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1 Introduction

With VLSI systems becoming more and more commonplace, and with myriads of new ap-
plication avenues opening for VLSI systems, there is a growing need for design of hardware
systems for specific applications (i.e., the systems that perform well in application-specific
domains). In other words, there is a need to design hardware systems that will perform
given tasks efficiently. These application-specific systems have become so complex that
system-level design decisions cannot be made without the aid of computer tools. As sys-
tem complexity and size have increased, designers have relied increasingly on analysis
techniques like simulation and queueing models for assistance during the design process.
However, in most cases, system design decisions have been left to the human designer, who
often uses a “generate and test” approach to confirm the validity of his or her decisions [66].
There is a growing need to develop tools for system-level design. The research described
here addresses the design of multiprocessor systems for given applications.

Our focus is on the design of the system architecture, which is the first step in the design
of an application-specific multiprocessor system. We assume the application domain is
specified in terms of a task data flow graph. The task data flow graph specifies a set of
subtasks (nodes in the graph) that need to be performed and the data precedence between
them (arcs in the graph). Given the task data flow graph, the goal is to synthesize a
multiprocessor architecture which meets various cost and performance requirements and
constraints. Synthesizing an architecture involves making decisions about the number and
types of processing elements selected, the overall interconnection between the processing
elements, and the scheduling of subtasks on the processing elements.

The goal of the described research is to develop tools and techniques aimed at pro-
ducing a custom multiprocessor architecture, as well as mapping the subtasks onto the
architecture and providing a schedule for the task execution. The research focuses on the
automatic design of the multiprocessor architecture itself, not merely the mapping of tasks
onto a given architecture. A distinguishing feature of the research is the fact that we are
addressing a truly heterogenous system, in terms of the functionality and the cost-speed
characteristics of the processing elements, which allows a more precise tailoring of the syn-
thesized architecture to a specific application. Also, our approach can be used to explore
different interconnection styles; e.g., bus, point-to-point, ring, or a mixture of these. We
assume there is no global clock and communications between subtasks are asynchronous.
With the exception of some early work by Talukdar and Mehrotra [46], we believe this
is the first research attempt aimed at automatic synthesis of multiprocessor systems from
task specifications.



1.1 The Problem Statement

We are addressing the problem of multiprocessor architecture synthesis for a given applica-
tion task. The task consists of a set of subtasks. Each subtask requires certain input data
and produces certain output data. Inputs to a subtask may come from other subtasks and
outputs from a subtask may go to other subtasks. The set of subtasks and the input-output
relationships among them can be expressed by a task data flow graph as shown in Figure
1. The subtask nodes are labeled S;, S, etc. (S, in general). The input end of a data arc
is labeled i, if it provides b** input to subtask S,, and the output end is labeled o, . if it
transmits the ¢** output from the subtask S,. Although we represent our task by a data
flow graph, there is a subtle distinction between our meaning and the traditional meaning
attached to a data flow graph. With the traditional meaning, a subtask would require all
the inputs before starting its execution and none of the outputs would be available until af-
ter its exection is over. However, in our model subtasks do not require all the inputs before
starting their execution and they may produce some outputs even before their completion.
To express this possibility, each input 7, has a parameter fr(i,;) associated with it which
specifies that up to fr(iap) fraction of the subtask S, can proceed without requiring the
input z,p. Similarly, each output o,. has a parameter f4(0,.) associated with it which
specifies that the output o, . becomes available when f4(0,,) fraction of the subtask S, is
completed.

The multiprocessor architecture is specified in terms of the processors selected and the
interconnection architecture between them. A simple example multiprocessor system is
shown in Figure 2.

For each subtask S,, a set P, represents the set of processors capable of executing it.
However, only one processor actually performs the subtask in the synthesized architecture,
and the execution time for the subtask depends on the processor on which it is performed.
A parameter, denoted as D,s(pa, S.), specifies the execution time for the subtask S, if the
processor py is selected to perform it.

