

The circuit shown in Figure 5.21 will be used to illustrate the estimation of capac-
itances. The estimates presented in this section are based on a 4 pm technology.
The capacitance values for more advanced processes will be given later. Figure
5.21(a) shows the layout of the circuit, where rectangles F', E, A and D are
polysilicon areas, B and C' are diffusion areas, G and F' are metal, and H is a
metal-poly contact. The area under rectangle A is a transistor. The size of each
rectangle is indicated. All units are in pm(10~®m). The circuit diagram of this
layout is indicated in Figure 5.21(b) (assume this transistor is n-type). Figure

5.21(c) shows an approximate 3-dimensional picture of this circuit.

The layout of a circuit can be classified into three basic areas: gate area,

diffusion area and routing area [1]. In Figure 5.21(a), rectangle A belongs to the
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Figure 5.21: Capacitance estimation of various components
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gate area, B and C' are in diffusion area, and the remaining rectangles belong to

the routing area.

Gate Capacitance

The capacitance C, of a gate area is the sum of the gate to source capacitance
Cys, gate to drain capacitance C,q and gate to bulk (or substrate) capacitance Cy

as illustrated in Figure 5.21(d). The total gate capacitance C, is approximately

[1]:

Q=@ﬁ4@+qﬁ{%m%)Ag (5.1)

tog

where ¢, = permittivity of free space = 8.85 x 1072 F/m, egi0, = relative per-
mittivity of silicon dioxide = 3.9, {,,. is the thickness of thin-oxide, and A, is the
area of the gate. Let ¢,, = 1000 x 10~"m. Then the gate capacitance of the
circuit in Figure 5.21 can be approximated as (in this section a subscript = under

character C' denotes the capacitance of region or node z):

Cs =~ (3.9 x8.85x107'2/1000 x 1071°)
x8 x 4 x 107"
= 11.0 x 107B¥F

Diffusion Capacitance

All diffusion regions have a capacitance to substrate (or well) that depends on
the voltage between the diffusion regions and the substrate. This capacitance,
denoted as Cjy, is proportional to the total diffusion to substrate junction area
that consists of one “base” area and 4 “sidewall” (or peripheral) areas as shown
in Figure 5.21(e). The base capacitance, denoted as C},, is proportional to the
area of the diffusion and has a unit of F/m? When assuming constant depth

diffusion, the periphery capacitance Cj, can be characterized by a unit-length
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“ Para. | Typical value [ Comments ”
C, | 40~5.0x10"* F/m?* | Gate
Cp | 04~0.6x10"* F/m* | Poly over field
Cm, | 0.4~0.6 x10~* F/m* | Metal over poly
Cm, |0.15 ~ 0.3 x 10~* F/m? | Metal over field
Cmy | 0.8~1.0%x107" F/m? | Metal over diffusion

2
a

0.8~ 1.0 x 10~ F/m?

n-diffusion base

el
2

7.0 ~ 9.0 x 107 F/m

n-diffusion periphery

=]
=

08 ~1.0 x 107 F/m?

p-diffusion base

6.0 ~ 8.0 x 1071° F/m

p-diffusion periphery

3
e

0.1~ 0.15 x 10~* F/m?

Metal 2 over field

3
[xo

0.2 ~0.3 x 107 F/m?

Metal 2 over poly

AR AR
=

3
s

0.3~ 0.5 x 107" F/m?

Metal 2 to metal 1

Table 5.2: Typical capacitance values in a 4um process [1]

capacitance F//m. Thus the capacitance of a diffusion region with area A; and

perimeter Py can be

estimated as

Cdzcja'Ad“}'ij‘Pd

(5.2)

Both C;, and C;, depend on the voltage across the diffusion to substrate junction.

Typical values for a 4 pm CMOS process are displayed in Table 5.2. When the

diffusion area is scaled down, the effects of peripheral capacitance become more

significant.

approximately

Cgr

Q

Cec

+8 x 10710 x

1 x10™* x (10 x 8 x 10712)

(20 4+ 16) x 107°

80 x 10716 4+ 288 x 10716
36.8 x 1071°F

For our example in Figure 5.21, the capacitance of Cg or Cg¢ is
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Routing Capacitance

Routing capacitances between two layers can be approximated using a parallel

plate model with a compensation factor, or
-
=i EA (5.3)

where ¢ is the permittivity of the insulating material between the two layers, ¢
is the thickness of the insulator, and A is the area of the plates. K is a factor
that takes into account the fringing effect due to other routing area. Interlayer
capacitance (such as metal-poly capacitance) is also enhanced by fringing. The

typical value of K is 1.5 ~ 3 [1]. Various routing capacitances are also given in
Table 5.2.

Using the values in Table 5.2, the capacitances of rectangles G, F', F and
D in Figure 5.21 can be computed as:

Il

Ce 50 x 6 x 1072 x 0.3 x 107" = 9.0 x 1075 F
Cr 8x8x107” x 0.6 x107* =3.84 x 10°P°F
Cp = Cp=4x4x10""%x%x0.6x10™*

= 0.96 x 10~ F

The capacitance of each “node” shown in Figure 5.21(b) can be estimated as:
Cx = Co+Cp+Cr+Cys+Cp =~ (9.0+3.844+0.96+11.04+0.96) x 10~15 F = 25.8 x
107 F; Cy ~ Cz =~ 36.8 x 107" F. This example shows that the capacitances
of a gate node and the drain (or source) node are quite close. This implies that
charge sharing may be a problem. Next the circuit example given in Figure 5.20

is used to verify this effect.
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Figure 5.22: One possible layout of Figure 5.20
5.2.3.3 Invalidation of Tests

Figure 5.22 shows one possible layout of the circuit shown in Figure 5.20. Assume
ABCD = 1111 is the initialization vector. As described before, when the test
vector ABCD = 0001 is applied, charge sharing among z, y and O; occurs.
Since only O; is set to 0 by the initialization vector, both 2 and y may have
a voltage of 5V before charge sharing. Thus the final voltage at O; may be
Vo, = (0 x Co, +5 x (Cy + Cy))/(Co, + Cy + Cy)'. From an actual layout
corresponding to the stick diagram of Figure 5.22 the area of node z plus the
area of node y is approximately the same as the area of Oy, and the resulting
voltage on Vp, after charge sharing will no longer be below the threshold voltage

of an n-transistor, and the test may be invalidated.

All the above estimations are based on a 4um process. Similar arguments,
however, can be applied to more advanced processes. For example, in [116] the

gate capacitance has been shown to be about the same as the diffusion capacitance

1See Appendix of this chapter
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| Parameter | dum | 2um | 12pm | Unit |

Tor 1000 | 405 205 107
T, 09 | 419 | 481 | 10" F/m?
Ci, 8 2.83 1.27 107F/m
A, 8x4 [4x2[36x1.2] 1072m?
Aq 8x10|4x5(3.6x36| 1072m?
Py 18%2[|9x2| 7.2x2 1075m
Gy 11.0 6.8 7.3 1071 F
Cy 36.8 | 13.48 8.1 107BF

Table 5.3: The comparison of C; and Cy in 4, 2, 1.2 pm technologies

for a typical 1.75um process. In Table 5.3 the values of the gate and diffusion
capacitances for a N-type transistor in three different technologies are given. The
data for 2um and 1.2um are based on typical technologies used in MOSIS. The
routing capacitances are not given because they are relatively small compared
with gate and diffusion capacitances. From the table it is clear that gate and
diffusion capacitances differ by a factor of about 3 or less. Although all the
estimations are approximations, the above discussion clearly implies that charge
sharing may indeed invalidate a two-pattern vector. Thus completely ignoring

this effect may affect the quality of the test.

Next the problem that can result from assuming the worst case situation
is examined. The worst case situation refer to the case that whenever charge

sharing is possible, the test is considered invalidated.

5.2.3.4 Worst Case Consideration

When an input vector is applied to a circuit a node in the circuit may be either 1)
connected to VDD through conducting transistors, 2) connected to GND through
conducting transistors or 3) isolated from VDD and GND. The detection of stuck-
open faults relies on the charge retention on the output node, say O, of the faulty

gate (or transistor group). Assume O is set to a logic value v by the initialization

145



vector. If the worst case situation of charge sharing is considered, then all nodes
that can be connected to O during the transition from the first vector to the
second vector must also have a logic value v in a faulty circuit. Otherwise the
test may be invalidated. This implies that all these nodes must be set to v before
the test vector (second vector) is applied. If only two-vector tests are allowed,
the first vector may not be able to set up all these initial conditions. Next a more
formal description about this situation is given. For simplicity it is assumed that
each transistor group has only one output. The notation used in the following

discussion is defined below.

22 the index of the phase of testing; i = 1,¢,2 represent the initialization,

transition and test phase, respectively.
ts: the faulty transistor.
G: the transistor group that contains ;.
OUT: the output node of Gj.
T,,T,: the initialization and test vectors.

E;: for i = 1 or 2, the set of conducting transistors in Gy when T; is applied; E,
= E, U E,.

S*: the set of nodes in the faulty circuit that are connected to node n if all

transistors in F; are conducting; n € { VDD, GND, OUT}.

By these definitions SSN? is the set of nodes that are connected to GND
when Ty is applied, and S?UT is the set of nodes that may invalidate the two-
vector test. Note that F; and F; depends on T and T3, respectively, while E; is

defined as E; U E; so as to consider the worst case charge sharing situation.

Without loss of generality, assume 7 sets OUT to 0. The following facts

can be derived.
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Fact 1: SPUT = gEND

Proof: When T} is applied, there is a conducting path from GND to OUT.
1]

Fact 2: SPUT D (SPUT U SPUT), but SPUT = (SOUT U SOUT) is not always true.
Proof: Since transistors that are conducting during the initialization or
test phase are assumed conducting during the transition phase (E;, = E; U
E,), all nodes connected to OUT during the initialization or test phases
must be connected to OUT during the transition phase. The fact that
SPUT = (SPUT U SQUT) is not always true is illustrated in Figure 5.23,

where X ¢ SOUT or SOUT but X € SPUT. D
Vi X 74 X X
odl il o
1 0 0 —q

OouT ouT ouT
Figure 5.23: Example of SOUT #£ (S0UT y SQUT)

Fact 3: If < 14,75 > is a robust test under any charge sharing situation, then
SOUT ¢ SoUT

Proof : If there exists a node in SPYT but not in SPY7, then by Fact 1
this node cannot be precharged to 0 by 7;. Thus this node may invalidate
the test. O

Fact 4: If < T}, T, > is a robust test under any charge sharing situation, then
SGND — GOUT — GOUT 5 GOUT
Ly =

Proof: Direct result of Facts 1, 2 and 3. O

Fact 4 formally describes a special property of T}: it must precharge all
nodes that are connected to the output node when T3 is applied. Considering

the fact that T) must also set a path from GND to OUT, it is expected that the
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number of qualified vectors for 7} is dramatically reduced when this worst case
charge sharing condition is considered. The following example gives a clearer

picture of this problem.

Example: Again consider the test for the PA stuck-open fault in Figure 5.20.
The test vector T3 must be ABC'D = 0001 so that a faulty circuit can be distin-
guished from a fault-free circuit. For T}, D must be 1, otherwise due to various
circuit delays the test may be invalided if Ty set B,C to 0 before it sets D to
1. If charge sharing is not considered, then there are 7 possible combinations of
A, B,C (except ABC = 000) that can set the output node to 0. Each of these
7 vectors along with T, forms a test that cannot be invalidated by any circuit
delays. However, if the worst case charge sharing situation is considered, then
both z and y must be precharged to 0. Only one initialization vector, namely
ABCD = 1001, can set up this condition. Thus the number of qualified initial-
ization vectors is reduced from 7 to 1. If the circuit in Figure 5.20 is embedded in
a large circuit, the probability of setting ABC D = 1001 becomes much smaller.
Thus a test generator that takes only the worst case conditions into account may

report this fault as undetectable. O

In general if only the worst case condition is considered when dealing
with the charge sharing problem, the number of valid initialization vectors is
reduced. This also reduces the detectability of the stuck-open faults. There is
no efficient solution to this problem if only conventional logic monitoring and
two-vector tests are used. Some researchers have tried to solve this problem
by using multiple vector (more than 2) tests such that before the test vector is
applied, all nodes that may be connected to the output node are precharged to the
required values [48, 86]. This method has several deficiencies: the generation of
such multiple vector tests require more CPU time and memory space; even when
multiple vectors are allowed, it may be impossible to simultaneously precharge
these nodes to the same value; finally test application time may increase because

of the increased number of vectors.
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L

Figure 5.24: Detection of stuck-open faults under charge sharing

Next it will be shown that by employing the CSM method, a test that
is valid under any circuit delay will remain valid under most charge sharing
situation. The fault either will still be detected by logic monitoring or the charge
sharing effects will be detected by CSM.

