Design of Hierarchically Testable
and Maintainable Systems

Jung-Cheun Lien

CEng Technical Report 91-19

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CA_IFORNIA
In Partial Fulfillment of th2
Requirements for the Degice
DOCTOR OF PHILOSOP#Y
(Computer Engineering’

(Copyright August 1991)

Electrical Engineering Sys.ems
University of Southern Cali: ornia
Los Angeles, CA. 90089-:1562

July 15, 1991

DESIGN OF HIERARCHICALLY TESTABLE AND MAINTAINABLE
SYSTEMS

by

Jung-Cheun Lien

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfiliment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY

(Computer Engineering)

August 1991

Copyright 1991 Jung-Cheun Lien

UNIVERSITY OF SOUTHERN CALIFORNIA
THE GRADUATE SCHOOL
UNIVERSITY PARK
LOS ANGELES, CALIFORNIA 90007

This dissertation, written by

..

under the direction of h.is....... Dissertation
Committee, and approved by all its members,
has been presented to and accepted by The
Graduate School, in partial fulfillment of re-
quirements for the degree of

DOCTOR OF PHILOSOPHY

Dedication

To
My wife Jung-Yu and our parents

il

A cknowledgements

[am very grateful to Prof. Melvin Breuer for his encouragement, guidance and
support during my dissertation work. I consider it my privilege to have worked
with him.

I would also like to thank Prof. Irving Reed and Prof. Charles Lanski for

serving on my dissertation committee.

During my years at USC, I benefited greatly from interacting with many
colleagues and friends. In particular I would like to mention Kuen-Jong Lee, Dr.
Rajesh Gupta, Rajagopalan Srinivasan, Amitava Majumdar, Sing-Ban Tien, Dr.
Rajiv Gupta and Dr. Charles Njinda.

I would like to acknowledge the financial support provided by the Defense
Advanced Research Projects Agency through Contract No. N00014-87-K-0861, mon-
itored by the Office of Naval Research, and No. JFBI90092, monitored by the Fed-

eral Bureau of Investigation.

Finally, I would like to thank my wife Jung-Yu for her endless love and

support. This dissertation would never have been completed without her.

iii

Contents

Dedication

Acknowledgements

Abstract

1 Introduction

1.1 Background

1.2 PreviousWorke nonscocmens mnsisssma
1.2.1 System Architecture
122 Testabiliby BUS 5 5 « 2 5 5 55 5 5 5 508 5 0 mos 5 2 s 8 a =
1.2.3 Testable Chip Control Model

124 Testable Chip Design . « « « 5 v o 0 w5 6 2 s 5 0 6 5 5 a0
1.2.5 Testable Module Design
1.2.6 Interconnect Test Generation
1.2.7 Test Scheduling
1.3 ‘The Design Apptoath. « « s s+« s s oo 68 b s 6 3 88 205 5 5 s
1.4 The Hierarchical Test Methodology
1.5 Test Controllersfora Circuit . . .« ¢ v v v v v o v s v v 5 0 0 s 5
1.6 Thesis Outline.

2 Controllers for
2.1 The Model

Testable Chips

................................

1

x1ii

W =~ =~ D T B W LD e e

e e e
U oW o o

17
LT

v

2.1.1 Boundary Scan Architecture

2.2 Bus-Dependent BIT Controllers
2.2.1 BIT Controller for a LSSD Kernel
2.2.2 BIT Controller for a BILBO Kernel
2.2.3 BIT Controller for a Complex Kernel
2.2.4 A Mapping Algorithm

2.3 Autonomous BIT Controller :u 0w oswss
2.3.1 Serial BIT Controllers
2.3.1.1 A Hard-Wired Serial BIT Controller . . .

2.3.1.2 A Microprogrammed Serial BIT Controller

2.3.2 Parallel BIT Controllers
2.3.2.1 Interleaved I'SM Controller

2.3.2.2 Tree of Counters Design

2.3.2.3 Counter Sharing Design

2.3.2.4 Comparison of Three Designs

3 Controller for Testable Modules
3.1 Requirementsforan MMC
3.2 MMOC Architecture
3.2.1 Test Channel Design
3.2.2 Bus Driver/Receiver
3.2.3 Functional Bus Interface
3.2.4 Testability Register
3.2.5 Analog Test Interface.
326 Ll-Slave
32T Processor .« .:u.ocwiisswsinees s wm s s
3.2.8 Memory i e e
3.2.9 Stand-Alone MMC
33 MMOBelf-Test « o5 c 00 v 652 0udcommes awys

3.4 Discussion of MMC Design 83

3.5 An MMC Prototype 85
351 TedtiChanmel i acsomuwesmsssicssa 85
3.5.2 Processor and Memory 86
3.5.3 Processor and Test Channel Interface 86
384 DHECUSTION < 5 5w 5 2 56 G0 556 5 8 ¢ g wiw o n o ma mim o 89

3.6 Testing a Kernel Using MMC and CMC 90

Test Program Synthesis 93

41 Languages . .o « s : vsw s os w58 we i s Ba s s §d 95
4.1.1 CTL - The Chip Test Language 95

4.1.1.1 Formal Definition of the CTL 103
4.1.2 MTL - The Module Test Language 104
4.1.2.1 Formal Definition of the MTL Syntax 109

4.2 Synthesizers 111
4.2.1 C2C Synthesizer 111
4.2.2 M2C Synthesizer 111

43 AnExample 121
431 AnMTLAfile. it e e e e a e 121
43.2 CTLAiles 122
4.3.3 The Interconnect Information 124
4.3.4 Synthesized Test Programs 125
4.3.5 Activities between Processor and Test Channel 127
4.3.6 ActivitiesontheTest Bus 128

A4 Resulbsc oo v 6 505 05 5 2908 586506 5556 €5 il 55 5 § 6 129

Global Controller Minimization Using Test Program Synthesis 132

5.1 Tradeoff Curve-Based Minimization 134
5.2 Algorithm-Based Minimization 140
5.2.1 One Test Channel 141

vi

5.2.2 Multiple Test Channels 144

5283 BRemalls. o= c o o vm e v s ww o v s oo g3 9o 5 5 woiw 5 5 a 147
9.3 Discussions e e 148
Interconnect Test Generation 150
6.1 Introduction 150
6.2 Preliminarios . . cw v« s soam o v 5 9 e 55 @5 25 6 e 5 s s u s 152
6.2.1 Fault Model 152
6.2.2 Notation and Definitions 154
6.2.3 Non-Diagnosable Faults 155
6.2.4 Diagnostic Resolution00, 156
6.2.5 Previous Results 157
6.2.6 Deficiencies in Previous Approaches 159
6.3 One-Step Diagnosis 161
64 Two-Step Diagnosis: v ¢ v 5 2 siws s s ww g s sma s 3 o 55 39 & 165
6.4.1 Adaptive Algorithm A1 165
6.4.2 Adaptive Algorithm A2 167
6.4.3 Comparison with Other Adaptive Algorithms 169
6.5 Diagnosis Using Structural Information 171
Interconnect Test Scheduling 175
T1 Inbroduction c o « « co v s 3 s wma s s ¥ mass ME &5 6@ i ¢ 9 8 175
7.2 Testing Model 177
-3 ThePrablemy . : v on s vsmsspwnes wmes2s s ans 180
7.3.1 The Use of Multiple Scan Chains 180
7.3.2 Scheduling Problem in Testing Interconnects 183
7.4 Optimal Test Scheduling Theorems 185
7.5 An Algorithm for Generating Schedules 192
7.6 An Extension to Full Scan 200

vii

& Conclusions and Future Research
On-Chip Test Controller
Module Test Controller

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Test Program Synthesis

Controller Minimization

Interconnect Test Scheduling . .
Future Research
8.7.1 On-chip Test Controller

8.7.2 Module Test Controller .
8.7.3 Test Program Synthesis

8.7.4 Controller Minimization
8.7.5 Interconnect Test

viii

List Of Tables

2.1
2.2

3.1
3.2

4.1
4.2

7.1

Test schedule for the complex kernel. 31
Microinstruction List for Controller. 41
Counter USBEE. . . o v s s 4 v ¢ 5 & %o § 5 98 5 F s m e s 70
Processor instruction set. 78
The numbers used in the shifting. 116
Synthesis results for some modules. 130
Typical results; (a) Ns, (b) saving SS (in %) on test time. 199

X

List Of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2:19
2.20

The architecture of a HTM system.
Partitioning the test controller between the CMC and MMC.

A typical boundary scan cell. L.
A module having a boundary scan path.
Test bus architecture of amodule.
The model of a chip with boundary scan architecture.
The boundary scan bus state transition diagram.
Control model for an addressable register.
The control signals during test mode.
A LSSD kernel; (a) control signals, (b) control graph.
A general model for the bus-dependent BIT controller.
A BILBO kernel: (a) control signals, (b) control graph.
A complex kernel; (a) control signals, (b) control graph.
An autonomous BIT controller for a LSSD kernel.
Testing many kernels in sequence.
Microprograrm comtroller: « s « v w5 v 3 w5 v b mow 2 s o055 ww s
Interleaved FSM controller.
A controller for interleaved test execution.
A Tree-Of-Counter Design.
Three Trees-Of-Coumters. o0 o v i v v v i v v ca w o u mw s
A counter-Sharing design.,

Hardware complexity for different designs.

25
26
28

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

6.1
6.2
6.3

The state transition diagram for a test channel.
The state transition diagram (cont.).
The Bus Driver/Receiver.
A Testability Register; (a) block diagram (b) circuit of bit i. .

Analog Test Interface.
Control signals for MR and MRMW instructions.
Testable design features for a test channel.
Physical configuration of the MMC prototype.
The data bus adaptor.,

Overview of the test control.

Overview of the test hardware/software hierarchy.

Test control model used in CTL..

Scanning a data registerinaring.
Generating test programs for a module.

The structure of the M2C.

Possible partitions of test resources.
Test time versus controller complexity.
Tradeoff curve: Test time versus controller complexity.

Test time estimated by algorithm TC1.

A soft stuck-at 1 case.
Ashort toanopened metc . .o o i v v v v 0 ma v s wn s e m e s s

An open that is non-diagnosable.

82
86

xi

6.4
6.5
6.6

6.7
6.8
6.9
6.10
6.11

7.1

7.2
7.3
7.4

7.5
7.6
1.0

A short that is non-diagnosable. 156
A short that cannot be identified by a diagonally independent sequence.159

An open that cannot be identified by a diagonally independent se-
GUEHOE. . .« + o v o v mm o5 0 65 B w 55 58 F 4 W% § 859 § 5 Bk o 159

A short that cannot be identified by an independent test set. 160

Achieving maximal diagnosis using a set-cover independent sequence. 164

A deficiency in the W-Test Algorithm. 170
A deficiency in the C-Test Algorithm. 171
Example 6-2: (a) the NG, (b) the ANG, (c) the colored graph. . . . 173
Test interconnect via two boundary scan chains; (a) block diagram,

(b) graph model., 178
The test controller model. 179
Different classes of interconnect. 181

Two schemes for testing interconnect; (a) distributed control, (b)

centralizedeomtrol. . . . < v o v s i i v s v E B e s a s s 182
Deriving test schedules for several examples. 184
Example: Deriving an optimal schedule. 193

Testing a circuit via two scan chains; (a) block diagram, (b) graph
model. 201

xii

Abstract

The cost associated with the test and maintenance of a complex system,
which includes test generation, and detection, location and repair of faulty compo-
nents, represents a significant portion of the overall life-cycle cost. This cost can
be drastically reduced if testability and maintainability techniques are properly in-
corporated in the system design. Despite its importance, most systems are built
with insufficient or no concern for testability and maintainability. This is mainly
due to costs related to design-for-test structures, in designing test controllers, and

the development of test programs.

This thesis presents a tool called BOLD that assists in the design of a system
with extremely high degree of testability and maintainability. A system designed
using BOLD is testable and maintainable at every level of the design hierarchy, i.e.,
chips, modules, subsystems and the system, since test controllers are employed in
the hierarchy. Test busses are used to allow communication between test controllers.
Methods for designing various test controllers are also presented along with some
example designs. To describe the test aspects of various hardware units, a set
of high-level languages are provided. These languages can be used by designers
with little or no knowledge of testability. Tools are provided to synthesize test
programs from these descriptions. These test programs are then compiled and
executed by controllers so that hardware units can be tested. These test programs
include test for the interconnect between chips. The test synthesis approach also
provides the capability of predicting test time before the controllers are actually
built. Given a bound on system test time and a requirement on system testability
and maintainability, BOLD can quickly search the whole design space to provide
the designer with the best solution satisfying the requirements of test time and

hardware overhead.

Xiii

Chapter 1

Introduction

1.1 Background

The increased complexity of modern digital systems has significantly increased the
costs associated with the activities of test generation, detecting, locating and repair-
ing faulty components. These activities are referred to as the test and maintenance
of a system. For a complex system, these costs constitute a significant portion of

its overall life-cycle costs.

Current approaches to system test and maintenance often employ a three
level maintenance scheme. System self-test is initiated by personnel with little
training. If a faulty field replaceable unit is found, it is replaced with a working
spare. The faulty unit is then sent to a shop, where a technician uses sophisticated
equipment to isolate the fault to a shop replaceable unit. The faulty unit is then
discarded or sent back to a depot, where a well trained technician can locate a
faulty component down to a minimum replaceable unit, such as a chip, and repair

the unit.

This form of testing often encounters several problems such as those listed
next: (1) the unreliability of the tester; (2) the increased time and skill required
of maintenance personnel; (3) the loss of system capability when the tester failed;
(4) the cost and quality in developing test software; and (5) the so-called Cannot
Duplicate (CND) and Retest Okay (RTOK) problems. The problem of Cannot

Duplicate refers to the situation where one level of test and maintenance indicates
a failure in a unit, while the next level cannot detect a fault in the unit. This is in
part due to intermittent faults and/or differences in test procedures used at various
level of testing. The problem of Retest Okay refers to the situation where the fault
isolation capability is insufficient. Therefore, instead of sending the faulty unit to
the next level of test, a good unit is sent. Thus no fault can be identified at the
next level. It has been pointed out in [49] that the false alarm, which is the major
factor in lowering the system readiness and availability, is closely related to both

Cannot Duplicate and Retest Okay.

The major causes of these problems, which have been identified in [11], are
(1) mode of operation dependency, referring to test procedures which can be exe-
cuted at one level of the system hierarchy but not at other levels; (2) environmental
dependency, which means that a failure is caused by such conditions as temperature
or vibration; (3) false alarms due to design error or transient faults; (4) inadequate
fault isolation; (5) incompatibility of tests and test tolerances, which is caused by
the inconsistent testability and maintainability techniques used in different levels of
testing; (6) system parameters which are out of specification; (7) faults in Built-In
Test (BIT) hardware; (8) test data unaccessible; and (9) other causes which we

have no knowledge about.

To reduce the cost of test and maintenance, one needs to design a system
so that the above mentioned problems and their causes can be eliminated or at
least reduced. Such a system would then have a high degree of testability and
maintainability. In addition, the system should be able to perform self-test with
a high degree of fault coverage. This leads to a two level maintenance scheme,
where the shop level is eliminated, resulting a tremendous reduction in test and

maintenance cost.

In summary, the ideal system should be able to (1) improve fault isolation
capability; (2) eliminate the mode of operation dependency; (3) unify test and test
tolerance among different levels of testing; and (4) detect faults in BIT hardware.

Various issues related to the design of such a system are addressed in this work.

1.2 Previous Work

Previous work provides partial solutions for the problem of designing a system with
a high degree of testability and maintainability. Work has been done in the areas of
system architecture, testability busses, testable chip design, testable module design,
interconnect test and test scheduling. However, a complete solution that deals with
both the hardware and software aspects of the problem is not available. The BOLD
system presented in this thesis can provide such a complete solution. Previous work

that addresses various aspects of the problem is briefly described below.

1.2.1 System Architecture

Several system architectures to support system level design for testability and main-
tainability have been proposed. These architectures share features such as hierar-

chical design and component built-in self-test (BIST) capability.

Haedtke et al. [27] proposed a multilevel self-test architecture. Each level
of integration of the system is assumed to have BIST capability and is controlled
by a maintenance processor. A standardized test bus and a standardized BIST
control protocol are required to enable simultaneous self-test of all chips. These
same standardized interfaces and protocols are used by the maintenance processor
in both the factory and field test. The lower level tests remains valid at each higher
level of integration. Using this architecture, the system test and maintenance cost
can be greatly reduced. The system self-test is carried out by the maintenance
processor, which must be first tested by an external tester. It is not clear how the
maintenance processor will be tested if no external tester is available. Thus the

capability of system self-test is not assured.

IBM’s Common Signal Processor architecture [19] is designed with built-in
test and maintenance capability. Each chip has an on-chip monitor to control the
chip’s BIST circuitry. Each functional module is associated with an element super-

visor unit and an element control bus. The former can access the on-chip monitor

through an element maintenance bus. A subsystem manager controls all the el-
ement supervisor units via a pi-bus. The Common Signal Processor architecture
incorporates the test and maintenance hierarchy in accordance with the system

functional hierarchy.

TRW employs a hierarchical architecture for the system test and mainte-
nance [48]. A system maintenance node controls several functional maintenance
nodes via a subsystem maintenance bus. A functional maintenance node controls
several module maintenance nodes via a module test bus. A module maintenance

node controls several device maintenance nodes via a device test bus.

The TEA system [62] also employs a hierarchical test methodology. Each
board is made testable by inserting a Test Switch between every pair of Ambiguity
Groups. An Ambiguity Group is the basic unit of circuitry to be tested. The test
process of the board is controlled by a maintenance node, which is controlled by
a subsystem test control unit, which is in turn controlled by a system test control

unit.

1.2.2 Testability Bus

A great amount of effort has recently been focused on the interoperatability among
products from different vendors. Interoperatability can be assured by using a stan-
dard test bus. Some major initiatives for the standardization of test busses are

listed below.

TM/ETM initiatives [20, 60] A VHSIC subcommittee consisting of IBM, Hon-
eywell and TRW proposed the TM/ETM test busses. The Element Test and Main-
tenance (ETM) bus [20] was to be the standard testability bus for VHSIC chips.
It consists of 6 signal lines, namely CLK, DI, DO, Mode, Control, and Interrupt.
Recently the ETM bus protocol has been modified to be compatible with the IEEE
Std. 1149.1, which combines the Mode and Control into a single line (TMS) to

reduce the overhead of pin count.

The Test and Maintenance (TM) bus [60] was proposed te be used as the

backplane test bus. It consists of four lines, namely Clock, Control, MD and SD.

The bus configuration uses a multi-drop architecture, so that the addition /removal
of other modules to/from a backplane will not affect the testability operation of

other modules.

IEEE Std. 1149.1 [33] The Joint Test Action Group (JTAG) proposed a standard
test architecture, which became the IEEE Std. 1149.1. The bus consist of four
signal lines, namely TCK, TMS, TDI and TDO. The TCK is the test clock line; the TDI
is the serial data input line; the TDO is the serial data output line; and the TMS is
the control line which controls the state of a Test Access Port (TAP) that resides
on each chip. One of the main objectives of the IEEE Std. 1149.1 was to minimize

both pin count and area overhead associated with the test bus.

IEEE P1149.x initiatives [61] The [EEE P1149 Testability Bus Standardization
Committee was formed in an effort to standardize one or more testability busses
(33, 61]. The P1149.x (x=2,3,4) proposal includes four subsets that could be used
individually or in any combination. These subsets are the P1149.2 Extended Serial
Digital Subset, the P1149.3 Real Time Digital Subset and the P1149.4 Real Time
Analog Subset. These initiatives, once approved, will become the IEEE standard
1149.

1.2.3 Testable Chip Control Model

Craig et al. [18] proposed a hierarchical test control scheme. In this scheme,
a piece of automatic test equipment (ATE) controls a level 2 supervisor, which
controls several level 1 supervisors which in turn controls the Test Control Logic in
self-testable units, which are the basic unit for test scheduling and test application.
In addition to the Test Control Logic, each self-testable unit contains several test
resources and a circuit block under test. A problem occurs when a test resource,
such as a signature analyzer (SA), is shared among several units. Each Test Control
Logic in these units must provide a set of control signals to the test resource. Since
the test resource can only be controlled by a single set of control signals, control

signals provided by different Test Control Logic blocks must be combined (either

wired ORed or ANDed). This not only increases area overhead but also slows down

the functional operation.

Beausang and Albicki [7] proposed a model for self-testable chips. Their
model describes test resources, the test distribution network, the test controller
and the test procedure in mathematical form. Necessary and sufficient conditions
for a test controller to implement a test procedure are also derived. The problem
of interfacing this model to a standard test bus is not treated. Thus, it is not clear

how to incorporate their work with an external test controller, such as an MMC.

1.2.4 Testable Chip Design

Avra [5] proposed a design for an ETM-BUS compatible on-chip test and mainte-
nance controller (TMC). The controller, under the control of an ETM-BUS, can
direct the chip under test to perform five different operations, namely functional,
debug, reset, serial scan and built-in self-test. The controller consists of control
logic, command decode logic, parity logic and three registers, namely transfer reg-
ister, Command Register and Status Register. The Transfer register and the Status
register are converted into a test pattern generator (TPG) and a parallel signature
analyzer (PSA) during built-in self-test mode. The overhead of a TMC is 6 1/O
pins and about 500 gates. The problem of synchronizing the system functional

clocks and the the test bus clock is not considered.

Whetsel [33, 65] proposed a design for the Test Access Port used in the
boundary scan architecture. In this design, edge-triggered flip-flops are used as
the basic storage elements. Clock inputs of flip-flops are allowed to be gated. The
total gate count for this design is about 80 and the pin count is 4. Compared to
the design of the controller proposed by Avra, the overhead of this design is small.
This design is suitable for most chips. Whetsel also did not address the problem of

synchronizing functional and test clocks.

LeBlanc [41] reported on a built-in self-test technique, called LOCST, for
chips designed at IBM using level sensitive scan design (LSSD). LOCST utilizes on-

chip pseudorandom pattern generation, on-chip signature analysis, boundary scan

and an on-chip monitor as the test controller. The monitor includes a standard
maintenance interface with seven dedicated signal lines. The major functions of an
monitor are scan string control, error monitoring and reporting, chip configuration
control, clock event control, run/stop single cycle and stop on error. The boundary
scan chain can be used to test external logic, which cannot be tested by the monitor.
The advantages of this technique are low area overhead (< 2%), design independent
implementation and effective static testing. The key drawback of using a monitor

is the high I/O pin count overhead.

1.2.5 Testable Module Design

Budde [15] presented a board test controller called Testprocessor. Testprocessor can
control the test process of a chip through a dedicated test bus. Since a Testprocessor
is designed for use on either a printed circuit board or a VLSI chip, its functionality
is limited by area constraints. The only data processing unit in a Testprocessor is
a fault-secure comparator. Due to its limited data processing capability, diagnostic

programs cannot run on a Testprocessor.

The TEA [62] system employs a Maintenance Node to make a board testable.
Test Switches are added to a board to increase its testability and controllability.
Ambiguity groups are first identified. A Test Switch is then inserted between every
pair of Ambiguity Groups. The Maintenance Node uses 10 signal lines to control

all the maintenance activities of the board.

Babiak et al. [48] reported on a module BIST scheme using Module Main-
tenance Nodes, one of which is embedded in every module and is controlled by a
Maintenance And Diagnostic System that contains a processor to run both test and

diagnosis programs.

1.2.6 Interconnect Test Generation

The IEEE Std. 1149.1 requires that every chip be built with the boundary scan

architecture, where each I/O pin is associated with a scan cell. By shifting data

along a chain consisting of these scan cells, the interconnect between chips can be
easily tested. This helps subdivide the test problem and leads to increased fault

isolation capability.

Kautz [37] derived a minimal test set for detecting opens and shorts in a
wiring network. The number of test required is p — 1 + [logaq], where p is the
number of terminals in the largest interconnect net in the network, and ¢ is the
total number of nets. This result has become the foundation of later work on

interconnect testing.

Wagner [64] presented a method for testing interconnections using boundary
scan registers. Both stuck-at faults and shorts are considered. Stuck-at faults are
tested for free while testing for shorts. By complementing the test vector set, faults
can be located. For n 2-point nets, 2 x loga[(n + 2)] tests are required. The order
of the I/O pins in the boundary scan chain must be given. If tristate pins and

bi-directional pins are included, additional tests are required.

Hassan et al. [29, 30] extended the minimal test set for interconnect test de-
veloped by Wagner [64] to a generalized test set, where information on the order of
the I/O pins is not required. He also presented several BIST schemes for intercon-
nect test using the boundary scan architecture. Walking ones and zeroes sequences
are proposed as efficient test patterns. Several in-place diagnosis schemes are also

presented, including a modifier sequence for area efficient built-in diagnosis.

Jarwala and Yau [34] have developed a comprehensive framework for dealing
with the test and diagnosis of interconnect. In addition, a diagonally independent
property is identified. They also proposed the C-Test algorithm which can generate
a minimal test set for identifying all shorts and opens in a network. Their results

are valid only if a net is not involved in both opens and shorts at the same time.

Cheng et al. [16] researched the self-diagnosis property. Constant weight
codes are proposed to achieve self-diagnosis. In addition, several optimal adap-

tive algorithms are proposed for deriving test sets that achieve the self-diagnosis

property.

All these results are based on the assumption that a net cannot be involved
in both open and short faults. When this assumption is removed, these results are

invalid.

1.2.7 Test Scheduling

Abadir and Breuer [3] solved the problem of optimizing the execution schedule of
a test plan for a single test block. A resource conflict graph is used to indicate the
sharing of a resource at different steps of a test plan. They showed that the lower
bound on the time delay (D) between the initiation of twe tests is equal to the
chromatic number of the conflict graph. No-operation steps (no-ops) are inserted
into a test plan to get an optimal test schedule. The problem of scheduling multiple

test blocks was not addressed.

Craig, Kime and Saluja [18] addressed the problem of scheduling multiple
test blocks. Unlike Abadir and Breuer’s work, they assumed that all test blocks
have their D values equal to one. Assuming all test blocks have the same test
length, they constructed an algorithm to minimize the number of concurrent test
sets, which are defined as a set of tests that can be executed in the same test
session. The same algorithm is then extended to solve the scheduling problem for
test blocks with unequal test lengths. The problem of test blocks with D value

greater than 1 was not dealt with.

Sayah and Kime [58] dealt with the problem of scheduling multiple test
blocks with a complex test plan. Unlike previous work, which considers only a
single aspect of test parallelism, a broader consideration including both time and
space parallelism is taken. Based on a resource allocation graph and a so-called

delta graph, they found a good heuristic algorithm for the scheduling of tests.

The work discussed above does not take into consideration the control struc-
ture that implements the scheduling process. Also, the problem of scheduling test

at the module and subsystem level has not yet been addressed.

1.3 The Design Approach

A systematic design technique, called the hierarchically testable and maintainable
(HTM) design methodology, is addressed in this work. Adopting the HTM method-
ology at all levels of the physical hierarchy of a design, i.e. chip, module, subsystem
and system, will increase system availability and significantly lower hardware life

cycle costs. A system designed with such a methodology is called an HTM system.

A design-for-test tool called BOLD is presented in this work. BOLD is a
tool that supports both the hardware and software design of an HTM system.
In the hardware support, a set of test controllers to execute the test process of
different testable units are provided. In the software counterpart, a set of high level
languages to describe the test aspects of these units are provided. Tools are also
provided such that these descriptions can be translated into executable code for
the test controller. BOLD also provide the necessary tool for automatically testing

interconnects among different units.

In designing an HTM system, there exists tradeoffs between the test time
and the hardware complexity of test controllers. From a designer’s point of view,
the goals are to reduce both the test time and hardware overhead. These are two
conflicting requirements since in general more hardware has to be added to the
test controllers to reduce test time. Using the capability of automatic synthesis of
test programs provided by BOLD, the overall test time of an HTM system can be
quickly predicted. Hence the whole design space is quickly explored in choosing a

feasible solution.

1.4 The Hierarchical Test Methodology

A hierarchy of test controllers is employed in a system designed with the hierarchical
test methodology. These controllers are distributed among each level of the physical
hierarchy. In such a system, which is referred to as an HTM system, each VLSI chip
has an on-chip test and maintenance controller (CMC); each module (or board) has

a module test and maintenance controller (MMC); each subsystem has a subsystem

10

test and maintenance controller (SuMP); and each system has a system test and
maintenance controller (SMP). These controllers participate in all system test and

maintenance activities, and communicate via test busses.

Figure 1.1 shows part of the test hierarchy for four levels of test hierarchy.
Different busses may be used for communication between different levels. The SMP
communicates with SuMPs through a Level 2 bus (L2-bus); a SuMP communicates
with MMCs through a Level 1 bus (L1-bus); and an MMC communicates with
CMCs through a Level 0 bus (LO-bus). The IEEE 1149.1 [33] boundary scan bus
is used as the LO-bus throughout this work.

Pros and cons Advantages of the hierarchical test methodology include the fol-
lowing:

1. Lower level tests remain valid at higher levels of the design hierarchy.

2. Interoperatability at each level of subassembly due to standardized interfaces.

3. Increased fault isolation capability provided by boundary scan.

4. Reduced testability and maintainability (T&M) design time.

5. Reduced maintenance time due to consistent T&M techniques.

6. Increased system availability due to reduced maintenance time.

7. Increased reliability due to increased test effectiveness.

8. Reduced overall test and maintenance cost.

The disadvantages of such a hierarchical test methodology are the controller
hardware overhead and also that components with standardized interface are re-

quired.

The following example shows how a circuit can be tested when the HTM

methodology is used.

11

LO-bus § SMP

L2-master |

L2-bus
i sl
s [L2-slave |
{ = | SuMP
: | L1-master
E L1-bus
' ommc | T [

Li-slave

LO-bus]
f o ——— test test ;
; ' channel 1| channel 2 :

[LO-masterl[LO-master|
ILO—sIa\re LO-slave !

I P
A

chip 1 chips | |

- N Y]

§ S S\ L

E chip 2 chipa |

an E;ppﬁcétion chip
\ N\ ‘

LO-bus LO-bus

...

module 1 module 2

subsystem 1

Figure 1.1: The architecture of a HTM system.

1.5 Test Controllers for a Circuit

There are numerous testable design methodologies (TDMs) that can be used to
make a circuit testable. In selecting a TDM, criteria such as total test time, area
overhead, and circuit performance degradation must be considered. Tradeoffs often
need to be made so that design constraints and goals are satisfied. It is possible
to automate such a selecting process by employing an expert system [2, 69]. Once
a TDM for a circuit is selected, the associated BIT structure and test plan can be

derived.

To execute such a test plan a test controller is required. The test controller
configures the circuit for testing and controls the execution of the test. In addition,
it may also generate test data and analyze test results. Not all aspects of the

controller need be on-chip. Some of the possible tradeoffs are considered in this

example.
partition 2
tition 3 shs

partition 1 : parti ,o pall-’tl‘tlon 4

: : | / g_
1
| [seeds ?3 1 TPG [R1
! i o : _f\ r“ Jv'
' o o - |
: : ~—-1i---——------—|!-:--—-—~1 Kernels
I correct ! FSM e - S i
] . I = . P i } A
jSignatures : sCi i “b L i g
‘ | A e R

s |
: | : .
I] ! = -

1< g

Jﬂ : : 808 T appl. circuit
iNoGo | : 7!

| Pl '
: comparator \\ P 7 :
i | ~ L '
l\\ \\\ ,,’ ,,/

\“ \\ // ’,

~

) ’
Possible partition boundaries between CMC and MMC.

Figure 1.2: Partitioning the test controller between the CMC and MMC.

Partitioning the test controller: Suppose the BIT structure of an application
circuit consists of one or more scan loops (see Figure 1.2). The test plan for a loop

is as follows: (1) shift in a test vector; (2) latch the response data into the scan

13

register; and (3) shift the test results out of the loop while shifting in a new test

vector. This process is repeated ¢ times, where ¢ is the number of test vectors.

Assume test vectors are to be generated by a serial test pattern generator
(TPG) and the results compressed by a serial signature analyzer (SA). A complete
test controller must have the following hardware facilities (or test resources) to carry
out this test process: a TPG to provide the test vectors, a SA to compress the test
results, a counter TC to keep track of number of the test vectors, one counter SC1
and a register SC2 to keep track of the number of shifts for each vector, seeds
vectors for various registers such as the TPG and SA, a stack containing correct
signatures, a signature comparator, a register SCS for scan chain selection, and a

finite state machine to control the test process.

Several different configurations for these test resources are possible. Figure
1.2 shows four possible partitions of these resources between on-chip and off-chip
controllers, i.e., CMC and MMC. Once partitioned along some boundary, an in-
terface or bus is required to connect the two partitions. For example, a boundary
scan bus is used for an MMC to communicate with a CMC. The CMC must have

a slave interface and the MMC must have a master interface.

Partition I puts all resources into the CMC. Such a CMC is capable of executing a
test process completely on its own, once initiated by the MMC. After ¢ test vectors
have been applied to the kernel, the signature is compared with the correct one. The
CMC then reports only the Go/NoGo status to the MMC through the boundary

scan bus.

Partition 2 incorporates the seeds, correct signatures and the comparator into the
MMC while leaving the rest of the resources in the CMC. The MMC first loads
the seeds into the TPG, SA, SCS, TC, SC1 and SC2 registers in the CMC via the
boundary scan bus. The CMC then generates and applies test vectors to the test
kernel and the test results are compressed in the SA. After t test vectors have been
applied, the CMC requests that the MMC read the signature in the SA via the
boundary scan bus. The MMC then compares the signature with the correct one

and determines the health status of the kernel by generating a Go/NoGo indication.

14

Partition 3 keeps the TPG and the SA in the CMC while putting the rest of the
test resources in the MMC. The MMC must provide control signals for the BIT
structures, the TPG and the SA. All control signals must be derived from the test
bus directly during the test process. The MMC keeps track of the number of shifts
for each test vector and the total number of the test vectors that have been applied
to the kernel. After ¢ vectors have been applied, the MMC then reads the signature
out of the CMC. A comparison is made against the correct signature to determine
the health status of the kernel.

Partition 4 puts all the before mentioned test resources into the MMC. The CMC
is simply a boundary scan bus slave interface. The complexity for this MMC is
maximal and corresponds to the concept of a test channel, which will be described
later. The MMC must provide test vectors and collect test results through the test
bus. Control signals for the on-chip BIT structures are also provided by the MMC
through the boundary scan bus.

An MMC can control several CMCs through a bus. The hardware partitions
may be any of the four mentioned above. In fact they can be different for each chip.
To be able to control any CMC, the MMC must not only have the resources dictated
by partition 4, but even additional capabilities in order to control BIT configuration
other than just scan chains using random data. Test resources in the MMC can be
shared by the CMCs, while resources in a CMC cannot be shared by other CMCs.
Obviously, the more test resources in the CMC the higher degree of test execution

parallelism that can be achieved, thus leading to a reduction in total test time.

1.6 Thesis Outline

This thesis is organized as follows. The designs of test controllers are presented
first. On-chip test controllers are described in chapter 2, followed in chapter 3 by a
test controller for testable modules. The generation of test programs is described
in chapter 4, where test description languages are presented along with various

synthesis tools. The results of test program synthesis for several examples are also

15

shown. Chapter 5 deals with how the synthesis technique facilitates the minimiza-
tion of test controller complexity. The issue of testing interconnect among different
hardware units is described in chapters 6 and 7. In chapter 6, a new fault model is
presented along with theorems and algorithms for deriving test sets to identify all
faults. In chapter 7, the problem of actually applying a test set to test interconnect
is investigated. Theorems and algorithms are provided so that a schedule can be
constructed to achieve minimal test time. Conclusions and future work are given

in chapter 8.

16

Chapter 2

Controllers for Testable Chips

2.1 The Model

In this chapter the design of one or more on-chip test controllers (CMC) for testable
chips are presented. A testable chip is assumed to have some DFT or BIST features
which can be controlled through a boundary scan bus. It consists of a CMC and an
application circuit. The CMC in turn contains a bus interface, called L0-slave, and
a Built-In Test (BIT) controller. The IEEE Std. 1149.1 boundary scan bus is used
as the test bus in this work. A detailed description of this standard can be found
in [33]. For convenience, a brief introduction of the boundary scan architecture is

given below.

2.1.1 Boundary Scan Architecture

The boundary scan technique requires the inclusion of a scan cell for each
I/0 pin of a chip. A typical boundary scan cell is shown in Figure 2.1. A boundary
scan register is formed by cascading all the boundary scan cells. During normal
operation, the scan cells are transparent to the operation of the chip except that a
multiplexer delay is added to each I/O pin. During test operation, the logic values
of these I/O pins can be captured into the first flip-flop (Q1) and then shifted out for

observation; meanwhile, new values can be shifted in and transferred to the output

17

Scan out Mode

Signal in

ocy Signal out

Shift / Load?| 1

:’ 1D Q1 1D Q2

F> C1 > C1
Scanin IClock A Lock B

Figure 2.1: A typical boundary scan cell.

of these cells. A boundary scan module contains chips that have this boundary
scan architecture. A scan path can be formed by cascading all the boundary scan
registers (see Figure 2.2). This scan path can be used in two ways: (1) to allow the
interconnects between the various chips to be tested, and (2) to allow the chip on

the module to be tested.

: _.

—I

TDI
L
] [

TDO

I]

, A ?
boundary scan cell interconnect

Figure 2.2: A module having a boundary scan path.

The boundary scan bus consists of at least four signal lines, namely TDI,
TDO, TMS, and TCK. A fifth signal line TRST*, which is not shown here, is optional.
The TCK line provides the clock for the test logic in the L0-slave. The logic value

18

Chips with boundary scan architecture

/N
P
TDI
test —»TDI TpDO™TDI TDO®™{TDlI TDO TDI TDO
T*MS }CK T@MS }CK TMS TCK TMS TCK
™S A A A
controller TCK I T

TDO

Figure 2.3: Test bus architecture of a module.

of the TMS line is decoded by an on-chip test controller to control test operations.
The TDI line provides serial instruction and data to be received by the test logic of
the chip. The TDO line is the serial output for test instruction and data from the

test logic of the chip. One test bus architecture is shown in Figure 2.3,

The boundary scan architecture of a chip is shown in Figure 2.4. The shaded
area labeled as application circuit is the circuit designed with a predefined BIT
methodology. During the test mode, many scan registers are formed in the appli-
cation circuit. These scan registers can be used to control the test process of the
circuit. The unshaded area consists of the Test Access Port (TAP), which can also
be referred to as the LO-bus slave, and is required in a chip with the boundary scan
architecture. The TAP consists of a TAP controller, an instruction register (IR), a
boundary scan register, a one-bit bypass register, an optional device identification
register (ID), and multiplexers. The hatched area labeled as the BIT controller
contains additional (optional) test facilities for controlling the test process of the
application circuit. The CMC consists of the TAP and the BIT controller.