A data arc from node S,; to node S,; implies that some data is transferred from the
subtask S, to the subtask S,5. The volume of data transferred varies from arc to arc, and
a parameter V,; .2 specifying the volume is associated with each arc. The data transfer
may be a remote transfer (if the two subtasks are mapped to different processors in the
synthesized system), where the data is transferred from a proccesor to another; or it maybe
a local transfer within the same processor (if the two subtasks are mapped to the same
processor). Delay associated with a data transfer depends on whether it is a remote transfer
or a local transfer. Local transfer delay could be negligible compared to the remote transfer
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Figure 1: Four-Node Task Graph
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Figure 2: Synthesized Multiprocessor System I and Schedule for Four-Node Graph



delay.

A set P represents the set of all the processors available for selection as part of the
synthesized architecture, where

P=J~

Associated with each processor py € P is a parameter Cy which specifies the cost of the
Processor.

Certain constraints related to the cost of the system as well as timing of arbitrary events
may also be specified. In summary, the following are the problem inputs and outputs:

e Problem inputs:

— A task data flow graph specifying the overall application task, along with the
associated parameters

— A set of processing elements with varying functionality, cost and performance
— Constraints on total system cost

— Constraints on timing of arbitrary events
e Problem outputs:

— A multiprocessor architecture, including

* the chosen set of processing elements
* the interconnection style for the elements

— A schedule for the subtasks

— Detailed timing information for computation and transfer of data

Our approach essentially consists of creation of a formal model of the multiprocessor
synthesis problem using mathematical programming and the solution of this model.

The organization of the rest of the document is as follows. Section 2 surveys the re-
lated work. Primarily, it describes the multiprocessor task allocation research, datapath
synthesis research (particularly the work where mathematical programming is used), some
array-processor synthesis work, and some system-level CAD tools. Section 3 describes our
model and approach to the synthesis problem in detail. Section 4 describes some examples
and synthesis experiments using the approach; it concludes that the reduction of runtime
is an important issue and outlines future research directions.



2 Previous Related Research

The goal of the described research is to develop tools and techniques for the design of
application-specific systems (multiprocessor systems in this case), or in short, the goal is
to perform system-level synthesis. Synthesis methodologies for application-specific systems
are not well researched yet. The related past research of others covers a broad range of
topics. The topics can be grouped into four categories:

Multiprocessor research

Datapath synthesis research

Array-processor synthesis research

System-level CAD tools

Our research builds on the past multiprocessor research and data path synthesis research.

2.1 Multiprocessor Research

Most multiprocessor design and theory is aimed at general-purpose computing. So, most of
the previous related work on multiprocessors is directed at the problem of task allocation for
a given architecture. Research has also been conducted in the areas of mapping specialized
algorithms and scheduling precedence graphs onto multiprocessors. One research effort by
Talukdar and Mehrotra [46, 47| is oriented towards synthesis of multiprocessors.

2.1.1 Task Allocation Work

Several variants of the task allocation problem have been considered and several different
approaches have been investigated. We briefly review these efforts next.



2.1.1.1 Graph-Theoretic Approach

Serially Partitioned Tasks: Graph-theoretic techniques have been researched for
serially partitioned tasks, i.e, even though there are m subtasks, only one is active at one
time. One such effort was Stone’s work on the two-processor problem [71]. The work
concentrates on the assignment of the subtasks to a system consisting of two processors
(single-host, single-satellite) so as to avoid excessive interprocessor communication (IPC)
while taking advantage of specific efficiencies of the processors. The goal is to minimize
the collective costs due to IPC and to computation. The problem is solved efficiently
using the network flow approach. The method involves the construction of a network flow
graph in which nodes represent the subtasks to be assigned and edge capacities represent
computation and communication costs in such a fashion that the minimum weight cut
separating two distinguished nodes in the graph corresponds to the optimal assignment.
An effort is also made to extend the method to three and n-processor cases, with only
partial success.

In later research [68], Stone reconsidered the two-processor problem and extended the
network flow techniques to examine the sequence of optimal assignments found as the load
on one processor is held fixed and the load on the other is varied. The research indicated
that for every subtask S (in the overall task) there exists a critical load factor fs such
that when the load on the processor with variable load is below fg, S is assigned to that
processor by an optimal assignment, and is otherwise assigned to the other processor.
In other words, as the load on the processor with variable load increases, the optimal
assignment is always such that subtasks move away from this processor to the other.
Thus, successive optimal assignments for successively increasing loads are nested inside
each other. In another research project [18], Gusfield developed a parametric computing
method for combinatorial problems and applied it to the two-processor problem in the face
of varying load levels on both the processors.