5.2.3.5 Using CSM to Solve the Charge Sharing Problem

Refer to Figure 5.24. Assume a stuck-open fault occurs in transistor group T'G1.
Let Ty and T be a valid test for this fault under any circuit delay using logic
monitoring. When T3 is applied, there must be a sensitized path P from one

output, say Oy, of TG to some primary output.

If O, itself is a primary output, then any charge sharing effect can be
observed directly. Now assume that O, is not a primary output. Without loss of
generality assume when 75 is applied, Oy has a value 1 in the fault-free circuit and

0 in the faulty circuit if no charge sharing exists. O, must feed another transistor
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group T'G2 that has an output, say Oy on the sensitization path P, and the value
of Oy is totally dependent on the value of O;. Again without loss of generality it
may be assumed that Oy =1 if Oy =0 and O, = 0 if O; = 1. This implies that
if O; = 0, there must exist a path, say P, of conducting transistors from VDD
to O,. Similarly if O; = 1, there must exist a conducting path, say P, from
GND to O;. Let TR, and TR, be, respectively, the sets of transistors on P, and
P, which are controlled by O;. If there is no charge sharing, each transistor in
TR, will be conducting while those in T'R,, will be non-conducting in the faulty

circuit.

Now consider the problem due to charge sharing. Let v be the voltage
value of Oy after charge sharing. If v is less than the threshold voltage of n-type
transistors (& 1V), then charge sharing has no effect on the circuit and the fault is
detected by logic monitoring. If v is greater than the threshold voltage of n-type
transistors but not large enough to turn off p-type transistors (= 4V'), then both
transistors in TR, and T'R, will conduct. Since TG2 is on the sensitized path,
the value of O, is determined by the conducting conditions of T'R, and T'R,.
This implies both paths P; and P, are conducting, and O; must be connected
to both VDD and GND. Therefore by monitoring the current supply, the fault
effect is detected. The last case is when v is greater than about 4V and a p-
type transistor is off. In this case the test is invalidated. However to have this
situation v must change from 0V to more than 4V. Let S = S; USq be the set of
nodes which can share charge with Oy, where Sy are the set of nodes which have
been precharged to 0, and S; = S — Sy (all the reminding nodes). To invalidate
the test the total capacitance of nodes in S, denoted as Cs,, must be at least
4 times that of nodes in Sy (C's,). This is very unlikely as can be seen from the
previous estimation of capacitances, especially when TG1 has a small number of

transistors.

Next the improvements that can be achieved by using CSM is examined.
Without CSM, the ratio of C's, over Cs, should be lower than 1/4. If CSM is
used along with the logic level monitoring, this ratio can be as high as 4/1. If an

improvement factor (I F) is defined as the ratio of the above two ratios (with and
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without CSM), then IF = (4/1) / (1/4) = 16. Such a high improvement factor
clearly shows the advantage of using CSM to deal with the charge sharing prob-
lem. Also because of this high improvement factor, the CSM test methodology
is still valid even if the estimates of capacitances are not very precise. For the
extreme case where C's, > 4C's,, one may modify the layout to force Cs, < 4Clg,.
The degree of this modification is obviously much less than that required for the

case where CSM is not used.

5.2.3.6 An Algorithm for Generating Robust Tests

An algorithm for generating robust tests is given below. Again without loss of

generality it is assumed that 77 sets OUT to 0.

Algorithm ROBUST-TG-SOP
Inputs: A circuit containing a stuck-open transistor. Each node in the circuit is

associated with a capacitance.

Outputs: A pair of robust test vectors for the stuck-open transistors and the
required modifications of the layout if the fault is detectable; otherwise reports
the fault is undetectable.

1. Estimate the capacitance of each node in the circuit based on the layout
information.

2. Find a new test < T}, T, > that cannot be invalided by circuit delays using
the procedure TG-SOP described in the previous section. If this fails, then
report the fault as undetectable and exit.

3. Derive SOUT, SOUT and SPUT from Ty and T,. Derive Sy and Sy from BPVT,
SOUT and SPUT. 1f Cs, < 4C, then report < Ty,T; > as a test and exit.
Otherwise if the layout is allowed to change then go to Step 4, else go to
Step 2.

4. Try to increase the size of nodes in Sy or decrease the size of nodes in S1
such that Cs, < 4Cs,. If this can be done then report this layout change,
report < Ty,T, > as a test, and exit, else go to Step 2.

End Robust-TG-SOP



In Step 3, the derivation of SPVT, SOUT and SPUT can be done by sim-
ulation. A simulator that, for a given input vector, is capable of identifying all
nodes connected to the OUT' node is sufficient. The most conservative estimate
for Sp is Sp = SPYT N SOUT because only the nodes in SOUT are guaranteed to
be precharged and, of these nodes, only the nodes which are also in SPY7 are
guaranteed to be involved in the charge sharing. S; = SPUT — Sy — {GN D} must
be used because every node in SOU7T

only the nodes in Sy and {GN D} definitely have the value of 0.

may be involved in the charge sharing, and

Note that the effects of charge sharing are checked only as a postprocess
after T} and T, have been generated. This will speed up the test generation
process since it can be expected that the probability of test invalidation due to
charge sharing is very small. The amount of backtracking due to charge sharing

should be much smaller than that found in Step 2.

5.2.3.7 Summary

The charge sharing problem associated with the detection of CMOS stuck-open
faults has been analyzed. It has been shown that this problem cannot be ignored
if high quality tests are required. If the worst case condition is assumed and only
conventional logic monitoring is used the detectability of stuck-open faults may
be dramatically reduced. However, by employing CSM and layout information it
has been shown that this problem can be easily solved. Although the estimations
made in this section are based on a 4pm process, similar results are applicable to
more advanced processes. Through the use of CSM the very high improvement
factor that has been obtained can easily offset the error caused by imprecise

estimations of capacitance.



5.3 Line Breaking Faults

Once the test generation algorithm for stuck-open faults is developed, a line
breaking fault can be tested by modeling it as a transistor stuck-open fault as

described below.

Assume the two end nodes of the line under consideration are @ and b,
then a breaking fault on this line can be modeled by replacing the line with a
transistor ¢ such that the drain and source terminals of ¢ are a and b, respectively.
In a good circuit transistor ¢ is always turned on so that no break between a and
b exists, while in the faulty circuit transistor ¢ is always off and thus the break

effect can be modeled.

Appendix

In Section 5.2.3.3 the result of charge sharing is given by the formula Vp, =
(0 x Co, +5 x (Cy + C,))/(Co, + Cz + Cy). In this appendix a more detailed
derivation of this formula is given. For simplicity assume only two nodes, a and
b, are involved in charge sharing, where @ is an output node of a CMOS gate and
b is an internal node in the pull-up side of the same gate, as shown in Figure
5.25(a). The implementation of this circuit is shown in Figure 5.25(b). The
bulk (or n-well) of transistors PA and PB must be connected to VDD. Let b
and a be precharged to 5V and 0V, respectively. The capacitance on node a
can be considered as consisting of two parts: the capacitance C;, whose other
side is connected to GND, and the p-diffusion capacitance C,, whose other side
is connected to VDD. The former charge consists of gate capacitance, routing

capacitance and n-diffusion capacitance.

Before charge sharing, i.e., before PA is turned on, the equivalent circuit
of this circuit is shown in Figure 5.25(c). There are some charge accumulated in
Ca,- When PA is turned on, the equivalent circuit is shown in Figure 5.25(d).
Some positive charge on the upper side of C, will flow to the upper sides of Cy,

and C,,, and/or some negative charge on the upper sides of C,, and C,, will flow
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Figure 5.25: Detailed analysis of charge sharing
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to the upper side of Cj. Thus the final result of this charge redistribution will
be as shown in Figure 5.25(e). According to the conservation law of charge, the
total change of charge in all capacitances must be zero. Thus the final voltage

value V; on both nodes a and b must satisfy the equation

Vy Vy Vs
LC%M®+L<%WW%£ Cy(v)dv = 0

where both C,,, C,, and C) are functions of the voltages across the capacitors.
For simplicity it may be assumed that C,,, C,, and Cj are all constant. Thus

the above equation becomes
Cay (Vs = 0) + Cop (Vs — 0) + Cy(Vy = 5) = 0
or

5xCy

Vi= :
f Oa1+ca2+cb

A simplier way for determining the final voltage V; is by equating the total
charges before and after turning on PA. First consider the case before turning
on PA. Since both sides of capacitance Cj, have the same voltage value (5V), the
total charge @ on Cy is 0 (Qy = Cy x Vg, ). Similar Qa, = Ca, x Vg,, = 0. The
charge on Cy, is Qa, = Cy, x Vo, = —5C,,. After turning on PA, the voltage on
both @ and b becomes V;. Thus V¢, =V; =0, V¢, = Vy —5 and Vg, =V = 5.
By equating the total charge, the following equation is obtained.

_5xC,, = (V;=0)xCy,
+(Vy — 5) %X Cy, + (Vf = 5) X C.
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Again, the same result is obtained.

5><Cb

Vi = :
i 0{11 + C{l2 + Cb




Chapter 6

Test Generation Framework

In this chapter a switch level test generation framework is presented. The basic
idea for developing such a framework is as follows. At the switch level many dif-
ferent fault models exist. If test generators for each individual fault model were
developed independently, a lot of effort would be repeated. On the other hand
if the major test generation components that will be shared by each individual
fault model can be identified and implemented, then to deal with each individual
fault model, it suffices to implement the necessary interfaces between these com-
ponents. The framework to be presented is based on the PODEM algorithm. It
contains 5 major components: objective selection, backtracing, logic implication,

fault propagation and backtracking.

6.1 Objective Selection

Objective selection is the process of selecting a local goal such that when the goal
is achieved, a test for the fault is likely to be identified. In the original PODEM
algorithm, only one objective is to be achieved at a time, that is, only one line (or
node) is to be assigned a desired value. When dealing with switch level faults,
it is possible that more than one objective are to be achieved simultaneously.

For example the initial objectives of detecting a bridging fault are to set the
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two shorted nodes to complementary values. Thus two objectives are needed.
Information obtained in circuit manipulation such as transistor directions can be
used to determined which objective is better. Another objective selection problem
occurs when generating a test for a stuck-open fault. It is necessary to turn off
all but the faulty transistor in the cutset. Thus multiple objectives are possible.
In this section the above two problems will be addressed, namely dealing with

two objectives for bridging faults and multiple objectives for stuck-open faults.

There are of course other problems associated with objective selection.
For example during backtracing or fault propagation, it is necessary to select a
temporary objective to achieve. To determine what the next temporary objective
should be at the switch level is not trivial. However these problems are best
discussed together with the processes requiring them, e.g., backtracing or fault

propagation.

6.1.1 Initial Objectives for Bridging Fault Testing

To detect a BF (z,y), two sets of initial objectives are possible, i.e., either @ =
l,y =0or 2 =0,y = 1. The correct selection of the set of objectives may have
a large impact on test generation performance since it is quite possible that only
one set of the objectives can be achieved. For example for the BF (z,y) in Figure
6.1 only (z = 1,y = 0) is achievable. If (z = 0,y = 1) is selected it is inevitable

that all the efforts spent to achieve this goal would be wasted.