The state transition diagram of the TAP controller is shown in Figure 2.5.
The states are represented by the values of the flip-flops used in the TAP controller.
The state transition is controlled by the logic value of the TMS line. Each state has
two possible next states, designated by the two outgoing directed edges. The state
transition follows the edge with label 1 if the current value of the TMS line is 1,

otherwise the edge with label 0 is followed. The Reset state is entered whenever

19

——| Boundary Scan Register | |
L3

_,| Device ID Register = M
S e e B
u
X

TDI

Kppi ication &
C"c“".,ﬁwn

™S VNN i
TAP &\\ BIT controll \\\\\

SARNARNRRRNNY

TCK controller T |
—_— :
—OI Instruction Register
“!"I._)____ Interrupt B e e
H Clrcu:!
TDO Output

Bufter

Figure 2.4: The model of a chip with boundary scan architecture.

the TAP controller is reset, which can occur when the system power-on-reset is
activated or the TMS line is held high for more than 5 consecutive TCK clock cycles.
The Run-Test-Idle state is entered when executing the self-test activities, or when

the chip is in test mode with no ongoing test activity.

Two major branches are used to transmit instructions and data. When
transmitting instructions, the number of activations of the state ShiftIR equals the
number of instruction bits sent. A new instruction is loaded into the IR register
when the UpdatelR state is activated. The contents of the IR determines the
operation of the on-chip test controller. One major function of the data in the
IR is to select a data register for scanning. When transmitting data, both the
CaptureDR and UpdateDR states are activated exactly once for each transmission.
The number of activations of the ShiftDR state equals the number of data bits
sent to the selected DR. By properly driving a TAP controller, a module level
test controller can send/receive both instructions and data to/form a chip. This

information controls the test execution of the chip.

20

SelectlR

Figure 2.5: The boundary scan bus state transition diagram.

21

During the test mode, all test control signals are controlled by the BIT con-
troller, which in turn is controlled by the contents of the IR and the current state
of the TAP controller. Signals generated from the TAP controller include RunTest,
Capture, Shift and Update, and are active during the state Run-Test-Idle,
CaptureDR, ShiftDR, and UpdateDR, respectively. Only one of these four signals
can be active at a time. Also, the sequence of activation of these signals must be

consistent with the state transition diagram described previously.

When a register is selected for scan, the control signals must be designed in
such a way that the logic values of the inputs to this register are captured when the
TAP state is in CaptureDR. The selected register is shifted whenever the TAP state
is in ShiftDR. Throughout this work it is assumed that the output of an addressable
register is updated only when the TAP state is ShiftDR, i.e., an implicit HOLD
mode is assumed for all addressable registers. Figure 2.6 shows a general model for

an addressable register.

+data in

to TDO
fro@L first stage —

second stage

Ca mrQQB
Shi?tDF! & data out
—P

UpdateDE

Figure 2.6: Control model for an addressable register.

The control signals of a testable chip during the test mode are shown in
Figure 2.7. The signals C1, C2, ..., Cn control the test execution of the applica-
tion circuit, which has been built using some BIT methodologies. The signals IR1,
IR2, ..., IRm are the output of the IR. Registers in the application circuit must
hold their data when the TAP controller is in certain states, such as Exit(1)DR,
PauseDR, SelectDR. This can be done using an explicit hold control signal or by
disabling the clock.

22

IR1 " Ci
IR IR2
c2
! BIT
IRm ' BIT c3 structure
. | (appl.
RunTest ContrOller E Circuit)
TAP Capture Cn _
controller i
Update

Figure 2.7: The control signals during test mode.

Based on the dependence of the test bus, BIT controllers can be grouped into
two categories; bus-dependent and autonomous BIT controllers. During the testing
of the application circuit, a bus-dependent BIT controller uses the lines Capture,
Shift, Update and RunTest; while an autonomous BIT controller uses only the
RunTest line. In the other words the operation of a bus-dependent BIT controller
depends on the state transitions of the test bus during the entire test execution
process. The operation of an autonomous BIT controller is independent of the bus
state transitions once it has been properly initiated. In general, an autonomous

controller has a higher hardware complexity than a bus-dependent controller.

2.2 Bus-Dependent BIT Controllers

In this section, the design of BIT controllers for various test structures are presented.
These controllers use the state of the TAP controller as a source of the control
signals. When testing a kernel, the state transitions of the BIT controller must
follows the control graph of the kernel. A control graph that can be used to test a
LSSD kernel [21] is shown in Figure 2.8(b).

In a control graph, a node Si represents a control state of a BIT controller,

which is associated with a signal FSi (not shown in the graph) that is active in

23

this state; an arc represents a state transition; and the label of an arc represents
the number of iterations associated with that transition. A rectangle decision box
determines the state transitions. The arc with label 1 in the box is taken when this
box is first entered. The arc with the next highest number will be taken only when
a sufficient number of iterations has been taken in the currently selected arc. For
example, in Figure 2.8(b), once state S2 is entered, the second arc (to state S1) is
taken after the first arc (self-loop) has been taken s times. Similarly, the third arc
(to exit) is taken after the second arc has been taken t times. For those states that
have only one possible next state, no decision box is needed. Thus the decision box

corresponds o a nested loop of the form

do once
do for j=1,...,t

do for i=i,...,s.

The control signals Ci, . . .,Cnare decoded from the signals FSi, i=1,...,k.
Thus the implementation of a bus-dependent BIT controller deals with the activa-
tion of the signals FS1, ... ,FSk, in the sequence as described by the control graph.
A general model of the bus-dependent BIT controller is shown in Figure 2.9. The
BIT controller consists of two combinational decoders and an optional finite state
machine FSM. The decoder dec2, which generates control signals C1, ... ,Cn from
the signals FS1,...,FSk, consists of a set of OR gates. The decoder decl gener-
ates the signals FS1,...,FSk from three sources, namely the contents of the IR,
the TAP controller state signals and the output PH1,...,PHp of the finite state
machine FSM. Note that the finite state machine is not needed if the controller can

be implemented using a combinational circuit.

The finite state machine is implemented as a programmable counter, which,
when enabled, can count from 1 to ¢ (¢ < p) repeatedly. The signal PHi is active
only when the counter value is ¢, where 1 < < ¢. Thus the signals on PH1, ... ,PHc
form a one-hot code, and these values are generated repeatedly as long as the FSM
is enabled. When the finite state machine is disabled, the value of the counter is
0 and the outputs of the machine are all disabled. The value ¢ is determined by

a register in the machine which can be modified by shifting a new value into it.

24

Sin

LN —

(o)

Figure 2.8: A LSSD kernel; (a) control signals, (b) control graph.

25

IR1 Fs1 C1
!
: FS2 1 C2
IRm : :
!
deci : dec?2 [
RunTest
85T o FSk L
Capture
Shift
—>. ———
Update
PH1| --- (PHp
TCK Enable
FSM r=—
TDI —— 5 DO
=l o E——
e e |

Figure 2.9: A general model for the bus-dependent BIT controller.

Note that this register can be part of the instruction register or an addressable data

register.

2.2.1 BIT Controller for a LSSD Kernel

If a kernel is made testable using the LSSD technique [21], the BIT structure consists
of two registers (R1, R2) and a combinational circuit C (see Figure 2.8(a)). (The
registers R1 and R2 can be combined into a single register). These two registers
form a scan register that is selected if the contents of the IR is 011 (denoted as
[IR=011]). During the test mode, the control signals of the LSSD kernel are
LDi, LD2, SHi, SH2. The signals LDi, LD2, which control the parallel loading of
new data into registers R1, R2, respectively, are activated while in state Si. The
signals SHi, SH2, which control the shifting of data along registers R1 and R2, are
activated in state S2. When none of these signals are active, both registers R1 and
R2 retain their values, i.e., remain in the HOLD mode. To test the LSSD kernel
properly, the control signals should be activated according to the control graph

shown in Figure 2.8(b).

26

To test the LSSD kernel properly, it is necessary to derive the control signals

as follows.

Ci = LD1 = LD2 = FS1;
C2 = SH1 = SH2 = FS2.

From the model described in Figure 2.7, it is clear that a circuit that implements

the following functions can be used as a BIT controller.

FS1
FS2

Capture * [IR=011];
Shift * [IR=011].

1}

When such a BIT controller is used, an external controller can test the LSSD kernel
by first loading the IR with the proper value (011 in this case) and driving the TAP
to the states CaptureDR and ShiftDR, which in turn activate FS1 and FS2 according
to the control graph. Therefore, the control signals LD1, LD2, SH1 and SH2 are
properly activated and the LSSD kernel is tested. Note that the external controller
must have at least two counters to keep track of the values of ¢ and s required in

the control graph.

The mapping between the TAP controller states and the test control of the
application circuit may not be obvious in some cases. An algorithm that facilitates

this mapping properly will be given later in this chapter.

2.2.2 BIT Controller for a BILBO Kernel

In the case of a BILBO kernel [38] (see Figure 2.10(a)), the BIT structure
consists of two BILBO registers (R1, R2). During the test mode, the control signals
of R1 are TPG and SH1, while those of register R2 are PSA and SH2. These two
registers form a scan register that can be selected when the value in the instruction
register is 101, that is [ITR=101]. To test a BILBO kernel properly, the control
signals must be activated as illustrated in the control graph in Figure 2.10(b).
The signals SH1 and SH2, which control the shift operation in registers R1 and R2,
respectively, are both active in states S1 and S3. When the signal TPG is active,

27

R1

Sin
L
TEG p,
G
Sout R2 v
- - <
SHZE
PSA!
(a)

Figure 2.10: A BILBO kernel: (a) control signals, (b) control graph.

28

register R1 acts as a test pattern generator. When the signal PSA is active, register
R2 functions as a parallel signature analyzer. Both TPG and PSA are active in state
S2. Note that to correctly execute a test according to the control graph, different
instructions must be used in states S1 and S2. One reason for this is that in going
from the Reset state to the ShiftIR state in the TAP control, one enters the RunTest
state for at least one clock cycle. According to the control graph, it is clear that

the decoder dec2 should be implemented as follows.

Ci = TPG = PSA = FsS2;
C2 = SH1 = SH2 = FSi + FS3.

Using the control model shown in Figure 2.7, it is clear that the decoder deci

should be implemented as follows.

FS52
FS1

RunTest * [IR=011];
FS3 = Shift = [IR=101].

Note that in the above two examples, the BIT controller is simply a combi-
national circuit consists of two decoders. This is because the mapping mechanism
is simple. If the mapping scheme is very complex, the algorithm presented in sec-

tion 2.2.4 can be used to construct a BIT controller.

2.2.3 BIT Controller for a Complex Kernel

Consider the complex kernel in Figure 2.11(a), where the BIT structure
consists of four registers (R1, R2, R3, R4), a combinational circuit C and a bus
with its associated controls. During the test mode, the control signals are: LD1,
SHi, TPGi, LD2, LD3, LD4, SH4, PSA, G1 and G2. A test vector is generated
when the TPG signal is active. The test vector is transferred to the register R2
and then applied to C by activating both signals G1 and LD2. The results are then
transferred to register R3 by activating the signal LD3. Finally, the results can be
compressed in the register R4 if both the signals G2 and PSA are activated. This

process is repeated t times, where t is the number of vectors required to test C.

29

R1 R4

Sin_ —— —y Sout
LD}, | 4| A
SH
T
¢ bus
R2 Y
LDZ, | v | G
C
R3_ Y
LD3 j
—b
(a)

Figure 2.11: A complex kernel; (a) control signals, (b) control graph.

30

To reduce the test time, a new test vector can be applied before the completion
of the previous vector. However, resource conflicts must be avoided. For example,

to avoid any conflict on the bus, the signals G1 and G2 cannot be activated in the

same clock phase.

A minimal time test schedule for this kernel is shown in Table 2.1, where nine
steps are required to apply four vectors (v1, v2, v3, v4). Each table entry represents
a set of control signals that should be active at each time step for applying a test

vector.

time | vi v2 v3 vé

1 TPG

2 LD2, G1 | TPG

3 LD3 LD2, Gi

4 PSA, G2 | LD3

5 PSA, G2 | TPG

6 LD2, Gi | TPG

7 LD3 LD2, Gi
8 PSA, G2 | LD3

9 PSA, G2

Table 2.1: Test schedule for the complex kernel.

From the table, one can conclude that the activation of control signals can be
classified into four phases. In the first phase, the activated control signals are TPG,
G2 and PSA. In the second phase, the activated signals are TPG, LD2 and Gi. In the
third phase, the activated signals are LD2, Gi and LD3. In the fourth phase, the
activated signals are LD3, G2 and PSA. Two vectors are applied for each iteration of
these four phases. The control graph that can be used to execute the test schedule
is shown in Figure 2.11(b). The BIT controller that implements this control graph
can be either a sequential or a combinational circuit. These two approaches are

described next.

Sequential approach
In this approach, the finite state machine FSM is used to derive the required con-

trol signals. The control signals FS1 and FS6 are active when the instruction is

31

IR=[0010] and the bus signal Shift is active. The control signals FS2, FS3,
FS4, FS5 are derived from the signals PH1, PH2, PH3, PH4, respectively. The
finite state machine is programmed as a counter that repeatedly counts from 1
to 4, thus activating PH1, PH2, PH3 and PH4 in sequence when the instruction is
IR=[0111] and the bus state is RunTest. The counting continues until the signal
PH4 has been activated t/2 times. This means that the test bus must stay in the
RunTest state for exactly 2t clock cycles. The decoder decl is implemented as

follows:

FS1 = FS6 = Shift * [IR=0010];

FS2 = PH1;
FS3 = PH2;
FS4 = PH3;
FS5 = PH4;

The decoder dec2 is implemented as follows:

SH1 = SH4 = FS1 + FS6;
TPG = FS2 + FS3;
PSA = G2 = FS2 + FS5;
LD2 = Gi = FS3 + FS4;
LD3 = FS4 + FS5;

An external test controller can thus execute the test by driving the bus states
according to the control graph. Note that counters are required for the external
controller to keep track of the values of s and ¢. In this example, the required finite
state machine is a simple sequencer, which upon activation, repeats a sequence of

steps which equals the number of phases in the control graph.

Combinational Approach

In this case, the BIT controller is implemented using combinational circuits and
the FSM part is not used. Each control signal must be generated by using a
separate instruction. For example, the control signals FS2, FS3, FS4 and FS5
can be generated using the instructions IR=[0101], [0110], [0111] and [1000],

respectively. In this case, the decoder dec1 is implemented as follows.

32

FS1 = FS6 = Shift * [IR=0010];
FS2 = RunTest * [IR = 0101];
FS3 = RunTest * [IR = 0110];
FS4 = RunTest * [IR = 0111];
FS5 = RunTest * [IR = 1000].

The decoder dec2 is the same for both the sequential and combinational approaches.

An external controller can thus execute the test by driving the bus state
according to the control graph. Again, counters are required for the external con-
troller to keep track of the values of s and ¢. Note that a new instruction is required
for the activation of each new control signal. Therefore, the test execution time is

increased dramatically compared to the sequential approach.

From these two approaches, one can conclude that there is a relation between
the test time and the complexity of the BIT controller. In general, the more complex

the BIT controller is, the shorter the test time.

2.2.4 A Mapping Algorithm

When designing a BIT controller for a single kernel, as shown in the above examples,
a mapping algorithm is required to ensure the correctness of the BIT controller.
During the test mode, the signals C1, C2,..., Cn should be controlled by the
BIT controller so that the kernel can be properly tested. The test procedure for
the kernel is described in a control graph, which has been previously defined. Each
state (or node) of the control graph is associated with a set of control signals, which
are the signals that are active in that state. The inputs to the BIT controller is
the contents of the IR and the signals directly derived from the bus state, namely
Capture, Shift, Update and RunTest (see Figure 2.7). The BIT controller out-
puts the signals C1, €2,..., Cn.

The input of this algorithm is a control graph, where each state is associated
with a set of control signals that should be active in that state. The output of this

algorithm is a set of boolean functions along with a set of instructions for the TAP.

33

All control signals are represented in terms of the bus signals Capture, Shift,
Update, RunTest, the contents of the IR, and possibly the output of the FSM. A
state signal (FSi) is associated with the state Si. The state signals are used as
the intermediate form for generating the control signals C1, ¢2,..., Cn. Once
the state signals are generated, all control signals Ci associated with that state are
active when FSi is active. If a control signal Ci is associated with various states
(Si, Sj, Sk)then Ci = FSi + FSj + FSk.

The mapping algorithm is used for the design of a bus-dependent BIT con-
troller. Therefore, it is assumed that one of the four bus state signals, namely

RunTest, Shift, Update, Capture, must be used to derive any control signal.

The Mapping Algorithm:

Input: A control graph and a list of control signals associated with

each state.

Output: Ci in terms of FSj’s, which is a function of the IR contents,

the bus state signals and (optionally) the output of the FSM.

1. Repeat this step for all shifting states.

1.1. Assign a distinct instruction to each scan chain.
1.2. For each state Si, FSi=Shift*[IR=assigned instruction],
and mark this state.

2. Repeat this step for all unmarked self-loop states.

2.1. Assign a distinct instruction to each self-loop state.
2.2. For each state Si, FSi=RunTest*[IR=assigned instruction],
and mark this state.

3. If the only next state of an unmarked state (Si) is a shifting
state, let FSi=Capture*[IR=instruction of the shifting state],
and mark this state.

4. If the only previous state of an unmarked state (Si) is a shifting
state, let FSi = Update * [IR=instruction of the shifting state],
and mark this state.

5. If all neighboring states of an unmarked state (Si) have been
marked, let FSi=RunTest*[IR=instruction of one of its next states]

and mark this state.

34

6. Do this step for all unmarked states.

6.1. Partition these unmarked states into groups such that for an
unmarked state Si in group j, if the next or previous states
of Si are also unmarked then they are also in group j, i.e.,
no neighboring state of a state in group j is unmarked.

Do step 6.2 for each group.

6.2. If the group contains more than one state, go to step 6.3,
else assign a new instruction to this state Si, and let
FSi=RunTest*[IR=assigned instruction]. Mark this state.

6.3. Sequential Approach: Assign a new instruction to this group.
Let the number of states in this group be c. Program the FSM
such that it counts from 1 to c when Enable = RunTest*[IR=the
selected instruction] is active. Assign the FSM state signals
PH1,...,PHc to the appropriate FSi’s so that all FSi’s in this
group are properly activated. Mark all states in this group.

7. Instruction merging:
The control graph can be reduced to a subgraph for a given set
of nodes if all other nodes and their associated arcs are removed.
Generate a subgraph for each group of nodes formed in step 6.
For all subgraphs that are isomorphic and are associated with
the same control signals, an instruction can be used for all these

groups. The number of assigned instructions can thus be reduced.

8. Generate all control signals Ci from the FSj’s. If a signal is

active in several states, say Si, Sj and Sk, then Ci=FSi+FSj+FSk.

Initially, all states of the control graph are unmarked. After the execution
of this algorithm, all states are marked and their associated signals are assigned
with a boolean function. Since data must be sent and received when shifting a
register in the application circuit, the shifting states in the control graph can only
be mapped into the bus state ShiftDR. In step 2, a self-loop state is mapped into
the RunTest bus state since this state can be held for many consecutive times

without changing the contents of IR. In step 3, 4 and 5, more intermediate signals

35

are generated without assigning any extra instruction. In step 6, the state signals
for all the unmarked states are generated by using RunTest. The BIT controller
can either be a combinational circuit or a sequential circuit. If step 6.3 is entered,
a sequencer is created, the BIT controller is a sequential circuit; otherwise it is a
combinational circuit. After step 6, all the states have been marked (or processed).
Instructions that can be shared among different groups formed in step 6 are found
in step 7. The total number of instructions assigned is then further reduced. In step
8 all control signals (Ci) are generated from the intermediate state signals (FSi).
The correctness of the BIT controller is guaranteed since all control signals Ci are

controlled by the contents of IR and the bus states.

Example The Mapping Algorithm is illustrated using the complex kernel shown
in Figure 2.11(b). The associated control graph is shown in Figure 2.11(b).

1.1. Assign instruction i1 to the only scan register in this example.

1.2. There are two shift states S1 and S6, therefore, FS1=FS6=Shift*[IR=i1].
Mark states S1 and S6.

2. This step is skipped since there are no unmarked self-loop nodes.

3. Skipped.

W

. Skipped.
5. Skipped.

6.1. Only one group consisting of states S2, S3, S4 and S5 is formed.

6.2. Skipped.

6.3. (Use Sequential approach) Assign instruction i2 to this group. The FSM
is enabled when Enable = RunTest*[IR=12] is active. The FSM is pro-
grammed to keep counting from 1 to 4 when enabled. Let FS2=PH1, FS3=PH2,
FS4=PH3, FS5=PH4.

7. No instruction merging can be done. Two instructions are assigned.

8. Assign all control signals. TPG = FS2 + FS3, PSA = FS2 + FS5, G2 = FS2 +
FS5, LD2 = FS3 + FS4, G1 = FS3 + FS4, LD3 = FS4 + FS5, SH1 = FS1

+ FS6, SH4 = FSi + FS6.]

36

Let the number of scan chains formed by shift registers be I, the number of
self-loop states be I, and the number of groups formed in step 6 be ;. The total
number of instructions assigned in this algorithm is I,,, = I, + I, + Iy. Note that

the public instructions defined in the standard are not included here.

Lemma 1 The number of instructions assigned by the mapping algorithm is min-

imal.

Proof:

The number of instructions is the sum of I, I, and I,. The first two numbers are
defined by the structure of the control graph. The third number I, is minimal since
the number of groups derived from step 6.1 is minimal. Thus it is clear that the

number of instructions (/,,) assigned by the mapping algorithm is minimal. O

Combinational Approach: The BIT controller designed using the mapping algo-
rithm may be a sequential circuit since a finite state machine may be used in step
6.3. However, because of design constraints it might be necessary to implement
the BIT controller as a combinational circuit. If this is the case, step 6.3 can be

modified as follows.

6.3. Combinational Approach: Assign a new instruction to
each states in the group. For state Si in this group, let

FSi=RunTest*[IR=assigned instruction]. Mark the state.

Let the number of unmarked states at the beginning of Step 6 be I, then the

number of instructions assigned in the combinational approach is I.ppm = Ie+ I+ I,,.

For a given control graph, it is obvious that I.,m > Is,. Since loading a
new instruction to the IR of a chip also loads new instructions to all chips on the
same test ring, i.e., all chips share the same TMS line, the test time is increased
significantly if many instructions are required in testing a kernel. Therefore the
sequential approach of designing the BIT controller can reduce the test time at the

expense of adding a finite state machine to the controller.

37

2.3 Autonomous BIT Controller

An autonomous controller has all the test control facilities required to execute
the test process of the kernel under test. Typical facilities include a test pattern
generator, a signature analyzer, a T counter, which is used to keep track of the
number of test vectors applied, an S counter, which is used to keep track of the
number of bits shifted during a shifting operation, and a finite state machine to
control the test sequence. For example, an autonomous BIT controller for testing
an LSSD kernel (see Figure 2.8) is shown in Figure 2.12. The correct seeds must
be loaded into both TPG and SA before the test. The START signal is generated by
loading a special instruction to the IR. Once START is activated, the controller can
execute the testing for the LSSD kernel autonomously. Upon completion, a signal

DONE is activated. The signature can then be collected.

For the rest of this chapter, it will be assumed that the application circuit
contains n BIT structures, which are all LSSD kernels. An autonomous BIT con-
troller is needed to test these n BIT structures. Depending on the approach used
in testing these kernels (serial or parallel), the BIT controller used is called a Serial
BIT controller or a Parallel BIT controller. The design philosophy of these two

controllers are addressed next.

2.3.1 Serial BIT Controllers
2.3.1.1 A Hard-Wired Serial BIT Controller

A single BIT controller can be employed to test n BIT structures in sequence. Such
a controller is called a serial BIT controller. A BIT controller that can be used to
test n BIT structures (LSSD kernels) is illustrated in Figure 2.13. A counter SS is
used to keep track of which BIT structure is to be activated. This counter requires
only [logn] bits. Since the same controller is shared among all the BIT structures,
the area required for it will not grow linearly with n and thus, the total area for
the controller (not counting the area required for storing the ¢;’s and s;’s) will

increase only logarithmically with n. However, the time required for testing is now

38

R

—» PG]
= SHY, Y
LD1, |
C
sout (P2 v
< 3sA ot < |-
SH2

D. L
START [l _ LDg

FSM T T counter

4 S counter

*DONE

"/
DONE

____b.

w
—
>
oy
6
W N —

Figure 2.12: An autonomous BIT controller for a LSSD kernel.

39

proportional to Y [s; x ¢;], which may become prohibitively large if the number of

BIT structures to be exercised is significant.

To BIT structures

(n LSSD kernels)
SH1 LDi SHn LDn

: :
i I
: |
1 :
1 I
|]
1 |
| [
: SH LD I
; I
1]
! |
1 |
! FSM 53 |
| Structure |
1
: (for a LSSD kernel) Selector :
: 1
1 1
| |
1 1
] 1
1 1
] i
I 1
i
: (t,s) |
I
: Register :
: Stack |
i |
R o o i o e e e T | 1 | o ' - |

Figure 2.13: Testing many kernels in sequence.

2.3.1.2 A Microprogrammed Serial BIT Controller

The general architecture for a microprogrammable test controller, suitable for exe-
cuting the test for an LSSD kernel, is shown in Figure 2.14. The design, which is
first presented in [11], is similar to that of a conventional microcontroller, supple-
mented with circuitry for keeping track of the loops associated with ¢ and s (shown

within the dashed rectangle in the figure). The register stack contains constants,

40

such as ¢ and s, which can be loaded into the accumulator register (ACC), decre-
mented (DCR), and stored back into a temporary register in the stack. The logic C

determines if the content of the accumulator is zero.

The fields of the instruction register (IR) are - (1) the opcode, (2) the
control field, (3) the branch condition address, (4) the miscellaneous field, used for
any environment specific control signals, and (5) the address field. These fields

may be either horizontally or vertically encoded. A few basic microinstructions are
described in Table 2.2.

field
1 5
opcode | address function
LOAD I load ACC from register I of stack
STORE I load register I of stack with contents of ACC
DBNZ N decrement ACC; if ACC# 0, branch to N
NOP - no operation

Table 2.2: Microinstruction List for Controller.

For simplicity the branch condition address (field 3) has not been used.
Hence for the DBNZ instruction, if ACC # 0 then N is forced into ADR1, else ADR1

takes its normal next value which is ADR1+1.

The microprogram for the control graph of Figure 2.12(b) is shown below.
Here s and ¢ are permanently stored in stack registers 0 and 2, respectively. The

program requires only 7 instructions and 4 different operation codes.

No. Opcode Control Address Comments

i LOAD 0 0 t in register 0

2 STORE 0 1 Test vector count in reg. 1
3 LOAD 0 2 s in register 2

4 DBNZ SH 4 Issue SH; loop s times

5 NOP LD 0 Issue LD signal

6 LOAD 0 1 Test Vector count to ACC

4 DBNZ 0 2 Repeat major loop

41

o

/
Register 4 ADR : P
ec. <
Stack : ’
ACC
¢
J

MUX

microprogram dec. - ADR | .
ROM

DO
D1

IR

{

R
Vv ~

Bl O

| decoder | {
microcontroteri l B0 ©

control

—D1

BIT control Conditions
—p=Dn

MUX

Figure 2.14: Microprogram controller.

42

If the chip being tested already has a microprogram control unit, then the
test control procedure requires very little additional overhead. The latch and shift
controls already exist. The data processor portion of the controller may need to
be added to the chip if it does not already have an accumulator/ALU structure.
An additional advantage of having a microprogrammed control is that one can
implement microdiagnostic routines and functional tests. However, if the chip under
test does not have a microprogrammable control unit, a hard-wired test controller

previously described may be employed.

2.3.2 Parallel BIT Controllers

A parallel BIT controller can autonomously test multiple kernels in parallel. The
test time is minimal since all kernels are tested simultaneously. Due to the similarity
between the kernels, the complexity of the controller can be reduced if the controller
is properly designed. The design technique for such controllers is illustrated by using
an application circuit consisting of many BIT structures. All these BIT structures
are assumed to be LSSD kernels. It is assumed that these kernels are independent,
i.e., they do not share any resources such as busses or registers, and hence the test
can be executed concurrently. The i** kernel requires t; test vectors and s; shifts
per vector. Thus n independent controllers of the type shown in Figure 2.12 can
be used for each structure. In this approach, the test time would be max [s; x t;],

and the controller area will increase linearly with n.

Three hard-wired designs which do not have excessive test time as found
in the sequential controllers, or require excessive area as may be the case when n
controllers are used are presented next. The first design superimposes the FSMs
of individual controllers into one FSM and interleaves the activation of the BIT
structures. This design can potentially test all n BIT structures in the same time as
required by n independent controllers. In addition the area overhead is comparable
to that of a sequential controller which exercises the BIT structures one by one.
Unfortunately, in this scheme, the time required for testing depends on the problem
at hand (i.e., the values of {; and s;), and for some pathological cases this design

may entail long test times.

43

Two other designs to be presented rectify this problem by running all BIT
structures simultaneously without interleaving. The controller area is reduced by
sharing common factors among the ¢;’s and s;’s. These designs are referred to as

the “Tree-of-Counters” and “Counter-Sharing” controller designs.

It should be remarked at the outset that none of these designs is clearly
superior to the others. That is, depending on the BIT structures to be controlled,
area constraints, and test time objectives, one controller may be more beneficial
than the others.

2.3.2.1 Interleaved FSM Controller

The design technique is illustrated with an example consisting of three BIT struc-
tures BIT1, BIT2 and BIT3. The extension to n BIT structures is straightforward.
Assume that s, = 41, s, = 48, s3 = 62, t; = 900, ¢, = 1000, and ¢3 = 1150. To
each BIT structure, the LD and SH control signals must be issued at appropriate
times. For example, BIT2 must receive 48 consecutive SH pulses, followed by a LD
pulse, in order to apply one test vector. It is assumed that if a register is not in

the SH or LD mode then it is in the HOLD mode.

The FSMs for the individual BIT structures, which are similar to the FSMs
shown in Figure 2.12 with different values of s; and #;, can be combined into a single

FSM as follows.

To interleave the execution of these FSMs, the controller can issue 41 SH
pulses to all three BIT structures, then 7 SH pulses to BIT2 and BITS3, followed by
14 SH pulses to BIT3 alone. At this point all the test vectors are loaded into their
proper registers and a LD pulse can be issued to the appropriate BIT structures.
This process, when repeated 900 times, will apply all the test vectors to BIT1 and
the first 900 vectors to BIT2 and BIT3. This cycle, with control signals to BIT1
disabled is repeated another 100 times to finish testing BIT2; and another 150
repetitions with control signals to both BIT1 and BIT2 disabled, will conclude the

testing process.

a4

t; =900

SH(1,2,3) LD(S) SH(2,3) LD(S)
LD(S)

SH(3) LD(1,2,B)

tg—tlz].OO

SH(2,3) LD(2,
LD(S) DCR(S) DCR(S) LIAE) %%%35) DCI(’E('g?
LD(S

tg—-tg = 150
ﬁ’- 7 ﬁ

SH(3) p(s) sH(3) LD(3)
LD(S) DCR(S) DCR(S) DCR(S) Eg%é;)

START O\

START

Figure 2.15: Interleaved FSM controller.

45

The interleaved FSM is shown in Figure 2.15. It consists of three (in general
n) phases. Each phase completely activates one BIT structure and executes some
of the test vectors of other BIT structures which as yet have not completed their
test cycle. In this example, the first phase (the top row of states) tests BIT1 and
parts of BIT2 and BIT3; the second phase completes the testing of BIT2 and part
of BIT3; and the third phase finishes testing BIT3.

A procedure for deriving an interleaved FSM for an arbitrary value of n is
presented next. Without loss of generality, assume that s; < s;4;, 1 < 7 < n.
Also let o be a permutation of (1,2,3,...n) such that ¢, < toi41), 1 <7 < n.
Define ¢ = 0, s = 0 and o(0) = 0. The interleaved FSM has n phases. Phase :
applies {,(;) —t,(i-1) vectors and after it is over, BITo (1) through BITo(¢) have been
completely tested. If ¢,;) — ts(i—1) = 0 this phase can be ignored. The i phase
starts with loading ¢,(;y — t5(i-1) and s; (which is the minimum s; value) into two
working registers, 7" and S. Register S is then decremented and a SH signal is issued
to the appropriate BIT structures, namely BITo (i + 1), BITo(z + 2), ... BITo(n).
This is done repetitively until register S contains a zero. The value s; — s; is then
loaded into S and this count is used to issue SH pulses to all those BIT structures
for which a sufficient number of SH pulses have not been issued so far. This process
is continued until all the test vectors are shifted into their respective registers. A
LD pulse is then applied to the appropriate BIT structures and the above cycle is

repeated 1,(;) — f,(i—1) more times.

In general, there are n phases, each with 2n + 1 states (2 for each difference
(s;i—si—1) > 0 and one final state). Hence the total number of states in the combined
FSM is n x (2n + 1), requiring [log(n x (2n + 1))] flip flops. The interleaved FSM
requires 2n constants (the differences (s; — si—1) and (t,¢) — to(i-1)) for 2 =1 to
n). We assume that they are stored off-chip and can be loaded by invocation of

appropriate LD signal.

It can be noticed that the above controller does not have the minimum
number of states required to control the n BIT structures. In fact, the number
of states can be reduced by almost a factor of two. For example, consider the

second phase in Figure 2.15. Since BIT1 has already been tested, the S register

46

can be loaded with 48, instead of 41 followed by 7. This results in a reduction
of 2 states from the second phase. Similarly, 4 states can be deleted from the
third phase. In general, the number of states which can be eliminated is given
by 2+4+4+..2(n — 1) = n(n — 1). Thus, instead of requiring [logn(2n + 1)] flip
flops, [log(n(2n + 1) —n(n — 1))] = [logn(n + 2)] flip flops are sufficient. Thus
the saving in terms of storage is just one flip flop. On the other hand, this change
introduces asymmetry in the phases as each phase now has a different number of
states. Because of this asymmetry, a different decoder will be needed to issue SH
and LD signals in each phase, and hence the controller area will start increasing
linearly with n. Therefore, the FSM shown in Figure 2.15 requires less area even

though it does not have the minimum number of states.

Three factors contribute toward an efficient implementation of an interleaved
controller. First, only three registers S, S’ and T are required as opposed to 2n
registers in the case of n independent controllers. Secondly, the increase in the
number of states in the FSM over a single controller does not lead to very much
additional area. Since the state information can be encoded using just [log(n x
(2n + 1))] flip-flops, the variable part of the design (with the constants stored off-
chip) increases only logarithmically with n. Thirdly, the proposed FSM is highly
symmetric. Thus one can use a single 2n + 1 state machine in order to issue SH and
LD pulses to all the BIT structure. A [logn] bit counter, referred to as the template
register, may be used to store which phase is being executed and, depending on its
value, the control signals to the BIT structures that have already been tested may

be disabled. Figure 2.16 shows a schematic for this implementation.

Under certain conditions the interleaved controller may entail a penalty in
test time. Since the application of test vectors to different BIT structures is in-
terleaved, it takes max[s;] units of time to apply one vector to all BIT structures.
Thus the total test time is proportional to max[t;] X max[s;]. Typically, the BIT
structures with large value of s; will also require the most number of test vectors,
and hence max[t;] x max[s;] will equal max[t; x s;], the time required by n inde-
pendent controllers. However, if the s;’s and ¢;’s are not well matched, there may

be an unacceptably high penalty in test time. For example, if s; = 50, s; = 100,

47

=@
Tole

//f S ’
4 ,,",/
————= SH
State
A Decoder — LD
Reg. :
E
/
[log(2n +1)] , (to BIT
4 structures)
Template
Reg.
4
/ [log(n)]

Figure 2.16: A controller for interleaved test execution.

t; = 5000 and t; = 1000, the interleaved controller will take 100 x 5000 units of

time instead of 50 x 5000 required by two independent controllers.

2.3.2.2 Tree of Counters Design

The test time problem just discussed can be alleviated by executing all n BIT
structures simultaneously without interleaving. The number of flip-flops used in
the count-down registers can be reduced by sharing the common factors in the
numbers t; and s; which need to be decremented. This scheme will be most effective
when the number of common factors is large. Even in the worst case, this design

methodology will be no worse than employing n independent controllers.

Consider once again the example given in the previous section. The con-
troller has to provide a SH control signal to BIT1, BIT2, and BIT3 for 41, 48, and
62 clock cycles respectively; provide a LD control signal to the respective BIT struc-

tures after every 41, 48, and 62 clock cycles, respectively; and repeat this process

48

until all test vectors have been applied. To apply one test vector to BIT? requires
s; SHs followed by a LD, i.e., it is s; + 1 clock cycles. Notice that the LD signal is
dependent on SH, i.e. LD = NOT(SH).

It is apparent from the above discussion that the task of generating appro-
priate control signals to the BIT structures is in essence that of repetitively (and
simultaneously) counting a set of numbers. One needs to count from s; to 0 to

generate the SH signals and from (s; + 1) x ¢; to zero to generate the DONE signals.

To illustrate this approach, assume that modulo 41, 48, and 62 counters are
required. Since 7 is a common factor of these numbers a 3-bit modulo-7 counter
that can be shared among all three counters can be used. This ‘root’ counter may
be a hard-wired modulo-7 counter. This shared counter produces a terminal count
signal (tc) every 7 clock cycles that can be used to decrement modulo 6, 7 and 9
counters. Sharing of common factors can be continued recursively using factors of 6,
7, and 9, giving rise to a tree like structure. This logic is called a Tree-of-Counters.
Figure 2.17 shows the optimal Tree-of-Counters for this example. No constants
need be stored in this design approach since t; and s; are actually hard-wired into

the modulo counters.

Clearly, considerable savings can be accrued by such sharing if the numbers
to be counted have many common factors. In this example, if one used three
separate counters, then [log 42] 4 [log 49] + [log 63] = 18 flip-flops will be required.
On the other hand, the proposed design uses only [log 7]+ [log 3]+ [log 7]+ [log 2]+
[log3] = 11 flip-flops.

The problem of designing an optimal Tree-of-Counters for a given set of
numbers can be formalized as follows. Let the numbers to be counted be s1, s, ...,
and s, and let Fy, Fy, ..., and F), be the sets containing the factors of these numbers.
(F¥’s may contain multiple factors.) Also let f;;,i=1,2, .., nand j = 1,...,|F|
denote the j* factor of s;. The optimal Tree-of-Counters corresponds to a tree with

n leaves, rooted at 1, such that

1. the product of the f;;’s on the path from the root to the i** leaf is s;, and

2. Y [log f; ;] for all f;; in the tree is minimum over all possible trees.

49

DCR
TC mOd‘T
¥
DCR DCR
d-7
TC nod-3 TC e
> LDi
| - L L[™>0— sn1
DCR DCR
TC mod=2 TC mod-3
—————> D2 ————> LD3

I>C SHY |>O > SH3

Figure 2.17: A Tree-Of-Counter Design.