Several variants of Stone’s two-processor problem have been researched [65, 3, 70]. In
[65], Stone considers minimum cost assignment for the case where one processor has lim-
ited memory capacity. In [3], Bokhari considers the problem of finding an optimal dynamic
assignment of a task. The cost of dynamically reassigning a subtask from from one pro-
cessor to the other and the cost of subtask residence without execution are included in the
model, and network flow algorithms are used. In [70], the basic network flow algorithm
is generalized to three-processor systems. Static as well as dynamic assignments are con-
sidered. An attempt is also made to solve the problem for many-processor systems when
the task structure is tree-like. The problem of assignment for tree-like structured tasks
is also solved in [4], using an efficient dynamic programming approach. The shortest tree
algorithm takes into account the interconnection structure of the system (i.e., the speeds of



links between pairs of processors), and works by constructing a weighted, layered assign-
ment graph and finding a minimum sum weight path in it. Price and Pooch [63] extend
the solution technique for tree-like structured tasks to allow an arbitrary subtask inter-
communication pattern. The problem is modeled as a directed acyclic search graph and
a shortest path algorithm is given that produces an assignment of subtasks to processors.
However, the algorithm does not guarantee an optimal solution. A branch-and-bound al-
gorithm is also described which may be applied to the search graph to produce assignments
of generally inferior quality but with considerably less computational effort.

Parallel Tasks: In [6, 5], Bokhari extends the prior research for serially partitioned
tasks [3, 70, 4] to parallel tasks by explicitly taking concurrency into account. A sum-
bottleneck path (SBP) algorithm is developed that permits the efficient solution of many
variants of the problem under some constraints on the structure of the partitions. Point-
to-point interconnection is assumed. The system under consideration is of single-host,
multiple-satellite type. The problem of partitioning multiple chain-structured parallel pro-
grams to minimize the time for execution is solved optimally by constructing an assignment
graph and applying the SBP algorithm, under the constraint that each chain is partitioned
into two contiguous subchains. The problem of partitioning multiple arbitrarily structured
serial programs is transformed into the problem of partitioning multiple chains by use of
Stone’s network flow algorithm [71] for single-host, single-satellite assignments combined
with his results on nested assignments [68]. The problem of partitioning single-tree struc-
tured parallel programs is solved optimally by the SBP algorithm, under the constraints
that all satellites are identical and that individual maximal subtrees of the given tree are
assigned to each satellite. Finally, the problem of partitioning chain-structured parallel
programs across chain-connected systems is solved under the constraint that the chain is
partitioned into contiguous subchains; and the solution technique is somewhat similar to
the technique described in [4], except that a minimum bottleneck weight path instead of a
sum weight path yields the optimal solution. This problem is also considered in [31], where
the solution technique is evaluated and an alternative greedy approximation algorithm is

described.

Shen and Tsai [67] model the task assignment problem as a graph matching problem.
The cost function used is the maximum time for a task to complete subtask execution
and communication in all the processors. The minimaz optimization criterion is employed,
which implies that the load on the bottleneck processor is minimized instead of the sum
of all the processor loads and thus ensures load-balancing. The proposed approach allows
consideration of various characteristics of the given system. Graphs are used to represent
the subtask relationship of the given task and the processor structure of the distributed
system. Subtask assignment to system processors is transformed into a type of graph
matching. Although the problem is modeled as graph matching, the solution is not ob-



tained using graph-theoretic algorithms. Instead, the search of optimal task assignment
(minimum-cost graph matching) is formulated as a state-space search problem which is
solved by the well-known A* algorithm in artificial intelligence [53].

The limitation of the graph-theoretic approach is that it is not easily extendible to solve
the general problem of task allocation for an arbitrary number of processors. Another
limitation is encountered in handling restrictions on resources (e.g., memory size restricted)
and arbitrary constraints (e.g., constraint on task completion time).