Though it is important to identify which set of objectives is better, it is
impractical and unnecessary to obtain an exact solution. Experiences acquired
from experiments with SWiTEST indicate that the following guidelines in general

give quite satisfactory results.
1. If one of z and y is VDD or GND, immediately assign the correct logic

value to this node, and the only objective is to assign the complementary

logic value to the other node.
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Figure 6.1: Selection of initial objectives: (z = 1,y = 0) is achievable while

(z =0,y =1) is not

2. If # (y) and y (x) are in P- and N-network, respectively, then the objectives

arez=1and y=0(z=0and y =1).

3. If z (y) is in a P-network and y (z) is an output of a transistor group, then
the objectives are z = 1 and y = 0 (y = 1 and = = 0). Similarly if = (y)
is in a N-network and y () is an output of a transistor group, then the

objectives are z =0 and y =1 (y =0 and = = 1).

4. If z and y are two end nodes of a transistor ¢; (e.g., * and y in Figure 6.1;
this bridging fault is equivalent to a transistor stuck-on fault), then select
objectives based on the signal flow direction information of the transistor

ts as illustrated in Table 6.1.

5. If  (y) is an output node of a NAND gate, select z = 1,y = 0 (y = 1,2 = 0).
If  (y) is an output node of a NOR gate, select z = 0,y = 1 (y = 0,2 = 1).

The above rules should be applied in the order indicated. The rationale
for these rules is self-explanatory. If all the above conditions fail, then randomly
assign (z = 1,y = 0) or (z = 0,y = 1). If during test generation it is found that
one node has been assigned an opposite logic value to its objective value then

complement the original objective.
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| Type of t; [ Direction of ¢; | Objectives to select ||

P T =y (2 =71,2r=1D)
N T =y fe=0,y=1)
P y—a (2 =0yy=1)
N y—a (z=1,y=0)

Table 6.1: Objective selection according to signal flow direction information

6.1.2 Objective Array

Because multiple objectives may exist, it is necessary to use some data structure
to store these objectives. In this study an objective array is used for this purpose.
Each element in this array stores one objective to be achieved. The objective of
the first element is first selected and achieved, followed by the next one, and
so on. When all objectives in the array are achieved, either the test generation
procedure is completed (e.g., detecting BFs using CSM) or the next stage of
test generation should start (e.g., the cutset condition for a stuck-open fault is
satisfied and next T} and T, are to be identified).

If during test generation backiracking occurs, the previously achieved ob-
jectives must be examined to see whether some of them are affected by the back-
tracking. Two methods can be used to deal with this problem. The first method
is just to check all previously achieved objectives to determine which objectives
need be reevaluated. The second method is to record the first objective that
is achieved by each PI assignment (PIA). This is illustrated in Figure 6.2. PIA
1 achieves objectives a and d, PIA 2 achieves b, PIA 3 achieves ¢ and [, and
PIA 4 achieves e. Thus the positions 1, 2, 3 and 5 are recorded for PIAs 1, 2,
3 and 4, respectively. Now if it is found that objective g cannot be achieved,
then backtracking on PIA 4 must be performed. By retrieving the number 5
that is associated with the PIA 4, it can be immediately identified that the next
objective to be achieved is ¢ and all objectives preceding this objective are not

affected.
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Objective 1 2 3 4 5 6 7
array

1 2 3 ]
1 2 3 4

PI assignments

Figure 6.2: Recording the first objective that is achieved by each PI assignment

6.2 Backtracing

Once an objective is identified, the next step is backtracing, i.e., to find a promis-
ing PI assignment to achieve the objective. Backtracing always succeeds in the
original PODEM algorithm, i.e., there always exist some unspecified primary in-
put(s) so that by assigning logic values to these Pls the status of the objective
line (or node) can be changed. This is because for a logic gate G’ with an unspec-
ified output, there must exist some unspecified input(s) to G' and assignments
of values to these inputs will give the gate output a specified logic value. For
those unspecified input(s) of G assume they are fed by a set of gates G'S, then
there in turn exist some unspecified input(s) to the gates in G:S. Continuing this
procedure for a combinational circuit where no loops exist, it is always possible
to find a set of unspecified primary inputs whose assignments can change the
unspecified status of the objective line. This, however, is not always true at the

switch level as explained below.

Refer to Figure 6.3(a). Let the objective be “set @ to 1.” If due to previous
assignments transistors ¢; and {, have both been turned off, then there would be
no further PI assignments that can set @ to 1 unless a backtracking is conducted.

This example shows that backtracing at the switch level may fail, i.e., it is not
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always possible to change the unspecified status of a node by assigning values to

more primary inputs.

1| 1I
o, 0 .
LT L 0 "4 [}
h T ‘e T ts :”3‘ 0

Figure 6.3: Problems at the switch level backtracing: (a) no further assignment

can give z a specified logic value, and (b) a loop may exist at the switch level

There exists another problem that must be addressed during backtracing.
Consider Figure 6.3(b). Assume the objective is to set y to 1 and transistors 1,
ty, t3 and t4 have been set to ON. A backtracing process may figure out that
to set y to 1, a temporary objective of setting = to 1 is a promising one. This
in turn leads to another temporary objective z = 1. Now to set z to 1, there
are two possibilities: going through #3 or going through t4. If 14 is selected, then
the next temporary objective will be setting w to 1 and the objective y = 1 is
likely to be achieved. However if ¢3 is selected, then the next temporary objective
will be setting y to 1, which is the original objective. In the gate level PODEM
algorithm, it is assumed that no loops exist in the circuit and thus the backtracing
is a “memoryless” process, i.e., when a new temporary objective is determined,
the old objective is simply discarded. If the same mechanism is used for the

switch level test generation, then when a “switch level loop” such as the above
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one exists (y — & — z — y), the test generation procedure may enter an infinite

loop.

To solve the above two problems while still preserving the advantage of us-
ing gate level information, a sophisticated backtracing algorithm, Backtracing,
is developed. The input to Backtracing is an objective to achieve which is given
to the algorithm by the second argument “Obj.” Backtracing tries to identify
a promising primary input assignment. When it succeeds, it returns a “TRUE”
logic value and the PI assignment is stored in the first argument “Pl-obj.” If
it fails, then the algorithm returns “FALSE.” “Current-obj” in the algorithm is
used to store each temporary objective. To achieve each temporary objective, the
algorithm first checks whether it is an output node of an inverter, NOR or NAND
gate. If it is, then the selection of the next temporary objective is similar to that
used in the gate level PODEM algorithm. The hardest and easiest input to a

gate is determined by the level information obtained during circuit manipulation.

If the objective node is not an output of a logic gate, then a procedure
Tran-backtracing is called. This procedure is a true switch level backtracing
algorithm. It employs a hybrid depth-first/breadth-first search mechanism using
two search queues (); and ();. This search mechanism guarantees that each
node in the transistor group containing the original objective can be used as a
temporary objective at most once. It is hybrid because during searching, some
nodes will be put at the beginning of the search queues while some will be put
at the end of the queues. Whether an objective is to put in @; or ()2 depends
on the likeness of objective to be successful. Information about the type, on/off
status, and signal flow direction of each transistor determined this likeness. The
objectives in Q; are always processed before the objectives in (). By this manner,
the temporary objectives that are likely to be successful will be processed first.

The Backtracing algorithm is given next.

Boolean Algorithm Backtracing(Pl-obj, Obj)
Inputs: The initial objective “Obj” that contains an objective node “Obj.node”

and an objective value “Obj.value.”
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Outputs: If backtracing succeeds, reports the primary input and the value to be
assinged via “Pl-obj”; otherwise reports backtracing failed.

1. Current-obj.node = Obj.node;
Current-obj.value = Obj.value;

2. If (Current-obj.node is a PI) do
(a) Pl-obj.node = Current-obj.node;
Pl-obj.value = Current-obj.value;

(b) return(TRUE);

else do:

(a) If (Current-obj.node is the output of an inverter) do

i. Current-obj.node = input of the inverter;
Current-obj.value = 1— Current-obj.value;

ii. Go to Step 2;
(b) If (Current-obj.node is the output of an NAND gate) do

i. If (Current-obj.value is 0) Current-obj.node = Hardest input to
the gate;
else Current-obj.node = Fasiest input to the gate;

ii. Current-obj.value = 1— Current-obj.value;
iii. Go to Step 2;
(c) If (Current-obj.node is the output of an NOR gate) do

i. If (Current-obj.value is 1) Current-obj.node = Hardest input to
the gate;
else Current-obj.node = Fasiest input to the gate;

ii. Current-obj.value = 1— Current-obj.value;
iii. Go to Step 2;

(d) Call Tran-backtracing(Current-obj);
If (Current-obj is not empty) go to Step 2; else return(FALSE);

End Backtracing

Procedure Tran-backtracing(Current-obj)
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1. Start with Current-obj.node, do a hybrid depth-first /breadth-first search
through each transistor whose status is ON or unknown in the same tran-
sistor group. Let ¢, = (u,v) be the transistor to be visited next, u be the
node currently being visited, and v be the other node of ¢,. Also let g be
the gate terminal of ¢, and @; and @), be the search queues.

The action when visiting ¢, is described in Table 6.2, where
Sta(t,) is the status of transistor ¢,, Obj(u) is the objective value at node

u, Val(v) is the current value of node v, Typ(t,) is the type of t,
(P-transistor or N-transistor), Dir(t,) is the signal flow direction of #,,

Vion 18 the logic value of g that turns on transistor ¢,,
[9,V] is the objective of setting g to V,
BQ; and EQ); are the beginning and the end of @);,¢ = 1,2, respectively.

2. Return an empty Current objective;

End Tran-backtracing

|| Sta(t,) | Obj(u) | Val(v) | Typ(t,) | Dir(t,) | Action |
1 X 1(0) | 1(0) — — Return ([g, V,..])
2 X 1 (0) X P (N) | v = u | If v unvisited, put v at £Q;
3 X 1 (0) X Else If v unvisited, put v at £Q»
4 ON 1 (0) X P (N) | v = u | If v unvisited, put v at BQ:
5| ON 1 (0) X Else If v unvisited, put v at BQ»

Table 6.2: Actions to take during backtracing

Consider the example shown in Figure 6.3(a). Since no transistor with
ON or unknown status is connected to 2, Tran-backtracing can immediately
return an empty Current-obj to Algorithm Backtracing which in turn returns

“FALSE” to the program calling it.

Next consider the example shown in Figure 6.3(b). Assume an objective
of setting z to 1 is to be achieved. The direction assignment described in Chapter

4 will assign a downward direction to all transistors in Figure 6.3(b). Since both
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t; and ¢, are ON, z and y will be put in the beginnings of @; and @, according
to rows 4 and 5 of Table 6.2, respectively. Thus z will be the next node to be
processed. Since ¢4 is ON, w will be put in the beginning of @Q;. No action will
be taken on t3 since it is ON and y is already in Q,. Thus the next objective is to
set w to 1. Procedure Tran-backtracing will then return [s, 0] as the Current-
obj to Algorithm Backtracing according to the row 1 in Table 6.2. Note that

though @, still contains y, it is not necessary to further process this node.

It is clear that by using Backtracing and Tran-backtracing, both prob-
lems described previously, namely “no more PI assignment” and “switch level

loops,”

can be solved. Also because the direction information and two queues are
used , the search process in Tran-backtracing is guided and can exit as early

as possible, thus improving the efficiency of test generation.

6.3 Logic Implication

During the initialization step of the PODEM algorithm each primary input is
set to a don’t care (or X) state. As test generation progresses, new values are
assigned to the primary inputs and the effects of the assignments are propagated
to other parts of the circuit. Define a node as a 1-node (0-node) if it is VDD
(GND) or is a primary input with a logic value 1 (0). Since the output of a
transistor group can be set to 1 (0) only when a conducting path from some
lI-node (0-node) to that node is established, it is not necessary to perform logic
implication on a group if it is known that such a path cannot be set up. Based on

this observation, an efficient algorithm called Implication has been developed.