50

The first item in the above definition ensures that the frequency of the
terminal count signal of the i** leaf counter is s;. Because common factors may be
shared in different ways, several trees are possible for a given set of numbers. For
example, Figure 2.18 shows three alternative trees for the s; values of 510, 714, 595,
and 78. The dashed rectangles in the figure represent a counter for the product of
the factors in the rectangle. The second item in the above definition requires that
the total cost of constructing these trees in terms of the number of flip flops be

minimum.

The problem of constructing the optimal Tree-of-Counters appears to be
computationally intractable. In fact it is not known whether it is even in the NP
class. A complete discussion of the computational complexity of this problem is
beyond the scope of this work. In the remainder of this section, a ‘greedy’ heuristic,
that attempts to obtain a good solution by locally optimizing the savings associated

with any proposed counter sharing, is presented.

To make counters for s; and s; one can have a mod-a counter, « = GC D(s;, 5;)

feeding counters for and WDSW This sharing results in a saving of

3(.
GCD(si.s5)
[log(GC D(s;,s;))] and two counters having [log '@ETJ?W] and [log Wo?&_s,)] bits
respectively have to be constructed. These two counters will be driven by a sig-
nal from the mod-a counter. Thus, with each pair s; and sj, we can associate a
score S given by S(s;,s;) = [log(GCD(s;,s;))] which weights the sharing of com-

mon factors between s; and s;. A greedy procedure for generating a near optimal

Tree-of-Counters is presented below.

TreeOfCounters(C)

{if iCl = {} then return;

else if |C| = {a} then

{GenCounter(a, 1); return; }
else {find a, b in C such that S(a,b) is maximum;
if S(a,b) = 0 then
{for all x in C, GenCounter(a, 1); return; }

GenCounter(a/GCD(a,b), GCD(a, b));
GenCounter(b/GCD(a,b), GCD(a, b));

51

7 counter

i
mod-

510 714

(b)

(a)

5

(c)

f-Counters.

0

Figure 2.18: Three Trees

52

delete(a, C); delete(b, C);
insert(GCD(a,b), C);
TreeOfCounters(C); }}

This algorithm works bottom up from leaves to the root. For any given

set C' of numbers the algorithm computes the score S(s;,s;) for all s;,8; € C.
It then picks the pair with the maximum score, generates a m"d(@?fff?,sﬁ) and
mod(ﬁfm) counter, deletes s; and s; from C and inserts GC D(s;,s;) into C.
These two counters are decremented by the terminal count signal of GCD(s;, s;).
The procedure now recursively calls itself with the modified set C of numbers. It
terminates when there is only one number left in C, or the maximum score for any
pair is 0 indicating that all elements of C' are relatively prime. In the procedure,
the routine GenCounter (A, B) generates mod-A counter which is enabled by the
terminal count signal of the counter for mod-B. Figure 2.18(c) shows an example

Tree-of-Counters constructed using this procedure.

The step “find a, b in C such that S(a, b) is maximum” is the most complex
step in the algorithm. Initially, O(n?) GC'D computations will be required in order
to find the maximum value of S(a,b). Since in each recursive step the size of C
diminishes by one, there will be n iterations and the above procedure can be easily
executed in O(n®) time. It is possible to reduce this time complexity to O(n?) if in
each iteration a and b are replaced by GC D(a, b). Thus in each successive iteration
the score S need be recomputed only for the pair formed by this new entry and the
old numbers. Hence it is possible to find the maximum value of S(a, b) in O(n) time

in all iterations except the first one, resulting in an O(n?) overall time complexity.

2.3.2.3 Counter Sharing Design

In the previous design, specific common factors of the form GCD (4, B) were employed
and used to enable the counters for A/GCD(A,B) and B/GCD(A,B). In the Counter
Sharing design scheme a set of common factors are obtained, and these factors
are combined to derive the desired SH and LD signals. Let tc, denote the terminal
count signal of a mod-z counter. One can generate signals of any frequency by

simply ANDing together appropriate factors of a desired frequency. For example, a

53

signal that goes high every 100 clock cycles can be generated by ANDing tcys and
tcy, denoted by AN D(tcys,tcy). Notice that repeated prime factors, e.g. {5,5} and
{2,2} in this case, have to be multiplied and a larger common factor counter must
be used. That is, it is wrong to implement AN D(tcs, tcs, tee, tep), since this would
produce a signal every 10 clock cycles instead of every 100 clock cycles. Figure 2.19
shows how to derive tcyo and tcig0 from mod-2 and mod-5 counters. In general, if
H,Tzlaf‘ is the unique prime factorization of NV, then a signal that goes high every

N cycles can be produced by AND(tc s, .. .tcaa,,).
1 P

1 1)
Imod-2 mod—2 > mod-5 mod-5 >
tc2 red 5 |tc25
\ \
AND AND
l tcil l tc100

Figure 2.19: A counter-Sharing design.

Let T; = t; x (s; + 1) denote the total test time for the j** BIT structure.
To control this structure, we need a signal tc;;4; to issue appropriate LATCH signals
and a signal ter, to mark the end of testing. Let factor(X) = {a'|e’ occur in
the prime factorization of X} and U = Uj_,(factor(T;) U factor(s;)) be the set
of all the factors. Here the union operation (J takes the maximum power for each
replicated prime factor, i.e., U(a',a?) = o™, The control signals for all the
BIT structures can now be generated from the common pool U of factors by ap-
propriately ANDing the appropriate signals. For example, if T; = af{’afgz .. fj’
is the prime factorization of T; then tcr, = tey,xs;41 = AJ\/’D(tc&p}-1 . tcasj,) will

1 r
generate the DONE signal for BITj. Signals s;’s can be similarly éenerated. ’

This design requires 2n AND gates (one for each s; and the other for each
T;). Notice that no other circuitry is required, either for decoding or for maintaining
the state information. The total test time required by this design is max}_; T; =

max?_, (t; X (s; + 1)) which is considerably better than }7%_, T}, the time required

1=1
by a sequential controller.

54

2.3.2.4 Comparison of Three Designs

The interleaved FSM controller requires on the order of max[s;] x max([t;] clock cycles
to completely activate all BIT structures. For a ‘balanced’ problem, i.e. the one in
which max[s;] and max[t;] occur for the same BIT structure, this will be optimal.
In addition, the area occupied by the FSM excluding the area required for storing

the constants, increases only logarithmically with the number of BIT structures.

The Tree-of-Counters design and the Shared-Counter design are useful when
max[s;] x max[t;] is much larger than max[s; x ¢;], and when the s;’s and ¢;’s have
many factors in common. Both designs operate the BIT structures concurrently,
without any penalty in test time. Also the area overhead for these designs is
considerably less than that incurred when independent controllers are used. This

is achieved through register sharing and elimination of decoding circuitry.

The basic idea in both the Tree-of-Counters and Counter-Sharing designs
is the same. In the former the terminal count signal of one counter is used to
decrement a set of other counters giving rise to a tree structure. The amount of
sharing in this scheme depends heavily on the problem at hand and may be limited
for some problem instances. For example, if counters for 11 x 13, 11 x 31, and
31 x 13 have to be designed, only two of these numbers can share a counter. The
Counter-Sharing design alleviates this problem by constructing a common pool of
counters which is shared among all numbers. For each number appropriate terminal
count signals are simply ANDed together. For most problems this design will be
superior to the Tree-of-Counters design. However, there exist situations when a
Tree-of-Counters is more desirable. For example, if counters for 11 x 13 and 11 x 31
are to be constructed, both design schemes will require modulo counters for 11, 13,
and 31. The Tree-of-Counters design will use mod-11 to drive mod-13 and mod-
31. On the other hand, the Counter-Sharing design will need extra AND gates to
produce signals of appropriate frequencies. It is this saving in terms of AND gates

which may make Tree-of-Counters more desirable for some problem instances.

For any BIT structure the value of s; is fixed by the length of its scan-chain
or internal shift registers. The number of vectors (t;), however, can in general be

increased, if doing so will result in reduced area without excessive penalty in test

35

100 * ' " i
v --x-- independent
90}
8O
70t
60+
®
= sof
f
*®
401
30r
20l R\ T -...__-0-rounded
0 “"’"""'-n----ﬁ-o---_. i
10k - --0-- interleaved
....... e o SEQUENLA]
0 ’ ' ' ' S0
0 10 20 30 @ L o

test schedules

Figure 2.20: Hardware complexity for different designs.

time. Since common factors in the ¢;’s are shared, by modifying the value of ¢,
it should be possible to significantly reduce the controller area. The simulations
experiments described below show that this indeed is the case. In particular, we
will see that if the ¢;’s are increased to become multiples of some number, say 100,
both the Tree-of-Counters and Counter-Sharing designs result in reduced area. This
clearly increases test time. However, this increase may be acceptable in exchange

for reduced area and associated increase in fault coverage.

Controller area and test times have been determined for each of the designs
described. The results are shown in Figures 2.20 and 2.21. Figure 2.20 shows the
average number of flip flops required by the various designs relative to that of n
independent controllers. In order to plot these curves, n random pairs of s; and
t; values were generated. The number of flip flops required by each design was
then estimated (as described below) and averaged over 20 iterations. The results
indicated correspond to the following cases, described from top to bottom in the
figure. The value of s; range from 50 to 250; that of ¢; from 1000 to 50,000.

56

. independent — represents the area occupied by n independent controllers
with no optimization. The area is estimated to be Y™, ([log s;] + [logt;])
and is used as a normalization factor for all other curves. The area of the FSM

is ignored.

. treel — represents the area occupied by the tree generated using the proce-

dure TreeOfCounters.

. tree2 — same as above except {;’s are incremented to the next multiple of
100.

. shared1 - indicates the area occupied by the Shared Counter design; the area

for the AND gates is ignored.
. shared2 - same as above with {;’s advanced to the next multiple of 100.
. rounded — same as 4 above with ¢;’s increased to the next power of 2.

. interleaved — represents the area occupied by the interleaved controller
estimated by 2[log(max s;)]| + [log(max(t;)] + [logn] + [log(2n + 1)]. Here
the terms represent the area occupied by the S and T registers, the state
register, and the template register (see Figure 2.16). The area occupied by

the decoder is neglected and all constants are assumed to be stored off-chip.

. sequential - represents the area occupied by a sequential controller which
1s shared among all the BIT structures. In this case we need an additional
counter to distinguish between various BIT structures and the area is given

by 2[log(max ;)| + [log(max(t;)] + [logn].

It should be emphasized that the above area estimates only consider the

area for counters and flip flops required for storing the state information. All

the constants are assumed to be stored off-chip and loaded through activation

of appropriate LD signals. These estimates nonetheless are representative of the

total controller area. When the area for storing the constants #;’s and s;’s are

considered, those designs using mod counters become even more attractive because

these constants are hard-wired into the counters themselves.

57

x107

2.5 T -
* sequential/10
+ rounded
x interleaved
2l o parallel
1.5
s |
g
g
1}
0.5
0] 1 L 1 i
0 10 20 30 40 50 60

test schedules

Figure 2.21: Time complexity for different designs.

Figure 2.21 shows the test times for these designs. Not surprisingly, the n
independent controllers, the Tree-of-Counters Design, and the Shared Counter de-
signs all take the same time indicated by the bottom most curve (labeled parallel)
in the figure. This time corresponds the maximum time taken by any BIT structure
and is given by max[(s; + 1) x t;]. The test time for the interleaved design (labeled
interleaved) is proportional to max[(s;+1)] x [maxt;]. If the values of the ¢;’s are
changed to the next higher power of 2, the design area can be reduced, as shown by
the curve marked ‘ ‘rounded’’ in Figure 2.20. The corresponding increase in test
time is given by the curve labeled rounded in Figure 2.21. Finally, the time taken
by a sequential controller, which is given by > (s; + 1) x {;, is shown. This curve is
labeled sequential/10 and is scaled by a factor of 5 in order to more clearly show
its relationships with the other curves. The test time for the sequential controller

is significantly greater than any other design, and increases monotonically with n.

Several conclusions can be drawn form these plots. First, all the designs
occupy an area which is between that of using n independent controllers and the

sequential design. The interleaved FSM design may be viewed as an enhancement

58

to the sequential design. The area occupied by it is only marginally more than the
sequential design. At the same time, its test time is comparable to that of parallel
controllers. Secondly, on the average, the Shared Counter design performs better
than the Tree-of-Counters design. However, the Tree-of-Counter design should not
be totally ruled out because in some cases both may use the same number of flip
flops while the later will require additional AND gates for decoding, which have not
been accounted for in these plots. Thirdly, the area occupied by both the common
factor sharing designs can be further reduced by appropriately selecting ¢; values.
The reduction in area appears to be proportional to the corresponding increase in
test time. Lastly, these designs reduce the rapid rise in test time as n increases. It
is clear that if the ¢;’s can be either forced to have more common factors, or better
yet to take on values from a small set, then the area overhead can be considerably
reduced. The same is true for the s; values. Though it is not feasible to make a scan
chain longer, pseudo test bits can be added to each vector to make the apparent
length of a scan chain longer. For example, a test vector of 47 bits can be preceded
by 3 garbage bits to produce a test vector of 50 bits. After 50 SHIFT pulses, only
the desired 47 bits will reside in the corresponding 47 flip flop shift register chain.
Thus by forcing the s; values also to be elements of a small set the area of the

controller can be further reduced.

39

Chapter 3

Controller for Testable Modules

This chapter deals with the design and implementation of an MMC. An MMC
is used to control the self-test process of a module (or board) by accessing each
chip’s BIT structures through an LO-bus. The proposed MMC is universal in the
sense that the same basic design is used for all modules. MMCs differ by the test
programs they execute, the number of test busses they control, and the expansion
units they employ. Test programs are used to control the processor in an MMC in
the execution of the Built-In Self-Test (BIST) process for the entire module. The
test results are then reported to a SuMP via an L1-bus. A SuMP can initiate the
self-test process of a module by sending a “begin test” command to the MMC on
that module. The MMC then reports the “health status” of that module back to
the SuMP.

An MMC contains bus interface units (such as an Ll-slave and an LO-
master), a processing unit (such as a processor), a memory unit (consisting of
RAMs and ROMs), one or more test channels, a Bus Driver/Receiver, one or more

expansion units (such as testability registers and analog test interface), and a CMC.

A simple yet novel design, called the tesi channel, is used in an MMC. Since
every testable chip has an L0-slave in its CMC, a test channel, which contains an
L0-master, can communicate over an L0-bus with the CMC. The MMC’s processor
can control a test channel by reading from or writing to its internal registers. Once

initiated by the processor, a test channel can completely control an LO-bus and

60

the testing of a chip. The separation of processor and test busses provided by test
channels prevents the processor from dealing with detailed bus timing activities. A
test channel translates processor instructions into proper timing sequences for an

L0-bus. A test process can now be represented as high level processor instructions.

In [15], Budde reported on the design of the Testprocessor which is similar
to our MMC. The Testprocessor is intended to carry out some of the functions
of the CMC and the MMC. Since it may be part of an application chip, it must
be simple. The Testprocessor is programmed at the microinstruction level. All
peripheral devices are controlled directly by the control signals provided by these
microinstructions. The number of expansion units is limited by the total number of
control signals the control unit can provide. Data can be moved directly between
the test pattern RAM and the test interfaces without going through the processor
register. Obviously, this is an efficient approach for data movement. However, due
to the limitation of the bus, only one serial interface can run at a time. Comparisons
are done using a fault-secure comparator. There is no other data processing unit
in the Testprocessor. Due to the limited processing capability, diagnostic programs

cannot run on the Testprocessor.

3.1 Requirements for an MMC

An MMC must be able to respond to requests from a SuMP, to carry out tests for
every chip on the module, and to report test results to a SuMP. The requirements for
an MMC are stated below, followed by a description of its architecture in the next

section. In summary, an MMC should be able to support the following functions:

1. Access the on-chip BIT structures via an LO-bus.
2. Provide proper control sequences for the execution of a chip’s BIT structures.
3. Generate test data and collect test results if necessary.

4. Analyze test results to monitor the health status of chips.

61

5. Test the interconnects among different chips on the module via the boundary

scan registers.

6. Provide controllability and observability for non-testable chips and analog

circuits.

7. Interface with a SuMP or the control console.

In addition, an MMC must have memory to store test data and/or test
results if deterministic test data is needed. this requirement on memory is relaxed
for random or exhaustive test methodologies since only seed data and signatures

need to be stored.

3.2 MMC Architecture

Figure 3.1 shows the architecture of an MMC. It consists of a 16 bit general or
special purpose processor, a ROM, a RAM, a test channel, a CMC with an L0-slave,
an Ll-slave, and a Bus Driver/Receiver (BDR). The BDR supports an expansion
bus, i.e., it allows extra units to be added to the MMC. For example, a functional
bus interface, two testability registers, an analog test interface, several test channels,
an expansion ROM, a control console interface and a disk interface are shown to
communicate with the MMC through the BDR in the figure. The components
shown in the shaded region (which can be implemented as a single ASIC chip) are

required for every MMC. CMCs for these chips are not shown.

All units on the local and expansion bus are accessed by the processor in a
memory-map schema. That is, every accessible register of each unit occupies one
location in the global address space. The processor can read from or write into
these registers by first addressing the appropriate registers. Each unit must be
able to decode the address lines. Once the register is selected, an enable signal is

generated to initiate a read or write operation.

62

Core of the MMC l-1;bus

Functionalfunctional
Bus bus
QIeris B

O signals
p———

| Testability

Register c—mﬂs

O signals

|_|Testability
Register 2

C signals
b

L0-bus

_Analeg [analog
Interface |gjqnals

expansion bus

| | | I 1
Control Test Channe Test Channe
s Console Expansion 2 n
Interface
Interface ROM I I

LO0-bus 2 LO-bus n

Use IEEE 1149.1 as L0-bus

Figure 3.1: The architecture of an MMC.

3.2.1 Test Channel Design

A CMC may have a pseudorandom test pattern generator (TPG) and a signature
analyzer (SA), which can be implemented using linear feedback shift registers [51].
In this case only control signals need be supplied by a test bus during self-test. An
example of such a design is presented in [5]. However, if the chip does not have
these facilities and is to be tested using pseudorandom test data, then a TPG and
an SA must be made a part of the MMC. For chips tested by deterministic test
vectors, an MMC must be able to provide test vectors and obtain test results via a

test channel.

Once initialized by the processor, the primary function of the test channel
is to control an LO0-bus autonomously. The processor can then be used for other
tasks. As a result, high test parallelism can be achieved through running several

test channels at the same time.

The major functions of the test channel are listed below.

63

1. Serve as an L0-master.
2. Transmit instructions to and receive status from chips.

3. Generate and transmit pseudorandom test data and receive and compact test

results.
4. Transmit deterministic test vectors to and receive test results from chips.
5. Generate interrupts and also direct interrupts from chips to the processor.

6. Keep count of the number of tests applied, and the number of bits of each

test or instruction transmitted.

Organization of the Test Channel:

Figure 3.2 shows a block diagram of the test channel. The test channel consists of
a Transmitter Register (TxR) for transmitting data over the TDI line; a Receiver
Register (RxR) for receiving data on the TDO line; two polynominal control and
buffer registers PA and PB; a control register (CR) which specifies the operational
mode, selection and function enabling information; a status register (SR) which
contains the current chip status; three counters, namely TC, which stores the total
number of test vectors to be sent, SC which keeps track of the number of bits in a
test vector which have been transmitted, and DC which keeps track of the elapse idle
time between two vectors; a register CNR which contains the initial values for SC
and DC; a register select circuit for processor read /write control; an interrupt circuit
to request service from the processor; and a control unit FSM1 which implements
the LO-master protocol and is used to send and receive information via an LO-
bus under the control of the CR and the three counters. If the test channel is

implemented as a stand-alone unit, then it should also have a CMC.

The I/O pins of the test channel consists of /WR, /RD, /CS, PA, PD,
Direct, TDI, TDO, TMSi, TCK, and other interrupt signals. The processor can
write a word of data from the data bus PD to a register, addressed by PA, in the
test channel by simultaneously activating the signals /WR and /CS. Similarly, the
processor can read a word of data from a register in the test channel to the data

bus by simultaneously activating the signals /RD and /CS.

64

test channel

Select(/CS)L
Write(/WR) bus
Read(/RD Register status _driver
y Select >TDI
addresgPAlLy| Gircuit
Direct { SR
data bus(PDj
To b
MMC | CNR
expansipn bus,
or local bus l
TDO
SC
e = e
Finish TMS2
interrupt >TMS3
IRQ Clrcunp TCK
(INT)
CMC
BIT | test
LO-bus LO-slave| controllerl | control
. —>_| signals
(optional)

Figure 3.2: The architecture of the test channel.

65

Output signals, such as TDI, TMS are all driven through a tri-state buffer
thus allowing two or more test channels to be connected to an L0-bus. This enhances
the reliability of the test process as well as enables external testing of a module by
another MMC [12]. A more detailed description of the major blocks follows.

1. TxR (Transmitter Register). The TxR is a 16 bit register with parallel LOAD,
SHIFT and TPG capabilities. It is used to transmit data over the TDI line.
During pseudorandom data transmission the TxR acts as a TPG. The feed-
back polynominal of the TPG is controlled by the PA. Any feedback poly-
nominal can be realized since the PA is directly writable by the processor.
The seed value for the TPG can also be loaded by the processor. During in-
struction or deterministic data transmission the TxR acts as a shift register.
It must be loaded with a new word of data before transmission is initiated.
The PA serves as a buffer for transmission. Once the TxR is empty, the next
word of data, which is already in the PA, is copied into the TxR. Processor
service is then requested in order to load a new word of data into the PA.
Transmission over the L0-bus is not interrupted during the 16 clock cycle
window in which the PA may receive a new data word. If the data transfer
rate is not fast enough, or when the TxR is empty the PA does not contain

a new word of data, the L0-bus enters a pause state until the PA is loaded.

2. RxR (Receiver Register). The RxR is a 16 bit register with parallel READ,
SHIFT and SA capabilities. It is used to receive data from the TDO line.
Received data is either read by the processor or compressed into a signature.
During pseudorandom data transmission the RxR acts as an SA. The feedback
polynominal is controlled by the PB. The final signature in the RxR can be
read out via a processor read operation. During transmission of status or
deterministic results, data on the TDO line is shifted into the RxR. The PB
serves as a buffer. Once the RxR is full, its contents is copied into the PB. A
service request is generated to signal the processor to read the PB and store
the data in the RAM. If the previous result in the PB has not yet been read,
the LO-bus enters a pause state. Transmission cannot start again until the
PB is read and the RxR transfers its data to the PB.

66

3. PA, PB (polynominal control registers): Both registers are 16 bit wide and
have parallel LOAD capability. They can be accessed by the processor via

the data bus. Their functions have already been described.

4. CR (Control Register). The CR is a 7 bit register. Symbolic names used for
the CR bits are FSMen, INTen, MS0, MS1, BS0, BS1 and Scan. FSMen
and INTen enable FSM1 and the interrupt circuit, respectively; M S0 and
M S1 specify the operational mode; BS0 and BS1 select one of the TMSi

(i=0,1,2,3) signals; and Scan determines the scan or non-scan operation.

5. SR (Status Register). The SR register consists of 4 bits namely, Finish, I RQ,
Ready and Wait. The Ready bit is cleared whenever the content of the PA
is copied into the TxR, and is set whenever the processor loads new data into
the PA. The Finish bit is set only when the required information has been
transferred, or TC reaches 0. The TR() bit is set when the INT line from
the test bus is active. The Wait bit is set when both the TxR and PA are
empty, and is in the reset state when the TxR is loaded. A processor SR read
operation also reads the content of CR, i.e. 11 bits are read. This operation
can be perform independent of the state of the FSM1. Bits Finish and I RQ)

are cleared whenever the SR is read.

6. TC (Test Counter). The TC counts the number of test vectors transmitted
during the execution of one test session. The TC is a 22-bit down counter;
it is able to count down to 0 from any number between 1 and 4,194,303. It
requires two processor write operations to load: one of the write operations
loads part of this counter and part of the CR, another loads the rest of the

counter.

7. SC (Scan Counter). The SC is used to keep count of the number of bits of a
test vector or instruction which have been transmitted. SC is a 10-bit down
counter and can count down to 0 from any number between 1 and 1023. Its
initial value is loaded from the CNR. A terminal count signal will be activated
whenever the value in SC reaches 0, and the value s in CNR will be copied
into SC. In transmitting ¢ test vectors to a chip during one test session, SC

must be re-initialized (to the value s) ¢ times.

67

8. DC (Delay Counter). The DC is a 5 bit down counter and is used to count
the number of clock cycles between the transmission of two consecutive test
vectors. Its initial value can be loaded from the CNR. The DC can count
down to 0 from any number between 1 and 31. A terminal count signal will
be activated whenever DC reaches 0, and the value d in the CNR will be
copied into the DC.

9. CNR (Count Number Register). This buffer is used to store the initial value
of the constants for both SC and DC, i.e. s and d referred to above. As
discussed above, these counters destroy their original contents after a test
vector is transmitted. Thus CNR is used to restore the values in both counters
so that the next vector can be transmitted. The CNR is 15 bits long. It can

be loaded by a single processor write operation.

10. Register Select Circuit. This circuit is driven by the processor and is used
to control the access to various registers in the test channel. Registers CNR,
TC, CR, SR, TxR, RxR, PA, PB are accessible to the processor. When the
Direct signal is inactive, the registers are selected by address. When the
Direct signal is active, this circuit interprets a processor read operation as a
write to the PA operation, thus ignoring the address lines. In addition, the
address and Read signals are used to read a word from the memory unit. Thus
a word of data is transferred from the memory unit to the PA of the selected
test channel. Similarly, when Direct is active a processor wrife operation is
interpreted as a read from the PB operation. The address and Write signals

are used to write the contents of the PB into the memory unit.

11. FSM1. This circuit controls the operation of the test channel and acts as an
LO-master. It receives control signals from the CR and conditional signals
from the counters TC, SC, and DC. When the I'SMen bit is set, a processor
generated write operation is used to issue a Start signal which in turn initiates
the FSM1.

The initialization of the test channel includes the loading of the following
register of the test channel: CR, TC, CNR, PA, PB, and TxR. The contents of the

68

registers SR and RxR, which are the results of the previous operation, should be

read before the test channel is again enabled for the next operation.

Operation of the Test Channel:
The operation of a test channel is controlled by its FSM1. The FSM1 controls the
state of a test bus via signal line TMS (see Figure 3.2). The possible bus states are

shown in Figure 3.3.

A test channel provides two types of operation: RunTest and Scan. During
RunTest, the test bus enters the Idle/ RunTest state for a pre-determined number
of clock cycles. The TC counter keeps track of this number. No data is transmitted
on either the TDI or TDO lines. This type of operation is used when a chip under
test has BIST capability and the BIST hardware has been properly initialized
through the test bus. The chip’s BIST controller runs the self-fest as long as the
bus stays in the Idle/ RunTest state.

During Scan operation, the test channel transfers either pseudorandom test
data (PTD), deterministic test data without results compression (DTD), determin-
istic test data with results compression (DRC), or instructions (INS). The operation
of the test channel is controlled by the CR and three counters. These counters are
used for all types of information transfer. During the different operational modes,
these counters may be used for different purposes. For example, in PTD transmis-
sion, the TC keeps track of the number of test vectors applied, the SC keeps track
of the number of bits transmitted, and the DC keeps track of the number of elapsed
clock cycles between two consecutive test vectors. Table 3.1 indicates how these
counters are used. The operational modes of the TxR and RxR are also shown in

the table.

Figure 3.3 shows the state transitions carried out by the FSMI1 of the test
channel. The dashed rectangle represents a wait for processor service. The opera-
tions indicated in the solid rectangles are executed in one clock cycle. The protocol
of this state transition diagram is consistent with the IEEE 1149.1 boundary scan

protocol.

The F'SMen bit is cleared during the power up process, and the test chan-

nel enters the idle state at this time. The processor can read from and write into

69

PTD DTD DRC INS RunTest
TC | # tests # tests # tests set to 1 | # clk cycles
SC | # bits # bits # bits # bits -
DC | # clk cycles | set to 15 | set to 15 | set to 15 | ==~
TxR | TPG SHIFT SHIFT SHIFT e
RxR | SA SHIFT SA SHIFT S

TMS=1
dec TC

INS

Finish=1
TMS=1

Figure 3.3: The state transition diagram for a test channel.

70

l DTD

TMS=0
3] 2
TMS—0 TMS=1
o i
ec -
sh TxR ey

TMS=1
dec TC
Id TxR

id PB
Ready=0

LY
Finish=1
TMS=1

|

to idle

Figure 3.4: The state transition diagram (cont.).

internal registers of the test channel while in this state. After initializing the ap-
propriate set of registers, setting the Start signal and F'SMen bit will initiate the
operation of the FSM1. Depending on the setting of Scan, M S0 and MS1 bits,

the FSM1 follows one of the five major branches as shown in Figure 3.3.

The branch labeled PTD is executed when pseudorandom testing is needed.
Registers PA, PB, TxR, RxR, CNR and TC are assumed to have been initialized
to their appropriate values, such as pa, pb, seedl, seed2, (s,d) and t. The TxR acts
as a TPG with pa selecting the feedback polynominal and seedl as its initial value;
RxR acts as an SA with pb selecting the feedback polynominal and seed2 as its
initial value. The test channel then autonomously transmits ¢ random test vectors
generated by TxR to TDI and compresses t test results in the RxR. Each test
result 1s s bit long, and d clock cycles of delay exist between two consecutive test
vectors. No service from the processor is required during pseudorandom testing.
The Finish bit is set when process is completed. The processor then reads the

signature stored in RxR to determine the test result.

The branch labeled DTD (see Figure 3.4) is executed when deterministic
test data is used. Registers CNR and TC contain the values (s,d) and ¢. Note that
d is always set to 15 for the DTD process. Its purpose is to clear the Ready bit
after the transmission of 16 bits. For a test vector longer than 16 bits, the TxR
is loaded with the first 16 bits of deterministic test data before the Start signal is
activated. After 15 shift operations, the TxR contains the last bit of the test data.
One clock cycle later the RxR is full. Two possible situations exist. After these
shift operations have occurred it is possible that the PA is full (Ready=1). Then
the content of the PA is copied into the TxR and one clock cycle later the content
of the RxR is copied into the PB. The Ready bit is cleared and transmission over
TDI and TDO is not interrupted. The processor then has another 16 clock cycles
to load the PA, read the PB and set the Ready bit.

Another possibility is that the PA is empty (Ready=0). Transmission is
then interrupted and the Wait bit is set to request service from the processor.
Waiting for the processor to read the RxR and load TxR is indicated by a dashed

rectangle in Figure 3.4. The test bus is in the pause state during the wait period.

72

Once the processor finishes the read/write process, it clears the Wait bit to allow
the FSM1 to transfer another 16 bit of information. The Finish bit is set upon
the completion of the DTD test, i.e., when the TC reaches zero.

The branch labeled DRC is selected when deterministic test data are used
and the test results are compressed in the RxR. The volume of information flow
between the memory unit and test channel is reduced by half over the DTD oper-

ation.

The branch labeled INS is followed when transmitting instructions. The
content of TC is set to 1. The operations of the test channel are similar to that for

DTD operations except that the sequence of values on the TMS line is different.

The branch labeled RunTest is used when the RunT'est operation is required.
The test channel transmits a specific sequence as specified by the boundary scan
protocol over the TMS line such that all LO-slaves connected to the selected signal
TMSi will enter the I'dle/ RunTest state for ¢ clock cycles. The Finish bit is set

before returning to the idle state again.

The loop conditions depend on the conditional signals (7'C’ = 0, SC = 0,
DC = 0 and DC > 1) generated by counters TC, SC and DC. The processor
can stop or disable the operation of the FSM1 by loading a new word into the
CR through a processor write operation. Resetting the F'SMen bit will halt the
operation of the FSM1. To maintain consistent operations, modifications of all
other registers, except PA, PB, TxR and RxR, are prohibited until the Finish bit

is set or an interrupt has occurred.

3.2.2 Bus Driver/Receiver

The Bus Driver/Receiver (BDR) is a bidirectional interface to the local bus of the
MMC. It provides the driving capability for signals to/from the expansion bus.
Figure 3.5 shows the basic architecture of the BDR. Signals in and out control the
flow of information between the local bus and the expansion bus. These two signals
are decoded from the address and control busses, which are subbusses of the local
bus. When the addressed unit is not directly tied to the local bus, the BDR is used

73

local bus control

local bus address local bus (address, data, control)

decoder

/S | op— S ————— —— 3
T expansion bus
expansion bus interrupt

Figure 3.5: The Bus Driver/Receiver.

to select the appropriate unit on the expansion bus. To enable external interrupts
from units tied to the expansion bus to reach the local bus, the expansion bus

interrupt signals can also assert the in signal.

3.2.3 Functional Bus Interface

The Functional Bus Interface (FBI) allows communications between the module’s
functional bus and the MMC’s expansion bus. Through the FBI, the MMC can ex-
ecute functional tests for the module. Details of this interface will not be presented

here. Further information on related interfacing techniques can be found in [10].

3.2.4 Testability Register

This is a 16 bit register used to increase the testability of modules containing chips
which are either not designed to be testable, or do not have a test bus interface.
The boundary scan registers on testable chips can be used to increase the testability
of non-testable chips. However, in many cases, no boundary scan registers can be

found to access signals between non-testable chips. The Testability Register can be

74

used to increase the testability of these chips and their signals in the following way.
Signal points which need to be controlled (C) and/or observed (O) are cut and
fed into the Testability Register. The O signals are connected to C' signals during
normal operation (see Figure 3.6). In test mode, the processor writes a word to the
testability register which in turn applies this data to the C signals. Signals which
need to be observed (O signals) are loaded into the testability register and then
read by the processor. Thus both the controllability and observability of these cut

points are enhanced. A technique for selecting these signal points is presented in

[17].

3.2.5 Analog Test Interface

This circuit is used when there are analog circuits on the module under test (see
Figure 3.7). To generate an analog signal, the processor writes a word to the analog
test interface, the D/A converter then converts this data into an analog signal. For
observability, an analog signal is converted into a digital word which can then be

read by the processor.

3.2.6 L1-Slave

The MMC communicates with its higher level SuMP controller via an L1-bus, thus

it must have an Ll-slave. The design of a TM-slave is given in [13].

3.2.7 Processor

The processor’s functions can be classified into five categories: (1) transfer data
between memory and test channels; (2) transfer data between memory and an L1-
slave; (3) compare test results with expected results; (4) transfer data between

memory and expansion units; and (5) execute test and/or diagnostic programs.

A general or special purpose 16 bit processor can be used in the MMC. It

controls all other units in the MMC. Through read/write operations, the processor

75

Do bta L O signal 0
> TestMode
sample
>read L s A
_lwiite C signal 0
D1 bit 1 <—— O signal 1
TestMode
*lsample
data bus >read > C signal 1
—> |Write
> TestMode
>lsample
read ——— C signal 15
—|write
address bus dicodet
control bus
] (a)
DFF DFF 1 !
b d D |
_> p TestMode
rea
data bus
sample write

(b)

Figure 3.6: A Testability Register; (a) block diagram (b) circuit of bit i.

DO D
data bus : 16-pit | Analog signal
‘ D/A ’
D15 D
—p
write
address N l
,| decoder
control read
—heo
M
; 16-bit | Analog signal
. AD [
<H
L]
enable

Figure 3.7: Analog Test Interface.

can access internal registers of a peripheral device, such as the Ll-slave and test
channels. Operations of a peripheral device can thus be controlled by a proces-
sor write to the control register of the peripheral device. Data exchange between
memory and a peripheral device are controlled by processor read/write operations.
Any processor that can execute the instruction set shown in Table 3.2 is powerful

enough for the application of an MMC.

instruction | meaning

LDA R; Load Acc with R;
LDAM Load Acc with memory (M)
STA R; Store Acc to R;

STAM Store Acc to memory (M)
ADD R; Add R; to Acc

AND R; Bitwise And R; with Acc
CMP R; Compare Acc with R;
NEG Complement Acc

CLA Clear Acc

BRZ R; Branch to (R;) if Acc not zero
JMP R; Jump to (R;)

PUSH Push Acc onto Stack
POP Pop Acc from Stack
NOOP No operation

HALT Halt the processor

Table 3.2: Processor instruction set.

The minimal architecture for a processor which is able to execute the above
instruction set consists of an accumulator, four general purpose registers, an ALU, a
program counter, a program status word, a stack with at least 4 words, an interrupt

circuit, and a microprogrammed control unit.

If the MMC is implemented as a single chip ASIC, two additional instructions
are useful to increase the data transfer efficiency between the memory unit and the
test channel. The added instructions are M R (Multiple Read) and M RMW (Mul-
tiple Read and Multiple Write). The signal lines Direct, Finish, and Ready are
used exclusively to support these two instructions (see Figure 3.8). Signal Direct

is active when the microcontroller is executing any one of these two instructions.

78

address $laddress

data lata

Read Read

Processor Write Write
Direct
Ready = address

Finish [« data

{ Slegd FSMen
rice {‘"': I
Direct [TxA -3

Ready rezeeras |
Finish o RXA “TTD¢ o

RAM

Test Channel 1

=P address
data Test Channel 2

S‘Vef’:d FSMen
re o
Direct % E_-Ixﬁ_j‘ﬂ[

Ready e
Finish swantoes - | TDO

Figure 3.8: Control signals for MR and MRMW instructions.

Signals Finish and Ready are used as conditional signals for the microcontroller
of the processor. All Ready (Finish) signals from test channels are wired-ORed
together.

When executing an M R instruction, the processor waits until the Ready
signal is cleared and then issues a read operation to the memory location addressed
by the general purpose register R0. Meanwhile the test channel with F'SMen bit
set and operation mode being either DTD, DRC or INS can generate a load PA
signal using signals Direct and Read. Thus a data word is moved directly from
memory to a test channel. The value of R0 is increased by one after each read. The
processor waits for the Ready signal to be deactivated, and then issues another read
operation. This process is repeated until the Finish signal is set. Thus a block of
information can be moved from the memory unit to the selected test channel and

transmitted to a chip without any interruption.

79

When executing an M RMW instruction, the processor waits until the Ready
signal is deactivated and then issues a read operation to the memory location ad-
dressed by R0. Meanwhile, the enabled test channel generates a load PA signal, and
the data word from memory is loaded into the PA. The value of R0 is increased by
one. The processor then issues a write operation to the memory location addressed
by RI; meanwhile the enabled test channel generate a read PB signal, and a data
word is read out of the PB and sent to the memory. The value of R1 is incremented.
The processor waits for the Ready signal to be deactivated again and then issues
another read/write operation. This process is repeated until the Fiinish signal is
set. Thus a block of deterministic test data is moved from the memory unit to the
selected test channel, and a block of test results is moved from the selected test

channel to the memory unit.