2.1.1.2 Analytical Modeling Approach In [30, 69], Stone et al. use an analytical
approach for modeling and optimization of multiprocessing execution time for random-
graph models of programs. An optimal task-assignment policy is derived by optimizing
the execution time. The execution time is modeled as the sum of the execution time of the
busiest processor and the total communications overhead. The derived policy essentially
says that the optimal task assignments are extremal in the sense that the cost of processing
the subtasks is distributed among all processors as evenly as possible or not distributed
at all, depending upon the ratio of runtimes to communication times as well as the ratios
of the processing speeds of the processors. The policy holds in the case of homogeneous
as well as heterogeneous (only in terms of speed, not functionality) processors. Nicol [52]
describes similar research for partitioning of random programs in the two-processor case.
This result, though striking, has its limitations because of the underlying assumptions
made in its derivation. The model of the system assumes that there is an aggregate
communication bandwidth among processors, and the total communications overhead is
estimated by aggregating the traffic involved. Such a model is reasonable for systems
sharing a common bus, but less acceptable for systems containing internal point-to-point
connections, as the aggregation tends to obscure nonuniform traffic patterns in a point-to-
point communication structure and does not account for saturation of individual point-to-
point links. Another limitation arises due to the fact that a random graph is not an accurate
model of programs and that the effect of precedence relations is ignored. Another severe
limitation can be attributed to the fact that the communications overhead is simply added
to the execution time of the busiest processor and thus the execution time formulation
does not account for parallelism between communication and task execution. Finally, the
optimization process used is based on certain approximations and is not exact. Haddad
[19] uses a different approach for modeling of the execution time, which formulates a more
accurate analytical representation. In this work, the internal inter-subtask communication
times (time spent in communication between two subtasks assigned to the same processor)
are also considered. However, precedence relations are ignored here also. The system
consists of P heterogeneous processors and L communication channels. A result similar to
Stone’s policy of “even distribution or no distribution” is obtained by Haddad also under



some simplifying assumptions. One of the assumptions used is that the communication
channels never get saturated. Although the results obtained by Stone and Haddad are
based on certain limiting assumptions, they may still provide heuristics for our use in the
application-specific domain.

2.1.1.3 Mathematical Programming Approach

Integer 0-1 Programming Approach: Chu et al. [10] considered the problem of
optimal allocation (minimum overhead due to IPC) of a set of m subtasks to a set of p
(fixed) processors already interconnected in some fashion, and suggested that an integer
0-1 programming approach is most likely to be useful in solving realistic task allocation
problems. In this paper, the objective function for the integer 0-1 programming model is
formulated as the sum of the processing costs of the subtasks on the processors assigned
to them and the total IPC cost. Constraints are formulated to reflect memory size restric-
tions and task completion time requirements. It is a flexible technique because it allows
constraints to be introduced into the model as appropriate to the application.

Ma et al. [44] also report an integer programming model for task allocation. Some extra
constraints have been incorporated into the model to meet various application require-
ments. A branch-and-bound method is used to solve the model. For a given distributed
system and a set of constraints, it generates the minimum-cost allocation.

However, the models described in [10, 44] do not consider the effects of precedence
relations in the data flow among the subtasks. We are using a similar approach for synthesis
and we take into account the precedence relations.

Nonlinear Programming Approach for Arbitrarily Partitionable Tasks: Non-
linear programming has been used for task allocation under an assumption that the given
task can be split into arbitrary size subtasks. Agrawal and Jagadish [1] present one such
model that can be used for an optimal partitioning of the class of computations that are
organizable as a one-level tree, and are homogeneous and separable. The system model
consists of a master processor and several similar slave processors. The task is assumed
to be divisible into an initial phase, a separable phase and a final phase. The initial and
final phases are executed on the master alone. The separable phase can be split into sev-
eral independent subtasks executing in parallel on slave processors. The separable phase
subtasks communicate with the initial phase subtask and the final phase subtask. Given
a number of processors n, the goal is to minimize the total execution time (including com-
munications overhead) by partitioning the separable phase into n independent arbitrary
size subtasks. Point-to-point communication over the network is assumed. A nonlinear
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programming formulation is given, which in special cases becomes linear. An iterative
technique is also outlined to determine the optimal number of slave processors. One of
the major drawbacks with this work is the assumption that continuous partitioning of the
separable phase is possible with no communication between the subtasks.