Implication is a recursive algorithm. It is basically a “depth-first search”
starting with the node N that is to be assigned a logic value V. When invoked
as Implication(N, V), it first saves the old value of N before assigning the new
value V to N. This is necessary for the backtracking purpose as will be described
later. In the Implication algorithm n.value and n.old-value are the current and

old logic values of node n, respectively. All unassigned nodes that are connected
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to N through conducting transistors are then assigned a value of V. When the
status of the gate terminal of a transistor is changed such that the transistor is
turned on, the status of the drain and source nodes of the transistor are examined.
If one of them, say v, is X and the other has a specified logic value, then v will
be assigned the logic value of the other node and Implication continues on v.
If it is found that two nodes with complementary logic values are connected, the
program reports a message which indicates something may be wrong (e.g., the

circuit under test does not satisfy rule A2 given in Section 5.1.3).

Algorithm Implication(N, V)
Inputs: A node N and a logic value V to be assigned to node N. The value of

node N is represented as N.value.
Outputs: Logic assignments to nodes that are affected by the assignment of V' to

N.

1. N.old-value = N.value;
N.value = V;

2. For each node u that is connected to N through a conducting transistor,

do:

If u.value = X do Implication(u, V);
else if u.value = (1 — V) then print (“A conducting path from VDD
to GND exists”) and exit;

3. For each transistor ¢ controlled by N, if ¢ is turned on by assigning V' to
N, do the following:

Let ¢, and t; be the source and drain nodes of ¢ respectively.

If (t,.value = X and ty.value # X)) do Implication(t, {4.value);
else if (#4.value = X and ¢,.value # X) do Implication(t,, t,.value);
else if (tq.value # t,.value) print (“A conducting path from VDD to
GND exists”) and exit;

End Implication



The advantage of Implication is that it is an incremental, event-driven
algorithm. Logic simulation is performed only through conducting transistors.
The worst case time complexity of Implication is linear with the number of
transistors in the circuit. In general the complexity will be much less than linear

time since the depth-first search will only search through conducting transistors.

It is interesting to note that Implication only assigns “strong” logic values
to circuit nodes, i.e., when a logic value 1 (0) is assigned to a node v, v must
be connected to a 1-node (0-node) through conducting transistors, and the gate
terminal of each of these conducting transistors must in turn be connected to
a power source or a primary input. This property has some impacts on test

generation as is described next.

First consider the example shown in Figure 6.4(a) where A is assigned a
logic value 1 and B = X. Since either B =1 or B = 0 will make C = 1, appar-
ently the assignment A = 1 should imply C' = 1. Implication cannot identify
this situation since both inputs to the gate driving C' are X. This problem, how-
ever, does not affect the generation of a test. Assume in Figure 6.4(a) a test for
C stuck-at 0 is to be generated. Though a test generator employing Implica-
tion cannot identify A = 1 as a test vector, it will either identify AB = 10 or
AB =11 as a test vector. Since the goal of test generation is to identify only one

test vector for a given fault, either AB =10 or AB =11 is as good as A = 1.
A 1 A 1
D T
X o L D
1 C

L

(a) (b)

Figure 6.4: (a) A =1 implies C =1 (b) hazard condition

Now consider the case where a two pattern test < 71,7, > is to be used.

If Ty = AB = 11 and T = AB = 10, then there may exist a static 1-hazard at
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C' during the transition as shown in Figure 6.4(b). Recall that in Section 5.2.2
we have presented a test generation procedure which generates T} first and then
Ty and T3 based on Ty. If when T, is generated, a simulation algorithm which
identifies line C as 1 given AB = 1X is used, then the hazard condition at C
will not be identified when generating 7} and 7). Thus the resulting test is not

necessarily “robust.”

With the above observation in mind, next the necessary and sufficient
condition given in Theorem 12 will be proved. The proof requires the following

definitions and Lemmas.

Lemma 12 If a circuit node is assigned a logic value 1 (0) using Implication
then it must be connected to a I-node (0-node) through a path of conducting
transistors, and the gate terminal of each of these transistors is assigned a logic

value by Implication which turns on the transistor.
Proof: By the definition of Implication. O

Definition 15 (Cover): A test vector T, covers another vector Ty if the follow-
ing conditions are satisfied, where i indicates the i-th bit in a test vector and each

bit of a vector is either 0, I or X.
1. If Ty(z) = 1 then To(z) = 1.
2. If Ty(z) = 0 then To(z) = 0.
Definition 16 (Hold on/off): A transistor t is held on (off) by a test vector

T if when T is applied the gate terminal of t is assigned a logic value that turns

t on (off ) using the Implication algorithm.

Lemma 13 T holds on (off) a P-type transistor t with gate terminal g if and
only if there exists a path of transistors from some 0-node (1-node) to g such that
each transistor on this path is held on by Ty. A similar lemma holds for N-type

transistors.
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Proof: By induction and the definition of hold on (off). o

Lemma 14 IfT; = T\ AT, as defined in Section 5.2.2, then both Ty and Ty cover
T,.

Proof: By definitions. O

Lemma 15 If T, covers Ty, and Tj, holds off (on) a transistor t in a circuit, then
T also holds t off (on).

Proof: If 7} holds ¢ off (on), then the status of ¢ cannot be changed by

adding more PI assignments to the don’t care bits of T5. o

Lemma 16 If both Ty and Ty hold off (on) a transistor t but Ty = Ty A Tz does
not hold t off (on), then there exists a potential static hazard at the gate terminal

of t during the transition from Ty to T,.

Proof: Without loss of generality assume ¢ is a P-type transistor. Let the
gate terminal of ¢ be g. Since Ty cannot hold ¢ off (on), there exists no path from
any 1-node (0-node) to g such that each transistor on this path is held on by Tj.
If there exists no path from any l-node (0-node) to g such that all transistors
on this path are held on by both 7} and T3, then 7} and 75 must hold off (on)
through different paths. Therefore during transition from 7y to T, it is possible
that no conducting path exists from any 1-node (0-node) to g. This implies that
a conducting path from some 0-node (1-node) to g is possible. Thus a potential

static hazard exists at g.

Now assume there exists a path P from some 1-node (0-node) to g such
that all transistors on P are held on by both T} and T,. T, cannot hold on all
transistors on P otherwise T will also hold off (on) transistor t. Therefore by
induction at least one transistor on P will have a potential static hazard at its

gate terminal during the transition from T} to T5. This implies that it is possible
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that P can be temporarily turned off during the transition, thereby resulting in

a static hazard at the gate terminal of ¢. O

Now we are ready to prove Theorem 12 in Section 5.2.2 which is rephrased
below with node ¢ being replaced by node ¢ since t is used as a transistor in this

section.

Theorem 13 Let < T\,T, > be a lest for a transistor t; stuck-open when no
circuit delay is considered. Let g be the output node of the transistor group con-
taining t; and let s be the power source that is connected to g in a good circuit

when T is applied.

If Ty =Ty ATy, then “< T1,T; > is a valid test for t; under any circuit
delay” if and only if “there exists a cutset C' that separates s and t, C contains
the faulty transistor ty, and Ty holds off all transistors in C' — {ts}.”

Proof: If there exists such a cutset C' then obviously the test cannot be
invalidated because any transient vector from 77 to T3 must cover Ty thereby
holding off all transistors in C' — {t;}. If such a C' does not exist, then there
must exist a path from s to ¢ such that this path does not contain ¢y and each
transistor is not held off by T;. Thus during the transition from 7} to 7, each
transistor on this path is either turned on or has a hazard (Lemma 16). Thus

the test may be invalidated. m]

6.4 Backtracking

Backtracking in the gate level PODEM algorithm is simply a forward implication
starting with the primary input whose value is just changed. This is feasible
because at the gate level each circuit line (or node) is completely specified by
the inputs to the gate that drives the line (or node). Figure 6.5 shows this effect
where the primary input A is to be changed from 0 to 1. The figure shows that

by simply reevaluating each gate that is affected, the effects of a PI assignment
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change can be easily propagated throughout the circuit. It is not necessary to
keep track of the information about which PI assignment causes the status change

of any internal line (or node) of a circuit.

1 1—0

0 > 0—1
X }_’17 Doix

X

Figure 6.5: Backtracking at gate level can be accomplished by logic simulation

Next consider the above situation at the switch level and the circuit shown
in Figure 6.6. In Figure 6.6(a) A is assigned 0. This results in = being assigned
a value of 1. Assume after some steps of test generation, B is assigned a value
of 0 as shown in Figure 6.6(b), which results in the assignment of value 1 to y.
Assume later it is found that AB = 00 cannot lead to a test, then backtracking
must be performed and a value of 1 must be assigned to B as shown in Figure
6.6(c). This will turn transistor T back to off. If the information that = drives
y to 1 due to B = 0 was not recorded, then unless a new simulation process on
the entire transistor group that contains z and y is done, it is impossible to go

back to the status before B = 0 was assigned.

Since in general a switch level simulation through an entire transistor
group is much more time-consuming than a gate level simulation, in this study
the information about which PI assignment makes the status change of each node
is recorded so that when a backtracking occurs the previous status of each affected
node can be restored immediately. The additional memory for this method is a
pointer for each node. The value change information can be recorded using the
bit-pattern property of C language. Thus no other additional memory is required

since many unused bits exist for each node.
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Figure 6.6: Difficulty in switch level backtracking

6.5 Fault Propagation

When dealing with bridging fault using CSM, it is not necessary to propagate the
fault effect to some primary outputs. However for stuck-open or stuck-at faults,

fault propagation is necessary.

Fault propagation at the switch level can be divided into two stages. The
first one is to propagate the fault effect from the fault site to the output of the
faulty transistor group, and the second one is to propagate fault effect from the
output of the faulty transistor group to the output of another transistor group
and then to the output of yet another transistor group, such that eventually the

fault effect can be observed at some primary output.

The propagation of fault effects to the output g of the faulty transistor
group can be done by simply setting objectives that will give g different logic
values in the fault-free and the faulty circuits, and then try to backtrace and
assign PI values to achieve these objectives. Similarly, to propagate a fault effect
from the input to the output of a transistor group, simply try to find some PI
assignments such that the output will have different logic values in the fault-free

and faulty circuit.

The fault propagation mechanism used in this study is similar to that

used in the PODEM algorithm. To determine a transistor group through which

173



to propagate an error, the level information, i.e., the distance between a transistor
group and its closest primary output, is used. The objective is to select transistor
groups in such a way as to reach a primary output in a minimal number of steps.
In the PODEM algorithm both the fault-free and faulty circuits are processed
at the same time using the D notation [16, 32], while in our switch level test
generator, the fault-free and faulty circuits are processed separated. Thus the
objective of setting the output of a transistor group to different values in the fault-
free and faulty circuits is actually two objectives, one for each circuit. During
fault propagation, if a node has different values in the fault-free and faulty circuits
(including 1 and X, and 0 and X), then it is considered to be in the D-frontier
(32].

When one primary input is assigned a new value, the implication must
be performed on the fault-free and faulty circuits separately, thereby apparently
requiring twice the computation time compared with the original PODEM algo-
rithm. However at the switch level if a node has complementary logic values in
the fault-free and faulty circuits, the node turns on different types of transistors.
Refer to Figure 6.7(a) where the fault effect is to be propagated from u to v.
Assume u has values 1 and 0 in fault-free and faulty circuits, respectively. In the
fault-free circuit only the N-network is processed using Implication since u =1
cannot turn on any transistor in the P-network. Similarly in the faulty circuit

only the P-network is processed as u = 0.

Now consider the method of processing the fault-free and faulty circuits at
the same time. To simplify the analysis consider Figure 6.7(b). The value of v will
become 1/ due to the P-type transistor and z/0 due to the N-type transistor.
By using the original PODEM algorithm where 5-valued logic (0,1,X,D, D) is
employed, both 1/z and /0 are considered as X. Thus fault propagation fails.
This problem can be overcome by using 9-valued logic [33]. However using 9-
valued logic the P-network and N-network must both be processed at the switch
level, thus computation time is not saved. It may even be more time-consuming
since it requires operations on 9-valued logic compared to three-valued logic when

the fault-free and faulty circuits are processed separately.