3.2.8 Memory

The memory unit in an MMC is composed of a RAM unit and a ROM unit. The
ROM unit contains test programs to test the entire module. These programs are
compiled separately before testing. Some crucial information about the chips on the
module is stored here. This information includes the number of chips to be tested,
ordering of chips along the test bus ring, number and length of scan chains for each
chip, number of random test vectors to apply to each chain, test instructions for each
chip’s CMC, TPG seeds and good signature for each test session. MMC functional
self-test programs can also be stored in this unit. If the MMC is implemented
using commercial ICs, then these programs are essential for MMC self-test. The

Expansion ROM can be added whenever the module requires a large test program.

The RAM unit provides scratch pad memory for test program execution.
Response signatures are stored here for latter evaluation. The RAM also provides

storage for the Go/NoGo status for all chips, as well as for the entire module.

80

3.2.9 Stand-Alone MMC

The MMC can be used as a stand-alone mini ATE, provided that extra storage and
console capabilities are added. For this application, a Console Control Interface
and Disk Interface can be added to the MMC.

3.3 MMC Self-Test

If the MMC is implemented with an off-the-shelf “non-testable” processor, ROM
and RAM, then some form of functional self-test is required. After finishing self-
test, the MMC then reports its status to the control console or to a SuMP.

An MMC can also be tested either by an ATE or by another MMC. In the
first case, an ATE can access the expansion bus of the MMC under test. The ATE
invokes the self-test program of the MMC under test and waits until its completion.
The test results, which are stored in the RAM, are then read by the ATE. In the
second case, an MMC uses its Functional Bus Interface to access the expansion bus
of the MMC under test. Again self-test programs can be invoked. Test results can

be read and interpreted by the monitoring MMC.

If the MMC under test is implemented as a custom testable ASIC, then we
assume it has a CMC. The MMC can thus be tested by another MMC. All units
in the MMC, such as the processor, RAM, ROM, test channel and L1-slave, must
be designed to be testable and their BIT structure need to be accessible via the

L0-slave.
Some of the testability features of the test channel are described next.

Testable test channel: The testable design features of a test channel are shown
in Figure 3.9. Major combinational logic blocks are indicated by rectangles having
dotted lines. Registers are indicated be rectangles having solid lines. Some logic
is associated with these registers, since some are counters and LFSRs. Normal
functional connections are not shown. Instead the two scan chains formed during

self-test are shown. Scan chain 1 is the boundary scan chain. All I/O signals can

81

Write |

Read | Flegister
address e ec_t :

S Circuit ! .
Direct { &4 | ; SR
data bu
To
MMC CNR{>| Tc | CR
local bu
Ready
Finish . 5

interrupt | !
i (Circuit’ | 1 E
X
T
CMC Vol
BIT scanchain2 Scan chain i
LO-bus LO-slave | controller

Figure 3.9: Testable design features for a test channel.

82

be controlled and observed by shifting test data or results along this chain. All
other registers make up scan chain 2. The state of the test channel is controlled by
shifting data along this scan chain. If a functional clock is activated, the next state

of the test channel also can be observed by shifting out the content of this chain.

During testing, scan chain 1 is first loaded with test data which is held in
place while the logic associated with scan chain 2 is tested. The module I/Os
are tested using the boundary scan chains of this chip and those to which it is

connected.

3.4 Discussion of MMC Design

An MMC design suitable for controlling the self-test process of a module has been
described. The design uses the concept of test channels, which can run a test
autonomously (in PTD case) once it is initialized by the processor. Because of the
test channel, the processor need not deal with detailed control sequences over the
JTAG boundary scan bus. Test execution sequences for chips can be generated in
terms of processor read/write operations, which greatly simplifies the development

of test programs.

The MMC architecture is expandable. More test channels can be added
so that more chips can be tested in parallel. In addition, the MMC supports the
functional testing of a module, the testing of clusters of chips which are not designed

to be testable, and the testing of analog devices.

Clock Synchronization:

Four or more clocks may be applied to an MMC, viz. TCK for the CMC, FCK1
for the Ll-slave, FCK2 for each test channel connected to an LO-bus, and FCK3
for the operation among processor and other peripheral devices. Synchronization
problems will occur in a test channel where both FCK2 and FCK3 may access the
same component, such as TxR and RxR. Techniques to solve this problem can be
found in [39, 10]. In the design presented here, we use a common clock to drive all

the clocks mentioned above, thus avoiding the clock synchronization problem.

83

Portable Tester:

The proposed MMC is designed to be part of a HTM system. It is assumed that
each module contains an MMC, which under request from a SuMP can test all
chips on the module and report back test results. However, it is possible to build
an MMC as a portable stand-alone unit. In this case the Ll-slave can be replaced
by a control panel. A stand-alone MMC can test any module having an LO0-bus.
The module’s built-in MMC is tested first through its LO-slave. Application chips
on the module can be tested either by the built-in MMC or by the stand-alone
MMC. For the latter case, the built-in MMC must be disabled to allow the stand-
alone MMC to take control the module’s LO-bus. An operator can start the test
process via the control panel. Test programs stored in the ROM then take over
control. After all chips have been tested, test results are shown on the control panel
to indicate the Go/NoGo status of the module under test.

Overhead:

There are several ways of implementing an MMC. One or more test channels can be
built on an ASIC chip. The processor, RAM and ROM can be implemented using
standard chips. The other functions, which are optional, can be implemented using
standard parts or an ASIC chip, excluding the expansion ROM. The application
chip requires overhead to support testability, such as scan registers, as well as a
L0-slave. For double latch designs, scan area overhead usually varies from 2.8 to
6.3%, depending on the ratio of gates to latches [52]. The overhead for an L0-slave
depends on the length of the Instruction Register and the number of I/O pins.
Assuming each shift register latch (SRL) is equivalent to 10 gates, an L0-slave with
a 16 bit instruction register and a 60 bit boundary scan register requires about 1600
gates. For a 50000 gate ASIC chip, the total overhead for testability will typically
be between 5-10%.

The boundary scan bus consists of 4 wires. Assuming 60 pins/chip prior
to adding the bus, the routing overhead to support testability will be at least
4/60%100%=6.7%. This is a lower bound since most pins on a chip are tied to
only 2 or 3 point nets, while the test bus goes to all IC’s. The wiring overhead is

estimated to be closer to 10%.

84

Fault Isolation:

One of the important attributes of boundary scan is the ability to test the inter-
connect between chips. Assuming chips are also designed to be testable via DFT
or BIST techniques, the MMC should be able to accurately locate hardware faults

to a chip or interconnect.

Analog Performance:

Since the A/D and D/A conversion time is much smaller than the data transfer rate
in the bus, the speed of observing or controlling an analog signal is determined by
the data bus bandwidth. For example, an Intel 80186 processor running at 8MHz
clock rate can transfer 4 MByte data from memory to the Analog Interface in 1

second.

3.5 An MMC Prototype

The implementation of an MMC prototype is described in this section. The major
components of an MMC includes a processor, a memory unit and a Test Channel.
The MMC prototype has been successfully used to execute the test procedures for
a test chip. Programs that describe these test procedures are easy to develop since

they can be written in a high level languages such as C.

3.5.1 Test Channel

The Test Channel is implemented using the Actel field programmable gate array
(FPLA) technology. Some design changes have been made in the implementation.
The main reasons for these changes are 1) the limited capacity of the device; 2) a
change with the clocking scheme; and 3) the addition of DFT facilities. A detailed

description of the changes in the design can be found in [44].

The implementation was aided by the Actel Action Logic System, which au-
tomatically performs placement, routing and the programming of ACT1020 devices.
The Test Channel uses an ACT1020 device which is packaged in an 84 pin Plastic
Leaded Chip Carrier (PLCC). The module utilization of this device is high. 513

85

Extension Card

O Slot s o T
Cable Chahhel

oner S
IEEE 1149.1

Appi :

IBM XT/AT Proto Board

Figure 3.10: Physical configuration of the MMC prototype.

out of a total of 548 logic modules are used, and so are 47 out of 67 I/O modules.

This chip can operate at 2.5 MHz and consumes less than 250 mW of power.

3.5.2 Processor and Memory

An IBM AT computer is used as the host computer of the prototype. It provides
both the processor and the memory units required in an MMC. The physical con-
figuration of the prototype is illustrated in Figure 3.10. A board which occupies a
bus slot in the IBM AT is used to provide an extension of the I/O bus. Another
board called the proto-board and developed at Stanford University [23], is used to

decode the bus signals and to accommodate the Test Channel chip.

3.5.3 Processor and Test Channel Interface

Interfacing the Test Channel with the host processor requires very little effort. Only
the following signal lines need to be connected: a 16 bit bata bus, a 4 bit address
bus, a chip enable line and two read/write control lines. These lines are available
on the I/O bus of the host. Through these lines, the host can control the Test

Channel by executing I/O read/write operations.

86

The proto-board provides I/O connection and bus decoding logics for inter-
facing with an IBM XT or AT computers that can serve as a host for the Test
Channel chip. The width of the data bus on the proto-board is 8 bit only, which
is incompatible with the 16 bit design of the Test Channel chip. Hence, a data
bus adaptor that provides data buffering between the 8 bit and the 16 bit bus is

required.

Figure 3.11 shows the data bus adaptor used in the prototype. The signal
lines available on the proto-board include HD[7:0], HA[3:0], /PIOR, /PIOW and
/POR. HD[7:0] is the 8 bit data bus from the host. HA[3:0] is the 4 bit address
bus from the host. The /PIOR and /PIOW signal lines are derived from the host
signal lines /IOR, /IOW and address lines. Both /PIOR and /PIOW are active
only when I/Q is selected in the address range from 300H to 30FH.

The signal lines of the Test Channel chip that need to be controlled by the
host are PD[15:0], PA[3:0], /RD, /WR, /CS and Reset. PD[15:0] is a 16 bit data
bus. PA[3:0] is a 4 bit address bus that selects the internal register to be accessed.
A data buffer consisting of two T4LS373 is used to interface PD[15:8] with HD[7:0].
A bus transceiver 7415245 is used to interface PD(7:0] with HD[7:0].

The address PA[3:0]=1111 is reserved for accessing the data buffer, which is
used to store the high byte data. Two write operations are required to move a 16 bit
data from the host to an internal register of the Test Channel. The first write oper-
ation, which is “outp(0x30f, high_byte_data);” in Microsoft C, loads the high byte
data into the data buffer. The second write operation “outp(0x30i,low_byte_data);”
loads both the high byte and low byte data into the internal register that is ad-
dressed by PA[3:0]=i. Similarly, two read operations are required to move a 16
bit data from an internal register of the Test Channel to the host. The first read
operation “low_byte_data=inp(0x30i);” moves the low byte of the internal register
into the host data bus and the high byte into the data buffer. The second read
operation “high_byte_data=inp(0x30f);” moves the high byte from the data buffer

into the host data bus.

37

LS373 Test Channel
HD[7:0] D Q
—— PD[15:8]
WH |EN
/OE
3373
Q
EN
/RH OE
[S24
A B PD[7:0]
S/R
HA[3:0] e
PA[3:0]
AL /RD
/PIOR , MR
O e e
Reset
i,
/PIOW D
/POR

>

Figure 3.11: The data bus adaptor.

88

3.5.4 Discussion

The prototype has been successfully used to execute the test procedures for a test
chip. Since the programs describing these test procedures are written in a high-level
language like C, they can be easily developed and designed. Also, the prototype
has been implemented using a PC, which costs much less than a conventional ATE.
Furthermore, the performance of the prototype is superior to an ATE in testing

boundary scan devices thanks to the Test Channel chip.

Using the developed Test Channel, it is possible to implement a minimal
MMC by adding two chips such as an off-the-shelf RAM chip (e.g. Hitachi 6116),
and a micro-controller (e.g. Intel 8048). Thus at most three chips are required to

make a board completely self-testable.

The major drawback of the field programmable gate array technology is its
limited capacity. Because the maximal capacity of the selected device (ACT1020)
is less than 2000 gates, many functions in the original designs have been omitted. It
is possible to implement the MMC using a different technology that has a larger ca-
pacity than an ACT1020, such as the ACT 2 devices. In such case, the performance
of the MMC can be improved as follows.

1. Add the PA and PB registers, and the DC counter, omitted in this imple-

mentation, to the Test Channel.

2. Increase the length of the two counters TC and SC to account for a larger

number of test vectors and more bits in each vector.

3. Incorporate a memory control circuit so that the Test Channel can access a
local RAM. In this way it is possible for the Test Channel to send a long

sequences of instructions and data without interruption.

4. Integrate the processor, the Test Channel and a memory unit into a chip.
Handshaking circuit among the processor and the Test Channel can be avoided
since they can be designed to be synchronous. However, to fit into a chip,
the size of the processor instruction set and the on-chip memory should be
bounded.

89

3.6 Testing a Kernel Using MMC and CMC

To test an application circuit consisting of one or more kernels, both the MMC
and the CMC are required. Through a test bus the proposed MMC controls the
execution of and provides all necessary test data for the testing of a chip having
a CMC. During test mode the control signals of a kernel must be activated in the

sequence specified by its associated control graph.

Figure 3.12 shows how the test control signals for a kernel can be generated
and controlled by an MMC with the help of a CMC consisting of a TAP and a BIT-
controller. The signals Ci, Cj, Ck are controlled by the state signals Capture,
Shift, Update, RunTest corresponding to their associated TAP controller states,
which are in turn controlled by the TMS line. The value of the TMS line is deter-
mined by the state of the FSM1 in the test channel. The FSM1 can control the TAP
controller to any desired state via the TMS line. When sending data to the kernel,
a predefined sequence of state transitions is generated by the FSMI to activate the
TAP states such that data can be received. Several predefined sequence of state
transitions have been built into the FSM1. The processor in the MMC can select a
sequence by loading proper data into the internal registers of the test channel. The
loading of a register in the test channel is achieved by controlling the signals /CS,
/WR, /RD, PA, PD. These signals can be controlled by the processor executing a

piece of code that contains I/O instructions.

By executing a program stored in the memory unit of an MMC, the processor
can control the test of a kernel in the application circuit. The program directs the
processor to control the test channel by loading its internal registers. The FSM1
is then activated and produces the proper sequence of values on the TMS line,
which drives the TAP controller to appropriate states. This activates the state
signals and, with the help of the BIT controller, the control signals Ci, Cj, Ck are

activated according to the control graph. The kernel is thus tested.

Writing a program to test a kernel is a difficult problem since it involves a
high degree of complexity resulting from many details at various level. To solve this

problem a test program synthesis technique is used. This technique is presented in

90

Mpc cuT
Merm. i Proc. et TC | TAP o] BIT |p! kernel
cont. Lo
f cont. i
A 2 I A B Y B'Y,
/CS TCK Capture § Ci
MR L Shift Cj
/RD TDI
TDO Update Ck
PA RunTest
PD

test channel

FSM1

TAP controller

— Shift

— Update

—® Capture

——» RunTest

control graph eﬂ @“

—» Ci
— Cj
——— Ck

Figure 3.12: Overview of the test control.

91

chapter 4, where test description languages are provided for describing test proce-
dures at both chip and module levels. Software tools are also provided so that test
programs can be automatically synthesized from files written in these languages.
The synthesized test programs are compiled and loaded into the memory unit of

the MMC. The processor can then test the kernel by executing the test programs.

92

Chapter 4

Test Program Synthesis

When the proposed design methodology is properly adopted, test programs for the
system can be easily synthesized. This is one of the most important aspects of the
BOLD system. The ability to synthesize the test programs for a system represents

a major advance in the reduction of the test development time.

The relationship between the test hardware and software in an HTM system
is shown in Figure 4.1, where four axes are used to represent the hardware assembly
units, the test description languages, the test programs, and the test controllers,
respectively. Each axis again is represented by a hierarchy of four levels. The top
hardware assembly unit is a system, which consists of several subsystems, which
again consists of several modules, which again contains many chips. Each hardware
assembly unit has a test controller associated with it. These test controllers include
the system maintenance processor (SMP), the subsystem maintenance processor
(SuMP), the module test and maintenance controller (MMC), and the chip test
and maintenance controller (CMC). The test programs are classified into four levels
according to their applications to the hardware units. These are the system test
program (STP), the subsystem test program (SuTP), the module test program
(MTP), and the chip test program (CTP). The test languages used to describe
the test aspects of a hardware unit includes the system test language (STL), the
subsystem test language (SuTL), the module test language (MTL) and the chip
test language (CTL).

93

Hardware units

system

Test Manual generated
execution

subsystem descriptions

SMP | SuMP STL

Controllens a;gizzes
and test

programs

(exe. codes

C compilers Synthesizers

STP

Test programs
in C

Figure 4.1: Overview of the test hardware/software hierarchy.

94

The synthesis process starts with the preparation of the test description files
by a designer. These files are constructed using high level description languages
that are easily understood by designers with little or no knowledge of testability.
A set of synthesizers are then used to translate the input files into appropriate
formats (which is in C language) for each hardware unit. These test programs are
then translated down to executable code for the test controllers by an appropriate C
compiler. A test controller can then test its associated hardware unit by executing

the loaded executable codes. In such a manner, the entire system can be tested.

The major advantages of the synthesis approach are (1) consistent test
methodology, that is, a chip is tested using the same test set during the chip test,
module test, subsystem test and system test; (2) reduced time, effort, and errors
in test program development; (3) test programs can be prepared by designers with

little knowledge of testability; (4) interconnect testing is included automatically.

This chapter is organized as follows. In section 4.1 the test description lan-
guages are presented. In section 4.2 the test program synthesizers are described. In
section 4.3 an example is used to illustrate the synthesis of test programs. In sec-
tion 4.3 an example is used to show the details of test program synthesis procedure.

In section 4.4 results of synthesizing several modules are presented.

4.1 Languages

Four set of languages are required in describing the test aspects of a system, namely
Chip Test Language (CT L), Module Test Language (MT L), Subsystem Test Lan-
guage (SuT'L) and System Test Language (ST L). Currently, only CTL and MT'L

have been developed and are supported. These two languages are described next.

4.1.1 CTL - The Chip Test Language

Due to its wide acceptance, the BSDL [55] has been adopted as the framework of
the CTL. Effort is currently under way to make this language a new IEEE standard

to go along with the boundary scan standard. The syntax of the BSDL follows that
of VHDL [32], which has been widely accepted as a hardware description language.

A very brief description of BSDL is given here. The BSDL can be used to
describe the testability information of a boundary scan device (or chip) that con-
forms with the IEEE Std. 1149.1. The information described by the BSDL includes
three major parts: the pin I/O, the Test Access Port (TAP) and the boundary reg-
ister. The pin I/O part contains the definition of the logical port, the package
pin mapping, and the definition of the scan port. The TAP part describes the
instruction and the instruction register (IR), the identification register (ID) and
the other registers that can be accessed. The boundary register part characterizes
the cell type of each boundary cell, the ordering of the cells in the register and the
control information for tri-state and bi-directional cells. A detailed description of

the BSDL can be found in [55].

The BSDL describes the information about the on-chip test hardware; how-
ever, it does not provide the information about how the chip can be tested. To
circumvent this problem, the CTL includes a part called Test Procedure in addi-
tion to the original BSDL description. The Test Procedure provides the information
required for testing the chip. The incorporation of the test procedure is achieved
by adding a VHDL attribute called TEST_PROC. The following example shows how

a test procedure is incorporated in a CTL-file.

attribute TEST_PROC of appl : entity is
"Test_Begin" &
"TDM i = FULLSCAN;" &
"REG=FBR, VECFILE=apl_in2, RESFILE=apl_out2;" &
"REG=BOUNDARY, VECFILE=apl_inl, RESFILE=apl_outl;" &
"CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;" &
"Test_End ";

It is also possible to omit this attribute and describe the test procedure in
a separate file, where the quotes and & are omitted. For example, the above test

procedure can be written in a file called appi.ctp as follows.

96

TEST_BEGIN

TDM 1 = FULLSCAN;

REG=FBR, VECFILE=AP1_IN2, RESFILE=AP1_0UT2;
REG=BOUNDARY, VECFILE=AP1_IN1, RESFILE=AP1_0UT1;
CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;

TEST_END
TCK
Test ™S Chip
Controller D1 Under
TDO
Test

Figure 4.2: Test control model used in CTL.

The test control model used in CTL is shown in Figure 4.2, where a test
controller can execute the test process of the chip under test (CUT), which is also
referred to as the device under test (DUT), via a four-line boundary scan test bus. A
Test Procedure consists of one or more test sessions. During a test session different
parts of the chip are tested according to a predefined methodology, which is called
a Testable Design Methodology (TDM). The procedure of testing a circuit designed
with a specific TDM is referred to as a TDM in the Test Procedure. The procedure
can be described as either template-based or user-defined TDMs. A template-based
TDM is used to describe the procedure to test a circuit designed with a commonly
used TDM such as fullscan or BILBO. A user-defined TDM, on the other hand,
is used to describe an arbitrary procedure composed by the user using C codes or
some test-specific statements provided by the CTL. A more detailed description of
these TDMs follows.

Template-Based TDMs

The template-based TDMs that are currently supported include: Fullscan, FullscanhV,
BILBO, RUNBIST, and INTEST.

97

o Fullscan TDM:
The circuit under test is designed with the full scan technique, where all
storage elements in the circuit are made scannable and are cascaded to form
a scan chain. The circuit thus is observable and controllable via the scan
chain. The fullscan design structure of a circuit is shown in Figure 2.8, where
the control graph for this circuit can also be found. A circuit designed with

the fullscan technique can be tested using the following procedure.

Procedure to test a circuit using the Fullscan TDM:

1. Load a vector to the scan chain by shifting s times

2. Repeat for t—1 times
Update the scan chain by applying a functional clock.
Shift out the result while shifting in next vector.

3. Get the last result by shifting s times.

In addition to the number of test vectors (¢) and the length of each vector
(8), the test controller also needs to know where to get the test vectors and
the correct response vectors such that they can be compared with the test
responses. An example of the Fullscan TDM described in CTL is shown as

follows.

TDM <tdm_id> = Fullscan;
REG = <regl>, VECFILE= <filel>, RESFILE= <file2>;
CLOCK= FCK <numberi> CYCLES_IN RUN_TEST_IDLE;

The <tdm_id> identifies the TDM in a CTL-file. The selected scan register is
<regl>, which must be previously defined in the CTL-file. The test vectors
are stored in the file <file1> and the expected result vectors are stored in
the file <file2>. The number of test vectors and the length of each vector
is contained in the file <filei>. After a test vector is loaded into the scan
register <reg1>, it is necessary to apply <numberi> cycles of FCK clock to the
circuit under test before the test results are available for shifting out. Note
that the test bus must be maintained in the RUN_TEST_IDLE state during
the application of the clock FCK.

98

o FullscanN TDM:
This TDM is similar to the Fullscan TDM except that the scan registers are
organized into more than one scan chain. All scan chains must be loaded with
a new test vector before applying a system clock to capture the test result.
The procedure for testing a circuit with full scan structure using multiple scan

chains is as follows.

Procedure for testing a circuit using the FullscanN TDM:
1. Repeat for i times
1.1 Load each scan chain with a test vector segment.
1.2 Update all chains by applying a functional clock.

1.3 Get a result segment from each scan chain.

Note that the steps 1.1 and 1.3 can be executed simultaneously, i.e. shifting
in a new vector segment while shifting out a result segment, provided that all
the scan chains can be updated simultaneously. However, this is not possible
in the IEEE Std. 1149.1 protocol, where the capture state precedes the shift
state. However, as shown in chapter 7, steps 1.1 and 1.3 can be overlapped for
some scan chains if there is no data dependency between these chains. An in
depth analysis of this problem is presented in that chapter. As shown in [45],
information about the data dependency among the boundary scan chains is
needed. If this information is not available, one can separate the operations
of steps 1.1 and 1.3 so that no conflict exists. However, in this case the test

application time is not necessarily minimal. An example of the FullscanN
TDM in CTL is shown below.

TDM <tdm_id> = FullscanNl;

REG = <regl>, VECFILE = <filel>, RESFILE
REG = <reg2>, VECFILE = <file3>, RESFILE
CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;

<file2>;
<filed>;

o BILBO TDM:
The circuit under test has been designed using the BILBO methodology and
consists of one or more BILBO kernels. For each BILBO kernel, the seed

99

and the correct signature must be provided. In addition, the number of the
pseudorandom test vectors that are applied is required. A circuit designed
using the BILBO TDM is shown in Figure 2.10, where the control graph can
also be found. The procedure for testing a circuit using the BILBO TDM is

as follows.

Procedure for testing a circuit using the BILBO TDM:
1. Load the seeds into the BILBO registers.

2. Apply a number of cycles of test clocks.

3. Get the signatures from the BILBO registers.

Note that more than one BILBO kernels can be tested in a single session. An
example of the BILBO TDM in CTL is as follows.

TDM <tdm_id> = BILBO;

INITIALIZE <regl> = <valuel>, <reg2> = <value2>;
USE_INSTRUCTION = <insi1>;

CLOCK = <TCK or FCK> <number1> CYCLES_IN RUN_TEST_IDLE;
EXPECTEDRESULT <reg3> = <value3>, <regé4> = <value4>;

[t is necessary to load both registers <regi> and <reg2> with the initial
values <valuel> and <value2>, respectively, at the beginning of the test.
The instruction register (IR) of the TAP must be loaded with the instruction
<ins1> during the execution of the test. After the execution of the test, the
final signature in the registers <reg3> and <reg4> must be <value3> and

<value4>, respectively, for a fault-free circuit.

RUNBIST TDM:

The circuit can be tested using the public instruction RUNBIST defined in
the IEEE 1149.1 standard. Once the RUNBIST instruction is loaded into the
IR of the TAP, the self-test procedure can be executed by simply applying
the test clock TCK during the RUN_TEST_IDLE bus state. The result of the
test is stored in a register <regl>. The <valuel> represents the result that
should be in the register when the circuit is fault free. An example of the
RUNBIST TDM is listed below.

100

TDM <tdm_id> = RUNBIST;
CLOCK = TCK <number> CYCLES_IN RUN_TEST_IDLE;
EXPECTED RESULT <regi> = <valuel>;

o INTEST TDM:
The circuit is tested using the INTEST instruction defined in the IEEE 1149.1
standard. The instruction INTEST must be loaded into the IR of the TAP
before the execution started. This TDM differs from the Fullscan TDM in
that only the boundary scan register is included in the scan chain and no

internal storage elements are scanned.

Procedure for testing a circuit using the INTEST TDM:

1. Repeat for { times
1.1 Shift a test vector into the boundary scan register.
1.2 Apply one or more functional clock cycles.

1.3 Shift the results out of the boundary scan register.

An example of the INTEST TDM is shown below.

TDM <tdm_id> = INTEST,
VECFILE = <filel>, RESFILE = <file2>;
CLOCK = FCK <numberi> CYCLES_IN RUN_TEST_IDLE;

User-Defined TDM

In addition to the normal C code, some additional C functions have been pro-
vided for describing user-defined TDMs. The following paragraphs describe these

functions.

e ScanlR(outS);
The content of the instruction register (IR) of the TAP can be updated by
executing this function. The string outS is loaded into the IR after this
function is executed. When scanning in the new instruction, a string of values

called status is also scanned out. The status is the logic value on the parallel

101

data input to the instruction register before the shifting started. By executing
this function, a test controller can control the test process of a chip. The
format of the instruction is determined by the chip designer except for those
that have been predefined by the IEEE Std. 1149.1. The format of the status
is also defined by the chip designer.

ScanDR (outS);

This function is similar to the Scanl R except that the selected data register is
scanned. The selection of the data register is determined by the current con-
tent of the instruction register, which can be altered by the ScanIR function.
When scanning a new string of data, the resulting string from the selected
data register is also scanned out. The result is the logic value on the parallel

data input to the data register before the shifting started.

ApplyClock(tck, n);

This function can be used to provide test clocks to the circuit under test.
Both the test clock TCK and the functional clock FCK can be applied using
this function. For example, if the value of tck is 1 (or true), then the test
clock TCK is applied for n cycles while the rest of the I/O pins are kept
unchanged. If the value of tck is 0 (or false), then the functional clock FCK,
which may consist of several phases, is applied for n cycles while keeping the

input to the rest of the I/O pins unchanged.

Bring2state(i);

The execution of this function drives the bus to state i, defined in the IEEE
Std. 1149.1, regardless of the current state of the bus. It is easy to conclude,
from the state transition diagram, that putting a 1 on the TMS line for five
consecutive clock cycles will bring the TAP controller into the Reset state.
The TAP controller can then be brought to any state ¢ from the Reset state. If

more than one possible state transition paths exist, the one that goes through

the smallest number of states will be taken.

State2state(i,j);
The execution of this instruction drives the bus from state 7 to state j. Again,

the path taken is through the smallest number of states.

102

o RepeatState(i,n);
The execution of this instruction enables the bus to stay in state i for n
consecutive clock cycles. Note that this instruction can be applied to only
some of the states. For the shift DR and shiftIR states, this instruction can
be modified to RepeatState(z,n, Sout,Sin), where Sout is the string sent to
the TDO line and Sin is the string received from the TDI line.

o RunTest(n);
The bus is driven into the RUNT_.TEST_IDLE state and held there for n consecu-
tive test clock cycles. During this period, the on-chip test controller executes

the predefined test process for the built-in self-test structures.

4.1.1.1 Formal Definition of the CTL

The CTL is a superset of the BSDL. The formal definition of the BSDL can be
found in [55]. The definition for the chip test program is listed below using the
YACC [35] input format.

hh
ctl: BSDL chip_test_progranm;
chip_test_program: _TEST_BEGIN test_procs _TEST_END;
test_procs: test_proc | test_procs test_proc;
test_proc
: _TDM _INT_NUM _EQ _RUNBIST _SEMICOLON runbist_tdm
| _TDM _INT_NUM _EQ _INTEST _SEMICOLON intest_tdm
| _TDM _INT_NUM _EQ _FULLSCAN _SEMICOLON fullscan_tdm
| _TDM _INT_NUM _EQ _BILBO _SEMICOLON bilbo_tdm
| _TDM _INT_NUM _EQ _USER_DEFINE _SEMICOLON user_def_proc;
runbist_tdm: clock_part result_part;
clock_part
: _CLOCK _EQ _TCK nums _CYCLES_IN _RUN_TEST_IDLE _SEMICOLON
| _CLOCK _EQ _FCK nums _CYCLES_IN _RUN_TEST_IDLE _SEMICOLON
| _CLOCK _EQ _FCK _SHIFTED

103

| _CLOCK _EQ _NONE;
nums: _FLO_NUM | _INT_NUM;
result_part: _EXPECTED_RESULT res_lists _SEMICOLON;
res_lists: res_list | res_lists _COMMA res_list;
res_list: _IDENTIFIER _EQ _BIN_NUM;
intest_tdm: _VECFILE _EQ _IDENTIFIER _COMMA _RESFILE _EQ
_IDENTIFIER _SEMICOLON clock_part;
fullscan_tdm: reg_Flists clock_part;
reg_Flists: reg_Flist| reg_Flists reg_Flist;
reg_Flist: _REG _EQ _IDENTIFIER _COMMA _VECFILE _EQ _IDENTIFIER
_COMMA _RESFILE _EQ _IDENTIFIER _SEMICOLON;
bilbo_tdm: initialize_part use_ins_part clock_part result_part;
initialize_part: _INITIALIZE ini_lists _SEMICOLON;
ini_lists: ini_list | ini_lists _COMMA ini_list;
ini_list: _IDENTIFIER _EQ _BIN_NUM;
use_ins_part: _USE_INSTRUCTION _EQ _IDENTIFIER _SEMICOLON;
user_def_proc: _TOP;
A

Note that the user-defined TDM is not described since the statements in
this TDM are directly translated by LEX [42]. In addition, the syntax of C is not

listed. The interested readers are referred to the source code of the program.

4.1.2 MTL - The Module Test Language

The MTL is a high level language that can be used to describe the test aspects of a
module. The language has been designed in such a way that little testing expertise
is required to use it. A module consists of many testable chips and a test controller,
which can access these chips via one or more test busses. The controller can test
these chips and the interconnect between them. A typical test control model used
in MTL is shown in Figure 4.3, where five chips are organized into two test rings.

The test clock TCK, which is connected to every chip, is not shown.

104

TDO
Test Chipl Chip2 Chip3

Controller TMSO }

Chip4 Chip5

TMS1

TDI

Figure 4.3: Test control model used in MTL

Each module is associated with an MTL-file written in MTL. This file con-
tains all the information required for testing the module. When an MTL-file and its
associated CTL-files are processed by the synthesizer M2C, a module test program
is synthesized. This test program is written in C. With the help of a C compiler,
the test programs can be translated to executable codes which can then be executed

by the test controller. The entire module can thus be tested.

The test aspects of a module described by the MTL include the following
parts, namely library_id, device_list, test bus configuration, net_list, and test proce-
dure. The library_id points to the directory containing the CTL-files. The device_list
associates every device used in the module with a CTL-file in the library. An error
is flagged when a device is associated with a CTL-file that does not exist in the
library. The device_list of an example module consisting of two devices is described

as follows.

device list =
(Chipi adder) (Chip2 multiplier);

The test bus configuration describes how the devices on the module are con-
nected via the boundary scan bus to the test channel. In the boundary scan archi-
tecture, the test bus can be configured as a ring, a star or a combination of both.

In MTL a test bus is modeled as a multiple ring, which can be mapped into any

105

one of the above three configurations. A ring configuration is formed when only a
single ring is used. A star configuration is formed when every ring contains only
one device. All DUTSs in a ring are controlled by the same TMS line. The test bus

shown in Figure 4.3 is described as follows.

test bus =
ring 0: chipl => chip2 => chip3,
ring 1: chip4 => chip5;

The nei_list describes how the devices on a module are interconnected functionally.
The number of nets can be large. Two or more terminals are possible for each net.
Each terminal is specified by two names, the first name gives the device name, while
the second specifies the 1/O port name or the pin number. A net_list consisting of

two nets is described below.

net_list =
net 1: (Chipi inpi) (Chip2 outpi),
net 2: (Chip2 inpi) (Chip3 inpi) (Chipi outpi);

The test procedure contains the information for testing a module by an MMC.
This information is represented in terms of standard C code and some test-specific
statements. These statements assume no knowledge about the test controller and
can be translated to low level functions according to the architectural detail of the
MMC. The low level functions are fully supported by a library of C code containing
machine-dependent I/O functions. These I/O functions are used to control the test
channel, which is responsible for all the low level activities in the boundary scan

test bus.

If every chip used in a module conforms with the IEEE 1149.1 boundary scan
architecture, it is possible for a designer to write the test procedure using only the
test-specific statements. In such a situation, a test procedure can be easily written
by a designer with little knowledge of testing, thus greatly reducing the program

development time. However, if all chips used in the module do not conform with

106

the boundary scan architecture, then it is necessary for the designer to write the
test procedure using C code in addition to the test-specific statements. In this case

some knowledge about testing is required.

The test-specific statements that can be used to describe the test procedure

in an MTL-file are listed below.

o Testchip (chip_id);
A test controller, such as an MMC, can fully test a chip by executing this
statement. If more than one session is required for testing the chip, the test

results are reported only after all sessions are completed.

e Testchip (chip_id) Use TDM (tdm_id);
A test controller can test part of a chip by executing this statement. Usually,
a chip may be tested in more than one session. During each session part of
the chip is tested using a specific TDM. To fully test the chip, all test sessions
must be executed. When a module under test cannot stay offline long enough
to allow it to be fully tested, a partial testing approach is used. Also a piece
of circuit can be tested several times using different test patterns or different
seeds. In this approach, the chip is tested in different intervals. One or more

test sessions are executed in each interval without exceeding the time limit.

o TestInet();
A test controller can test the interconnect on a module by executing this
statement. Every net connecting two boundary scan chips is tested. The
test set used in this test is a counting sequence which can determine if the
entire interconnect is fault free. However, only the Go/NoGo information is

produced in this test. No diagnostic information is provided.

o Diagnosisinet();
A test controller can test and diagnose the interconnect on a module by exe-
cuting this statement. To achieve the maximal diagnostic resolution, the test
set is a universal test set, which includes a walking ones sequence, a walking
zeroes sequence, and the all-0 and all-1 vectors. As shown in chapter 6, all

diagnosable faults can be identified by this test.

107

o SampleRing(ring-id);
By executing this statement, a test controller can achieve a snap-shot of the
logic values on the I/O pins of all chips that are connected to the selected
ring. The returned value of this function is a string of 1s and Os representing

the current status of these chips.

e ScanDR(ring_id, preDR, postDR, outS, inS);

By executing this statement, a test controller can exchange information with a
selected data register in the DUTSs on a selected ring specified by the ring_id.
The data sent out is the string outS. The data received, which is referred to as
results, is a string :nS. It is possible to exchange information with a particular
DUT while bypassing all other DUTs in the ring. In this case the number
of DUTs to be bypassed must be specified. In Figure 4.4, DR represents
the data register of the selected DUT, pre DR is the number of bypassed
DUTs between the selected DUT and the TDO of the ring, and post DR is the
number of bypassed DUT's between the TDI of the ring and the selected DUT.
The number of shifts required for transmitting the string outS is calculated
automatically once both pre DR and post DR are known.

postDR DR preDR
TDI TDO

| P S

Figure 4.4: Scanning a data register in a ring.

o ScanlR(ring.id, prelR, postIR, outS, inS);
This statement is similar to Scan DR except that the information transmitted
is the instructions to the DUTs and the received results is the status of the
DUTs. When sending instructions, all DUTSs in the selected scan ring receive
a new instruction. For those devices that are not being tested, the received

instruction can either be a No-Op or the previous instruction.

o ApplyClock(ring_id, n);
By executing this statement, a test controller can apply the test clock to the

DUTs in a selected scan ring for a fixed number of cycles. The bus state of

108

the selected ring is kept in the RunTest state so that the last instruction can
be executed. For example, when this statement is executed after the public
instruction RN BIST has been sent, the chips can be tested.

ChangeClockFreq(n);

By executing this statement, a test controller can change the frequency of the
test clock TCK. The default TCK frequency can be divided by a factor specified
by n.

EnableClock(on);
By executing this statement, a test controller can halt the application of the
test clock TCK. When this statement is executed with on = 0, the test clock

TCK is disabled (or halted); otherwise the test clock is enabled (or running

freely). By default the test clock is always enabled.