P-network
1 \y
X —=l1/z

. 1 " 0/1
T v
U X’ — 37/0

0 )

N-network (b)

L
(a)

Figure 6.7: Comparison of processing fault-free and faulty circuits separately and

simultaneously
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Another advantage of separating the fault-free and faulty circuits is illus-
trated in Figure 6.8, where the fault effect at u is to be propagated to v. If both
the fault-free and faulty circuits are processed at the same time using the D no-
tation, the input 1X1 does not propagate the fault effect to v, as shown in Figure
6.8(a). By separating the fault-free and faulty circuits and using Implication,
Figure 6.8(b) and (¢) show that v will have different logic values in the fault-free

and faulty circuits and thus the fault effect has been propagated from u to v.

i U ; Es—a—U
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D
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Figure 6.8: Advantage of separating fault-free and faulty circuits
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Chapter 7

Scan-Based Sequential Circuit Testing

So far the emphasis in this dissertation has been on test generation for combi-
national circuits. Generating tests for sequential circuits is a harder problem.
Sequential circuit testing can be simplified by employing a scan-based design
[30], such as LSSD [117]. One problem with this technique is that defects may
also occur within the scan registers. Thus it is essential to detect faults in scan
registers to guarantee the proper functionality of a scan-based system. In this
chapter a systematic method for analyzing all possible faults within the scan
path of a scan-based CMOS circuit is given. The analysis shows that both logic
and current monitoring are necessary in order to detect all irredundant faults. A
universal test sequence is derived based on the analysis of single bridging faults.

This sequence also detects all irredundant stuck-at and stuck-open faults.

7.1 CMOS Scan Registers & Test Sequences

Scan registers can be implemented in several ways [1]. The discussion in this
chapter is based on the implementation shown in Figure 7.1. The analysis can

easily be applied to other types of scan registers.

Figure 7.1(a) and (b) are the switch- and gate-level descriptions of a scan

cell which consists of two inverters and two pass transistors. Figure 7.1(c) shows
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Figure 7.1: A scan path, storage elements and scan cells
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the connection between cells. A storage element consists of two scan cells. The

notation C, (S,) denotes a scan cell (storage element) that contains node a.

In this chapter only BFs between nodes within the scan path are consid-
ered. Also BFs which involve VDD, GND or any clock signal are assumed to be
easily detected and will not be considered. Thus in each scan cell three nodes
(nodes 1, 2 and 3 in Figure 7.1(a) and (b)) may be shorted (bridged) to other
nodes. A scan cell C, is said to have a value v, denoted by C, = v, if the value
of its node 1 is v. For example ', = 0 implies that the first, second and third

nodes of scan cell C, have values 0, 1 and 0, respectively.

Two-phase clocking (¢, and ¢;) on the scan path is assumed. FEach clock
cycle consists of 4 subcycles: p; = (¢1 = 0,62 = 0), p2 = (¢1 = 1,¢2 = 0),
p3=(¢1=0,¢02 =0) and py = (¢ = 0,2 = 1) as shown in Figure 7.2(a). Figure
7.2(b) shows the circuit configuration of the scan path during each subcycle. A
scan cell always forms a feedback loop during p; and ps. It also forms a loop
either during p, or p4, but not both. For example in Figure 7.2(b), C, forms a
loop during p;, ps and py. The notations C,_; and C,4; denote the scan cells
which immediately precede and follow C,, respectively. During ps, z is actually
in the feedback loop of cell C,_;.

For each node a, two functions, n(a), {(a), are defined. n(a) is the number
of scan cells between the scan input and the scan cell containing node a; {(a)
is the location of a (1, 2 or 3) in the scan cell. Without loss of generality it is
assumed that a bridging fault occurs between nodes = and y, where z is closer to
the scan input (SI) than y is. A distance function D between z and y is defined
as D(z,y) = n(y) — n(z). For example in Figure 7.1, {(z) = 2, l{(y) = 1 and
D(z,5) = 3.

A BF on the scan path is detected by scanning a test sequence through the
scan path and observing the scanned-out data or monitoring the current supply.
For CSM, the fault is detected when the appropriate part of the test sequence
is scanned through the fault site. It is not necessary to scan out the test data.
For some BF which cannot be detected by CSM, it is still possible to detect the
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Figure 7.2: Timing of the scan path

180



fault without fully scanning out the test data. The notation ud(k)v will be used
to denote a test sequence, where v and u are the first and last bit to be scanned
in, and d(k) is a sequence of k don’t care bits, k > 0. A bit is underlined if it
must be scanned out and observed. For example, 1d(3)0 denotes a sequence of
bits 1 x x x0 and only the first bit (0) need be scanned out and observed. The

complement value of v is denoted by .

7.2 Effects of BF's

This section analyzes the effects of BFs. The necessity of monitoring currents
and observing scan data in detecting BFs is illustrated. Some fault effects which

have not been treated in the literature are discussed.

The necessity of CSM is obvious. A BF may result in a circuit oscillation
where the logic value of each shorted node cannot be determined. The only way to
guarantee the detection of this fault is by using CSM. The necessity of observing
scan data needs some justification. Consider a BF between node 1(z) of C; and
node 1(y) of C, in Figure 7.2. Assume during p;, Cz—1 = 1 and C,_; = 0. When
entering py, the BF results in a clash between the feedback loops in C,_; and
Cy—1. No external control for these two loops exist during p,. Thus both loops
(cells) may reach a steady state value where either both are logic high or logic
low. There will be no large current consumption during steady state. To detect

such a fault the test data must be scanned out and observed.

The above clash situation may occur when two shorted loops become iso-
lated from their input lines due to the clock setting. The final value on both
loops depends on circuit parameters (e.g., the physical size of transistors). Four
possible results exist when two cells C,; and C,, clash: 1) cell C;; dominates, 2) cell
C, dominates, 3) logic high dominates, and 4) logic low dominates. It is assumed
that the result of a clash for a particular BF is time-invariant. For example, if
C, dominates C, in a clash due to a BF f; at a certain time, then C, always

dominates C, in any clash between C;; and Cy due to f;. However for a different

181



BF between C, and C) (there are 9 different BFs between C, and C,), say fa,
the dominance relation may be different, e.g., C;, may dominate C, for f,. For

two different clashes their dominance results are assumed to be independent.

Now consider the detection of BFs that may result in clashes. The BF
between 2 and y in Figure 7.2 can be detected by a test sequence containing a
transition from 0 to 1 or 1 to 0. However, not all BF's are so easy to detect. Con-
sider a fault between = and y such that D(z,y) = 8 and I(z) = I(y) = 1. There
are 3 storage elements between  and y. Thus unless a test sequence containing
Ix x x0 or O0x x x1 is used, the fault cannot be detected. The test sequence
010 and 01100 proposed in [101] cannot detect such a fault. One may think the
problem is still easy and the only requirement is to scan two different values to
two shorted nodes such that the clash results in a value change at one node. By
scanning out the changed value, the fault can be detected. Unfortunately, this
is not always true due to two reasons. First, to have a clash two complementary
values must be scanned to the two shorted nodes. However before arriving at the
shorted nodes, the test data may have been changed. Secondly, even if this data
successfully arrives at the shorted nodes and a clash occurs, the test data still
must be scanned out and observed. During the scan out process the test data
may again be modified to its original value and thus the fault effect is masked.
Consider BF F14 in Figure 7.3. A detailed description of faults in Figure 7.3 will
be given later. For now only F14 is considered. Assume a 1 and a 0 have been
successfully scanned to the second node of €', and the third node of C;_;, respec-
tively. There is a clash between these two cells during the next p,. Assume logic
high dominates in this clash such that the value at 2 is changed to 1. To observe
this effect, this value must be scanned out. But during the scan out process this
1 must pass through C, and sets y to 0. If at this time the value of = happens to
be 1, then the clash between C, and C,_; occurs again. Since 1 dominates this

clash, the value of y will be changed to 1 and the fault effect is masked.

An even more complex case is F'13, where two clashes between two different

pairs of cells (C,—; and C, during p,, and C, and C,_; during p4) can occur. It



is clear that a systematic analysis is necessary to guarantee the detection of all
faults.

7.3 Detailed Examination of BF's

In this section a systematic method for analyzing all possible BFs is presented.
All BFs are classified into 4 major categories according to the value of D(z,y).
Under each category, each fault is further classified using the values of {(z) and
l[(y). It is shown that only one type of fault may be redundant (D(z,y) = 0,
(I(z),{(y)) = (1,3)). Without loss of generality, in the following discussion the
pass transistors in C, are controlled by ¢; and &;. The results can be applied
to the case where the pass transistors in C, are controlled by ¢; and ¢, by

interchanging p; with ps, and py with py. All discussions refer to Figure 7.3.

7.3.1 D(z,y) =0 — BFs in the Same Scan Cell

F1: (I(z),l(y)) = (1,2) or (2,3). This fault causes a short between the input and
output of an inverter and thus is detected by CSM.

F2: I(z) =1, l(y) = 3. This fault forces C, to have a permanent loop. Thus if
Cr-1 and Cy had different values at py, then a clash between them occurs during
p2. If C, dominates this clash, a sequence byb; = vv (v is the first bit to be
scanned in) can detect this fault as described next. At some py, b; is in C and
Cy+1, and by is in Cpy. If by has been changed to v at this time due to the BF,
then Cy41 must have the same value v and this value cannot be further changed
during the scan out process. Thus the fault can be detected by observing b;. If
by is not changed, then since b, cannot be changed before arriving at C,_;, there
must be a clash between C,_; and C, during p,. Since C, dominates the clash,
the value in C, cannot be changed to v as in the fault-free circuit. Thus during
ps, Cy still has a value of ¥ and hence the value of b; is not propagated through

C,. This fault effect cannot be masked during further scan operation and the
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fault will be detected by observing by. Thus byb; = vo can detect this fault if C,,
always dominates the clash. If logic high (1) always dominates the clash, then
the sequence byby = 10 will detect this fault because b; cannot be changed before
arriving at C,_;, and By will be changed to 1 if a clash occurs during some ps.
This 1 cannot be further changed and thus the fault can be detected by observing
by. Similarly if 0 always dominates the clash, then byb; = 01 can detect the fault.
Finally if C;_; always dominates the clash, then during p, the value of C,_; is
propagated to C, in both the faulty and fault-free circuits. Thus this fault is
redundant. Obviously this fault cannot affect the logic function of the scan path.
As will become clear later, this is the only redundant fault among all possible
BF's. In summary this fault is either redundant or is detected by a test sequence
that contains 10 and 01.

7.3.2 D(z,y) = 1 — BFs Between Two Adjacent Scan
Cells

F3: ({(z),l(y)) = (1,1) or (1,3). A clash between C,_; and C} occurs during
p2 if such a fault exists. If C, dominates the clash, a sequence byb; = v@ can
detect this fault as described next. If the value of b; becomes v when by is in
C, and b is in C; and Cy_y, by cannot be further changed during the scan out
operation. If b; is not changed, by will be changed to © by the clash and cannot
be further changed thereafter. If C,_; dominates the clash, then b6, = v? can
detect the fault since the value of b, will be changed to v during the clash and
this fault effect cannot be masked. If 1(0) always dominates, then byb, = 10(01)
detects this fault since the 0(1) bit will be changed to 1(0) and can be observed.

In summary, a sequence containing 01 and 10 detects this fault.

F4: (I(z),1(y)) = (1,2), (3,2), (2,1) or (2,3). These faults are detected by CSM
during py.
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F5: (I(z),l(y)) = (2,2), (3,1) or (3,3): These faults are detected by byb; = v
since the value of b; will be changed to v during some p, and this change cannot

be masked thereafter.

7.3.3 D(z,y)=2k, k>1

F6: l(z) = l(y) = 1. A clash occurs between C,_; and C,_; during p; if these
cells had different values during p;. If C,—; dominates the clash, this fault can be
detected by the sequence by 1d(k — 1)by = vd(k — 1) since either b; is changed
to v when it passes through C,_;, or by is changed to @ if b; is not changed. If
Cz-1 dominates, then byy1d(k—1)b; = vd(k—1)2 can detect the fault since by will
be changed to v when passing through C,_;. If 1(0) dominates, then 1d(k — 1)0
(0d(k —1)1) detects this fault. In summary a sequence containing 1d(k —1)0 and
0d(k — 1)1 detects this fault.

F7: l(z) = 1, I(y) = 2. If this fault is present, the value of z is dominated
by the value of y during p,, i.e., node z takes the value of node y, since y is
controlled by an inverter which is not in a feedback loop. Thus the sequence
brr1d(k — 1)by = wd(k — 1)v detects this fault since either b is changed to v

before arriving at Cy, or by is not changed but bgy is changed to v.
F8: l[(z) =1, l(y) = 3. Similar to F'7, the test sequence must contain vd(k—1)2.

F9: I(z) = 2, l(y) = 1. During p; the value of y is changed to that of x. Thus
by1d(k — 1)by = vd(k — 1)u detects this fault.

F10: (I(z),l(y)) = (2,2) or (3,3). During ps,  and y are both driven by an
inverter which is not in a feedback loop. Thus by scanning in by d(k — 1)by =
vd(k —1)2 the fault can be detected by CSM if b; is not changed when it arrives
at Cy_;. If by is changed, then it cannot be further changed and thus the fault

effect can be observed at the scan output.

F11: ({(z),l(y)) = (2,3) or (3,2). Similar to F10; the test sequence must contain
bry1d(k — 1)by = vd(k —1)v.
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F12: I(z) =3, I(y) = 1. Similar to F9; the sequence by ;d(k—1)b; = vd(k—1)z
detects this fault.

7.3.4 D(z,y)=2k+1,k>1

F13: I(z) = l(y) = 1. Two possible clashes can occur when this fault is present:
the clash between C,_, and C, during p;, and the clash between C, and C,_,
during ps. The former is referred to as Clash 1, and the latter as Clash 2. If C,_,
dominates Clash 1, then a sequence byt2d(k)b; = vd(k)z can detect the fault no
matter what the result of Clash 2 is, since the value of b; will become v after
passing through C'. If 1 (0) dominates Clash 1, then 1d(k)0 (0d(%)1) detects the
fault as the first bit will be changed to a 1(0). If C,, dominates Clash I, then
depending on the result of Clash 2, four subcases exist. If C, dominates Clash 2,
then the sequence byb; = v can detect this fault as explained next. During some
p1, by isin C) and Cy_;, and by is in C,_,. If the value of b, has been changed to
v at this time, then this value cannot be further changed (because €y, dominates
Clash 1) and the fault can be detected by observing b;. Thus assume b; is not
changed. When entering p,, Clash 1 occurs and the value of C_; will be changed
to # no matter what its previous value is since C, dominates this clash. Also the
value of C, will become v since it is controlled by C,_; during p,. The value of
by will also arrive at Cy_; during p,. When entering the next ps, Clash 2 occurs
between C, and C,_;. Since C, dominates this clash, the value of b, will become
. This value cannot be further changed since C,, dominates Clash 1, which is the
only way that b, can be changed again. Thus if C,; dominates Clash 2, a sequence
vo can detect this fault. Now consider the case where C,_; dominates Clash 2.
This fault can be detected by a sequence by d(k — 1)by = vd(k — 1)d. During
some p3, by is in Cy—; and Cy—z, and biy is in C,. If by has been changed to v,
then b; cannot be further changed. Thus the fault can be detected by observing
by. If by has not been changed, then during the next py, Clash 2 occurs and by,
will have a value of . This value cannot be further changed and thus the fault is

detected. If 1(0) always dominates Clash 2, then byby = 01 (10) can detect this
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fault since either b; or b, will change its value and the fault effect can propagate

to scan output. In summary this fault is detected by a test sequence containing
1d(k)Q, 0d(k)L, vd(k — 1)z, 01 and 10.

F14: I(z) =1, l(y) = 2. A clash between C,_; and C, occurs during p,. If C,
dominates, then the fault is detected by a sequence by 1d(k — 1)by = vd(k — 1)v
as explained next. During some ps, by is in C,,—y and Cy_5, and by is in C; and
Cp—1. If by has been changed, then it cannot be further changed and the fault is
detectable by scanning out and observing b;. If b; is not changed, then during
P4, Cry1 and C, will be dominated by C, and bz4; will have a value of #. This
value cannot be further changed and thus the fault is detected by observing bjyyy.
If C;—1 dominates the clash, then a sequence bgy2d(k)by = vd(k)v can detect this
fault since during some p;, C,—; will dominate C, and Cy4,. Thus the value of
bryo will dominate the value of b; such that Cyyy becomes v and the fault can
be detected. If 1(0) dominates the clash, then it can be shown that a sequence
1d(k)1 (0d(k)0) detects this fault using similar arguments. In summary a test
sequence containing vd(k — 1)v, 1d(k)L and 0d(k)0 detects this fault.

F15: I(z) = 1, l(y) = 3. Similar to F14; a sequence containing vd(k — 1)z,
1d(k)0 and 0d(k)1 detects this fault.

F16: ({(z),l(y)) = (2,1), (2,3) or (3,2). These faults are detected by a sequence
bry2d(k)by = vd(k)v since during some py, C, is controlled by an inverter of C,
which in turn is controlled by C,_;. Thus the value of b, will be changed to v
and is observable at the scan output.

F17: (I(2),(y)) = (2,2), (3,1) or (3,3). Similar to F16; the sequence vd(k)z
detects this fault.

7.4 A Universal Test Sequence for All Faults

The results obtained in the previous section are summarized in Table 7.1. If a

test sequence contains all sequences shown, then it must detect all irredundant
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BFs. Using the notation 1"(0™) to represent a sequence of n 1s (0s), the following

results can be obtained.

| Fault | D(z,y) | (I(z),(y)) | Test method/sequence |
F1 0 (1,2) or (2,3) CSM
F2 0 (1,3) Redun. or detected by 10 and 01
F3 1 (1,1) or (1,3) 01 and 10
F4 1 (1,2),(3,2),(2,1) or (2,3) CSM
F5 1 (2,2),3,1) or (3,3) B
F6 2k (1,1) 0d(k — 1)1 and 1d(k — 1)0
F7 2k (1,2) vd(k —1)v
I8 2k (1,3) vd( 1)
F9 2k (2,1) vd(k —1)v
F10 2k (2,2) or (3,3) vd(k — 1)z and CSM
F11 2k (2,3) or (3,2) vd(k — 1)v and CSM
F12 2k (3,1) vd(k—1)o
F13 | 2k +1 (1,1) 1d(k)0, 0d(k)1, vd(k — 1), 01, 10
F14 | 2k +1 (1,2) vd(k — 1)v, 1d(k)1 and 0d(k)0
F15 | 2k+1 (1,3) vd(k — 1), Id(L)Q and 0d(k)L
F16 | 2k +1 (2,1),(2,3) or (3,2) vd(k)v
F17 | 2k+1 | (2,2),3,1) or (3,3) vd(F)z

Table 7.1: Summary of tests for each BF

Theorem 14 The test sequence T'S = 0"01"*10 detects all irredundant BFs in

a scan path consisting of n storage elements.

Proof: The proof follows by verifying that all sequences in Table 7.1 are subse-

quences of T'S. O

Note that it is not necessary to scan out all test data in 7S to detect all
irredundant faults. Only the first n+ 3 bits need to be scanned out and observed.
The last n bits can serve as reset data (0) for the scan path. Furthermore, T'S is

very easy to generate. The external test controller need only store one piece of
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| Fault | ({(=),{(y)) | Subcycle | Oscillation | Current value |
F1 (1,2) Do no 8.1 x107°
F1 (2,3) P2 no 8.1 x10~®
F4 (1,2) P4 no 1.3 x 1074
F4 (3,2) P4 no 9.1 x 10~°
F4 (2,1) P4 no 8.1 x 107°
Fi 2,3) P4 yes | 80x10° ~1.65 x 107
F10 (2,2) P2 no .8 x [0~
F10 (3,3) P2 no 1.5 x 10~®
F11 (2,3) P2 no 1.6 x 1074
F11 (3,2) P2 no 1.6 x 1071

Table 7.2: Current values when CSM is used

data, i.e., n, in order to generate T'S. Since n must be available because it is the

length of the scan path, there is no storage overhead for generating 7'5.

Four types of faults are detected by CSM. The current values (in amperes)
obtained by SPICE simulations for these faults are given in Table 7.2. The third
column shows when the current is measured. The fourth column shows whether or
not an oscillation occurs. Among all BFs, only one fault (F4, (I(z),{(y)) = (2,3))
results in oscillation. The average current value for this fault is of the same order

as for the other faults.

7.5 Other Faults

After deriving the test sequence 7'S for all possible BFs, all stuck-at and stuck-
open faults are examined against T°S. It is easy to verify that all stuck-at faults
are also detected by T'S because if a stuck-at fault occurs in a scan cell C,, then

the scanned data can never reach the scan cells following C,.

The problem of detecting stuck-open faults is a little more complex. Refer

to Figure 7.1(a). If a stuck-open fault occurs on a transistor that is part of a
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transmission gate, then the fault is redundant. If the fault occurs on transistor
t1 (t2), then node 2 of the faulty cell will never be charged to 1, and thus the
fault is equivalent to a stuck-at 0 (1) fault at node 2. Now consider the case
where t3 (t4) is stuck-open. When ¢ = 1, if node 1 is driven to 0 (1), then no
fault effect can be observed. However if node 1 is driven to 1 (0), then this value
cannot be propagated to node 3. When ¢ becomes 0 and ¢ becomes 1, charge
sharing occurs between node 1 and node 3 due to the transmission gate. If after
charge sharing the voltage v of of both nodes 1 and 3 is between 1 and 4 V then
both transistor ¢; and ¢, will conduct and the fault can be detected using CSM.
If v > 4V (v < 1V) then the fault is redundant since the information at node 1
can be propagated to node 3. If v < 1V(v > 4V), then the value of node 3 is 0
(1) and the fault can be detected by scanning out the test data.

7.6 Summary

All possible bridging faults in the scan path of a CMOS scan-based design have
been analyzed. Through an extensive analysis it is possible to derive a universal
test sequence that guarantees 100% fault coverage for the scan path. The derived
test sequence requires little overhead to generate. SPICE simulations show that
CSM is an effective method for detecting some BFs. All stuck-at faults and

irredundant stuck-open faults are also detected by the derived test sequence.
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Chapter 8

Implementation & Experimental Results

This chapter describes the implementation issues of the SWiTEST system and
presents experimental results. The working environment and the organization
of SWIiTEST are first described, followed by an 1/O description of the system.
Experimental results on 9 circuits including six ISCAS-85 benchmark circuits [26]

are presented and discussed.

8.1 SWITEST Test Generation System

8.1.1 Working Environment

SWITEST is implemented in the C language on a SUN Sparc workstation run-
ning SunOS Release 4.1. The memory required for using this system is circuit
dependent because most data structures that are circuit dependent are calculated
and allocated in the initialization procedures using the dynamic allocation facility
of the C language. By this fashion it is not necessary to declare fixed array sizes

for most data structures. This has the following advantage.

In a circuit each node may connect or control a different number of tran-

sistors. If a fixed number is given, then if there exists one node that controls
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30 transistors (this is a case in some benchmark circuits), at least 30 connec-
tions/controls must be allocated to each node. This is obvious a waste since
most nodes have only a few connections/controls. On the other hand, if all
memory were dynamically allocated only when required, then much CPU time
would be spent in memory management since dynamic allocation is a computa-
tionally intensive process (e.g., garbage collection). Therefore figuring out how
much memory is required and allocating the required memory at one time in the

beginning of test generation improves both CPU time and memory usage.