4.1.2.1 Formal Definition of the MTL Syntax

The formal definition of the module test language MTL is listed below. The lan-

guage is described in the input format of the YACC.

h

mtl: conf_section test_section;

conf_section : mtl_stmts;

mtl_stmts: mtl_stmt | mtl_stmts mtl_stmt;

mtl_stmt: module | 1lib | device_list | test_bus | net_list;
module: _MODULE _EQ _IDENTIFIER _SEMICOLON;

lib: _LIB _EQ _IDENTIFIER _LPR _INT_NUM _RPR _SEMICOLON;
device_list: _DEVICE_LIST _EQ dev_pairs _SEMICOLON;
dev_pairs: dev_pair | dev_pairs dev_pair;

dev_pair: _LPR _IDENTIFIER chip_type _RPR;

chip_type: _IDENTIFIER,

test_bus: _TEST_BUS _EQ test_rings _SEMICOLON;
test_rings: test_ring| test_rings _COMMA test_ring;
test_ring: _RING ring_id _COLON device_chain;

ring_id: _INT_NUM;

device_chain: _IDENTIFIER| device_chain _RARROW _IDENTIFIER;

net_list: _NET_LIST _EQ nets _SEMICOLON;
nets: net| nets _COMMA net;
net: _NET net_id _COLON pins;
net_id: _INT_NUM;
pins: pin| pins pin;
pin: _LPR _IDENTIFIER _IDENTIFIER _RPR;
test_section: _TEST_BEGIN mtp_stmts _TEST_END
mtp_stmts: mtp_stmt | mtp_stmts mtp_stmt;
mtp_stmt

: test_inet

diagnosis_inet

test_chip

i

i

| reset_ring
| sample_ring

| apply_clock

| ch_clock_freq;

test_inet: _TESTINET _LPR _RPR _SEMICOLON;

diagnosis_inet: _DIAGNOSISINET _LPR _RPR _SEMICOLON;
test_chip: _TESTCHIP _LPR _IDENTIFIER _RPR _SEMICOLON

| _TESTCHIP _LPR _IDENTIFIER _RPR _USE
_TDM _INT_NUM _SEMICOLON;

reset_ring: _RESETRING _LPR int_num _RPR _SEMICOLON;
sample_ring: _SAMPLERING _LPR int_num _RPR _SEMICOLON;

int_num: _INT_NUM;

apply_clock: _APPLY_CLOCK clock_type int_num _CYCLES _SEMICOLON;
ch_clock_freq: _CHANGE_CLOCK_FREQ _LPR int_num _RPR _SEMICOLON;

clock_type: _TCK | _FCK;
A A

110

Note that the mtp-stmt can also be described in the C language. The formal
definition of this part is not listed. An example of an MTL description and some

CTL descriptions are given in section 4.3.1.

4.2 Synthesizers

In the current implementation, only the CTL and MTL have been defined. Hence,
only the C2C, which i1s a program that can synthesize a test program for a chip
using CTL, and the M2C, a program that synthesizes a test program for a module
using CTL and MTL, are described.

4.2.1 C2C Synthesizer

The C2C synthesizer can generate a test program for a chip from the CTL descrip-
tion of the chip, i.e. a CTL-file. The output of the C2C is a program in the ANSI
C format. A C compiler is needed to compile the test program into executable code

for the test controller such as an MMC.

Comparing the models used in the CTL (see Figure 4.2) and the MTL (see
Figure 4.3), it is clear that when a module contains only one chip then both models
are the same. Therefore the M2C can be used as a C2C. Since the C2C is built as
a subset of the M2C, no further description of the C2C will be given.

4.2.2 M2C Synthesizer

The M2C generates a test program for a module from the MTL description of that
module and the CTL description of each chip on the module. The outputs of the
M2C includes a test program in ANSI C format that can be used to test the module
and a file describing the module interconnect. Testing of a module is considered
complete when all individual chips on the module and the interconnect between

these chips have been tested. As explained before, a C compiler is used to compile

111

the test program down to executable codes for the MMC. This process is depicted
in Figure 4.5.

Test
MTL
net >||lexecution
y info

CTL b
Test ” Test

CT > M2C Prog. _ Prog.

L . 3 Compiler execut.

in C codes

ctL

Figure 4.5: Generating test programs for a module.

The structure of the M2C is shown in Figure 4.6. The major components
of the M2C include a multiple parser module, a template-based TDM module,
a user-defined TDM module, an interconnect test and diagnosis module, a shift
adjustment module and a test program manufacturing module. These components

are described in more detail in the following paragraphs.

The parsers

Both the MTL and CTL parsers are constructed using the well known compiler
construction tools YACC [35] and LEX [42], developed at the Bell Laboratories.
When the syntax of a language is properly described, these two utilities can generate
a parser for the language. Due to the use of global variables in the parser, conflicts
may exist in a program with more than one parser. This is a major limitation for
applications using more than one input language, such as the M2C. To resolve this
problem, a parser management technique is used. The technique takes advantage
of the use of makefiles in the UNIX environment. Whenever a parser is generated,
the name of its global variables are automatically changed before the compilation
begins. Hence no two parsers have the same global variables. Using this technique,

more than one parser can exist in the same program.

112

¢MTL*file

Figure 4.6: The structure of the M2C.

¢CTL—fi1es
Reusable
MTL CTL
< parser
parsex management paLser
user- template-
defined based
TDM > TDM
module module
shift
adjustment l \
module
device Progran
Manufac. test
driver module module

113

Template-based TDM Module

Procedures that can generate C programs from a template-based TDM are pro-
vided. These procedures are referred to as meta-procedures. Their input is a test
procedure written for a template-based TDM and they generate a C program for
executing the test process of the selected TDM. These meta-procedures include
callbilbo, callfullscan, callfullscanN, callintest, and callrunbist, which can generate
programs for the BILBO, Fullscan, FullscanN, INTEST, and RUNBIST TDMs,

respectively.

All information required in generating a test program must be provided to
these meta-procedures. For example, when using the meta-procedure callbilbo, the

following information is required.

chipI D: the name of the current chip under test;

chipType: the type name of the current chip under test;

ringl D: the test bus ring where the chip under test is located;

pre: the number of cells between the CUT and the controller when
shifting data (see Figure 4.4);

post: the number of cells between the controller and the CUT when
shifting data;

ipre: the number of cells between the CUT and the controller when
shifting instruction;

ipost: the number of cells between the controller and the CUT when
shifting instruction;

iniNum: the number of registers that should be initialized;

iniIns: the instructions that are used to select the registers;

iniVal: the initial values to be loaded into these registers;

uselns: the instruction used during the test execution;

ckType: the type of clock used for executing the test;

ckNum: the number of clock cycles to execute the test;

resNum: the number of registers used to store the test results;

resIns: the instructions that can be used to select these registers;

114

expVal: the expected results in these registers when the circuit under

test is fault-free.

The values of items such as niNum, inilns, iniVal, uselns, ckType,
ckNum, resNum, resins, and expVal are directly available from the CTL descrip-
tion. However, the values of some of the information, such as chipType, ringl D,
ipre, 1post, pre, post, are not directly available and can only be obtained by pro-
cessing the information in the MTL-file and the CTL-files.

User-defined TDM Module

A user-defined TDM is basically a C program plus some test-specific statements. It
is necessary to translate these test-specific statements into normal C statements that
can be readily executed by a test controller. Due to the differences in the test control
model used in CTL (see Figure 4.2) and MTL(see Figure 4.3), the test-specific state-
ments are modified to reflect the change in the control model. For example, the test-
specific statement scanl R(outS) is changed to scanl R(RingID,ipre,ipost,outS)
so that the same string of data outS can now be properly sent to the chip under
test. The value of the information ringl D, ipre, ipost are computed in the Shift

Adjustment Module.

Shift Adjustment Module

Often it is desirable to send and receive data only to a single chip on a scan ring
while keeping the other chips in their bypass mode. The model used here is shown
in Figure 4.7. The data stored in register TxR is shifted into the chain, and the
incoming data is shifted into register RxR. The length of both TxR and RxR are
assumed to be unlimited since a buffering mechanism is employed to make sure

that the TxR will never be empty and that the RxR will never be full.

When exchanging data with a single chip on a scan ring, the number of shifts
needs to be adjusted so that (1) data in TxR is sent to the CUT properly, and (2)
data in the CUT is received in RxR properly. The calculation of the number of

115

‘__‘r"'! \Ji_ ————————— _]. =3 -1
- L._DR____, - i -
C1 c2 C3 Cc4
e L 8
R . J
o s i o A
I
. B—— J

test controller

Figure 4.7: Model for calculating the number of shifting.

shifts is done as follows. Let the length of DR in C2 be len, the number of chips
between C2 and RxR be pre, the number of chips between TxR and C2 be post.
For example, in Figure 4.7, pre = 2, post = 1. Depending on the values of pre and

post, three cases are possible. These cases are summarized in Table 4.1.

cases pre > post | pre < post | pre = post
of shifts len + pre | len + post | len + post
TxR leading Os added pre — post 0 0

TxR trailing Os added post post post

RxR leading bits discarded pre pre pre

RxR trailing bits discarded 0 post — pre 0

Table 4.1: The numbers used in the shifting.

Case 1: pre > post

In this case the total number of shifts is len 4+ pre. It is necessary to add pre — post
leading 0s to the output string before loading it into the TxR, such that after the
shifting the output string will be properly loaded into the DR. It is also necessary

to discard the first pre number of bits received in the RxR such that the content

of the DR is properly received.

116

Case 2: pre < post

In this case the total number of shifts is len + post. No leading 0s are needed for
the output string. However, it is necessary to discard the first pre bits received in
the RxR. It is also necessary to discard the last post — pre bits received in the RxR

so that the contents of the DR is properly received.

Case 3: pre = post
In this case the total number of shifts is len 4 post. No leading 0s are needed for
the output string. However, it is necessary to discard the first pre number of bits

received in the RxR such that the content of the DR is properly received.

Test Program Manufacturing Module

The synthesizer M2C generates C programs from the CTL and MTL descriptions.
These C programs are then sent to an IBM AT computer where they are compiled
and executed. The IBM AT serves as the host for the test controller in the present
implementation of the MMC prototype. The purpose of the Test Program Manu-
facturing module is to reduce the manual operation in transferring and compiling
the test programs, therefore, reducing the errors in the generation of the test pro-
grams. This module can generate a makefile that can manufacture the test program
in the IBM AT. In addition, this module also copies all the C programs to a specific
subdirectory so that minimal effort is required to transfer test programs from the

SUN, which is used to synthesize the test programs, to the IBM AT.

Interconnect Test Module

This module deals with the testing and diagnosis of the module interconnect. It
contains four major parts, namely net_list generation, test generation, test applica-

tion and results analysis.

In the net_list generation part, the net_list, which is described in the MTL-
file, is first read and the data structure established. The drivers and receivers of
these nets are all part of the boundary scan registers of the chips. The CTL-files
of these chips are then read such that the physical configuration of these boundary

117

scan registers are established. A mapping mechanism is then used to map the
terminals of a net to the physical locations in the boundary scan register. The
mapping information is then output to a file called infofile.net which is later
transferred to the IBM AT. When executing the interconnect testing, this file is first
read so that all information required to perform the test can be obtained without
the need to consult both the MTL-files and CTL-files.

The syntax of the file infofile.net is as follows. The file consists of a head-line
followed by one or more net-lines. The head-line consists of a net number which is
the total number of nets in the module, a ring number which is the total number
of test bus rings used in the module and one or more ring descriptions. A ring is
described by three numbers; the first number is the identification of the ring, the
second number is the sum of the IR length of all chips, and the third number is
the sum of the length of the Boundary Register of all chips. A nef-line consists
of a number which is the identification of the net, the number of drivers of the
net followed by a list of drivers, and the number of receivers followed by a list of
receivers. A driver is described by a number which identifies the ring on which the
driver is located; a number which is the location of the driver in the ring; a flag
which indicates whether the driver is 2-state or 3-state; and an optional enabling
information which is needed only when the driver is 3-state. The first number of
the enabling information representing the location of the control cell, which must
be in the same ring as the driver. The second number is the value that should
loaded into the control cell in order to disable the driver. A receiver is described by
two numbers; the first number identifies the ring on which the receiver is located

and the second number gives its location in the ring.

For example, the file infofile.net of the module shown in Figure 4.3 is as

follows.

6 211424066

:d 1190 1123
21 1220 1114
31 i210 i1 20
41 118 0 1115
51 171161 1065
61 161161 102

118

The first line indicates that there are six nets and two rings in the module. Ring
1 contains fourteen instruction register cells and twenty four boundary scan cells.
Ring 0 contains six instruction register cells and six boundary scan cells. The data
on the second line indicates that net 1 (which is not shown) has one 2-state output
driver which is located in ring 1 at the nineteenth location. Also there is one receiver
on the net. The receiver is located on ring 1 at the location 23. The data on other

lines can be interpreted similarly.

In the test generation part, a test set that can identify all diagnosable faults
1s generated. This test set contains a walking ones and a walking zeros sequence.
Detailed analysis of fault models and the theorems and algorithms for generating

the test set are presented in chapter 6.

In the test application part, a test schedule, that can be used to apply all
test vectors and collect the test results, is produced. Depending on the number of
boundary scan rings used, and the connectivity among these rings, the application
sequence of the test vectors can be properly determined in order to achieve the
minimal test application time. Detailed analysis of this problem along with some
theorems and algorithms that lead to the generation of minimal time schedules are

presented in chapter 7.

In the results analysis part, the collected test results are compared with the
test vectors and then analyzed. Based on this analysis, the faults in the module
interconnects are identified. The analysis is closely related to the test generation

techniques. In fact, both parts are treated in chapter 6.

Device Driver

The device driver consists of a set of C functions that control the operation of the
test channel. Two functions that are used in the MMC prototype developed at USC
[44] are shown. A function that can load a two-byte data (outword) into a register
of the test channel, addressed by portid, is implemented as a writeReg function in

Microsoft C as follows:

void writeReg(portid, outword)

119

unsigned int portid, outword;

{
int 1i;
outp(0x30f, outword / 256); /* high byte */
outp(portid, outword % 256); /* low byte */
for(i=0; i<30; i++); /* tc synchronization */
}

Another function (readReg) that can read a two-byte data from a register of the

test channel is implemented as:

unsigned int readReg(portid)
unsigned int portid;

{
unsigned int lowByte, highByte;
lowByte=inp(portid);
highByte=inp (0x30f) ;
return(lowByte+thighByte*2566) ;

}

These functions are hardware-dependent in that the I/O address portid is deter-
mined by the physical implementation of the test controller. For the MMC proto-
type built at USC [44], the valid address for portid ranges from 300 to 30f(hex).
These functions are also C compiler-dependent. For example, if the Turbo C Com-
piler is used, then the function outp used in both writeReg and readReg should be
replaced by outportb. Similarly, the function inp should be replaced by inportb.

Other functions that are related to the device drive may also be required.
For example, if the communication between the test channel and the processor
of the controller is done through an interrupt mechanism, then interrupt service

functions are needed.

One of the major advantage of the MMC is that all test programs run by it
can by written in portable code except the functions included in the device driver

as shown above.

120

4.3 An Example

In the BOLD system, the process of testing a module consists of the following steps:

1. Prepare the input files. These files include a MTL-file and many CTL-files.

2. Synthesize the test program by running M2C. For convenience, the program

source files are copied into a directory.

3. Transfer all files in the directory into the IBM AT computer, which serves as
the host of the MMC prototype.

4. Manufacture the executable codes using the MAKE utility.

5. Execute the test program by the MMC.

The process is demonstrated using the following simple example. The mod-
ule consists of only three chips. The first chip appl was developed at USC [44]. The
second chip TI8374 [55] is a product of Texas Instrument. The third chip bilbol

does not exist.

To synthesize test programs for this module, four input files are required,
namely ex1.mtl appl.ctl ti8374.ctl and bilboi.ctl. These files are described

below.

4.3.1 An MTL-file

The MTL description (exl.mtl) of the module is shown below.

MODULE = exi;
LIB = 1ibi1(3);
DEVICE_LIST = (Chipi appi) (Chip2 TI8374) (Chip3 bilboil);
TEST_BUS =
RING 0: Chipil,
RING 1: Chip2 => Chip3;
NET_LIST =
NET 1: (Chipl DIN) (Chipl SUM),

121

NET 2: (Chipi CO) (Chip2 D2),
NET 3: (Chip3 I1) (ChipZ Q2);

MODULE_TEST

#include <stdio.h>

#include <string.h>

#include "comp.h"

main()

{
testinet(); /*test the entire interconnect network*/
testchip(Chipl); /*test the entire chip */
testchip(Chip2);
testchip(Chip3);

}

END_TEST

The test bus is organized into two rings. Only one chip is located on ring 0. The
other two chips are located on ring 1. To simplify the problem, only three nets
are shown in the example. The test procedure for the module consists of four

statements, which are self-explanatory.

4,3.2 CTL-files

The CTL description of the chip appl is shown below. A detailed description of
this chip can be found in [44].

-- CTL description of the appil chip

entity appi is
generic (PHYSICAL_PIN_MAP : string := "DW_PACKAGE");
port (RESET, DIN: in bit; CO, SUM:out bit; VCC, GND:linkage bit);
use STD_1149_1_1990.all; --1149.1-1990 attributes and definitions
attribute PIN_MAP of appl: entity is PHYSICAL_PIN_MAP;
constant DW_PACKAGE:PIN_MAP_STRING:="RESET:48,DIN:8,C0:5,5UM:3,"&

"TDI:45, TDO:44, TMS:46, TCK:52, TRST:47, VCC:25, GND:49";

attribute TAP_SCAN_IN of TDI : signal is true;
attribute TAP_SCAN_MODE of TMS : signal is true;
attribute TAP_SCAN_OUT of TDO : signal is true;
attribute TAP_SCAN_CLOCK of TCK : signal is (2.0e6, BOTH);
attribute INSTRUCTION_LENGTH of appl : entity is 3;
attribute INSTRUCTION_OPCODE of appl : entity is

122

"BYPASS (001, 101, 011, 111)," &
"EXTEST (000)," &
"INTEST (100)," &
"SAMPLE (010)," &
"SCANFB (110)";
attribute INSTRUCTION_CAPTURE of appl : entity is "101";

-- attribute INSTRUCTION_DISABLE of appl : entity is "TRIBPY";

attribute REGISTER_ACCESS of appl : entity is

--implicit "BOUNDARY (EXTEST, INTEST, SAMPLE)," &
--implicit "BYPASS (BYPASS)," &
"FBR[2] (SCANFB)"; ~-- 2-bit FeedBack Register

attribute BOUNDARY_CELLS of appl : entity is "BC_2";
attribute BOUNDARY_LENGTH of appl : entity is 3;
attribute BOUNDARY_REGISTER of appl : entity is
-- num cell port function safe [ccell disval rslt]
"2 (BC_2, DIN, input, X)," &
"i (BC_2, SUM, output2, X), "&
"0 (BC_2, CO, output2, X)¥;
attribute TEST_PROC of appi : entity is
"Test_Begin" &
"TDM 0 = FULLSCAN;" &
"REG=FBR, VECFILE=api_in2, RESFILE=api_out2;" &
"REG=BOUNDARY, VECFILE=api_inil, RESFILE=api_outi;" &
"CLOCK = FCK 1.0 CYCLES_IN RUN_TEST_IDLE;" &
"Test_End ";
end appi;

The BSDL description of the chip TI8374 can be found in [55]. Hence only the test

procedure part of CTL-file is shown in the following:

Test_Begin

TDM 0 = USER_DEFINE;

#include <stdio.h>

#include <string.h>

#define IR 1

#define DR 0

top()

{

char outs[20], ins[20];

char *pl, *p2;
sprintf(outs, "00000011"); /% INTEST */
scanIR(outs);

123

sprintf(outs, "000000001010101000") ;
scanDR(outs); /* load D=10101010, clk=0 */
sprintf (outs, "000000001010101001");
scanDR(outs); /* load D=10101010, clk=1 */
sprintf (outs, "000000000101010100") ;
strcpy(ins, scanDR(outs));
/*load D=01010101,clk=0 and get previous result#*/
pi=ins+10;
p2=outs+2;
if (strncmp(pl,p2,8) !1=0) {
printf ("error in 10101010 test.\n");
exit(1);
}
sprintf(outs,”000000000101010101”);
strcpy(ins, scanDR(outs));
strcpy(ins, scanDR(outs));
if (strncmp(pi,p2,8)!=0) {
printf("error in 01010101 test.\n");
exit(1);
¥
else{
printf("TI8374 is tested 0K.\n");
+
}
Test_End

For the chip bilbol, only the test procedure part is shown below.

Test_Begin

TDM 0 = BILBO;

INITIALIZE FBR=11B, BOUNDARY=100B;
USE_INSTRUCTION = BYPASS;

CLOCK = TCK 3000 CYCLES_IN RUN_TEST_IDLE;
EXPECTED_RESULT FBR=11B, BOUNDARY=001B;
Test_End

4.3.3 The Interconnect Information

The net list information that will be sent to the MMC is as follows:

124

4.3.4 Synthesized Test Programs

The synthesized test program for the module exl consists of seven files, namely
comp.h, eximain.c,TI8374tops.c,driver.c,inetpc.c,template.cand infofile.net.

The file comp.h, shown below, defines all variables used in the main program.

#define BUFSIZE 1024
char chipID[30];
char chipTypel[30];
char reglns[BUFSIZ];
char vecFID[BUFSIZ];
char expFID[BUFSIZ];
char iniIns[BUFSIZ];
char iniVal[BUFSIZ];
char useIns[BUFSIZ];
char resIns[BUFSIZ];
char expVal[BUFSIZ];
#define IR 1
#define DR O

The file eximain.c contains the main function that is needed for any program.
The prefix ex1 is extracted from the name of the MTL file ex1.mt1. Four function
calls are contained in the main program. The first one inetpc is used to test the
interconnect. The second one fullscanN is used to test the chip Chipl by using
fullscan TDM. The third one TI8374top0 is used to test the chip Chip2 by using
a user-defined procedure that has the name top0. The prefix TI8374 is extracted
from the name of the CTL-file TI8374.ctl. The last one bilbo is used to test the
chip Chip3 by using the BILBO TDM. The file eximain.c is as follows:

#include <stdio.h>
#include <string.h>

125

#include “comp.h"
main()
{

inetpc(1); /# interconnect test */

sprintf (chipID, "Chipi");

sprintf (chipType, "appl");

sprintf (regIns, "110000");

sprintf (vecFID, "AP1_IN2,AP1_IN1");

sprintf (expFID, "AP1_0UT2,AP1_0UT1");
fullscanN(chipID,chipType,0,0,0,0,0,2,reglns,vecFID,expFID);

TI8374top0(1, 3, 0, 1, 0);

sprintf(chipID, "Chip3");

sprintf(chipType, "bilbol");

sprintf(inilns, "110000");

sprintf(iniVal, "11100");

sprintf (useIns, "001");

sprintf(resIns, "110000");

sprintf(expVal, "11001");

bilbo(chipID,chipType,1,0,8,0,1,2,inilns,iniVal,uselns,1,
30000,1.000000,2,resIns,expVal);

}

The file TI8374tops.c is a translated version of the user-defined procedure
for testing Chip2 that is of the type TI8374. Note that the statement scanIR(outs) ;
in the file TI8374.ctl has been translated into scan(TI8374rid, IR, TI8374ipre,
TI8374ipost, outs);. The added information is based on the physical organiza-
tion of the test bus.

#include <stdio.h>

#include <string.h>

#define IR 1

#define DR O

TI8374top0(TI8374rid, TI8374ipre, TI8374ipost, TI8374pre,
TI8374post)

int TI8374rid, TI8374ipre, TIB374ipost, TI8374pre, TI8374post;

{
char outs[20], ins[20];

126

char *pl, *p2;
sprintf (outs, "00000011");
scan(TI8374rid, IR, TI8374ipre, TI8374ipost,outs);
sprintf(outs, "000000001010101000");
scan(TI8374rid, DR, TI8374pre, TI8374post,outs);
sprintf(outs, "000000001010101001");
scan(TI8374rid, DR, TI8374pre, TI8374post,outs);
Sprintf(outs, "000000000101010100") ;
strcpy(ins, scan(TI8374rid, DR, TI8374pre, TI8374post,outs));
pl=ins+10;
p2=outs+2;
if (strncmp(p1,p2,8)!=0) {
printf("error in 10101010 test\n");
exit(1);
}
sprintf (outs,"000000000101010101");
strcpy(ins, scan(TI8374rid, DR, TI8374pre, TI8374post,outs));
strcpy(ins, scan(TI8374rid, DR, TI8374pre, TI8374post,outs));
if (strncmp(pil,p2,8) !=0) {
printf("error in 01010101 test\n");
exit(1);
}
else{
printf("TI8374 is tested OK.\n");
}
}

The files driver.c, inetpc.c and template.c are not shown here. The driver.c
contains all the functions that can be used to control a device. The inetpc.c
contains the interconnect test program and template.c contains all the template-
based TDM functions. By reading the file infofile.net, the inetpc procedure can
be used to test different interconnect networks. These three files remain unchanged

even when the MTL-file or the CTL-files are changed.

4.3.5 Activities between Processor and Test Channel

The test channel is controlled via processor read/write operations. For example,

the function scan(0,0,0,0,010); represents the operation of sending a string of

127

010 to the data register of a chip which is the only chip located on ring 0. This
function is further translated into the following sequences of read/write operations.
Once the test channel is properly initialized, it can be started and it carries out the

required operation. When the operation is finished, the results are read.

writeReg(776, 0); ’*disable FEN %/
writeReg(768, 32); /*load CR with binary 10000 */
writeReg(769, 14); /*load CNR with 14 */
writeReg(772, 1); /*load TC with 1 */
writeReg(773, 16384);/*load TxR */
writeReg(777, 0); /*clear SR */
writeReg(774, 0); /*clear RxR */
writeReg(776, 1); /*enable FEN */
writeReg(776, 0); /*disable FEN */
writeReg(777, 0); /*clear SR */
readReg(774); /*read RxR */

The entire process of testing the module described by ex1.mtl contains 1059
read/write operations. It is clear that without the synthesis of test program, it

would take a tremendous effort to write the test program for even a simple example.

4.3.6 Activities on the Test Bus

The testing of a chip is realized by controlling the data on the test bus, which
consists of four lines, namely TCK, TMS, TDI and TDO. Using the same example, the
process of sending instruction 010 to a chip (app1) located in ring 0, requires the

following binaries sequences.

TCK 010101010101010101
™S 0011000000001 11100
D0 000000000011 000000

The entire program for testing the module described in ex1.mtl executes
for about 1000 TCK clock cycles. This kind of test program is hard to write and
almost impossible to comprehend by a user. Consequently, the cost associated
with the development and maintenance of such a program is very high. This is
also the case when testing a chip using automatic test equipment (ATE) that is

not specifically designed with the boundary scan control facilities. The ATE can

128

control and observe a number of I/O pins in parallel in the form of binaries (or
timing waveforms). In this case, a test engineer has to deal with the testing of a
chip in binaries. The superiority of the synthesis approach used in BOLD is clearly

demonstrated in this example.

4.4 Results

Test programs for several modules have been synthesized. The results are presented
in Table 4.2. To simplify the comparison, only two types of chips are used in the
module. Each chip is tested via either the BILBO TDM or the LSSD TDM. A
BILBO chip represents a chip that is tested via a BILBO TDM, while an LSSD
chip represents a chip that is tested via a LSSD TDM. For example, the bilbo1
is a BILBO chip and appi is an LSSD chip. The TDM for bilboi requires the
application of 3,000 test patterns when executing the test. On the other hand, the
TDM for appi requires the application of only 8 test vectors via two scan chains,

which have a total length of 5.

The test time required for testing interconnects is based on the application
of a counting sequence. The data stored in the memory of the controller includes
the instructions, the seeds and signatures, and the test vector and correct results

for each chip.

The synthesis is done using a Sun 4/60 workstation. The time to synthesis
the test program is shown in seconds. For a module containing twenty chips, the
synthesis is completed in less than 1 second. The program size is shown in terms of
bytes. Due to the characteristics of the machine, the size of an executable code in
a Sun 4 is a multiple of 1024 bytes. This explains why the modules mod2, mod20,
mod3, mod30, mod4 and mod40 all have the same program size. The column # rw
ops represents the number of access from the processor to the test channel chip.
Note that this number is not a good indication of test time. This is due to the
inclusion of BILBO chips that have a long test time while requiring only a small
number of read/write operations from/to the test channel to set up the test. The

test time is the number of test clock cycles required to complete the test. The listed

129

mod # #BILBO | # LSSD | time to | program | # [# rw [test
id ring | chips chips synthesis | size net | ops time
mod(0 | 1 0 2 0.3 57,344 2 1,518 | 621
mod00 | 2 0 2 0.3 57,344 2 1,518 | 677
modl | 1 1 1 0.4 57,344 2 858 | 3,333
mod10 | 2 1 1 0.4 57,344 2 913 | 3,023
mod2 |1 10 1 0.7 73,728 21 | 1,935 | 31,800
mod20 | 2 10 1 0.6 73,728 | 21 | 2,056 | 31,490
mod3 |1 1 10 0.6 73,728 6 7,288 | 9,126
mod30 | 2 1 10 0.6 73,728 6 7,329 | 6,126
mod4 |1 10 10 0.9 73,728 30 | 8,391 ; 36,710
mod40 | 2 10 10 0.8 73,728 | 30 | 8,452 | 30,230
Table 4.2: Synthesis results for some modules.

figures reflect the case where the test bus never enters the pause state. This may

occur when the test controller cannot supply data to the test bus fast enough.

The size of the test vector files for these examples are very small, therefore,
its impact on the total storage size of the program is negligible. The number of nets
are also small since both app1 and bilbo1 have very few I/O pins. In general the
cases where two test rings are used have shorter test times when compared to those
have only one ring. The impact of the test time can be much more significant if an
example that has a large number of test vectors is examined. One exception shown
in the table is that the test time required for mod0 (one ring) is less than that of
mod00 (two rings). The reason is as follows. Both modules contain two chips that
are identical. These chips are tested using the same number of test vectors and the
same length for each vector. If they are on the same ring (as in the case mod0),
fewer redundant bus states are traversed during the test. On the other hand, if each
chip is located on a separate ring controlled by the same test channel, then only one
ring can be tested at a time (This is the limitation of the MMC). Therefore, more
redundant bus state transitions are traversed. This explains why the test time for

the two rings case is longer than that of the one ring case.

If two test rings are employed in the module under test, then it is beneficial

to arrange all LSSD chips on one ring and the all BILBO chips on the other. In this

130

way, the BILBO chips can be initialized and while the self-testing is in progress the
LSSD chips are tested. This scheme can greatly reduce the test time. However, it
can only be applied if the BILBO chips are designed with an autonomous on-chip

controller.

131

Chapter 5

Global Controller Minimization Using Test

Program Synthesis

Testable chips built with the boundary scan architecture are used in the design
of a self-testable module. A module test controller controls the testing of a chip
through an on-chip test controller. These controllers are connected via a test bus.
The module test time is affected by the overall complexity of these controllers and

the configuration of the test busses.

The design of test controllers has been previously addressed. In chapter 3
the design of a universal module test controller (MMC) was presented. The MMC
controls the test process of chips which have the boundary scan architecture via
one or more test channels. Each test channel controls a test bus, which can be
organized in one or two test rings. Data communication can only occur in one ring

at a time. A test bus consisting of two rings is shown in Figure 4.3.

In chapter 2 the design of an on-chip controller for a circuit with various test
structures, referred to as Testable Design Methodologies (TDMs), was presented.
Depending on the assistance from the bus during test execution, on-chip controllers
can be designed in two different styles, namely autonomous and bus-dependent. An
autonomous controller can execute the test without any assistance from the test bus,
once it is properly initialized. Chips with such controllers can be tested concurrently
using only one test ring. A bus-dependent controller requires the assistance from

the test bus during the entire test execution process. Thus if only one test channel

132

is used, two chips with such controllers must be tested in sequence even if they
are on different test rings. In a module the more chips designed with autonomous
controller, the shorter the module test time. This is achieved at the expense of
increased overall controller complexity since autonomous controllers usually have a

higher complexity.

An important objective for the module test design is to minimize the overall
controller complexity while keeping the module test time within reasonable bounds.
To achieve this it is crucial to quantify both the controller complexity and the test
time for a module. The complexity of an on-chip controller can be easily calculated
once its design is known. Since the complexity of an MMC is fixed, the overall
controller complexity can be easily computed. On the other hand, the module test
time cannot be directly obtained. This is true even when the time required to test
each individual chip is known. Worse still, a chip’s test time is not always available.
For example, if a chip is designed with a user-defined TDM (defined in chapter 4),

it 1s usually not clear how to estimate its test time.

The test program synthesis technique provides a way to calculate both the
module and chip test time. This is done by examining the number of test clock cy-
cles required in their corresponding test programs. In this chapter two approaches
for controller minimization, referred to as tradeoff curve-based minimization and
algorithm-based minimization, are presented. These two approaches can determine
not only the complexity of each on-chip controller but also the test bus configu-
ration. The derived results guarantee that a module can be tested within a given

time while the overall complexity of the controllers is minimal.

While both approaches require the synthesis of test programs, they differ
in the way the module test time is obtained. In the first approach, the module
test time is calculated only after the module test programs are synthesized. In the
second approach, the test time for each individual chip is first calculated from the
synthesis of the chip test programs. The module test time is then estimated based

on the chip test time and the module test configuration.

133

5.1 Tradeoff Curve-Based Minimization

This approach requires the plotting of a curve that relates the module test time to
the overall controller complexity. For each design point on the curve, the module
test time is calculated after the module test programs have been synthesized. The
complexity for each design can be calculated once the design of the controllers are
known. Using such a curve, a design point can be easily selected such that within

a time bound the overall controller complexity is minimal.

This approach is illustrated by the example circuit in Figure 5.1 which has
only one LSSD kernel. The kernel includes a 16 bit input register, a 16 bit output
register and a combinational circuit to be tested. The test vectors are generated
using a test pattern generator (TPG) and results are compacted using a signature
analyzer (SA). It is also assumed that the fault simulation task has been previously
performed and 1000 test vectors are needed to achieve the required fault coverage.
The test control facilities for this kernel include: two 16 bits LFSRs (one used as a
TPG and the other as an SA); a 10 bit counter TC used to count the number of test
vectors applied; a 4 bit counter SC1 used to count the number of shift operations;
a 4 bit register SC2 for holding the initial value for the SCI; a 3-bit finite state
machine FSM to control the LSSD test procedure; two 16 bit data words, one
being the seed of the TPG, the other the correct signature of the SA; and a 16
bit comparator. The hardware overhead for each control facility is estimated based
on the following assumption: TPG: 32 units, SA: 32 units, TC: 20 units, SC1: 8
units, SC2: 8 units, finite state machine: 6 units, seed and signature storage: 32

units, comparator: 16 units. The total complexity of the test control hardware is

152 units.

These test facilities are provided by the MMC and the on-chip controller.
The facilities on the left hand side of any one of the four partition lines, shown in
Figure 5.1, can be provided by the MMC; while those at the right hand side are
provided by the on-chip controllers. Since the design of an MMC include all the
possible test facilities, the complexity of an MMC is fixed. However, the complexity

of the on-chip test controller varies as the partition line changes.

134

partition 1 partition 2 partition 3 partition 4
16
et (AR > TPG (16) —] R1 (16)
= TC(10) 4 ¢
Correct (16) EN
Signature FSM@3)| | Kernel
sc1(4) $
Go/Nogo v
:}LN Comparator
(16) SA(16) [R2 (16)
cost: 48 40 64 total cost:152

Figure 5.1: Possible partitions of test resources.

135

Let D1, D2, D3 and D4 be the four design styles representing the circuit at
the right hand side of each of the four partition lines. For example, D4 contains
the chip to be tested and no test facilities. The complexity of the on-chip controller
for D1 is the highest among the four, while that for D4 is the lowest. In addition,
the controllers for D1 and D2 are autonomous, while the controller for D3 and D4
are bus-dependent. The module under consideration contains two chips Chipl and
Chip2. Each of these chips can be designed using one of the four design styles.
Therefore, the module can be designed in 10 different ways, namely d11, d12, d13,
d14, d22, d23, d24, d33, d34, and d44, where dij represents the case when one chip
has the design style D7 and the other Dj.

The objective is to find the design style for both chips such that the overall
controller complexity is minimal and the test time is less than or equal to a given

bound.

Test time versus controller complexity

Using BOLD, the required inputs are a CTL-file for each chip and an MTL-file
for the module. These files can be easily prepared. The test programs are then
automatically synthesized and the test time is calculated. Figure 5.2 shows the
relationship between the test time and the controller complexity. In the figure
there are four plots identified by the design style for Chipl. For example, in plot 1
denoted by “Chipl uses D4”, the data points illustrate the cases where Chipl has
the design style D4 while Chip2 can take any of the four other design styles (D1,
D2, D3 and D4). The horizontal axis (controller complexity) represents the overall
controller complexity of the module. The complexity of the bus interface (the Test
Access Port) and the MMC are not included since they are fixed. The vertical axis
represents the total test time for the module. Note that the interconnect test time
is not included since it is fixed if the number of test rings remains unchanged. The
data points ‘4’ represent the cases where both Chipl and Chip2 are located on the
same test ring. The data points ‘o’ connected by the dashed line segments represent

the cases where Chipl and Chip2 are located on different test rings.

In general the test time decreases as the complexity of the on-chip controller

increases. Also, the number of test rings may affect the test time. For example,

136

test time

test time

6 fdM T ¥ T

x104

s[> 1L Chipl uses D4 y
4 i ‘6\143 + + .
3 i \\‘ -y
g42_ g4l
2 ' : '
0 50 100 150 200
complexity
sx10¢ :
s+ 3.ChiplusesD2 ’
+
| A
d24
Gh""-‘
2 T g23 g22 g2t
1 . ' '
100 150 200 250 300
ComplCXil}'

test time

test time

5 x104 '
4L 834 2. Chipl uses D3
-~""‘-,Ji33 & i
3k i
2 \\‘9}_2_____‘931 N
1 . 1 "
50 100 150 200 250
complexity
5 X 104 . ‘ 1
4l 4, Chipl uses D1
+
3F i
414
2f T g3 g12 g1l -
I ' : :
150 200 250 300 350
complexity

Figure 5.2: Test time versus controller complexity.

137

in plot 1, the test time is affected by the number of test rings only when Chip2
has the design styles D1 or D2. In both cases, Chip2 has autonomous controller.
Once Chip2 is properly initiated, it can be tested concurrently with Chipl since
both chips are located on different test rings. On the other hand, the test time is
not affected by the number of test rings when Chip2 has the design styles D3 or
D4. In this case these two chips are tested in sequence since they both require the
assistance from the test bus in executing the test. So the test time remains the

same even when these two chips are located on different test rings.