Experiments show that for the largest ISCAS-85 benchmark circuit,

namely c7552, which contains 15,396 transistors, the memory requirement is
2.556M bytes.

8.1.2 Organization

The block diagram of SWiTEST has been shown in Figure 3.1. The three parts

of this system are described below.

Part 1: This part is a preprocessor which includes the following routines.

e A routine for partitioning the circuit into transistor groups.
e A routine for identifying complex and primitive gates.
e A routine for assigning levels to transistor groups.

e A routine for assigning directions to transistors.

Part 2: This part is the framework of the test generator. It includes the following

routines.

e An objective selector.
e A backtracing routine.

o A switch-level simulator.

193



o A backtracking mechanism.

e A fault propagation routine.

Part 3: This part deals with the individual faults. It includes the following

routines.

e Test generation procedures for all bridging faults and stuck-on faults.
o Test generation procedures for all stuck-open faults.

o Test generation procedures for all node stuck-at faults.

Most of the implementation of these routines follow the descriptions in
Chapters 4, 5 and 6. One exception is that the routine for stuck-open faults
does not check for possible invalidation due to charge sharing. From the analysis
of Section 5.1, it is clear that if IDDQ testing is used the possibility of test
invalidation due to charge sharing is very small. Thus ignoring charge sharing

should have little effect on the quality of a test.

8.1.3 Use of SWITEST

Two main programs, prep and switest, are implemented that include all routines
described. prep is used to preprocess a circuit and create the information needed
for test generation. The input to prep is a circuit file with a SPICE-like format. In
addition to the flat SPICE description of a circuit, two additional cards .INPUTS
and .0UTPUTS must be added to the input file to provide information on primary

inputs and outputs.

prep generates two files: *.1st and *.tg. where “*” is the file name of the
input circuit. A *.1st file contains the information about nodes and transistors
in the circuit, which includes among other things the numbers of nodes and

transistors, numbers of transistors connected to each node, the drain, source and
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gate nodes of each transistor, the signal flow direction of each transistor. A *.tg
file contains the information about each transistor group and gate, and includes
among other things a list of the transistors and nodes in a transistor group or
gate, the level information of each group or gate, and the I/O relation among

groups and gates.

After generating *.1st and *.tg files, switest can be invoked to generate
test vectors for faults. The faults to be detected are provided in “fault files” with
names “*.flt.” Each fault file contains a list of faults each of which can be a
stuck-open, bridging, stuck-on or stuck-at fault. The results of test generation
are displayed on screen, which can be easily saved to a file using the “redirect”
property of UNIX.

8.2 Experimental Results and Discussions

Nine circuits have been used for experiments. parity is a 4-bit parity genera-
tor and cadder is a combinational full adder. These two circuits are described
in pages 334 and 312 of [1], respectively. c60 is a circuit that contains some
redundant stuck-at, stuck-on and stuck-open faults. All others are ISCAS-85
benchmark circuits. Originally c60 and all benchmark circuits are described at
the gate level. A translator called g2s has been implemented to convert a gate
level description to a switch level description. The translation replaces each gate
by a pair of N- and P-nets. It also extracts the required I/O information from

the gate level description.

All transistor stuck-open and stuck-on faults in each circuit are considered.
In the experiments all stuck-on faults are selected rather than all bridging faults
because the number of all possible bridging faults is too large for a large circuit.
Each stuck-on fault is actually considered as a bridging fault between the source
and drain of the faulty transistor. It is assumed that IDDQ testing is used.
Thus for a stuck-on fault the test generator simply sets the source and drain

of the faulty transistor to complementary logic values. The system can also
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deal with a bridging fault between any two nodes. For stuck-open faults, test
invalidation due to charge sharing is not considered. Programs for generating
tests for any node stuck-at fault are also implemented. To compare SWiTEST
to gate level generators, experiments are performed only on the stuck-at faults at
the outputs of transistor groups. Three programs, songen, sopgen and sangen,
are implemented to help generate the files containing all stuck-on, stuck-open

and stuck-at faults under consideration, respectively.

switest is applied independently to each stuck-on, stuck-open and stuck-
at faults in each circuit. The experimental results are shown in Table 8.1-8.4.
Each of Tables 8.1, 8.2 and 8.3 contains information on three experiments, one
for each of the three fault models. The differences between these three tables
are the numbers of backtrackings allowed, which are set to 10, 100 and 1000,

respectively. Each column of these tables is defined as follows.
circuit : name of the circuit under test.
faults : number of faults under test.

f-det : number of faults detected within the limited number of backtrackings.

f-und : number of faults identified as undetectable within the limited number

of backtrackings.
%f-det : percentage of detected faults among all faults.
total time : total CPU time used.
sec/flt : average time spent on each fault.
All faults in the first two circuits, cadder and parity are detected within
10 backtrackings. For c60 all detectable faults are detected and all undetectable
faults are so identified within 100 backtrackings. All the stuck-open and stuck-

at faults of ¢880 and the stuck-at faults of c1355 are also detected. For all

other faults or circuits, there exists faults that cannot be detected or identified
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as undetectable within the limited backtrackings. This is expected since it is well
known that the PODEM algorithm cannot efficiently identify undetectable faults

even at the gate level.

The total test generation time is dependent on the size of circuits. How-
ever it appears that the average test generation time for each type of fault does
not totally depend on the size of circuits. For example when the number of back-
trackings is set to 100, the average test generation times for c1355, c1908 and
c2670 are about the same. The average test generation time for ¢3540 is even
larger than that for c7552 for all three fault models when the number of back-
trackings is set to 1000. This is due to the fact that c3540 has a larger percentage
of aborted faults than c7552.

Table 8.4 gives the relation between the size of the required memory and
the size of a circuit. It also summarizes the percentages of detected faults when
the backtracking number is set to 1000. The required memory size is clearly
linear with circuit size and is much less than that described in [56] which requires

15M bytes to deal with only 770 transistors.

As expected, the percentage of detected stuck-open faults is in general
smaller than for the other two types of faults. However the difference is not
significant. For ¢880 and c1908, the percentages of detected stuck-open faults are
higher than those of detected stuck-on faults using IDDQ testing. Considering
that tests for stuck-open faults require two vectors and have the problem of
invalidation, the experimental results have illustrated that the robust detection

of stuck-open faults using PODEM based algorithms is achievable.

The experimental results clearly show that switest can deal with much
larger circuits than any existing switch level test generators [48, 86, 56, 90, 91].

It is also much more efficient in terms of CPU time and memory usage.

It is difficult to compare the performance of switest with those of gate

level test generation systems in a formal way due to the difference of available
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hardware resources and actual implementation. A “rough” comparison is de-
scribed next between switest and the system described in [21], which is prob-
ably the fastest gate level test generation system currently available. When the
backtracking number is set to 1000, the average time for switest to deal with a
stuck-at fault for c7552 is 0.334 seconds. In [21], it takes 41.5 seconds to generate
380 test vectors that detect all detectable stuck-at faults. The 41.5 seconds in-
clude fault simulation time. Recent results have shown that fault simulation time
and test generation time are usually approximately the same [20]. Therefore the
average time to generate a test for a given fault is about (41.5/2)/380 = 0.0546

seconds, which is within an order of magnitude of 0.334 seconds.

The above comparison is very rough. However it does provide some inter-
esting observation. The number of backtrackings in [21] is close to zero due to
many heuristics employed [20]. For switest some faults are aborted after 1000
backtrackings. These faults clearly waste a major portion of cpu time. Therefore
we can expect that if similar heuristics used in [21] can be employed in switest,
the performance of switch level test generation for stuck-at faults can be com-
patible to that at the gate level. Since the results on switest show that there
is no significant performance difference between detecting stuck-at, stuck-on and
stuck-open faults, it can be concluded that switch level test generation can be
done at a performance close to that at the gate level using a PODEM based

algorithm.
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(a) Stuck-on faults, number of backtrackings = 10

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 28 28 0 | 100.00 0.017 | 0.001
parity 32 32 0 | 100.00 0.050 | 0.002

c60 110 107 0] 97.27 0.117 | 0.001

c880 1802 | 1596 0| 88.568 13.567 | 0.008
cl355 | 2308 | 2074 0| 89.86 38.033 | 0.016
cl908 | 3446 | 3006 0| 87.23 84.967 | 0.019
c2670 | 5668 | 5185 19 | 91.48 113.117 | 0.020
c3540 | 7504 | 6897 0| 91.91 272.283 | 0.036
c7552 | 15396 | 14060 16 | 91.32 794.150 | 0.052

(b) Stuck-open faults, number of backtrackings = 10

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 28 28 0 | 100.00 0.050 | 0.002
parity 32 32 0 | 100.00 0.050 | 0.002

c60 110 102 0| 92.73 0.267 | 0.002

880 1802 | 1802 0 | 100.00 25.200 | 0.014
cl355 | 2308 | 2050 48 | 88.82 132.900 | 0.058
cl908 | 3446 | 3303 0 95.85 203.517 | 0.059
c2670 | 5668 | 5286 0| 93.26 311.400 | 0.055
c3540 | 7504 | 6507 0| 86.71 951.967 | 0.127
c7552 | 15396 | 13999 0| 90.93 | 2557.217 | 0.166

(c) Stuck-at faults, number of backtrackings = 10

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 10 10 0| 100.00 0.017 | 0.002
parity 16 16 0| 100.00 0.017 | 0.001

c60 36 84 0| 97.67 0.133 | 0.002
c880 1178 | 1178 0| 100.00 12.250 | 0.010
cl355 1290 | 1270 0] 98.45 65.250 | 0.051
c1908 2226 | 2166 0] 97.30 117.683 | 0.053
c2670 | 4088 | 3881 0] 94.94 177.167 | 0.043
c3540 5020 | 4418 0 83.01 562.467 | 0.112
c7552 | 10330 | 9766 0| 9454 | 1481.700 | 0.143

Table 8.1: Experimental results, number of backtrackings = 10
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(a) Stuck-on faults, number of backtrackings = 100

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 28 28 0 | 100.00 0.017 | 0.001
parity 32 32 0 | 100.00 0.033 | 0.001

c60 110 108 2| 98.18 0.167 | 0.002

c880 1802 | 1666 0| 92.45 34.650 | 0.019
cl355 2308 | 2104 0 91.16 72.750 | 0.032
cl1908 | 3446 | 3094 0| 89.79 158.483 | 0.046
c2670 | 5668 | 5427 29 | 95.75 192.217 | 0.034
c3540 7504 | 7132 81 95.04 527.350 | 0.070
c7552 | 15396 | 14779 26 | 95.99 | 1159.950 | 0.075

(b) Stuck-open faults, number of backtrackings = 100

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 28 28 0 | 100.00 0.050 | 0.002
parity 32 32 0 | 100.00 0.050 | 0.002

c60 110 102 8| 92.73 0.400 | 0.004

c880 1802 | 1802 0 | 100.00 24.950 | 0.014
c1355 | 2308 | 2050 64 | 88.82 173.800 | 0.075
c1908 | 3446 | 3370 0| 97.79 247.500 | 0.072
c2670 | 5668 | 5339 37| 94.20 458.383 | 0.081
c3540 | 7504 | 6738 0| 89.79 | 2009.500 | 0.268
c7552 | 15396 | 14662 0] 95.23| 3207.950 | 0.208

(c) Stuck-at faults, number of backtrackings = 100

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 10 10 0 | 100.00 0.017 | 0.002
parity 16 16 0 | 100.00 0.017 | 0.001

c60 86 84 2| 97.67 0.200 | 0.002

c830 1178 | 1178 0| 100.00 11.983 | 0.010
cl1355 1290 | 1270 0] 98.45 70.900 | 0.055
cl908 | 2226 | 2194 0] 98.56 139.083 | 0.062
c2670 | 4088 | 3917 12 | 95.82 257.117 | 0.063
c3540 | 5020 | 4573 0| 91.10 | 1293.667 | 0.258
c7552 | 10330 | 10017 0| 96.70 | 2627.400 | 0.254

Table 8.2: Experimental results, number of backtrackings = 100



(a) Stuck-on faults, number of backtrackings = 1000

circuit | faults | f-det | f-und | %f-det | total time | sec/fit
cadder 28 28 0 | 100.00 0.033 | 0.001
parity 32 32 0| 100.00 0.033 | 0.001

c60 110 108 2| 98.18 0.167 | 0.002

c880 1802 | 1751 0| 97.17 126.933 | 0.070
cl355 | 2308 | 2126 0| 92.11 414.950 | 0.180
cl1908 | 3446 | 3132 0| 90.89 948.433 | 0.275
c2670 | 5668 | 5555 29 | 98.01 483.233 | 0.085
c3540 7504 | 7325 12 | 97.61 | 1927.150 | 0.257
c7552 | 15396 | 15100 26 | 98.08 | 2673.083 | 0.173

(b) Stuck-open faults, number of backtrackings = 1000

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 28 28 0 | 100.00 0.050 | 0.002
parity 32 32 0 | 100.00 0.050 | 0.002

c60 110 102 8| 92.73 0.417 | 0.004
¢880 1802 | 1802 0| 100.00 24.867 | 0.014
cl355 | 2308 | 2068 72| 89.60 573.500 | 0.248
cl908 | 3446 | 3393 0| 98.46 558.267 | 0.162
c2670 | 5668 | 5381 48 | 94.94 | 1457.233 | 0.257
c3540 | 7504 | 6888 0| 91.79 | 8826.550 | 1.176
c7552 | 15396 | 14762 0| 95.88| T7263.917 | 0.472

(c) Stuck-at faults, number of backtrackings = 1000

circuit | faults | f-det | f-und | %f-det | total time | sec/flt
cadder 10 10 0 | 100.00 0.017 | 0.001
parity 16 16 0 | 100.00 0.033 | 0.002

c60 86 84 21 97.67 0.217 | 0.003

c880 1178 | 1178 0 | 100.00 12.200 | 0.010
cl1355 1290 | 1290 0 | 100.00 80.617 | 0.062
cl1908 | 2226 | 2204 01 99.01 306.533 | 0.138
c2670 | 4088 | 3955 16 | 96.75 895.417 | 0.219
c3540 | 5020 | 4697 0| 93.57 | 5858.317 | 1.167
c7552 | 10330 | 10061 0| 97.40 | 3451.817 | 0.334

Table 8.3: Experimental results, number of backtrackings = 1000
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circuit | # trans | memory | % f-det (# bkk = 1000)
(K bytes) s-0n s-op s-at

cadder 28 128 | 100.00 | 100.00 | 100.00
parity 32 132 | 100.00 | 100.00 | 100.00
c60 110 140 | 98.18 | 92.73 | 97.67
c880 1802 400 | 97.17 | 100.00 | 100.00
c1355 2308 468 | 92.11 | 89.60 | 100.00
c1908 3446 656 | 90.89 | 98.46 | 99.01
c2670 5668 1044 | 98.01 | 94.94 | 96.75
3540 7504 1300 | 97.61 | 91.79 | 93.57
c7H52 15396 2556 | 98.08 | 95.88 | 97.40

Table 8.4: Memory usage and % of faults detected
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Chapter 9

Conclusion

Automatic test generation for CMOS circuits at the switch level is an impor-
tant and complex problem. This dissertation has attempted to solve many is-
sues associated with this problem. Some of the results have been published in
(118, 119, 120, 121, 122, 123, 124, 125, 126]. In this chapter a summary of work
described in this dissertation is given and a list of future research topics is pro-
vided.

9.1 Summary of the Dissertation

The contributions of this dissertation can be summarized as follows.

9.1.1 Circuit Manipulation

e A circuit partitioning mechanism has been used to divide a CMOS circuit
into transistor groups that not only makes it unnecessary to use transistors
as the basic unit during test generation, but also defines the I/O relationship

among the partitions.
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e A complex and primitive gate identification routine has been employed so
that whenever possible the switch level test generator can employ the much

more efficient gate-level test generation techniques.

e The levelization of circuit partitions provides the information of distances
from a partition to its closest primary input and output. This information
directs objective selection during backtracing and fault propagation and

results in more efficient test generation.

e A new method for assigning signal flow directions to transistors is devel-
oped. This method is based on solid mathematical analysis and thus can
achieve more accurate results. This method employs several efficient algo-
rithms that outperform all previous methods. One technique that makes
use of circuit semantics is also presented which can solve the direction as-

signment problem in a barrel shifter.

9.1.2 Fault Analysis

e An extensive analysis on the applicability of IDDQ testing on detecting
CMOS bridging faults has been carried out. A set of design and test rules
are identified which guarantee the detection of all signal and multiple irre-
dundant bridging faults using single vector tests. The problems arisen when
each rule is released are analyzed and various strategies are developed to

deal with circuits that do not satisfy each rule.

e Test invalidation problems of stuck-open faults due to both circuit delay and
charge sharing are analyzed. Through a detailed capacitance analysis it is
shown that previous methods dealing with the charge sharing problem are
not sufficient. It is also shown that by simply employing IDD(Q) testing this
problem becomes much easier to solve. An efficient algorithm to generate
tests that cannot be invalidated by any circuit delay is developed. This

algorithm does not require the circuit to be modeled at the gate level,
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and as long as a pair of vectors are identified, no further test invalidation

checking is necessary.

9.1.3 Test Generation Framework

e An objective selection routine that takes into account transistor directions

and multiple objectives has been implemented.

e A hybrid backtracing algorithm is implemented. Whenever possible, gate
level backtracing is used. Switch level backtracing is much more complex.
Two problems that have never been addressed in previous work are identi-
fied and solved, namely that backtracing may either fail or enter an infinite
loop. The transistor direction information is also used to reduce the back-

tracing time.

e A new logic implication method is developed that makes use of the full
complement property of CMOS circuits. This method is both event-driven
and incremental, and is well suitable for use in a PODEM-based test gen-
eration algorithm. The average computational time for evaluating a status

change of a transistor group is less than linear time.

e A problem of backtracking that does not exist at the gate level but exists at
the switch level is identified. This problem results in the necessity of record-
ing the logic value assignment to each node. An efficient data structure is

used to store this information.

e Fault propagation at the switch level is analyzed and implemented. It is
shown that by separately processing the fault-free and faulty circuits, both

effectiveness and efficiency of fault propagation are improved.



9.1.4 Implementation of Individual Test Generators

e Three individual test generators, for bridging (including stuck-on), stuck-
open and stuck-at faults, have been implemented. A stuck-on fault is con-
sidered as a bridging faults. Experimental results on stuck-on, stuck-open
and stuck-at faults are reported. The results imply that switch level test
generation can be done in CPU time compatible to that required for gate
level test generation. This is true even for stuck-open faults which have
previously been considered as much more difficult to detect due to the test
invalidation problem. The inefficiency of SWiTEST in identifying redun-
dant faults is not a surprise since even a gate level PODEM cannot deal
with this problem well. It is expected that more heuristics such as those

used in [23, 19, 20, 21] will be very helpful in alleviating this inefficiency.

9.1.5 Scan Register Testing

e All bridging faults in a specific scan register have been analyzed. The anal-
ysis shows that to achieve 100% fault coverage both logic and current must
be monitored. A universal test sequence which guarantees the detection of
all irredundant bridging, stuck-at and stuck-open faults is identified. The

approach is applicable to other scan cell designs.

9.2 Future Work

Though many issues on switch level test generation have been addressed in
this dissertation, to develop a highly efficient automatic test pattern genera-
tion (ATPG) system at this level still requires more efforts. In this section three
areas of future work are discussed, namely 1) improvements on SWiTEST, (2)
development of a complete switch level ATPG system, and (3) switch level test
generation for more general circuits. The first one is to improve the work done in

this dissertation. The second one is an extension of the current work to include
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fault simulation, fault dropping, and fault coverage analysis, so that a complete
ATPG becomes possible. The third one is to deal with the most general problems

in test generation, including testing of dynamic and sequential circuits.

9.2.1 Improvements on SWiTEST

Most of the work done for SWiTEST is based on the consideration of imple-
menting the PODEM algorithm at the switch level. Recent developments in
gate level test generation have shown that many heuristics can be added to a
PODEM-based test generator to enhance its performance. The improvements to
SWIiTEST can be divided into three parts: preprocessor, test generation frame-

work and individual test generators.
Preprocessor

Concepts such as Conflict-free assignment [17], immediate dominators [19]
and static learning [20] can be implemented to the preprocess. The level informa-
tion of partitions can be replaced by controllability and observability of a circuit
node. The implication rule which uses semantic information for assigning signal

flow directions to transistors should be implemented.
Test Generation Framework

The concept of multiple backtracing used in FAN [17] can be used to im-
prove the backtracing process. Dynamic learning of Socrates [20] as well as the
information obtained during preprocess can be used to identify more logic impli-
cations so as to reduce the possibility of backtracking or to identify redundant
faults as early as possible. If a fault is aborted, a decision strategy switching [127]

may lead to the detection of the fault.
Fault Analysis

SWITEST assumes that IDDQ testing is used for detecting bridging faults.
This may not be true in some cases. Thus a test generation routine for bridging

faults using only logic monitoring should be included. Other faults such as delay
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faults should also be detected. Before doing test generation for these faults, an
extensive fault analysis should be conducted to deal with problems such as the

following.

e Can theses fault be detected by IDDQ testing?
e (Can these faults be converted to other fault models?

e What are the most efficient ways to deal with these faults?

9.2.2 Switch Level ATPG

SWITEST is not a complete ATPG system since it only generates test vectors for
given faults. It should be tied to a fault simulator and a fault dropping routine
so that it can perform a complete ATPG process, i.e., given a circuit, identify
a reasonable set of test vectors that detect all irredundant faults or achieve a

required fault coverage. To do this the following issues must be addressed.
Definition of Fault Coverage

At the gate level the definition of fault coverage is simple because it as-
sumes the well-defined single stuck-at fault model. At the switch level there are
many different fault models. Therefore what is an actual fault coverage becomes
a problem. It is possible to define a fault coverage for each fault model, but it
would be more convenient to define a unified fault coverage for a circuit. However
this is difficult because the possibilities of occurrence of different faults may be
different. For example it has been argued that the possibility of having stuck-
open faults in a circuit is quite small [128]. Thus how to define a unified fault

coverage is still a fundamental problem in switch level ATPG.
Switch Level Fault Simulation

Fault simulation for bridging faults using IDDQ testing is simple because
a fault is detected when the two shorted nodes have complementary logic values.

However if IDDQ testing is not used or the fault model is not the bridging fault
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one, then the fault simulation problem is more difficult. Some work on switch
level fault simulation has been done recently [129]. However this work can only be
applied to circuits containing primitive gates and the test invalidation problem is
ignored. More research is required before a practical switch level fault simulator

can be implemented.

9.2.3 Test Generation for More General Circuits

Non-static Circuits

The test generation algorithms presented in this dissertation can be ap-
plied to all static circuits. To deal with non-static circuits, many algorithms
need be modified. For example the Implication algorithm presented in Chap-
ter 6 cannot be directly applied because it does not model charge retention in a
good circuit. Also it has been pointed out that IDDQ) testing is not appropriate
for non-static circuits. As non-static circuits become more popular in high per-
formance application specific integrated circuits, test generation for non-static

circuits will become more important.
Scan-based Sequential Circuits

In this dissertation a universal test sequence is derived that can detect
all irredundant faults in one type of scan register. This sequence should also be
applicable to other type of registers. However a systematic method to classify
all possible scan registers and analyze all faults in each register will be needed

before the actual fault coverage can be calculated.
Generic Sequential Circuits

Test generation for sequential circuits at the gate level is currently a very
active research area. Due to the development of fast computers and better heuris-
tics and algorithms, sequential test generation is no longer an impractical task for

large circuits. It can be expected that, just as for combinational circuits, switch
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level test generation for sequential circuit will become an important research topic

in the near future.
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