The results shown in plot 2 are similar to that of plot 1 since Chipl also has
a bus-dependent on-chip controller. In both plot 3 and 4, Chipl has an autonomous
on-chip controller. The number of test ring affects the test time only if Chip2 has
the design style D3 or D4. If two test rings are used, Chipl and Chip2 can be
tested in parallel. On the other hand, these two chips must be tested in sequence

if only one test ring is used.

Tradeoff Curve

In Figure 5.3 the test time and controller complexity of all the 10 possible design
combinations for Chipl and Chip2 are shown; that is dij = dji. The horizontal axis
represents the overall controller complexity of the module (in units). The vertical
axis represents the total test time for the module in test clock cycles. The data
points ‘4’ represent the cases where both chips are located on the same test rings.
The data points ‘o’ along with the dashed line segments represent the cases where
the two chips are located on different test rings. A curve consisting of these data
points can be used to make design decision in selecting an optimal design point for

given constraints in both test time and overall controller complexity.

As shown in the figure, the test time when using two test rings is always
less than or equal to that of the one test ring case. It is interesting to note that
even the design d33 (for the two test ring case) has a higher controller complexity
than the design d24. The test time for the former is greater than that of the latter.
Similarly the design d14 has a much higher complexity than d24, but there is little
difference between the test time for both cases. Therefore both designs d33 and

d14 are inferior to the design d24. Using the same argument, more inferior designs

138

x104

5.5%: J

T
1

45

single test ring
+

T
1

test time

3.5 \

25r Y24 N dl4
two test rings \ di3

v
\

N d23 d2 diz dil

D-mmmm P D -2

L5 ' — - :
0 50 100 150 200 250 300 350

controller complexity

Figure 5.3: Tradeoff curve: Test time versus controller complexity.

can be identified. These inferior designs include d33, d14, d22, d13, d12 and d11. A
curve, referred to as the tradeoff curve for a module, consists of all designs that
are not inferior. These superior designs include d44, d34, d24 and d23. This curve
can be used in selecting the most appropriate design satisfies both the constraints

on test time and controller complexity.

The analysis of this example shows that (1) putting both TPG and SA on
chip can greatly reduce test time, (2) putting the test control facilities, including
FSM and two counters, on chip can also reduce test time, however, (3) putting the
seed and correct signature on chip has little if any impact on reducing test time

and often leads to an inferior design.

139

This approach can be generalized to the cases where a module contains
many chips that have many different design styles. The optimal solution can be
guaranteed if the design points include the entire design space. The drawback of
this approach is that it is not feasible for a module containing a large number
of chips, since the time required to plot the tradeoff curves in such cases grows
exponentially as the problem size increases. To determine the optimal solution in

such a case, an algorithmic approach is needed.

Two algorithms that can reduce the time required to generate an optimal
solution are presented next. These algorithms do not remove the need of test
program synthesis since they assume the test time for each design is known. The
test time calculated by these algorithms is only an approximated value since the
model used is different from the final design. Therefore the final results have to be
verified by the synthesis approach in order to make sure that the module test time

is actually less than the given bound.

5.2 Algorithm-Based Minimization

To simplify the problem an MMC is assumed to have only one test channel. We
make this assumption to ensure that the MMC processor bandwidth will match
that of the test channel. If a module has m test channels, then it will have m
MMCs. Suppose there are n chips in the module under test. Let 7" be the given
upper bound of the module test time. The on-chip controller for each chip can be
either autonomous or bus-dependent. Let the controller hardware complexity for
chip i be a; if its on-chip controller is autonomous; otherwise, let the complexity
be b;. The test program synthesis technique can be used to calculate the test time
for each individual chip. Suppose that the test time for chip 7 is ¢4; if its controller

is autonomous and t;; otherwise.

140

5.2.1 One Test Channel

Assume there is a single test channel and it can control either one or two test rings.

However, it can only transmit data to one ring at a time. It is clear that a; > &;

for all chips. (This assumption can be justified from the discussion in chapter 2).

By connecting all chips that have autonomous on-chip controllers to one test

ring, the self-test of all these chips can be executed in parallel with the testing of

the chips with bus-dependent controllers. On the other hand, all chips that have

bus-dependent controllers must be tested in sequence. The module test time is

T = max(t,, 1), where ¢, is the longest test time required by any chip with an

autonomous controller, and ¢, is the sum of the test time for all chips with bus-

dependent controllers. In this work, it is assumed that t,; < T,Vi, where T' is a

given parameter representing the upper bound on the total test time.

The objective is to determine the controller design style for each chip such

that 7}, < T and the total complexity of all the controllers is minimal.

Problem Formulation

Let z; be a variable associated with chip 7 defined as follows.

{ 1 if chip ¢ has a bus-dependent on-chip controller,
By =

0 otherwise.

The objective is to minimize

> @b+ (1 — zi)a
i=1
subject to

T> Z zily;.

=1
Note that the objective function can be reformulated as

n n

i=1 =1 i=1 i=1

Z(ﬂ;‘;b; + (1 L :c;)a,-) = En:a,' - i:a:,-(a; = b,‘) = C’ — Z :r:;(a,- = b,)

141

C’ is a constant. Let ¢; = a; — b; be the difference in complexity between the
autonomous and bus-dependent design for chip i. It is clear that ¢; > 0 since for
a given chip the complexity of an autonomous controller is higher than that of a
bus-dependent controller. The objective can be restated as follows.

Maximize
Z TiC;
i=1
subject to

T Z Z .'L‘,‘ib".

=1
This formula is equivalent to that of the Optimization 0-1 Knapsack [53] and can be
efficiently solved using dynamic programming. The following algorithm, proposed

in [53], is used to solve this problem.

Algorithm DP

1. Let My = {(0,0)}.
2. Forj=1,...,mdo

(a) Let M; = 0.
(b) For each element (S,c) of M;_y, add to M; the element (S5, c) and also
(SU{ile+¢j) if Tiestsi +1; < T.

(¢) Examine M; for pairs of elements (.5, ¢) and (5, ¢) with the same second
component. For each such pair, delete (S, ¢) if Zieortei 2 2Zies this
otherwise delete (5, c).

3. The optimal solution is S, where (5, ¢) is the element of M, having the largest
second component.

Starting with chip 1, the algorithm determines the design style for each chip
in sequence. After the design style of chip n has been determined, the optimal
solution is obtained. A solution is represented by (.5, ¢), where S is the set of chips
which should have bus-dependent controllers and c is the total complexity for this
set of chips. A solution set is feasible if Y ;ests < T. M; is the set of all feasible
solutions after the design of jth chip has been determined. It is obvious that the

feasible set in M, with the largest ¢ is the optimal solution.

142

A C program has been implemented based on this algorithm. The program
can solve this design problem in O(n%c) time. This C program is used in the
following algorithm to determine the design style for each chip and also connects
the chip to one of the test rings of the test channel. The module can then be tested
within the time bound 7" by an MMC having a single test channel.

If only one test channel is used to control the testing of a set of chips the
following algorithm can be used to determine the design style for each chip such
that the total test time is less than or equal to T and the overall control complexity

is minimal. The algorithm also determines the chips are connected to the test bus.

Algorithm TC1:

1. Find the test time ¢; and t,; for each chip using the test program synthesis
technique. The test time is calculated based on the model used in describing
a CTL-file for a chip (see Figure 4.2 in chapter 4).

B

ormulate the problem as above and find an optimal solution set using Algo-
rithm DP.

3. If a chip is in the solution set, its controller is bus-dependent; otherwise, it is
autonomous.

4. Connect all chips that have bus-dependent controllers to ring 0 of the test
channel. Connect all chips that have autonomous controllers to ring 1 of the

test channel.

Lemma 2 The solution set found by Algorithm TCI is optimal.

Proof:
The proof is obvious since the solution set is found by using a dynamic programming

procedure, which implicitly searches through the entire solution space. O

Using Algorithm TC1, one can quickly obtained optimal controller designs.
Figure 5.4 shows the results obtained by using both approaches. The data points
connected by solid line segments are the actual values obtained by using the test
program synthesis technique. The data points connected by dashed line segments
are obtained by using Algorithm TC1. As observed, there is very little difference

between the results obtained from the two approaches except for the design d44.

143

x104

6 T L T T
5.5 i
sk o: obtained from synthesis |
*: estimated by algorithm TC1

test time

1‘5 1 1 1 1 I 1
0 50 100 150 200 250 300 350

controller complexity

Figure 5.4: Test time estimated by algorithm TCI.

The discrepancy is caused by the simulation program that calculates the test time

from the module test program.

5.2.2 Multiple Test Channels

The test time for a module can be further reduced by increasing the number of test
channel while the overall controller complexity remains minimal. The following
algorithm determines the controller complexity for each chip and the number of
test channels required such that the module test time is less than or equal to T and
the overall controller complexity is minimal. The controller complexity includes

both the complexities of on-chip controllers and of the test channels.

144

Let ¢ic be the complexity of a test channel. Let G = (V, E) be a graph. A
set of nodes I C V is an independent set of G if Vv;,v; € I,e = (v;,v;) € E. Y
is a maximal independent set of G'if (1) Y is an independent set and (2) Y is not

contained in another independent set.

Algorithm TCM:

1. Formulate the problem as above and use Algorithm DP to solve it. However,
replace step 3 of Algorithm DP by the following: For every solution set (S, ci)
in M, if ¢ > ¢, mark it as a candidate. Let the number of candidates be z.
Relabel the candidates such that they are represented as (Sk, cx), k= 1,..., 2.

"

Construct a weighted graph G=(V,E,C) as follows: For each candidate 1 <
k < z associated with (S, ci), there is a corresponding node v, € V and a

label ¢ € C. An edge e = (v;,v;) € E if (Si,¢:) N (S, ¢;) # 0.

3. Let @ be the collection of all maximal independent sets of G. Find X € Q so
that }°,. cx ¢ is maximal.

4. For each node v; € X, allocate a new test channel. For all chips in S; of the
corresponding candidate, assign the design style for their on-chip controllers
as bus-dependent. Connect these chips to the newly allocated test channel.
Repeat this step until all nodes in X are processed. Let m be the number of
test channels allocated in this step.

5. Let U be the set of chips that do not belong to any candidate in X. If U # ()
allocate a new test channel. All chips in U are connected to this test channel.
Apply Algorithm TC1 to U and find a set of chips U, that have bus-dependent
controller. Connect all chips in U, to test ring 0, and all chips in U — U, to
test ring 1 of the newly allocated test channel. Note that all chips in U — U,
have autonomous controller. o

In step 1 a candidate is a feasible set found using Algorithm DP with ¢ > c.
This means that making all chips in a candidate set as bus-dependent can satisfy
the time constraint and the complexity is reduced since the cost of allocating a
new test channel is less than that of making these chips autonomous. In step 2
the optimization problem is formulated as a graph so that it can be solved in step
3 by finding the maximal independent set for a graph. Computing X in step 3
in general requires exponential time since finding a maximal independent set of a
graph is a known NP-Complete problem [24]. An algorithm (Algorithm MIS), that

uses a branch and bound technique to find X efficiently, is given below. Efficiency

145

is obtained by pruning the solution space. The number of test channel allocated
in step 4 is maximal. This leads to the minimization of the overall controller com-
plexity. If the complexity of a test channel ¢ is very large such that no candidate
can be found (z = 0), then steps 2, 3 and 4 are not executed and the set U in step
9 consists of the entire set of chips. For this case both Algorithms TCM and TC1

generate the same result.

Algorithm MIS:

1. Initialization: Set X =Y = (. X contains the current “best” independent
set.

2. Call BB(Y, 1);

3. X is a maximal independent set and) ;. x ¢; is maximal.
Function BB(Y,:):

1. If # > n return; otherwise continue.
2, Y=Y u{u}
3. If Y is an independent set then
(a) if (| X| < |Y]) or (|X| == Y| and ¥,.ex ¢i < Lyey Gi),setX =Y.
(b) Call BB(Y,i+1)
4. Call BB(Y — {vi},i+1).]

Using a recursive approach, the function BB searches through the entire
solution space for Y (branch) and intelligently prunes off a subspace if it does not
contain a solution better than the best solution seen to date. Pruning is performed
in step 3 of BB. When an independent set Y is found, X is updated only if
an independent set with more nodes is found (|X| < |Y|) or an independent set
with higher value is found (|X| == |Y]| and ¥ ,.ex ¢ < ey). If Y is not
independent, the subspace containing Y is no longer considered, e.g., if {v,v2} is
not independent, all set of nodes that contain both v; and v, will not be checked

for independence.

Lemma 3 The solution found by Algorithm TCM is optimal.

146

Proof:

The solution set X is optimal in that the test time for the resulting design
is less than or equals T and the overall controller complexity is minimal. This is

obvious since the algorithm implicitly searches through the entire space. O

5.2.3 Results

Let a chip be represented by a two-tuple (¢;, ty;), where ¢; and #; have been defined
previously.

Example 5.1: Consider a module consisting of five chips, numbered from 1 to 5.
These chips can be represented as (6,1), (11,1), (17,3), (3,2) and (9,2), respectively.
Using Algorithm TC1, the solution set found is S={1, 2, 3}. Using Algorithm

TCM, the results are as follows, where n=>5 and T=5.

¢ | num. of candidates z | num. of TC allocated m
10 10 3
15 6 2
20 3 1
30 1 1
40 0 0

The value in the last column is the number of test channels allocated in step
4 of Algorithm TCM. Note that even with m=0, Algorithm TCM will still allocate

one test channel in step 5.

Example 5.2: Consider a module consists of seven chips, numbered from 1 to 7,
and is represented as (299,4), (73,1), (159,2), (221,3), (137,2), (89,1) and (157,2),
respectively. Using Algorithm TC1, the solution set is S={1,2,3,6,7}. Using Algo-
rithm TCM, the results are as follows, where n=7 and T=10.

147

¢ | num. of candidates z | num. of TC allocated m
500 44 2
550 32 1
600 27 1
700 10 1
800 0 0

5.3 Discussions

Algorithm TCM can also be used in the design of system level controllers. For
example, if each MMC can only control a test channel, then Algorithm TCM can
determine the number of MMC required such that a system can be tested in a

predetermined time.

Chip Type Constraint

When two chips have the same application circuit, it 1s beneficial to let them have
the same type of on-chip controller so that only one type of chip need to be manufac-
tured. The algorithms presented above can deal with this constraint if the problem
is modeled as follows. Replace the set of chips that have the same application cir-
cuit with a new pseudo-chip. The test time and the complexity of the pseudo-chip
is the sum of the test time and the complexity of the chips deleted, respectively.
Repeat this process until the constraint on the chip type is completely removed.

The new problem can then be solved by the previously proposed algorithms.

Chips Having Autonomous Controller

The test time required by chips having an autonomous controller is neglected in
both Algorithm TC1 and TCM. It is assumed that these chips are connected to a
test ring and their tests are executed concurrently while the test ring stays in the
RunTest bus state. The assumption is invalid if an autonomous chip cannot stop
the self-test process by itself. In this case, a test ring should be assigned to each

chip. The controller complexity is thus increased.

This problem can be solved if the test channel is modified such that it can

support many test rings while data can be sent to only one ring at a time. In

148

such a case, the complexity of the test channel remains low and all chips having

autonomous controller can be tested concurrently.

Controller with Multi-level Complexity

For both Algorithm TC1 and TCM, the on-chip controller is assumed to have only
two levels of complexity, a; and b;. However, 1t is possible to have controllers with
many levels of complexity, as shown in section 5.1. For example, the complexity of
chip 7 can be further classified into b;;, where j = 1,...,7; if it has a bus-dependent
controller, and a;;, where y = 1,...,14, if it has an autonomous controller. The test
time for the chip is t?j if the complexity is b;;, and 2{; if the complexity is a;;. Using
one test channel, the problem can be formulated into an integer linear programming

problem as follows.

Let the variable z;; be defined as

{ 1 if the complexity of the on-chip controller is a;;
Ly =

0 otherwise

and the variable y;; be defined as

1 if the complexity of the on-chip controller is b;;
T 0 otherwise.

The objective is to minimize

n ia iy
> ziai; +) wisbis)
i=1 j=1 =1
subject to
Sz + Yk, = 1, Vi, and
o T visth = I

149

Chapter 6

Interconnect Test Generation

Previous work on the diagnosis of faults in a wiring network has been based on the
assumption that both open and short faults do not exist on the same net. When
this assumption is relaxed, the results obtained fail to identify all diagnosable faults.
The non-diagnosability of these faults, including shorts between nets, represents a
deficiency. In this chapter the causes for this deficiency are analyzed and explained.
New test algorithms and theoretical results for correcting this deficiency are also
provided. Based on these results, a test set that is capable of identifying all diagnos-
able faults in a wiring network with arbitrary open and short faults is developed.
Finally, two adaptive diagnosis algorithms which can reduce the number of test

vectors while retaining the same level of diagnostic resolution are delineated.

6.1 Introduction

Detecting and locating faults in wiring networks on a printed circuit board has
drawn much attention since the emerging of the boundary scan architecture [33].
In this architecture each primary input/output pin of a chip is associated with a
boundary scan (B-S) cell. Each chip has a boundary scan register consisting of all
the B-S cells. During the test mode a scan chain is formed by cascading boundary
scan registers of several chips. Through this chain a test controller can access the

1/O pins of every chip. Thus a virtual bed-of-nails capability is achieved. With

150

this capability the wiring nets can be isolated from the chips and tested without
the need to physically probe the board. In this way it is possible to test the new
generation of boards which allow limited probing due to the use of surface mounted
devices and tape automated bonding technology. Note that if non-boundary scan

devices are used, physical probes may still be required.

Many papers have dealt with the problem of finding test sets for detecting
and locating faults in a wiring network [16, 25, 29, 30, 34, 37, 56, 64, 68]. Usually
opens are modeled as stuck-at faults and are diagnosed separately from the shorts.
This is based on the assumption that a net cannot be simultaneously associated with
both open and short faults. Very comprehensive results are presented by Jarwala
and Yau [34],- where a framework for the detection and diagnosis of wiring networks
is discussed. In particular, the diagonally independent property is identified. It is
shown that a test set with this property is sufficient for the diagnosis of all shorts

in one-step, where the results are analyzed after all test vectors have been applied.

However, as shown in this chapter, when the assumption concerning open
and short faults is relaxed, a test set having the diagonally independent property is
insufficient for achieving complete diagnosis without repair. In fact, there are cer-
tain faults that cannot be diagnosed without repair. Some of these non-diagnosable
faults are listed in section 6.2.3. Furthermore, it is shown that none of the previous
results can identify all diagnosable faults. The causes for this deficiency are identi-
fied and characterized in Lemmas 4 and 5. A diagnostic level DR5, which refers
to the case where all diagnosable faults can be identified, has been formulated. A
term called maximal diagnosis is defined using two conditions. It can be shown
that these conditions are both necessary and sufficient for achieving the diagnostic

level DRA5.

Both one-step and two-step diagnosis are addressed in this chapter. In the
former case, responses are analyzed only after all test vectors have been applied.
In the latter case, responses are analyzed after a fixed part of the test vectors have
been applied. Based on this analysis, additional test vectors are then generated

and applied. Final analysis is then carried out to identify the faults.

151

For one-step diagnosis, a property called set-cover independent is identi-
fied. Based on this property a fundamental theorem on diagnosing wiring faults
is presented. The theorem gives both the necessary and sufficient conditions for
identifying all diagnosable faults. A universal test set is also presented. This test
s.* can achieve maximal diagnosis for an arbitrary network without assuming a

specific fault model.

For the two-step diagnosis case, two adaptive diagnosis algorithms are pre-
sented. Compared with one-step diagnosis, these algorithms can reduce the number
of test vectors while retaining the same level of diagnostic resolution by using a two-
step scheme. In the first step, a detection sequence is applied and the responses are
evaluated. Based on the initial results, a second sequence is applied to achieve the
required diagnosis. The test vector size is reduced since some information about

the network is employed in generating the second sequence.

6.2 Preliminaries

A wiring network consists of many nets. A net contains one or more drivers and one
or more receivers. The logic value of a net can be controlled via one of its drivers
and observed by all of its receivers. For a multi-driver net, only one driver can be
enabled at a time; the others must be disabled. In addition, while testing a wiring
network, only the drivers and receivers of nets are accessible. A fault-free net can
transfer the logic value from an enabled driver to its receivers correctly. A receiver
of a fault-free net can only receive from its associated drivers. The objective of
diagnosis of a wiring network is to find a set of test vectors which can be applied

to identify as many faults in the network as possible without repair.

6.2.1 Fault Model

Two types of physical faults, namely open and short, are assumed. More than one
physical break is possible in an opened net. Ignoring fan-out nodes and shorts,

multiple opens are modeled as a single open along a wire segment. Also more than

152

one physical bridge are possible between two shorted nets. Multiple shorts are

modeled as a single short between two wire segments.

If two or more nets are shorted, the resulting behavior can be modeled as
either (1) a wired-OR, (2) a wired-AND, or (3) a strong-driver, where one driver
dominates ine resulting behavior. In all cases, all nets involved in a short will
have the same resulting logic value. The wired-OR fault model is assumed in this

discussion unless otherwise stated.

A net shorted to a power line VCC (GND) will exhibit a stuck-at 1 (stuck-at
0) behavior. If a net contains an open, the logic value interpreted by all floating
receivers of the opened net will be the same, which could be either a soft stuck-at
L or a soft stuck-at 0. The logic value of a net shorted to a wire segment having
a soft logic value cannot be forced to the soft value. The soft stuck-at 1 model is
assumed for a floating net unless otherwise stated. In Figure 6.1, the logic value

of the point A is soft stuck-at 1.

wy

Figure 6.1: A soft stuck-at 1 case.

Both opens and shorts can occur on the same net. If a net contains both
an open and a short, the logic value received by the receivers is determined by the
combined effect of these faults. A short to an open net is illustrated in Figure 6.2,

where A takes the logic value of B.

0y

2

nif |

Figure 6.2: A short to an opened net.

153

6.2.2 Notation and Definitions

The notation and definitions used in this chapter follow the conventions established

in [34]. For convenience, some of this information is repeated here.

o Parallel Test Vector (PT'V): the vector applied to all nets of a wiring network

in parallel.

e Sequential Test Vector (ST'V): the vector applied to a net, over a period of
time, by a sequence of PT'Vs.

e Test Set (or test sequence) S: the collection of all STVs. Each column of S
is a PT'V and each row of S is a STV.

o Sequential Response Vector (SRV): the response of a net to a STV.
® Syndrome: the SRV of a faulty net.

o Aliasing syndrome: the resulting syndrome of a set of faulty nets is the same

as the correct SRV of a net not in the set.

e Confounding syndrome: the syndromes that results from multiple indepen-

dent faults are identical.
The following definitions are also used.

e OR-Cover: A vector V; OR-covers another vector V; if for every bit position in
V; that is 1, the corresponding bit in V; is also 1. For example, STV;=(1101)
OR-covers ST'V;=(0101), or ST'V; is OR-covered by STV;. The OR-cover is
used in the wired-OR fault model. In a similar fashion one can define an AND-
cover for the wired-AND fault model. In this chapter, the term OR-cover is

abbreviated as cover.

e Independent set: A test set S is an independent set if no STV, is covered by
another STV;, 7 # 1.

154

o Set-cover: Let V; be the result of wire-ORing a set of vectors V}, ..

vector V; set-covers the vectors Vi, ...

Vi if V; covers V.

Vi A

o Set-covering syndrome: A set-covering syndrome is a syndrome that results

from a set of shorted nets (W') that either covers a SRV or is covered by the

SRV of some net w; not in W'.

o Set-cover independent: Let S = (STV,...,STV,)T be a test set for a set of

nets W = (wq,...,wy). S is set-cover independent if for i =1,...,n, STV is

neither covered by nor covers the union (for wired-OR, intersection for wired-

AND) of any subset of vectors in S — {ST'V;}. In the other words, for every

SRV; in S no set-covering syndrome can exist.

6.2.3 Non-Diagnosable Faults

A fault f is said to be non-diagnosable if there is no test set S and an algorithm

A such that by applying S to the network and processing the responses using

algorithm A, f can be identified. Note that all single faults are diagnosable. Based

on the fault model presented, some faults are non-diagnosable. Some of these non-

diagnosable faults are listed below.

e In a set of nets that are shorted with each other, there are some opens that

are non-diagnosable. For example, in Figure 6.3 the open fault f1 on net w,

is non-diagnosable. Since w, and w, are electrically common, it is impossible

to find a test to detect the open.

wy

£2

Wsg

Figure 6.3: An open that is non-diagnosable.

fi

£3

155

o The short between a set of opened nets is non-diagnosable. For example, in
Figure 6.4, it is impossible to identify the short f1 between w, and w, since

no receivers are connected to the shorted wires.

Lt £2

fi
W2 £3

Figure 6.4: A short that is non-diagnosable.

o There exists three possible reasons for a faulty net that has all-1 responses to
a test, namely (1) the net is shorted with a VCC power line, (2) the net is
opened and floating (soft stuck-at 1 model), and (3) the net is shorted with
other nets such that the combined result is an all-1 vector (wired-OR model).
The third case can be distinguished from the others by applying an all-0 PTV.

The first two cases cannot be distinguished.

6.2.4 Diagnostic Resolution

Various levels of diagnostic resolution are possible in testing a wiring network with-
out repair. Listed below are six such levels. They are listed in ascending order of
their diagnostic resolution, i.e., DRI has the lowest diagnostic resolution, and DR6

has the highest diagnostic resolution.
DR1: Determine whether the entire network is fault-free.

DR2: Identify all faulty nets.

DR3: For each and every net, determine whether it is fault-free without knowing

the response of the other nets.

DR4: Identify all faulty nets. In addition, for nets without shorts, identify the
existence of nets having opens. For a faulty net without open faults, identify

all nets that are shorted to it.

156

DRS5: Identify all faulty nets. In addition, identify all faults that are diagnosable.

DR6: Identify all faulty nets. In addition, identify all the opens and shorts in the

network.

In DRI, one is only interested in determining the health status of the entire
network. No further diagnostic information is provided. In DR2, all faulty nets are
identified. No information about what type of faults associated with each net is
provided. In DR3, all faulty nets are identified. In determining the health status
of net, only its response is required. No information about the response of other
nets are needed. This scheme is most suitable for a built-in self-test type of design.
In DR4, all faulty nets are identified. The faults associated with each nets can be
identified if they belong to those cases described above. In DRS, all faulty nets
are identified. More faults can be identified than in the case of DR4. In DR6, all
faulty nets are identified. In addition, all the faults, including opens and shorts,

are identified.

For the purpose of repairing a wiring network, it is desirable that as many
faults as possible be identified. Due to the fact that some faults cannot be identified
without first repairing other faults, DR6 cannot be reached. An example would be

a net with multiple opens. In this work, the focus is to achieve DR5 without repair.

6.2.5 Previous Results

Previous results focus on diagnostic resolution ranging from DR1 to DR4. Some
typical results for the testing of a network consisting of 4 nets are listed below.
These results are based on the assumption that both opens and shorts cannot exist

on the same net.

Counting Sequences: [37)

1
- o o O
-

o = = O
(= e =

This test set consists of a simple counting sequence, where the all-0 and all-1
STVs are not used. This test can achieve the DR1 diagnostic levels. The size of

the test set is [log(n + 2)], where n is the number of nets.

Complementary Counting Sequence: [64]

tn
Il
— —_ [) o

— O = O

[B == I

1
1
0
0

This test set consists of a counting sequence and its complement. The all-0 and all-
1 STVs can be used. The size of the test set is 2[logn]. This test set can achieve
diagnostic level DR3. By eliminating the aliasing syndromes, the self-diagnosis
property is achieved. This allows the determination of the health status of a net

by examining only its SRV.

Magzimal Independent Set: [16]

O =
—_— D D e

-0 = O
o = O O
L I

Constant weight codes, where every STV has the same number of 1s, is a
class of independent test sets. These test sets can achieve diagnostic level DR3.
The size of the test set is minimal for self-diagnosis when the number of 1s in a
SRV is half of the number of PTVs, which is referred to as a maximal independent

set [16].
Diagonally Independent Sequence: [34]

gz =z 1
1 0
G i z
z 1 0 0
|1 0 0 0|

158

The z represents either a 0 or a 1. This test set can achieve the diagnostic
level DR4. Both aliasing and confounding syndromes can be eliminated. All pairs

of nets that are shorted are identified.

6.2.6 Deficiencies in Previous Approaches

Recall that these results are based on the assumption that both opens and shorts
cannot exist on the same net. However, when this assumption is relaxed, there
exists certain types of opens and shorts that cannot be identified. For example, the

diagonally independent sequence

[y

0
0
0
1

1
0
0
0

o o= O
o o = O

cannot identify the short fault f1 in Figure 6.5 nor the open fault f2 in Figure 6.6.

0101 0io01
fi

0010 0010

0i00 £2 1111

1000 1000

Figure 6.5: A short that cannot be identified by a diagonally independent sequence.

0101 0101
fi

0010 0010

0100 £2 010 1

i000 1000

Figure 6.6: An open that cannot be identified by a diagonally independent sequence.

The following lemmas summarize those cases which cannot be completely

handled by previous mentioned approaches.

Lemma 4 A test set S cannot identify the short between two nets w; and w; if (a)
there is an open which is closer to the receiver of net w; than the short, and (b)
STV; is covered by STV;.

Proof: SRV, is the all-1 vector since no logic value is transferred to the receiver.
Furthermore, SRV; = ST'V; since ST'V; covers STV;. Therefore, it is impossible to

know whether there is a short between w; and w;. O

Figure 6.5 is an example of Lemma 4.

Lemma 5 A iest set S cannot identify the open in a net w; if there exists another

net w; such that (a) there is a short between w; and w; which is closer to the receiver

of w; than the open, and (b) STV; covers STV;.

Proof: Since SRV; = SRV; = STVj, the “contribution” from STV; to SRV;

becomes indeterminate. Therefore, the open cannot be identified. o

Figure 6.6 is an example of Lemma 5.

Both Lemma 4 and 5 can be generalized to multiple nets. For example,
in Figure 6.7 the short fault {1 cannot be identified by a maximal independent
set. This is because ST'V; is set-covered by SRV; = SRV, = 1110. Therefore it is

impossible to determine whether the short fl1 exists or not.

1100 -2 1110

1010 22 1110
we |1

0110 0011

0011 A4 0011

Figure 6.7: A short that cannot be identified by an independent test set.

160

In summary, none of the previous approaches which include the diagonally
independent sequence [34], the maximal independent set[16], and the complemen-
tary counting sequence[64] can identify all the faults described above in one pass

without repair.

The existence of unidentifiable shorts and opens in a network represents
a deficiency in diagnosis. A test set that can be used to identify these faults is

presented next.

6.3 One-Step Diagnosis

Due to the existence of non-diagnosable faults in a wiring network, it is impossible
to identify all faults without repair or access to points of the nets other than the

drivers and receivers. The term maximal diagnosis is defined as follows.

Let W = (w;,ws,...,w,) be a set of nets to be tested, D; be the set of
drivers of net w;, and R; be the set of receivers of net w;. A test set S achieves

mazimal diagnosis for W if the following two conditions are verified.

o Condition Cl: Fori =1,...,n, by analyzing the responses cbtained from the

application of S, the existence of the connection (D;, R;) can be determined.

The connection (D;, R;) exists if for all k, each driver dix € D; can transfer
its logic value to all receivers in R; correctly. A driver in D); is said to transfer
its logic value to a receiver R; if SRV; covers ST'V;. Note that only one driver
can be enabled for a given net at one time. In other words, if the connection
(D;, R;) exists, then the application of ST'V; to the enabled driver of w; will
make one of the following statements true: (1) SRV; = STV, or (2) SRV,
covers ST'V;.

e Condition C2: For all 7,7, # 7, by analyzing the responses obtained from the

application of S, the existence of the connection (D;, R;) can be determined.

The connection (D;, R;) does not exist if for all k, each driver di € D; does not

transfer its logic value to any receivers in R;. In other words if the connection

161

(D, R;) does not exist, the application of ST'V; to the enabled driver of w;
will make one of the following statements true: (1) SRV; # STV, or (2)
SRV; does not cover STV;.

Theorem 1 Diagnostic level DR5 can be achieved by a test set S iff S achieves

maximal diagnosis.

Proof: (if part)

The test set S verifies both Condition C1 and C2 since S achieves maximal diagnosis
for a network W. By definition DR5 is achieved if all diagnosable faults in W can
be identified. There are two type of faults in W, namely opens and shorts. The

diagnosability of these faults by S are discussed separately.

(1) opens: An open on a net w; can be diagnosed if the connection (D;, R;)
does not exist. Since S can achieve maximal diagnosis, the connectivity is deter-

mined in Condition C1. Thus S can identify all diagnosable opens in W,

(2) shorts: A short between two nets w; and w; can be diagnosed if one of the
following is true: (a) there exists a driver set Dy, such that both connections (D, I;)
and (Dp, R;) exist; (b) there exists a receiver set Rj such that both connections
(D;, Ry) and (D;, Ry) exist. The existence of these connections can be determined

by S using Condition C2. Thus S can identify all diagnosable shorts in W.

From (1) and (2), all diagnosable faults can be identified. Therefore the

diagnostic level DR5 can be achieved.

(only if part)

Assume that S cannot achieve maximal diagnosis. By definition, there exist at
least one connection for which the existence cannot be determined. Two cases
are possible: (1) if the connection is of the form (D;, R;) then there can be an
open fault on net w; that cannot be identified; (2) if the connection is of the
form (D;, R;),i # j, then there can be a short between w; and w; that cannot be
identified. In both cases, the faults can be identified by a walking ones sequence.
Thus, by definition, these faults are diagnosable. Therefore the diagnostic level

DR5 cannot be achieved. Thus the maximal diagnosis property is necessary. o

162

In this chapter the generation of test sets that achieves maximal diagnosis
is discussed. The generated test sets thus achieves diagnostic level DR5 in which
all diagnosable faults are identified. This is the best diagnostics possible without

accessing points on the nets other than the drivers and receivers.

Lemma 6 For the wired-OR (wired-AND) model, any test set S is set-cover inde-

pendent iff S has the walking ones (zeros) sequence as its subsequence.

Proof: (if part)

This is obvious since the walking ones sequence is set-cover independent.

(only if part)

Suppose that the test set S is set-cover independent. For a given STV;, there must
exist a PTV such that its ith bit is 1 and all other bits are 0. This is true for all
STV;;: = 1,...,n. By arranging S properly (by swapping rows and columns), a
walking ones sequence can be constructed. Therefore, S contains a walking ones

subsequence. a

In the following, a theorem that characterizes the test set which achieves

maximal diagnosis is presented.

Theorem 2 A tesi set S achieves mazrimal diagnosis for a network W in one-step

iff S is set-cover independent.

Proof: (if part)

Suppose that S is set-cover independent. No set-covering syndrome can exist. For
each and every net w;, Condition C1 can be verified by checking whether SRV,
covers STV:. If this is not true then there is at least an open fault between the
driver and the receivers of the net w;. Since no set-covering syndrome can exist, no

drivers of other nets can cover the STV;.

Condition C2 can be verified as follows. If STV; cannot cover SRV, then
for every bit in SRV; that is not covered by the STV;, there is a short between the

receiver of w; and a driver w; whose STV covers that bit.

163

Since both Conditions Cl and C2 can be verified, maximal diagnosis is

achieved and the sufficiency aspect of the theorem has been demonstrated.

(only of part)

Suppose that S is not set-cover independent. There exists at least one STV; that
is covered by another STV;. When the following two faults occur, the existence
of the connection (D;, R;) cannot be determined: (1) a short between w; and w;,
and (2) an open on w; that is closer to the driver than the short. This means that
Condition Cl cannot be satisfied. Thus, by definition, maximal diagnosis is not

achieved. a

From Lemma 6 and Theorem 2, one can conclude that any test set that can
achieve maximal diagnosis must have a walking ones (zeros) sequence as its subse-
quence. From Theorem 2 and 1 it can be concluded that a set-cover independent

test set can achieve the diagnostic level DRS.

Example 6-1: The short that could not be identified by a diagonally independent
sequence in Figure 6.5 can be identified by a set-cover independent sequence (see
Figure 6.8).

0001 0101
fi

0010 010

0100 2 [[|

i000 i0oo00

Figure 6.8: Achieving maximal diagnosis using a set-cover independent sequence.

Universal Test Set:
Assuming the wired-OR model and that a floating net is modeled as a soft stuck-at
1, a test set that can achieve maximal diagnosis for a network consisting of three

nets can be constructed as follows.

o o o

[T e
o = O
(==l

164

The all-0 PTV is used to distinguish between the cases (1) all nets are shorted
together (all 1s for SRVs) and (2) all nets are opened.

Similarly, if the wired-AND model is used and an open and floating net is
modeled as a soft stuck-at 0, a test set for maximal diagnosis can be constructed

by a walking zeros sequence followed by an all-1 PTV.

In summary, a universal test set for maximal diagnosis, without making any

assumption on the nature of the faults, is as follows.

111 1 0[0/0 0 1
Suniversai = | 1|1 0 1[0|0 1 0
1{0 1 101 0 0

6.4 Two-Step Diagnosis

Two-step diagnosis refers to the fact that diagnosis is done by applying two test
sequences. The results of the first test sequence is used to generate the second test

sequence. This type of diagnosis is also known as adaptive diagnosis.

Two adaptive algorithms that can achieve maximal diagnosis with a reduced
number of PTVs are presented next. The test sets for both algorithms do not have
the set-cover independent property since certain information about the network is

employed in generating the second test sequence.

6.4.1 Adaptive Algorithm A1

1. Apply a maximal independent set (Sar). Collect and analyze the responses.
Stop if no faults are detected.

2. Partition the nets into two groups. The partitioning is done as follows. For
anet w2 =1,...,n, if (a) STV, = SRV; and (b) SRV; is unique, include w;
into Group 0, else Group 1.

165

3. Apply a walking ones sequence Sg to all nets in Group 1, and all-0 vectors to

all nets in Group 0.

The objective of the first sequence is to achieve the self-diagnosis property by
eliminating the aliasing syndromes. The maximal independent set is the minimal
size test set that can achieve this objective [16]. The number of PTVs required by
the first sequence is p, where p is the smallest integer satisfying Cﬁ,/zj > n, and
Cl,/2) represents possible combinations choosing |p/2| items out of p items. The
total number of PTVs required by this algorithm is p + I, where F is the number

of nets in group 1.
Theorem 3 The test set derived from Algorithm Al achieves mazimal diagnosis.

Proof:

Let Wp and W, be the set of nets in group 0 and 1, respectively, after the completion
of step 2. Let Do;, Ro; and Dy;, Ro; (i # j), be the set of drivers and receivers of
nets wo; and wo;, respectively, where wo; and wo; € Wy. Similarly, let D;;, Ry; and
Dyj, Ryj (i # j), be the set of drivers and receivers of nets wy; and wy j, respectively,

where wy; and wy; € W;.

There are six types of connections need to be checked, namely (Dy;, Ro;),

(Dof,Roj), (DOi,le)a (DlhRIi)a (Dli,Roj), (Dh',le), for all 2 75 %

The connections (Do, Ro;) do exist since (a) in the sequence (Syf), it is
impossible to find a subset from S — {STVy;}, whose wired-OR result equals ST Vj;,
(b) STVoi = SRVy;i and (c) SRVy; is unique.

The connections (Dy;Ry;) do not exist for the following reason. For each 2,
if the connections exist, SRVo; must equal SRV}; since there is no open on wy;.

However S RVj; is unique, so we know that these connections do not exist.

The connections (Do, Ro;), Vi # 7 does not exist since the existence of them
will make SRVy; = SRVy;, which contradicts the fact that SRV, # SRVa;.

The connections (Dy;, By;), (D1i, Ro;) and (Dy:, Ry;) are checked by the walk-

ing ones sequence Sp.

166

Since the existence of all connections can be determined, Algorithm Al

achieves maximal diagnosis. o

Example 6-2: Let W be a network of four nets, where w; and w, are two nets

in group 0 and ws, wy are in group 1. Let S4; be the test generated by Algorithm
Al,

- 1 -

0

Sa = (Sp,Sm) = ’

O O O
(= == =]

0
1
0
1

D b= =

1

0
0
1

L O B

Maximal diagnosis can be achieved in this example since the existence of all con-
nections can be determined. The efficiency of this algorithm depends on the value
of F'. In the case when F' = n, the number of PTVs is close to that of a walking

ones sequence.

6.4.2 Adaptive Algorithm A2

The second adaptive algorithm follows.

1. Apply a maximal independent set (Spr). Collect and analyze the responses.

Stop if no faults are detected.
2. Partition nets into Group 0 and 1 (as in Algorithm Al).

3. Partition nets in Group 1 such that all nets with the same SRV are in the
same group. Number these new groups from 1 to G. Let K be the cardinality

of the largest group.

4. Apply a walking ones sequence Sg to all groups in parallel except to Group

0 for which the all-0 vectors are applied.

5. Apply another walking ones sequence Sk across groups. That is, all nets
in the same group are modeled as a single net. Again the all-0 vectors are

applied to all nets in Group 0. The number of PTVs is G.

167

The total number of PTVs for Algorithm A2 is p + G 4 K. In general this
algorithm requires fewer PTVs than Algorithm Al. This is because (1) the F nets
in Group 1 of Algorithm Al are now partitioned into G groups in Algorithm A2,
and (2) F+12> G+ K.

Theorem 4 The test set derived from Algorithm A2 achieves mazimal diagnosis.

Proof:
Let Wy be the group of fault-free nets and W,, W, be any two of the G groups
formed in step 3. Let D, Rui and D,j, Ra; (i # j), be the set of drivers and

receivers of nets w,; and w,;, respectively, where w,; and w,; € W,,a = 0, z,v.

There are twelve types of connections to check, namely (Do, Ro:), (Doi, Ro;),
(D(]t'u Rrj)a (-DO:':Ryj)a (Dm'q in), (Dm’, 1%{)3), (Dm', ij), (D:ci-rRyj), (DF'-*RUK-L
(Dyi, Roj), (Dyis Bys), (Dyiy Baj), Vi J.

The connections (Doi, Roi), (Doi, Roj), (Doiy Bej)y (Dois Ryj), (Driy Roj),
(Dyi, Hoj) are checked by Sys for the reasons stated in the proof of Theorem 3.

The existence of connections (D, Ry;) or (Dy;, R.;) or both is denoted by
(Dgi| Dy;, Ryj). After the application of S¢ the existence of (Dy;|Dy:, R.;) can be
determined. The Sk can then easily distinguish between the three possible cases
covered by (Dgi|Dyj, Rzj). Thus, with the application of both S and Sk, the

existence of the remaining six type of connections can be checked.

Both Conditions C1 and C2 are verified since all the twelve types of connec-
tions are checked. This concludes that Algorithm A2 achieves maximal diagnosis.
O

Example 6-3: Let W be a network with seven nets. After the application of Sy,
three groups are formed. Let w;, wy be in Group 0, w3, ws be in Group 1, and ws,
wg, wy be in Group 2. In this example n = 7, G = 2 and K = 3. According to
Algorithm A2, the total test set S4; consists of a maximal independent set of five
PTVs (Sar), followed by three walking ones PTVs (Sg), which are again followed
by another two walking ones PTVs (Sk).

168

0 0loooft 1000
0 0[000[1 0100
0 1{o0o 1|1 0010
Se2=10 1]0 1 0[1 000 1
1 0/00 1{01 100
1 0lo1olo1o01o0
1 0/1 0001001

6.4.3 Comparison with Other Adaptive Algorithms

Several adaptive algorithms have been proposed previously. In the following these

algorithms will be briefly reviewed and compared to Algorithms A1l and A2.

Method 3: [16]

This algorithm first applies a counting sequence, and based on the initial results a
second sequence is applied. The STV of the second sequence represents the number
of Os in the corresponding STVs of the first sequence. The purpose of the second
sequence is to make sure that the overall test set S is independent. This algorithm
can achieve self-diagnosis. No confounding syndromes can be identified. Also, the

fault f1 in Figure 6.7 cannot be detected by this algorithm.

W-Test Algorithm: [25]
This algorithm is similar to Algorithm A1 except that the first sequence is a count-
ing sequence S¢, i.e., in the W-Test Algorithm the test set consists of only S¢ and

Sp. The W-Test Algorithm cannot achieve maximal diagnosis as shown by the

following example.

Part of a wiring network is shown in Figure 6.9 where the counting sequence
S¢ have been applied. For ¢ = 1,2 STV; = SRV; and SRV, is unique, thus both w,
and w, will be put into Group 0. This means that the opens f1 and {2 and the short
3 will not be identified since during the application of a walking ones sequence, all

nets in Group 0 will be kept at 0.

169

1011 1011
£3

wa £2

0011 0011

1001 =2 1111
Wy

0001 - 1111
w

0010 ’ - iii1

Figure 6.9: A deficiency in the W-Test Algorithm.

Therefore, to avoid putting a net into Group 0 by mistake, it is necessary
to apply an independent set which can achieve the self-diagnosis property. Both
Algorithm Al and A2 will not put w; and w, into Group 0. Thus the faults
associated with them can be identified by either S or (Sg, Sk).

C-Test Algorithm: [34]
The C-Test Algorithm first applies a counting sequence, then based on the analysis

of the syndromes, one or more PTVs are applied.

Part of a wiring network is shown in Figure 6.10 where a counting sequence
has been applied. In the C-Test Algorithm both faults f3 and f4 can be identified
immediately. However, since no aliasing or confounding syndromes are related to

SRV, = 1011, the fault f1 and f2 cannot be identified.

Using the same example, the diagnosis sequence generated by both Algo-
rithm Al and A2 will apply a walking ones sequence to ws, w3, ws since they are in

the same group. Thus all faults in the network can be identified.

170

wy

1011 1011
£1
w2 £2
0011 0111
£3
w3
0110 0111
fa
Wy

Figure 6.10: A deficiency in the C-Test Algorithm.

6.5 Diagnosis Using Structural Information

Up to this point all the test methods presented assume a net can be shorted to
every other net in a network. In practice, however, one net can only be shorted
to a set of neighboring nets. This set of nets is called its neighbors. The size
of the neighboring nets is usually much smaller than the number of nets in the
network. Therefore, using neighborhood information it is possible to generate a
reduced test set that can still achieve maximal diagnosis. Other researchers have
considered using neighborhood information [16, 68], but do not obtain maximal
diagnosis because they do not consider that both opens and shorts can be associated

with the same net.

A one-step diagnosis algorithm that incorporates the neighborhood informa-

tion is presented below.

Let W = {wy,...,w,} be a network under test, and let Nbr(w;) C W be the
set of the neighboring nets of w;. The algorithm for constructing a test set that

can achieve maximal diagnosis in one-step is as follows.

Algorithm A3:

171

1. Construct a neighborhood graph NG = (W4, E,) as follows: (1) For each
w; € W there is a corresponding v; € Vi, (2) By = {ele = (vi,v;),Yw; €
Nbr(w;),Vwi}.

2. Construct an augmented neighboring graph ANG = (V, E) as follows: (1)
V =W, (2) E = E,UE,, where E; = {e|e = (v;,v), Yv;, v € Nbr(w;),Vv; €
Wi}

3. Label each node v; of the ANG with a color Color(v;) such that Color(v;) #
Color(v;) if e = (vi,v;) € E and that the number of colors ¢ is minimal (this
number is also referred to as the chromatic number of the graph). Let the

colors used be C4,...,C..

4. Associate each color C; with a unique ¢ bit binary vector CVg,,i = 1,...,¢,

such that only one bit in each vector is a 1.

5. Associate each net w; € W with a vector ST'V; such that STV = CVeotor(vi)-
The test set § = (STV};, ..., STV,)L.

The problem to be solved in step 3 is NP-Complete [24]. In general, solving
this problem requires an exponential time algorithm. The algorithm listed below,
referred to as Algorithm Coloring, can be used to solve this problem. Some efficiency
is achieved by pruning the search space. This algorithm makes use of Algorithm

M IS presented in chapter 5.
Algorithm Coloring:
1. Construct a weighted graph Gy = (Vi, E2,Cy) such that (1) ¥, = V, (2)
E,=E,ie. E,= {ele = (vi,v;) € E,vi,v; € E}, (3) Co = {e: =1,¥i}.

2. Apply Algorithm MIS using G5 as input. Let ¢ be the size of the solution set.
The size of the maximal independent set of G equals the size of the maximal

clique of G. Therefore the chromatic number of G is c.

3. For nodes v,...,v,, assign a color for each of them. This process can be

done in O(nc) time since the chromatic number ¢ is known.

Theorem 5 The test set derived from Algorithm A3 achieves mazimal diagnosis

for W and is minimal in size.

Proof:

First, it is necessary to show that S can achieve maximal diagnosis. From the way
the test set is generated in Algorithm A3, it is clear that the STVs of a net w; and
its neighboring nets Nbr(w;) contain a walking ones subsequence. All opens faults
in this set of nets and all shorts between any two net in this set are diagnosable.
The same argument can be applied to each net w; € W. Thus S achieves maximal
diagnosis for the network W. Second, it is necessary to show that S is of minimal
size. The number of PTVs in S is ¢, which is the minimal number of colors required
to color the ANG. For any test set with less PTVs than S, there exist at least one
net w; and its neighboring nets Nbr(w;) that cannot be assigned a different CV.
Hence the faults in this set of nets cannot be fully diagnosed. Thus S is a minimal

test set that can achieve maximal diagnosis for the network W. a

Example 6-4: Let W = {w;,...,ws} be a network under test. Let Nbr(w;) =
{wa}, Nbr(wy) = {wi, w3}, Nbr(ws) = {ws,ws}, Nor(wg) = {ws, ws}, Nbr(ws) =
{wyg,ws} and Nbr(wg) = {ws}. The neighborhood graph NG is shown in Fig-
ure 6.11(a) and the augmented neighborhood graph ANG is shown in Figure 6.11(b).
It is found that the chromatic number of ANG is 3 and one solution to the coloring

problem is shown in Figure 6.11(c). The colors used in the graph are R, G and B.

Vg Uy

< i
VLI 7

Uz V4 V3 Uy

(a) (b) (c)

Figure 6.11: Example 6-2: (a) the NG, (b) the ANG, (c) the colored graph.

173

Let the vectors associated with the colors be C'Vzr=(100), CVz=(010) and
CVp=(001). Then the minimal test set S that can achieve maximal diagnosis is as

follows.

(10 0]
010
32001
100
010
_OOIJ

Note that there is a walking ones sequence for each net w; and its neighboring
nets Nbr(w;). Therefore, it is clear that S achieves maximal diagnosis for the

network W.

174

Chapter 7

Interconnect Test Scheduling

Many digital systems will soon be built with ICs that conform with the IEEE 1149.1
boundary scan architecture. Due to the hierarchical nature of such systems, they
may contain many boundary scan chains. These chains can be used to test the
system, subsystem and board interconnect. To reduce test time, the application of
test vectors to these scan chains must be carefully scheduled. This chapter deals
with problems related to finding an optimal schedule for testing interconnect. This
problem is modeled using a directed graph. The following results are obtained:
1) upper and lower bounds on interconnect test time; 2) necessary and sufficient
conditions for obtaining the optimal schedule when the graph is acyclic; 3) sufficient
condition for obtaining the optimal schedule when the graph is cyclic; and 4) an

algorithm for constructing the optimal schedule for any graph.

7.1 Introduction

Testing interconnect between I/O pins of ICs on a printed circuit board is facilitated
by including boundary scan in the design of the ICs. In this chapter the term
boundary scan is referred to the IEEE 1149.1 boundary scan architecture [33]. For
this architecture a boundary scan cell is associated with each 1/O pin. A boundary
scan register in an IC is formed by concatenating these cells. The logical values of

the input (output) pins of an IC can be observed (set) by using the boundary scan

175

register. By using the boundary scan registers a net connecting two I/O pins can

be tested by scanning in test vectors and observing test results.

The impact of boundary scan on board test has been reported in [28, 50, 54].
This technique provides many benefits such as enhanced diagnosis, reduced test-
repair looping, standardized testing, and reuse of tests. These benefits can be
extended to the test of other levels of assembly of a system provided that the

boundary scan philosophy is followed.

In many cases multiple boundary scan chains exist in a complex system com-
posed of subsystems which, in turn, are composed of modules and boards. There-
fore, when testing interconnect between these subassemblies, multiple boundary
scan chains (BS-chains) are used. Test vectors can be applied to these BS-chains
by using a test controller. To apply a test vector, the test controller must first par-
tition the vector into segments and associate each BS-chain with a vector segment.
The test controller then sequentially selects a BS-chain and applies the associated
vector segment to it. The order in which chains are selected can significantly impact
total test time. According to the IEEE 1149.1 protocol, for each scan operation the
test result segment is loaded (in parallel) into the BS-chains immediately before a
new test vector segment is shifted in. This result segment can be shifted out while
shifting in a new test vector segment. The selection order is important since it

determines the correctness of the test procedure and the overall test time.

The generation of tests to detect and diagnose interconnect faults on a board
is discussed in [25, 29, 30, 34, 37, 64, 68]. In this chapter it is assumed that a set of
test vectors has been generated and stored in a memory unit. Our main objective
is to apply these test vectors so that the interconnect is correctly tested in minimal
time. This objective can be achieved if the optimal schedule is found. For each test
vector the schedule determines the order for applying test vector segments to the
BS-chains. This implies that the interconnect is correctly tested by a test controller
executing the schedule. If the optimal schedule is obtained, all test vectors can be

applied in minimal time.

In this chapter several theorems which aid in identifying how to construct

an optimal schedule are presented. It is shown that the optimal schedule can be

176

achieved if a proper order is followed in applying test vectors to the BS-chains.
An algorithm for deriving an optimal schedule is presented. This schedule can be
executed by the Module Maintenance Controller (MMC) developed at USC [43],
or by the Scan Bus Master (SBM) developed by Texas Instruments [63]. The test
time is greatly reduced using an optimal schedule. A reduction in the range of 30
to 50 percent has been achieved for the examples considered so far. From the way
the problem is defined, the least upper bound in the reduction in test time is 50

percent.

The algorithms presented can also be applied to schedule tests of chips that
are designed with full scan capability where the chips have more than one internal
scan chains. Typical examples are chips designed with both the boundary scan
architecture and the multiple scan chain technique, such as the CBT method and

the MAST method [22, 5T].

7.2 Testing Model

Every chip has a boundary scan register since it is assumed that all chips under
test have the boundary scan architecture. A scan chain is formed by cascading the
boundary scan registers of various chips during test mode. The length of the scan
chain is the number of scan cells in the boundary scan registers. All cells in a scan
chain share the same control inputs (except the Mode line) provided by the test
controller. Therefore all scan cells in a scan chain always operate in the same mode.

The control model of a boundary scan register is shown in Figure 2.6.

The control inputs of the scan chain are assumed to be activated in a fixed
order (see Figure 2.5), namely an activation of CaptureD R followed by zero or more
activations of ShiftDR, and lastly an activation of UpdateDR. A test controller
must follow this order to access a scan chain. Also, only one scan chain can be
accessed at a time. These assumptions are in accordance with the IEEE P1149.1
standard. A special function is defined which, when executed by a test controller
generates the proper sequences of control signals. This function is denoted as

Scan(chainID, vecS, resS), where chainID is the chain selected to be scanned,

177

vecS is the new data string that will be shifted into the scan cells, and resS is
the data string originating from the scan chain that will be shifted out of it. Once
this function is executed by a test controller, the logic values on the D inputs of
the scan chain are collected as a string resS, and the @ outputs of the chain are

updated to take on the values specified by the data string vecS.

A test schedule represented by this function can be executed by a Test
Channel operating in the DTUR mode [44].

Graph Model for Testing Interconnect

- %4
— % I____c::}_lain 1
A
T
i =3 - _chain 2
(a) (b)

Figure 7.1: Test interconnect via two boundary scan chains; (a) block diagram, (b)
graph model.

Figure 7.1(a) shows interconnects that can be tested via two boundary scan chains.
Each scan chain is formed by cascading the boundary scan registers of two chips.
Figure 7.1(b) shows a directed graph that is used in scheduling tests. Each node
represents a scan chain. Each edge represents the data flow direction between scan
chains. For example, an edge exist from node 1 to node 2 because an output pin

in scan chain 1 drives an input pin in scan chain 2 - namely signal A.

178

Each net can be represented by one or more edges in the graph. For example,
multi-input nets, multi-output nets and busses may all map into more than one
edge in this graph model. When a bus structure is used, many edges may exist
in the graph. To avoid dealing with a complete directed graph, the testing of a
bus is carried out in several phases. During each phase, the bus is modeled as a

single-input multi-output net.

Test Controller Model

= TDO

~<~—— TDI

Test

— — TMS1

Controller
— = TMS2

— = TMSn

Figure 7.2: The test controller model.

A model for the test controller used in this work is shown in Figure 7.2. The
controller contains a data port, which includes a TDI line and a TDO line, and
several TMS lines labeled as TMSi, i=1,...,n. Only one TMS line is selected at a
time. By controlling the selected TMS line and the data port, the test controller
can send and receive information to/from the selected scan chain. The non-selected
TMS lines are either (1) set high, which sets the associated scan chain to the “reset”
state, or (2) set low, which sets the associated scan chain to the “run test/idle”
state. In the latter state, the chips under test in that chain can execute a self-test.
The controller can only alter the value of one TMS line at a time. At least two
counters are included in the test controller. These counter are used to control the
transmission of information between the data port and the selected scan chain. In

addition, the controller can execute the scan function on a selected scan chain.

179

7.3 The Problem

In this section the reasons for having multiple scan chains in testing interconnect
are first presented. The scheduling problem associated with the application of tests
via these scan chains is then identified. Solution methods for this problem will be

presented in the next section.

7.3.1 The Use of Multiple Scan Chains

The system test hierarchy for a hierarchically testable and maintainable system has
been discussed in [12, 27, 43]. With reference to the system discussed in [12, 43],
each system has a system maintenance processor (SMP). Each subsystem, which
consists of two or more modules, has a subsystem maintenance processor (SuMP).
Each module (board) has a module maintenance controller (MMC). Each chip has
an on-chip test controller (CMC), which can be as simple as a Test Access Port
(TAP), plus a boundary scan register. Test busses are required to connect these
controllers. The issue of checking these test busses is not dealt with in this chapter;

only the testing of functional interconnect is considered.

Three classes of interconnect exist, namely system interconnect, subsystem
interconnect and board (module) interconnect. A net can have one or more drivers
and one or more receivers. These drivers and receivers can be located in one or
more chips. If these chips are all located on the same board within a subsystem
then this net belongs to the class of board interconnect. If these chips are located
on different boards then this net belongs to the class of subsystem interconnect. If
these chips are located on different subsystems then this net belongs to the class of

system interconnect. Figure 7.3 shows nets belonging to the different classes.

Two control schemes, referred to as distributed control and centralized con-
trol, exist in testing a net connecting two or more units, where a unit can be either
a subsystem, a board or a chip. The distributed control scheme is shown in Figure
7.4(a), where a net is tested by two local controllers LC1 and LC2 under the control

of another controller C1. C1 first instructs LC1 to execute a Scan function in order

180

ﬂ/ system backplane

[

4subsystem backplane

]

: //board
g :

chip Z/
[] boAard

board

a./
chip

subsystem backplane

e~

L

"--.\

~

]

Board Interconnect: i

Subsystem Interconnect: j

System Intercomnect: k

Figure 7.3: Different classes of interconnect.

181

to set net i to a logic value. It then instructs LC2 to read the value on the net via
another Scan function. This value is then checked by C1. The centralized control
scheme is shown in Figure 7.4(b), where the testing of the net is directly controlled
by C2. C2 execute a Scan function to set net i to a logic value, and then executes
another Scan function to read the value of the net. The test bus is configured in a
star configuration so that unit 1 can be tested even if unit 2 is removed. In both

schemes the net 1s tested via two scan chains.

| et bt il =3
i |
] |
1 i
I 1
] 1
—
| SR [—
net 1
e W e Ty
| |
i i
I |
i i
i i
l____.. _____ % |
unit 2
| s
c2
(a) (b)

Figure 7.4: Two schemes for testing interconnect; (a) distributed control, (b) cen-
tralized control.

Because of the hierarchical nature of a system, it is very common to test
interconnect, especially system and subsystem interconnect, using multiple scan
chains. If a unit represents a chip, then Figure 7.4 represents a board having
several chips that support boundary scan. In Figure 7.4(a) each chip has a fairly
complex test controller. In Figure 7.4(b) each chip has a minimal test controller.
It is believed that most designs will conform to the latter case. Several scan chains
can be used to reduce test time. Chips associated with the same scan chain can
be tested either in a sequential manner or concurrently. However, in the latter
case the test procedure can be quite complex and inefficient. On the other hand,
chips associated with different scan chains can more easily be tested concurrently

and usually in an efficient manner. Therefore, it can be concluded that, in many

182

cases, interconnect is tested using multiple scan chains regardless of the class of

interconnect.

7.3.2 Scheduling Problem in Testing Interconnects

The problem related to scheduling vectors to test interconnect is considered next.
This vroblem is illustrated using both distributed and centralized control schemes.
We assume that the test vectors have been formatted to conform with multiple scan

chains.

Centralized Control Scheme

The scheduling problem is modeled using a directed graph. Figure 7.5 shows several
directed graphs and their associated test schedules. Each test schedule consists
of several Scan functions, where t;; (r;;) represents the ith test vector (result)
segment for scan chain j. For clarity and simplicity it is assumed that each schedule

consists of only two test vectors.

In simple cases such as those shown in Figure 7.5 (a), (b) and (c) the schedule
is easy to construct. For example, in Figure 7.5(b) a test vector is only applied to
scan chain 1, while a result vector consists of two segments collected from scan
chains 1 and 2. The first function Scan(1,t;1,—) loads chain 1 with the first test
vector. The second function Scan(2, —,r;2) gets the result segment associated with
the first test vector out of scan chain 2. The third function Scan(1,31,71,1) gets
the result segment associated with the first test vector out of scan chain 1 and
simultaneously loads the second test vector into scan chain 1. The fourth function
Sean(2, —,r22) gets the result segment associated with the second test vector out
of scan chain 2. Finally, a fifth function Scan(1,—,7r2;) is used te scan out the

result segment associated with the second test vector in scan chain 1.

The situation is more complex for the cases shown in Figure 7.5 (d), (e)
and (f), where it is more difficult to construct a test schedule. In general, if the
graph contains many nodes with complex connectivity, finding a “good” schedule

is difficult; the problem of finding an optimal schedule is NP-Complete.

183

(a)

(c)

Scan(2,t;2,—)
Scan(1,%;1,—)
Scan(2,132,71,2)
Scan(1,t2.1,71,1)
Scan(2, —,722)

Scan(1,—,721)

(e)

g9=0

Scan(1,%4,—)
Scan(2,t;.9,71.2)
Scan(l,?21,71,1)
Scan(2,152,722)
Scan(1,—,72)

(b)

Sca.n(l,t; 2)

Scan(2, —, 7 2)

(

Scan(l,tg 1. 71 1)

Scan(2, —,7r22)
(

Scan(l,—,7r21)

(d)

(£)

@:@

Scan 1 tl f3i=

Scan f12,?12)

(

(2
Scan(l,21,71,1)
Scan(2,152,722)

(

Scan(l,—,rg1)

Scan(l t] 1, —
SC&II(2 iI 2=)

wn

can(2,11,2,71,2)
Scan(1,%21,71.1)

Scan(2,13,2,—)
Scan(2,1,2,722)
(

Scan(l, —,721)

Figure 7.5: Deriving test schedules for several examples.

184

Distributed Control Scheme

In Figure 7.4(a) the execution of Scan functions by LCI1 and LC2 can be either
synchronous or asynchronous. In the former case, the scheduling problem does not
exist. The interconnect can be tested by letting LC1 and LC2 execute the Secan
functions at the same time. In the latter case, LC1 and LC2 must execute the Scan
functions in sequence. The order in which LC1 and LC2 execute this function is
important since it dictates the correctness of the test and the overall interconnect

test time.

In general it can be difficult to synchronize LC1 and LC2 because 1) C1
cannot send data to both LCI and LC2 at the same; 2) clock skew between LC1
and LC2; and 3) difference in the length of the scan chain between LC1 and LC2.

Therefore, the scheduling problem exists in this distributed control scheme.

Since the scheduling problems for both control schemes can be modeled in
the same way, only one of them will be considered. For the rest of this chapter, the
model under discussion is assumed to be the testing of board interconnect using the
centralized control scheme shown in Figure 7.4(b). The theorems and procedures

that lead to the generation of an optimal schedule are presented in the next section.

7.4 Optimal Test Scheduling Theorems

Throughout this section we shall use the following notation. Let B be a board
containing n BS-chains, t;,...,¢, be the test vectors for testing the interconnect
on B, and ry, ..., ry are the test results associated with t;,...,t,,, respectively.
Each test vector {; is partitioned into n segments l;1,...,%; In accordance with
the n BS-chains. Each vector segment is then applied to its associated BS-chain.
The result r; consists of segments r;;,...,r;, collected from the n BS-chains. A
BS-chain j is scanned if t;; (rj;) is to be applied (observed). A vector (result)
segment is said to be required if it is in the test (result) vector and it has not yet

been applied (observed).

185

Definition 1 A schedule for testing interconnects on a board B, denoted by S(B),
is a sequence of Scan functions that can apply all test vectors ty, ..., t,, and collect

all test resulls ry,...,7m.

The total number of shift operations of a schedule S(B) is denoted by Ns(B).
This number is a good measure of the test time since most operations of a Scan are
shift operations. This notation is used throughout the chapter. Also the argument

£ will not be used if the meaning is clear.

Definition 2 A schedule S is optimal if Ns is minimal, i.e. given a schedule S;
for B, Ns < Ng,.

Definition 3 For a pair of BS-chains v;,v;, a schedule S has the scan order
v; > v; if for each test vector ty (k= 1,...,m) that contains vector segments ty;

and ty; for v; and v;, respectively, S applies t; to v; before applying ty; to v;.

Definition 4 Let v; and v; be two BS-chains on a board B. If there is a net
connecting v; and v; whose logic value can be set by a scan cell in v; and observed
by a scan cell in v;, then v; depends on v;, denoted by v;Dv;, otherwise, v; does

not depends on v;, denoted by v;Dv;.

Definition 5 Let X and Y be two sets. X +Y is the union of these two sets,
X =Y is the difference of these two sets and consists of all elements in X which

are not in Y,

Definition 6 A dependency graph DG for a board B is defined as a 3-tuple
(V,W,E), where V is a set of nodes, W is a set of labels associated with the nodes,
and E is a set of edges, such that (1) for each BS-chain ¢ in B, there is a corre-
sponding node v. € V, (2) for each BS-chain ¢ in B, there is a w. € W representing
the length of the BS-chain ¢, and (3) for every pair of BS-chains u,v, there is a
corresponding edge e = (u,v) € E if and only if vDu.

Two types of nodes exist in a DG, namely type-I and type-1I nodes. Type-I

nodes refer to those nodes that have a self-loop; Type-II nodes refer to those nodes

186

that don’t have a self-loop. The set of all type-I nodes is denoted as V;. The set of
all type-II nodes is denoted as Vj;. Thus V = V; 4+ V.

Definition 7 DG’ = (V', E',W') is the reduced form of DG = (V, E, W) with
respect to U, denoted as DG' = DG LU, where V' =V —U, W' = W — {w;|v; € U}

and E' = E — {ele = (vi,v;), (vj,v;) or (vi,vx), where v;,vx € U,v; € V'}.

Let Vi (V1) be the set of all type-I (type-II) nodes in DG, DG = DG LV
and DGU = DG.LV].

Definition 8 DG 1is type-I acyclic if DG is acyclic when all self-loops are ig-
nored. DG 1is type-II acyclic if DGy is acyclic. DG is type-acyclic if DG is
both type-1 acyclic and type-1I acyclic.

Definition 9 Let DG be type-acyclic. A schedule S is type-1 proper if for every
pair of nodes v;,v; € DGy, 1) 'Ujﬁ'l){, and 2) & has the scan order v; > v; (see
Figure 7.5(a)).

A schedule S is type-II proper if for every pair of nodes vi,v; € DGyz, 1) v;Dv;,
and 2) § has the scan order v; > v; (see Figure 7.5(c)).

A schedule S is proper if 1) it is both type-1 proper and type-1I proper and 2) for

every pair of nodes v; € Vi,v; € Vi1, S has the scan order v; = v; (see Figure

7.5()).

Note that if DG is not type-acyclic, it is impossible to find a schedule that is proper.
For example, the schedules in Figure 7.5(d) and (f) are not proper.

Let DG be type-acyclic, K be the cardinality of V;, and M be the cardinality
of Vir. Let Ty = (vy,v,...,vk) be a topological order for nodes in DG when self-

loops are ignored and T3 = (uy,us,...,up) be a topological order for nodes in
DGy;.

Theorem 6 Let DG be type-acyclic. A schedule S is optimal iff S is proper.

187

Proof: (if part)

Let S be a proper schedule. Suppose that S is not optimal. There exists at least one
node v; € V such that either 1) v; € V; and the test vector segment for v; is applied
twice for each test vector, or 2) v; € Vi; and there is at least one scan operation
that does not contain both the required test vector segment and the required result
segment. In case 1, there exists at least one node v; € V; such that v;Dv; and §
has the scan order v; > v;. This implies that § is not type-I proper. In case 2, there
exists at least one node v; € Vi such that v;Dv; and § has the scan order v; > v;.
This implies that S is not type-1I proper. Both cases lead to the conclusion that
S is not a proper schedule. This contradicts the fact that S is a proper schedule.

This proves the if part of the theorem.

(only if part)

Let S be an optimal schedule. Suppose that & is not a proper schedule. If S is not
type-I proper, then there exists v;,v; € V; such that 1) v;Dv;, and 2) S has the
scan order v; > v;. This means that v; must be scanned twice for each test vector,
while all other v; need only be scanned once. It is possible to find another schedule
&1 that has the same scan order as § except that S; has the scan order v; = wv;.
This implies that Ns, < Ng, thus S is not optimal. This leads to a contradiction
and thus proves the only if part of Theorem 6. O

Corollary 1 Let DG be type-acyclic. If S has the scan order (vg > ... > vy >
Uy > Uy > Up > ... > Up), then S is optimal.

Proof:
From Definition 9 it can be concluded that S is proper. By Theorem 6 S is an

optimal schedule.
O

Procedure P1, which is based on Corollary 1, constructs an optimal schedule
S for a type-acyclic DG. In this procedure, T1 = (v1,vs,...,vk) is a topological
order for nodes in DG when self-loops are ignored, and Ty = (uy, uz,...,us) is a

topological order for nodes in DGYj.

Procedure P1:

(1) For i =1 to m do
(1.1) For j = K down to 1 do Scan(vj,t; j,7i-1,;)-
(1.2) For j =1 to M do Scan(u;,t;;,7; ;).
(2) For j = K down to 1 do Scan(vj,x, ;). 2

Since the function Secan(v;,t;,r;) contains w; shift operations, from Proce-

dure P1 it is obvious that

Ns = (m+1)=* Zw,--;»m* Z w;

v EVY v EVyy
= Zw;—{—m* ng (7.1)
weV; ueV
= N (7.2)

Lemma 7 [Lower Bound] Let S be a schedule for DG. Ns > LB = m = Pviev Wi

Proof:

From Equation (1) it is obvious that Ng =m * }_,.cv w; when V = Vi; and DG is
acyclic. For this case a schedule can be found such that each scan chain is scanned
exactly once for each test vector. It thus follows that a schedule S for any other

DG has a greater or equal number of scan operations. O

If a given DG is not type-acyclic, then Theorem 6 cannot be applied. This
type of DG is dealt with next.

Definition 10 A type-I cycle in DG is a directed cycle that consists of two or
more type-I nodes. A type-II cycle in DGy is a directed cycle that consists of

two or more type-II nodes.

A cycle C in DG (DGyyp) is broken if a node v € C' is removed from DGy
(DGrpr). Removing v from DGy is represented as DGpL{v} (Definition 7). In a
schedule S, the removal of a node v; from DG is achieved by scanning the vector
segment into chain ¢ twice for each test vector. The first scan operation loads a

vector segment into the scan chain. The second one gets the result segment out

189

of the scan chain while loading the same vector segment back into it. Thus node
v; provides a correct test vector segment throughout the application of the rest of

vector segments. Hence it can be removed from DG.

The removal of a node v; from DG/ is achieved by putting v; into the same
category as type-I nodes when applying the vector segment for v;. This enables
the vector segment in scan chain ¢ to remain valid throughout the application of
the remaining segments of the current test vector. Thus node v; can be treated the
same as a type-Inode. Let DGy = DG LV and DG = DG LV; be two subgraphs
of DG.

Definition 11 If DG = (V,W, E) is cyclic and DG' = DG LZ is acyclic when
self-loops are ignored, then Z is called a feedback vertex set (FVS) of the DG.

For example, in Figure 7.5 (d), Z = {2} is a FVS of the DG.

Definition 12 Given ¢ DG=(V,W,E), a set of nodes Z C V is a minimal FVS
of DG if for any Z' C V that is a FVS of DG, ¥,z Wi £ Yyezt Wi

Definition 13 Let Z; C Vi, Z1; C Vi be two sets of nodes in DG. If (1) DGy is
cyclic and DGy LZ; is acyclic when self-loops are ignored, and (2) DGy is cyclic
and both DGy L Z1; and DGL(V — (Z11 + Vi — Z1)) are acyclic, then (Zr,Z1) is
called a joint-F'VS of DG.

For example, in Figure 7.6(a), Z; = {6} and Z;; = {1} is a joint-FVS of the DG.

Definition 14 Given a DG, (Z;,Z1;1) is called @ minimal joint-FVS of DG if
(1) (Z1,Z11) is a joint-FVS of DG, and (2) for any (Zy, Z1;) that is a joint-FVS
of DG, (m — 1) * Tyez, Wi + Luezy; Wi < (m— 1) * Loz wi + Lyiez, Wi

Let (Zr, Z1r) be a joint-FVS of DG. Let Ty = (u1,us,...,ux) be a topo-
logical order for nodes in DG L(V — (Zi; + Vi — Zr)) when self-loops are ignored,
Ty = (vq,vs,...,vs,) be a topological order for nodes in DGL(V — (Vi1 — Z11)),
and T3 = (y1,Y2,...,¥=) be an arbitrary order for nodes in DG L(V — Zr). Also

190

let K, M, z; be the cardinality of Z;; + V; — Z;, Vi; — Z;;1, and Z;, respectively. A

schedule S for DG can be constructed as follows.

Procedure P2[B:
(1) Fori =1 tom do
(1.1) For j = K down to 1 do Scan(uj,t,-,uj,r,-_l‘u,).
(1.2) For j =1 to 21 do Scan(y;,ti,y;,z).
(1.3) For j =1 to M do Scan(vj,ti,u,,Tiy,)-
(1.4) For j =1 to z; do Scan(y;,tiy,,Tiy,)-
(2) For j = K down to 1 do Scan(uj,z,7mpy,). o

Since the function Scan(v;, t;,r;) contains w; shift operations, it follows that

Ns = (m+1)* Z w.--i-Qm*Zw,--}-m* Z w;

wE€(Z1+Vi—Z2)) ViE€Z] wE€(Vir—2;)

= m=1)% Y wi+ Y wit+ Y wi+m*y w
V€L Vi€Z w eV weV

= (m—1)% Y, wi+ Y, wi+ Ne (7.3)
vi€Z}y vi€Zrr

Note that Nye = ¥ev, wi + m * Ly ev w; is independent of the selection
of (Z1,Zr1). If DG is type-acyclic then Z; = Zy; = 0. In this case Equation (3)

reduces to Equation (1).

Theorem 7 Let (Z1, Zrr) be a minimal joint-FVS of DG. If S is a schedule con-
structed by Procedure P2, then S is optimal.

Proof:

The schedule S applies (collects) all required test vector (result) segments, so it is
indeed a schedule. We still needed to show that S is optimal. It is obvious that
DG’ = DGL(Z; + Zy1) is of type-acyclic. Since by construction S is proper with
respect to DG, S is optimal with respect to DG’ (Theorem 6). Next we show that S
is optimal with respect to DG. From Definition 14 it is clear that for any schedule &

191

that removes another joint-FVS of DG (Z], Zi;), (m—1)* T ez, Wit Luiez,, Wi <

(m—1)=* Liez, Wi + Lyezr, wi- Thus Ns < Ns,. From Definition 2, we conclude

that § is an optimal schedule. o
Corollary 2 [Upper Bound] If S is optimal then Ns < UB = 2m % ¥, ¢y w;.

Proof:

From Equation (3), it is obvious that Ns is maximal when Z; = V, i.e., all nodes
in DG are type-1 and they must all be removed. But (m +1) * Y vie(Zr4Vi—2z) Wit
2m ok Y opiez, Wi + Mk P ye(vi—zy) Wi S 2mok 3 ey w; is true for any Zp and Zj.
Thus Ns < 2m 3, ¢y wi. O

Note that one can always construct a schedule for any DG regardless of its
connectivity. For example, if Z; = V then the scan order is not important. The

problem is that the schedule constructed may not be optimal.

Theorem 7 provides a way to find an optimal schedule for a board modeled
as a cyclic DG. Since an acyclic DG can be viewed as a cyclic DG with an empty
FVS, Theorem 7 is applicable to acyclic DGs as well. In this case, both Procedure
P1 and P2 produce the same schedule.

Example: Optimal schedule for a cyclic DG.

Figure 7.6(a) shows a cyclic DG with 7 nodes. There are 4 type-I nodes, i.e.,
Vi = {4,5,6,7} and 3 type-II nodes, i.e., Vj; = {1,2,3}. The minimal joint-FVS
(Z1,Zqr) found is Z; = {6} and Zj; = {1}. Using Procedure P2, an optimal
schedule can be constructed (see Figure 7.6(c)). Ns equals (2 —1)# 90+ 50 + (80 +
90 + 100 + 110) + 2 * (560) = 1640. =

7.5 An Algorithm for Generating Schedules

A Test Scheduling Algorithm (TSA) based on Theorem 7 is described next. This
algorithm can find an optimal schedule for an arbitrary DG. Because of its com-
plexity (O(n * 2")), it may not be suitable for problems where n > 15. For large

problems the user can direct the TSA to find a sub-optimal schedule at a reduced

192

MREZR=T
uy = 50,102 = 60.,?1)3 = 70,'11)4 = 80
ws = 100, wg = 90, w; = 110
Vi ={4,5,6,T}
Var = {1,2,3}
= {6}
Zi = {1}
Vi —Z; = {4,5,7}
Vit —Zn = {2,3}
Ti=(1>4>T7%05)

(b)

Test Schedule S

Scan(5,t;5,—)
Scan(T,ty,7,—)
Scan(4,ty,4,—)
Sean(1,ty,,—)
Scan(6,t1,6,—)
Scan(2,t1,2,71.2)

Scan(3,t13,71,3

(

Scan(ﬁ, t1,61 1.6

Scan(5, t2,5, 1,5
(

Scan(4,t2,4,71,4
(

)
)
)
Sean(7,t2,7,71,7)
)
)

Secan(1,t31,711
Sean(6,t26, —)
Scan(2,t22,722)
Scan(3,t2,3,72:3)
Scan(6,t26,72,6)
Secan(5,—,725)
Scan(7,—,727)
Scan(4,—,72,4)

)

Sean(1,—,7r2,

(c)

Figure 7.6: Example: Deriving an optimal schedule.

193

complexity (O(n * MAX(n,e))), thereby reducing computation time. This can be
done by replacing Procedure Find-Min-Joint-FVS in step (3) by Procedure Find-
Joint-FVS.

Algorithm TSA:
Input : A DG = (V,W, E), Vi, Vi; and a test set t1,...,1m.
Qutput : A schedule S.

Method :
(1) For i=1 to m do the following
Partition ¢; into £; (k= 1,...,n) as follows.

Let the first w; bits of ¢; be #;,
let the next w, bits of ; be #;5,

let the next w; bits of ¢; be t;;,

let the last w, bits of ¢; be {;,.
(2) DGy = DGLVy;, DGy = DG LV,
(3) Run Procedure Find-Min-Joint-FVS (or Procedure Find-Joint-FVS).
Let (Z1, Z11) be the derived output.

(4) Let DG' = DGL(V — (Z11 + Vi — Z1)).
(5) Find the topological order T; of DG'.
(6) Let DG" = DGL(V — (Vir — Zpyp)).
(7) Find the topological order T of DG".
(8) Generate a schedule S using Procedure P2. O

A problem is modeled as a DG in TSA. Test vectors are partitioned into
segments in step (1). The procedure Find-Min-Joint-FVS is used to find a minimal
joint-FVS (Z;, Zyy) for DG in step (3). This procedure is described in more detail
later on. In step (4) the DG’, which is acyclic, is derived. The topological order of
DG’ is found in step (5). The method listed in [67] is used to derive the topological
order. In step (6) the DG"” = DG L(V — (Vir — Z11)), which is acyclic, is derived.
The topological order of DG" is derived in step (7). Finally, Procedure P2 is used to

194

derive a schedule for DG. According to Theorem 7 the derived schedule is optimal
if the (Zy, Z;) found in step (3) is a minimal joint-FVS of DG.

Finding Zr, Zy; is still a problem. For clarity, the problem is restated as

follows.

Problem: Find a minimal joint-FVS.

Given a cyclic graph DG = (V, E, W), find two scis of nodes Z; C V;,
Zip C Vip such that 1) DG' = (DGLVjp)LZ; is acyclic, 2) DG" =
(DGLVy)LZ; is acyclic, 3) DG™ = DGL(V — (Vi — Z; + Zi1)) is

acyclic, and 4) (m — 1) * ¥, ez, wi + ©,,.¢7,, wi is minimal.

This problem can be shown to be NP-Complete. Due to the facts that 1)
the problem of finding a minimal FVS is a special case of the problem of finding a
minimal joint-FVS, and 2) the problem of finding a minimal FVS is NP-Complete, it
can be concluded that the problem of finding a minimal joint-FVS is NP-Complete
by using the restriction technique described in [24]. For a small problem, it is
possible to compute the optimal solution exhaustively. The following procedure

finds a minimal joint-FVS for a given DG.

Procedure Find-Min-Joint-FVS:
Input: DG = (V,W, E), V; and V.
Output: A minimal joint-FVS (Z;, Zy).
Method:
(1) Let ny (n2) be the cardinality of V; (Vir).
Let Z' = Z" = 0, min = a large number.
(2) For 7 =0 to n; do
(2.1) For all C]"* combinations do
(2.1.1) Generate the next combination (U;).
(2.1.2) If DG LU; cyclic then goto (2.1.1)
(2.1.3) else for j =0 to ny do
(2.1.3.1) For all C7* combinations do
(2.1.3.1.1) Generate the next combination (Uz).

195

(2.1.3.1.2) If DGy LU, cyclic then goto (2.1.3.1.1)
(2.1.3.1.3) else if DGL(V — (V; — Z; + Z11)) cyclic
then goto (2.1.3.1.1)
(2.1.3.1.4) else if min < (m — 1) % ez, 0i + Cyiez,, wi
then goto (2.1.3.1.1)
(2.1.3.1.5) else min = (m — 1) ¥ ¥ ez, wi + Lyie2,, Wis
2! =y, 2" = Us.
3)Zr=2"2;1=2". O

The complexity of Procedure Find-Min-Joint-FVS is derived next. In the
worst case n; + ny operations are needed in step (2.1.3.1.4), which can be re-
peated 2" times in one pass of step (2.1.3). Also, step (2.1.3) can be repeated
2™ times in the worst case. So the complexity of Procedure Find-Min-Joint-FVS
is O(2M*™2(ny + ny)) or O(n2"). Since the most time consuming step in Algo-
rithm TSA is Procedure Find-Min-Joint-FVS, the complexity of Algorithm TSA is
O(n2™).

For a large problem it is not computationally feasible to use Procedure Find-
Min-Joint-FVS. Therefore, a heuristic procedure that can find a good solution (not
necessarily optimal) in a reasonable amount of time is needed. A version of Proce-

dure Find-Min-Joint-FVS that can be used in such cases is described next.

Procedure Find-Joint-FVS:

Input: DG = (V,W, E), V; and Vp;.

Output: A joint-FVS (Z;, Zgp).

Method:

(1) Let ny (n2) be the number of nodes in V; (Vy).

(2) Let Zj; be a FVS of DGy (Use Procedure Find-FVS).

(3) DG = DGL(Vi1 — Z1y)-

(4) Let Z} be a FVS of DGy (Use Procedure Find-FVS).

(5) Let Z; = Z7 and Zp; = Zj;. O

The Procedure Find-Joint-FVS first uses Procedure Find-FVS to derive a
FVS (Z4;) for DGy, then it derives a FVS (Z}) for DGL(Vi; — Zyp). Since Z}

196

and Zj; are derived separately, a minimal joint-FVS cannot be guaranteed. Fur-
thermore, Procedure Find-F'VS uses a greedy strategy to find a FVS. This means
that whenever a node must be removed from a cycle, the one with least weight is

selected. The Procedure Find-FVS is presented below.

A strongly connected component (scc) is a set of nodes that have directed
edges among them, and at least one directed path exists from each node to every
other node. One or more cycles exist in a scc. If no cycle exists in a directed graph
then there is no sce containing more than one nodes in this graph. At least one

node must be removed from a scc in order to break a cycle.

Procedure Find-FVS:
Input: A DG.
Qutput: Z, which is a FVS of the DG.
Method:
(a) Mark all nodes in V as “white”, and let Z be an empty set.
(b) Call H(DG).
(c) Put all nodes marked as “black” into Z.
Procedure H(DG):
(1) Find all scc of DG.
Let SCC = { all scc found with |sce| > 1}.
(2) If |[SCC| =0, then RETURN.
(3) For each sec € SCC do the following:
(3.1) Pick a node v; € sce, such that w; < w;,Yv; € scc.
(3.2) Mark v; as “black”.
(3.3) Remove v; from sc, i.e. sec’ = seel{v;}.
(3.4) Call H(scc'). O

In step (1) the algorithm given in [4] is used to find all scc of a DG. Procedure
H calls itself recursively. The major function of procedure H is to find all sec of a
graph. A node having a minimal weight is removed from each scc. The remaining
graph is again checked for scc. More nodes are removed if more scc are found. This

process continues until no more sce containing more than one node are found. The

197

solution set Z consists of all the nodes removed during the process, i.e., those nodes

that are marked as “black”.

The complexity of Procedure Find-FVS is equal to that of Procedure H.
The complexity of step (1) in Procedure H is O(MAX (n,e)) since the procedure
described in [4] is used. In the worst case, only one node is removed from the
scc in step (3). If there are n nodes in the DG, the complexity of Procedure H is
O(r+MAX(n,e)), i.e., the complexity of Procedure Find-FVS is O(n+ M AX (n, e)).

The complexity of Procedure Find-Joint-FVS is O(ny+M AX (ny, €;))+0(ny*
MAX (n2,e3)) or O(n+ MAX (n,e). Therefore the complexity of Algorithm TSA is
O(n* MAX(n,e) when Procedure Find-Joint-FVS is used in step (3) of Algorithm
TSA.

In conclusion, the complexity of Algorithm TSA is O(n2") when an optimal
solution is required, and O(n * MAX(n,e)) when a sub-optimal solution can be

used.

TSA has been applied to several examples. The results are shown in Ta-
ble 7.1(a). Each example is modeled as a DG and is described by a 4-tuple
(n,e,w,m), where n is the number of nodes, e is the number of edges, w is the
total weight of the DG, and m is the number of test vectors. The connectivity of
the DG is not shown. Column UB indicates the worst case situation, i.e., where
each node is scanned twice to make sure that test results correspond to appro-
priate test vectors. The columns Heuristic and Optimal indicate the values for
schedules derived by using Procedures Find-Joint-FVS and Find-Min-Joint-FVS,
respectively. All the values found by Procedure Find-Min-Joint-FVS are minimal.
For the Examples 1, 2, 3, 7 and 8, Procedure Find-Joint-FVS also finds the optimal
solution. Table 7.1(b) shows the results in percentage. The saving S5 is calculated
from Equation (4).

Ns

=]1]—-—

S8 UB
o1 (m—1) Zv,-ez; w; + ZuiEZu w; + ZU-‘GVI Wi + M Yyev Wi (7.4)

2m 3, ev Wi

198

Table 7.1: Typical results; (a) Ns, (b) saving SS (in %) on test time.

Ex. [n m e w | Heuristic Optimal UB
1 3 15 1 500 7,500 7,500 15,000
2 3 20 2 700 14,700 14,700 28,000
3 3 20 3 300 8,100 8,100 12,000
4 4 20 6 355 8,880 8,880 14,200
5 5 30 8 500 23,562 21,068 30,000
6 6 15 1i 1,900 40,200 35,100 57,000
@ 5 25 12 1,350 39,420 39,420 67,500
8 4 30 11 1,450 60,900 60,900 87,000
S 7 20 15 830 25,505 22,845 33,200

(a)

Ex. | Heuristic Optimal
1 50 50
2 47 .5 47.5
3 32 32
4 37 37
5 21 30
6 29 38
i 42 42
8 30 30
9 23 31

(b)

199

Note that SS cannot exceed 50 percent. This is because at least one shift
operation is required for applying each bit of the test data and there are m %
2ov;ev Wi bits in the test data. So SS is limited to 1 — "2 ey = 0.5, Sinc

€ s | . m Since
the connectivity of these examples are different, it is misleading to compare one
example with another. However, it is clear that the smaller the value of (m —

1) Yviez Wi + Loz, Wi + Lyev, Wi, the larger the saving.

7.6 An Extension to Full Scan

The TSA Algorithm can also be used to schedule tests for a chip designed with
full scan capability. Figure 7.7(a) shows a chip designed with the boundary scan
architecture. Two scan chains are used to test the circuit C'. Scan chain 1 is the
boundary scan register. Scan chain 2 consists of all internal scan cells. Figure 7.7(b)
shows a directed graph that can be used to schedule tests. Test vectors for C' are
applied and observed via these scan chains. Once a test vector is generated, it must
be partitioned into two segments before being applied. The Scan function described
earlier can be used to apply iest vectors to these scan chains. It is necessary to
find a schedule which can properly apply vectors to test C' in minimal time. This
problem belongs to this new class of scheduling problems, and can be solved using

algorithm TSA.

200

chain 1

i Y
PI PO
// ¢ [T
C
e v SC
A
1
ol
7
B
: chain 2
(a) (b)

Figure 7.7: Testing a circuit via two scan chains; (a) block diagram, (b) graph
model.

201

Chapter 8

Conclusions and Future Research

In this work a design-for-test tool, called BOLD, has been described. BOLD is
applicable at the chip, module, subsystem and system level. Using a hierarchical
design methodology BOLD can deal with both hardware and software test issues
and achieves a very high degree of testability and maintainability. A system de-
signed using BOLD can support fault detection and isolation in a timely and cost
effective manner. Hence system availability is increased and the hardware life-cycle

costs are decreased.

Various issues related to the design of a hierarchically testable and maintain-
able system are dealt with in BOLD. These issues include the support of both test
hardware and software. In particular, the following material has been described
in depth: (1) design of on-chip and module test controllers; (2) definitions of test
languages and the support of test synthesizers for these languages; (3) algorithms
to evaluate various tradeoffs between test time and controller complexity; and (4)

algorithms that lead to enhanced interconnect testing,.

8.1 On-Chip Test Controller

The design of the on-chip test controllers presented are based on the boundary scan
architecture so as to conform to the IEEE Std. 1149.1. These designs include both

bus-dependent and autonomous controllers. A bus-dependent controller requires

202

the assistance from the test bus during the entire test process. Controllers for two
commonly used kernels and a more complex kernel have been designed. When
designing such a controller, there exists a problem of mapping the test bus states
to the test control signals of the kernel. A mapping algorithm has been provided to
solve this problem. Using this algorithm a controller can be designed that requires

a minimal number of instructions.

Two design styles (serial or parallel) for the autonorous on-chip controllers
have been presented. A serial controller can test many kernels in sequence. [t
requires less hardware overhead than a parallel controller. Designs for both the
hard-wired and microprogrammed serial controllers have been illustrated. A parallel
controller can test many kernels simultaneously and reduces the overall chip test
time at the expenses of extra hardware. Three techniques have been illustrated
in the design of a paralle]l controller for testing many scan-type kernels. These
techniques, referred to as interleaved design, tree-of-counters design, and counter-
sharing design, reduce the hardware overhead by sharing resources. A comparison
of the performance of these three designs shows that no one design is always better

than the other two.

8.2 Module Test Controller

The design of a family of universal module test controller was presented. The
module controllers differ by the test programs they execute, the number of test
busses they control, and the expansion units they employ. One important aspect of
their design is the use of a test channel. A test channel contains a boundary scan
master that can communicate with an on-chip controller over the boundary scan
bus. In addition, test vectors can be generated and results can be compressed in

the test channel.

The processor used in the module controller can control the test channel by
reading from or writing to its internal registers. Once initiated by a processor, a

test channel can completely control a boundary scan bus, thus eliminating the need

203

for the processor to deal with detailed bus activities. The test process can thus be

represented as high level processor instructions.

A prototype of the module test controller has been built and tested. The
prototype is based on an IBM AT computer and a test channel built using the
Actel field programmable gate array technology. Compared to most conventional
automatic test equipment, the cost of the proposed module test controller is much

cheaper and the performance is far superior.

8.3 Test Program Synthesis

One of the major contribution of this work is the synthesis of test programs for
the system under test. The synthesis process starts with the preparation of test
description files, represented in high level languages, for each chip and module.
Synthesis softwares have been provided to translate these descriptions into test
program, which can then be used to drive the test controllers embedded at various
hardware units. These controllers can then control the testing process of their

associated hardware units. The entire system is therefore tested.

The languages have been designed in such a way that test files can be un-
derstood by a designer with little or no knowledge in testing. Major advantages
of this approach include the reduced time in developing test software, and the in-
creased maintainability and reliability of the test software since it can be checked

and synthesized quickly.

8.4 Controller Minimization

The time required to test a module is related to the complexity of the module and
chip test controllers. In general, the more complex the controllers are, the shorter
is the module test time. Tradeoffs can be made so that the module test time is
bounded and the overall controller complexity is minimized. The test program

synthesis technique provides a way to calculate the time required to test a module

204

or chip. This ability facilitates the design tradeoff between the module test time and
the overall controller complexity. Two approaches that can be used to determine the
complexity for each controller have been presented. Both approaches can minimize

the overall controller complexity while keeping the module test time bounded.

8.5 Interconnect Test Generation

The results presented for test and diagnosis of interconnects are superior to all
previous approaches in that all diagnosable faults can be identified. It has been
shown that there exists diagnosable faults in a wiring network which cannot be
identified by any of the previous approaches, including the complementary counting
sequence [64], the independent set [16], the diagonally independent sequence [34],
the W-Test Algorithm [25], the C-Test Algorithm [34] and Method 3 in [16]. The
faults that lead to the deficiencies in these previous approaches are summarized

and explained.

Various levels of diagnostic resolution have been defined. In particular, a
diagnostic level where all diagnosable faults are identified is defined. Two maximal
diagnosis conditions have been presented and proved to be both necessary and

sufficient for identifying all diagnosable faults.

A property called set-cover independent is introduced. A test sequence that
is set-cover independent must have a walking ones sequence (for wired-OR model)
as its subsequence. It has been shown that a set-cover independent set is both
necessary and sufficient for achieving maximal diagnosis. In addition, a universal

test set has been proposed to identify all diagnosable faults in a network regardless

of the fault model used.

Two adaptive algorithms that achieve maximal diagnosis have been pre-
sented. They can reduce the size of the test set by employing a two-step diagnosis
scheme. Both algorithms first apply a maximal independent set to eliminate alias-
ing syndromes. The responses are analyzed and based on the initial results, the

second part of the test set is generated. Without the information from the first

205

part, it is impossible to reduce the size of the test set. However, it is not clear

whether these algorithms can generate minimal test sets.

In practice, a net can only be shorted to a set of neighboring nets due to the
physical structure of the network. When neighborhood information is employed, it
is possible to generate a reduced test set. A one-step diagnosis algorithm that uses
this information has been presented. It has been shown that this algorithm can

generate a minimal size test set to achieve maximal diagnosis.

8.6 Interconnect Test Scheduling

The problem of applying interconnect test vectors via multiple boundary scan chains
was investigated. The objective is to apply test vectors in such a way so as to mini-
mize the total test time. This problem leads to a new class of scheduling problems.
Theorems pertaining to optimal schedules are derived. Based on these results an
algorithm has been constructed that generates an optimal schedule. The test time
1s greatly reduced when the optimal schedule is adopted. A reduction in the range
of 30 to 50 % has been achieved in the examples examined so far. The search pro-
cedure used in this algorithm can be further improved. However, no effort has been
made to find a better search procedure. This is due to the following two reasons:
(1) the problem is NP-Complete; and (2) the current procedure performs well when

the problem size n is less than 15, which includes most foreseeable applications.

8.7 Future Research

The enhancement of BOLD includes both hardware and software aspects. The
proposed MMC is not as efficient as possible due to limitations in the test channel.
The inefficiency could be a problem if the volume of data transfer between the
memory and the test channel is large. Also, the test channel does not support an
arbitrary sequence of values on the TMS line. This could be a problem in some

applications. To make the BOLD system more general, some suggestions are listed

206

below. This includes the realization of a more efficient MMC, which can be done

through the redesign of the test channel.

8.7.1 On-chip Test Controller

Currently, BOLD supports the synthesis of test software but not the test controllers.
The system can be improved if the CMCs could be automatically synthesized. The
synthesis of a CMC should contains two parts, namely the Test Access Port (TAP)
and the BIT controller.

TAP: The inclusion of a TAP to each chip should be done automatically, i.e.,
independent of the logic design of the chip. The synthesis of a TAP can be achieved

as follows.

1. Generate the TAP controller, which is a machine defined by the IEEE Std.
1149.1.

2. Generate the boundary register consisting of a boundary scan cell for each
I/O pin of the chip. The scan cells should be properly connected and con-
trolled so that it satisfies the IEEE Std. 1149.1 requirements. In particular,
the Boundary Register should support the predefined public instructions EX-
TEST, INTEST, and SAMPLE.

3. Generate the instruction register (IR). The length of the IR should be de-
termined first. This can be done if the total number of instructions required
in controlling the BIT controller is known. The opcode of the instructions
should also be determined to allow the BIT controller to be synthesized. The

mapping algorithm proposed in chapter 2 can be used to determined the total

number of instructions required.
4. Generate the bypass register and the identification register. The latter is

optional.

The synthesis of the TAP should be treated as a development project since

it is not very difficult and requires little research.

207

BIT Controller: The synthesis of a BIT controller should start with the repre-
sentation of test schedules. Given a circuit that has been partitioned into testable
kernels, it is necessary to organize the test into sessions. During each session a test
schedule is required. The difficult part of the synthesis is the minimization of the
area overhead of the BIT controller. This problem is further complicated by the fact
that the area overhead of the TAP, which varies as the length of the IR changes,
should also be considered. The proposed control graph, which represents a test
procedure in terms of test control signals, can be used to represent a test schedule.

Further research is needed to find the best way for representing test schedules.

CTL Generation: The CTL description of a chip can be automatically generated
along with the CMC. This will be an important feature in the integration of both

chip and module testing.

8.7.2 Module Test Controller

Improved Test Channel

The current implementation of the MMC prototype is not ideal. The major reason
is that the test channel of the MMC is implemented using an ACT1020 device,
which has a very limited capacity. The interface between the processor and the
test channel is also not ideal since the data transfer between the memory and the
test,channel is not fast enough without interrupting the test activities. In addition,

many proposed features of the test channel designs are not included.

An ideal test channel should contain the following features.

1. The test channel should contain a large memory so that all the test data

for each test session can be loaded into the test channel without the need to

access the external memory.

2. The data transfer between the test channel and the external memory unit
should be very high. Either the direct memory access (DMA) operations or

the use of Direct signal proposed in this work are desirable.

208

3. The FSMI of the test channel should not be limited to only some predefined
state transition sequences. The test channel should be able to set an arbitrary

sequence of values on the TMS line.
4. The test channel itself should be testable, i.e., it should contain a CMC.

5. A clock control circuitry should be added to the test channel. This circuitry
should be able to control the application of the test clock TCK and the system

clock.

This ideal test channel can be realized using either full-custom or standard
cell VLSI design approaches. Both approaches allow for a large number of gates

and a large memory to be built onto a single chip.

MMUC for a Self-Testable Module

To make a module fully self-testable, a complete MMC should be built into the
module. To be practical, it is desirable to have a complete MMC including a test
channel, a processor and a large memory unit packaged in from one to three chips.
When both BILBO and RUNBIST TDMs are used in a module as the primary
means of testing, the memory requirements can be small. In this case, an MMC
can be built from two chips, namely a microcontroller chip that contains an internal

RAM, and a test channel chip.

MMUC in a Chip

A more ambitious project would be to develop a single chip MMC. This MMC
should contain three major units, i.e., a processor, a RAM and a test channel.
The instruction set of the processor can be very small. In fact both the processor
and the test channel can be closely coupled, i.e., no obvious boundary need exist

between these two units.

8.7.3 Test Program Synthesis

The test program synthesis aspect of BOLD can be improved as follows.

209

1. The synthesis of test programs in BOLD requires test description files as
the inputs. Currently, these files are manually prepared. The automatic
generation of these description files should be a major goal for improving the
capability of BOLD. Initial investigation indicates that the test description
of a chip can be generated as a by-product of the on-chip test controller
synthesis, and that the test description of a module can be generated from a
computer-aided design system. The latter assumes that the module contains

all boundary scan devices.

2. Currently, the synthesizers do not fully support the capability of putting an
arbitrary sequence of values on the TMS line. The reason for this is that
the implemented test channel is not ideal. The required operations are only
partially supported by the hardware. When the test channel is properly
redesigned, the synthesizers will be enhanced by supporting this capability.

3. Currently, the lowest level of hardware that can be dealt with using BOLD
is a chip. However, most of the design-for-test tools, such as TDES [2] and
SIESTA [26], operate on circuit blocks or kernels of a chip. More work needs
to be done to enhance BOLD with the capability of describing the test aspects
of a circuit block. By so doing, BOLD can be integrated with these design-

for-test tools.

8.7.4 Controller Minimization

The minimization algorithms presented in this work assumed that an MMC con-
tains a single test channel. However, when employing a very fast processor, an
MMC can control more than one test channel simultaneously without interrupting
their operations. New controller minimization algorithms should be developed to

incorporate these changes.

210

8.7.5 Interconnect Test

1. The two-step diagnosis algorithms, presented in chapter 6, do not guarantee
the generation of a minimal size test set. Further work is required to de-
velop an algorithm that can generate a minimal size test set for the two-step

diagnosis approach.

2. The presented interconnect test methods are based on the assumption that all
chips contained in the module have the boundary scan architecture. However,
most existing modules do not satisfy such requirement. New test methods
need be developed such that the interconnect can be tested under the incom-
plete boundary scan environment. In addition, the testing of the glue logic

between boundary scan chips should be considered.

3. The proposed test methods investigate only the DC behavior of the inter-
connect. Modern systems are designed to operate at such a high speed that
the testing for the DC correctness of the interconnect is no longer sufficient.
Therefore faults related to the AC behavior, such as crosstalk between signal
lines, transmission line effects, line delay faults, should be dealt with. Future
work should investigate the possibility of testing these faults in the boundary

scan framework.

211

Reference List

[1] M.S. Abadir and M.A. Breuer, “Constructing Optimal Test Schedules for
VLSI Circuits Having Built-In Test Hardware”, Proc. 15th Int’l Symp. on
Foult-Tolerant Computing, pp. 165-170, June 1985.

[2] M.S. Abadir and M.A. Breuer, “A Knowledge-Based System for Designing
Testable VLSI Chips”, IEEE Design & Test of Computers, pp. 56-68, August
1985.

[3] M.S. Abadir and M.A. Breuer, “Test Schedules for VLSI Circuits Having
Built-In Test Hardware”, IEEE Trans. on Computers, Vol. C-35, No. 4, pp.
361-367, April 1986.

[4] A.V. Aho, J.E. Hopcroft and J.D. Ullman, “The Design and Analysis of
Computer Algorithms”, Addison-Wesley, Readings, Massachusetts, pp. 193-
194, 1974.

[5] L. Avra, “A VHSIC ETM-BUS Compatible Test and Maintenance Interface”,
Proc. Int’l Test Conf., pp. 964-971, 1987.

[6] P.H. Bardell and W. McAnney, “Self-Testing of Multichip Logic Modules”,
Proc. Int’l Test Conf., pp. 200-204, 1982.

[7] J. Beausang and A. Albicki, “A Methodology for Designing Self-Testable VLSI
Chips: Synthesis, Part I, A Model for Self-Testable Chips”, Technical Report
EL-87-05, Department of EE, University of Rochester, 1987.

[8] F. Beenker, K. Eerdewijk, R. Gerritsen, F. Peacock and M. van der Star,
“Macro Testing: Unifying IC and Board Test”, IEEE Design & Test of Com-
puters, pp. 26-32, December 1986.

[9] F. Beenker, “Systematic and Structured Methods for Digital Board Testing”,
VLSI System Design, pp. 50-58, January 1987.

[10] G. Borriello and R. H. Katz, “Synthesis and Optimization of Interface Trans-
ducer Logic”, Proc. Int’l Conf. Computer-Aided Design, pp. 274-277, 1987.

212

[11] M.A. Breuer, “On-Chip Controller Design for Built-In-Test”, Technical Re-
port CRI-88-04, Department of EE-Systems, University of Southern California,
December 1985.

[12] M.A. Breuer and J.C. Lien, “A Methodology for the Design of Hierarchi-
cally Testable and Maintainable Digital Systems”, Proc. 8th Digital Avionics
System Conf., pp. 40-47, 1988.

[13] M.A. Breuer and J.C. Lien, “A Test and Maintenance Controller for a Module
Containing Testable Chips”, Proc. Int’l Test Conf., pp. 502-513, 1988.

[14] M.A. Breuer, R. Gupta, and J.C. Lien, “Concurrent Control of Multiple BIT
Structures”, Proc. Int’l Test Conf., pp. 431-442, 1988.

[15] W.O. Budde, “Modular Testprocessor for VLSI Chips and High-Density PC
Boards”, IEEE Trans. on CAD, Vol. 7, No. 10, pp. 1118-1124, October 1988.

[16] W.T. Cheng, J.L. Lewandowski and E. Wu, “Diagnosis for Wiring Intercon-
nects”, Proc. Int’l Test Conf., pp. 565-5T71, 1990.

[17] K.K. Chua and C.R. Kime, “Selective I/O Scan: A Diagnosable Design Tech-
nique for VLSI Systems”, Comput. Math. Applic., Vol. 13, No. 5/6, pp. 485-
502, 1987.

(18] G.L. Craig, C.R. Kime, and K.K. Saluja, “Test Scheduling and Control for
VLSI Built-In Self-Test”, IEEE Trans. on Computers, Vol. C-37, No. 9, pp.
1099-1109, September 1988.

[19] C.A. Dennis, “Common Signal Processor: Application and Design”, IBM
Technical Directions, Federal Systems Division, Vol. 13, No. 1, pp. 14-20, 1987.

[20] IBM, Honeywell and TRW, “VHSIC Phase 2 INTEROPERABILITY STAN-
DARDS”, ETM-BUS Specification, December 1986.

[21] E.B. Eichelberger and T.W. Williams, “A Logic Design Structure for LSI
Testability”, Proc. 14th Design Automation Conf., pp. 462-467, June 1977.

[22] P.P. Fasang, J.P. Shen, M.A. Schuette and W.A. Gwaltney, “Automated De-
sign for Testability of Semicustom Integrated Circuits”, Proc. Int’l Test Conf.,
pp- 558-564, 1985.

[23] A.El Gamal, “Protozone: The PC-Based ASIC Design Frame”, EE218 Hand-
out No.7, Stanford University, Winter 1990.

[24] M.R. Garey and D.S. Johnson, “Computers and Intractability: A Guide to
the Theory of NP-Completeness”, W.H. Freeman and Company, New York,
1974.

213

[25] P. Goel and M.T. McMahon, “Electronic Chip-In-Place Test”, Proc. Int’l Test
Conf., pp. 83-90, 1982.

[26] Rajesh Gupta, “Advanced Serial Scan Design for Testability”, Ph.D. Disser-
tation, Department of EE-Systems, University of Southern California, 1991.

[27] J.E. Haedtke and W.R. Olson, “Multilevel Self-Test for the Factory and Field”,
Proc. Annual Reliability and Maintainability Symp., pp. 274-279, 1987

[28] P. Hansen, “The Impact of Boundary-Scan on Board Test Strategies”, Proc.
ATE & Instruments Conf. East, pp. 35-40, Boston, June 1989.

[29] A. Hassan, J. Rajski, and V.K. Agarwal, “Testing and Diagnosis of Intercon-
nects using Boundary Scan Architecture”, Proc. Int’l Test Conf., pp. 126-137,
1988.

[30] A. Hassan, V.K. Agarwal, J. Rajski and B.N. Dostie, “Testing of Glue Logic
Interconnects Using Boundary Scan Architecture”, Proc. Int’l Test Conf., pp.
700-771, 1989.

[31] C.L. Hudson, Jr. and G.D. Peterson, “Parallel Self-Test with Pseudo-Random
Test Patterns”, Proc. Int’l Test Conf., pp. 954-963, 1987.

[32] IEEE Standard 1076-1987, “IEEE Standard VHDL Language Reference”,
IEFE Standards Board, 345 Fast 47th Street, New York, NY 10017, March
1988.

[33] IEEE Standard 1149.1-1990, “IEEE Standard Test Access Port and Boundary
Scan Architecture,” IEEE Standards Board, 345 East 47th Street, New York,
NY 10017, May 1989.

[34] N. Jarwala and C.W. Yau, “A New Framework for Analyzing Test Generation
and Diagnosis Algorithms for Wiring Interconnects”, Proc. Int’l Test Conf.,
pp. 63-70, 1989.

[35] S.C. Johnson, “Yacc: Yet Another Compiler-Compiler”, in B.W. Kernighan
and M.D. Mcllroy, UNIX Program’s Manual, Bell Laboratories, 7th Edition,
1978.

[36] N.Kanopoulos, et al., “A New Implementation of Signature Analysis for Board
Fault Isolation Testing”, Proc. Int’l Test Conf., pp. 730-736, 1987.

[37] W.H. Kautz, “Testing for Faults in Wiring Networks”, IEEE Trans. on Com-
puters, Vol. C-23, No. 4, pp. 358-363, April 1974.

[38] B. Konemann, J. Mucha and G. Zwiehoff, “Built-In Logic Block Observation
Techniques”, Proc. Int’l Test Conf., pp. 37-41, 1979.

214

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

S.Y. Kung, S.C. Lo, S.N. Jean and J.N. Hwang, “Wavefront Array Processors
- Concept to Implementation”, IEEE Computer, pp. 18-33, July 1987.

D. van de Lagemaat and H. Bleeker, “Testing a Board with Boundary Scan”,
Proc. Int’l Test Conf., pp. 724-729, 1987.

J.J. LeBlanc, “LOCST: A Built-In Self-Test Technique”, IEEE Design & Test
of Computers, pp. 45-52, November 1984.

M.E. Lesk and E. Schmidt, “Lex: A Lexical Analyzer Generator”, in B.W.
Kernighan and M.D. Mcllroy, UNIX Program’s Manual, Bell Laboratories, 7Tth
Edition, 1978.

J.C. Lien and M.A. Breuer, “A Universal Test and Maintenance Controller
for Modules and Boards”, IEEE Trans. on Industrial Electronics, Vol. 36, No.
2, pp. 231-240, May 1989.

J.C. Lien, “A Module Maintenance Controller Prototype”, Technical Report
CENG 90-14, Department of EE-Systems, University of Southern California,
June 1990.

J.C. Lien and M.A. Breuer, “An Optimal Scheduling Algorithm for Testing
Interconnect Using Boundary Scan”, Journal of Electronic Testing: Theory
and Applications, Vol. 2, No. 1, pp. 117-130, March 1991.

J.C. Lien and M.A. Breuer, “Maximal Diagnosis of Wiring Networks”, Tech-
nical Report CENG 91-2, Department of EE-Systems, University of Southern
California, February 1991.

T.S. Liu, “The Role of a Maintenance Processor for a General Purpose Com-
puter System”, [EEE Trans. on Computers, Vol. C-33, No. 6, pp. 507-517,
June 1984.

TRW, “MMN Architecture”, Private Correspondence.

J.G. Malcolm, “BIT False Alarms: An Important Factor In Operational Readi-
ness”, Proc. Annual Reliability and Maintainability Symp., pp. 206-212, 1982.

C. Maunder and F. Beenker, “BOUNDARY-SCAN: A Framework for Struc-
tured Design-For-Test”, Proc. Int’l Test Conf., pp. T14-723, 1987.

E.J. McCluskey, “Built-In Self-Test Techniques”, IEEE Design & Test of
Computers, pp. 21-28, April 1985.

[52] M.J. Ohletz, T.W. Williams and J.P. Mucha, “Overhead in Scan and Self-

Testing Designs”, Proc. Int’l Test Conf., pp. 460-470, 1987.

[53] C.H. Papadimitriou and K. Steiglitz, “Combinatorial Optimization, Algo-
rithms and Complexity”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
pp. 421-422, 1982.

[54] K.P. Parker, “The Impact of Boundary Scan on Board Test”, IEEE Design &
Test of Computers, pp. 18-30, August 1989.

[65] K.P. Parker and S. Oresjo, “A Language for Describing Boundary Scan De-
vices”, Proc. Int’l Test Conf., pp. 222-234, 1990.

[56] G.D. Robinson and J.G. Deshayes, “Interconnect Testing of Boards with Par-
tial Boundary Scan”, Proc. Int’l Test Conf., pp. 572-581, 1990.

[57] K. Sakashita, T. Hashizume, T. Ohya, I. Takimoto and S. Kato, “Cell-Based
Test Design Method”, Proc. Int’l Test Conf., pp. 909-916, 1989.

[58] J. Sayah and C.R. Kime, “Test Scheduling For High Performance VLSI System
Implementations”, Proc. Int’l Test Conf., pp. 421-430, 1988.

[59] J.H. Stewart, “Application of Scan/Set for Error Detection and Diagnostics”,
Proc. Semiconductor Test Conf., pp. 152-158, 1978.

[60] IBM, Honeywell and TRW, “VHSIC Phase 2 INTEROPERATABILITY
STANDARDS”, TM-BUS Specification, December 1986.

[61] J. Turino, “IEEE P1149 Proposed Standard Testability Bus — An Update with
Case Histories”, Proc. Int’l Conf. Computer Design, pp. 334-337, 1988.

[62] N. Vasanthavada, “TEA Design Review, Built-In Test”, Research Triangle
Institute, June 1987.

[63] S. Vining, “Tradeoff Decisions Made for P1149.1 Controller Design”, Proc.
Int’l Test Conf., pp. 47-54, 1989.

[64] P.T. Wagner, “Interconnection Testing with Boundary Scan”, Proc. Int’l Test
Conf., pp. 52-57, 1987.

[65] L. Whetsel, “A Proposed Standard Test Bus and Boundary Scan Architec-
ture”, Proc. Int’l Conf. on Computer Design, pp. 330-333, 1988.

[66] T.W. Williams and K.P. Parker, “Design For Testability - A Survey,” The
Proc. of the IEEE, Vol. 71, No. 1, pp. 98-112, January 1983.

[67] N. Wirth, “Algorithm + Data Structures = Programs”, Prentice-Hall, Engle-
wood Cliffs, New Jersey, pp. 188-189, 1976.

216

[68] C.W. Yau and N. Jarwala, “A Unified Theory for Designing Optimal Test
Generation and Diagnosis Algorithms for Board Interconnects”, Proc. Int’l
Test Conf., pp. T1-77, 1989.

[69] M.A. Breuer and X. Zhu, “A Knowledge-Based System for Selecting Test
Methodology for a PLA”, Proc. 22nd Design Automation Conf., pp. 259-265,
June 1985.

217