In [20, 21], Haddad also assumes that the overall given task can be split arbitrarily. The
problem considered in this work is that of minimizing the execution completion time of a
given task by partitioning into interacting subtasks and allocating to run on a heteroge-
neous system, and it is also formulated as a nonlinear programming problem. An exact
solution to the problem is given using a new technique, and a theorem is presented stating
the necessary and sufficient condition for minimum execution time. The modeling of the
execution time is similar in precision to that in [19], in the sense that internal inter-subtask
communication times are considered and that precedence relations are ignored.

A limitation of the research described in [1, 20, 21] is that it is not directly applicable
to practical situations where partitioning can usually be done only at specific points.

2.1.1.4 Heuristic Approach Heuristic methods aim only to find a suboptimal as-
signment for a task and are usually based on some simplifying assumptions. They are
useful when it is important to reduce the amount of computation. A heuristic approach is
described in [12], which attempts to minimize IPC by using a clustering approach under
a load-balancing constraint. The load-balancing constraint is achieved by balancing the
time needed to execute subtasks assigned to processors within a given tolerance.

In [11], Chu et al. consider the precedence relationship (PR) among subtasks explicitly
and study its effects on the performance. The research indicates the subtask-size ratio
between two consecutive subtasks plays an important role in determining whether they
should be colocated. A heuristic algorithm considering PR, execution time of subtasks,
and IPC is given which attempts to minimize the bottleneck-processor utilization. The
algorithm works by grouping the subtasks based on IPC, PR effects, and size of the group,
and is shown to generate better task assignments than those not considering the PR effects.
Only homogeneous systems with a given number of processors are considered. Constraints
on task completion time are given a consideration. Houstis [26] also discusses similar issues
and describes heuristic algorithms for task allocation to homogeneous bus connected sys-
tems. The objective is to minimize the total processing time of the task. The algorithms
try to minimize IPC delays (computed by taking interconnection network characteristics
into account) by a clustering approach while keeping PR in mind, under a load-balancing
constraint which is achieved by constraining each processor’s utilization not to exceed a
prespecified upper bound. An iterative algorithm is also given to determine the optimal
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number of processors. This is the first attempt at solving the allocation problem to de-
termine the optimal number of processors. This research also considers data to memory
assignment.

2.1.2 Mapping of Specialized Algorithms

There have been research efforts directed towards the mapping of specialized signal pro-
cessing algorithms onto multiprocessors. For example, an early study mapping algorithms
such as the Fast Fourier Transform onto the CM* multiprocessor in order to meet real time
constraints was undertaken by Brantley [7]. Also, there have been many research efforts
on static scheduling of DSP algorithms on already designed synchronous general purpose
multiprocessors (e.g., [29]).

2.1.3 Multiprocessor Synthesis Work

As the reader would notice, all the research efforts described in Sections 2.1.1 and 2.1.2
essentially concentrate on the problem of efficient allocation of tasks to given systems with
the goal of optimizing the performance. The motivation in these efforts is to efficiently
utilize given systems. No effort is directed towards the synthesis of systems, and hence
cost of the system as such is not a consideration. In synthesis, one would like to design
cost-effective systems that would provide the desired performance for given tasks. One
such effort has been described by Talukdar and Mehrotra [46, 47]. This work describes a
procedure for high-level synthesis of special-purpose dedicated heterogeneous (only in terms
of speed) multiprocessor systems. Precedence relations and cost of the system are given
explicit consideration. The goal is to find a minimum execution time system which meets
the system cost constraint. The problem is modeled using mathematical programming,
though the solution procedure is heuristic and iterative. The core of the solution procedure
consists of an interactive program that estimates the minimum execution time of the task
for a given system. In this work, no explicit consideration is given to the delays and costs
associated with the communication links. Our research models the communication links
explicitly.



2.1.4 Scheduling of Precedence Graphs

Research efforts have also been directed to study the problem of scheduling precedence
graphs onto homogeneous systems. Fernandez and Bussell [15] propose a lower and an
upper bound on the number of processors required to execute the graph in a time not
exceeding the length of the critical path. They also determine a lower bound on the exe-
cution time for a given number of processors. Kasahara and Narita [36] describe heuristic
algorithms, combining critical path ideas with branch-and-bound, for scheduling to mini-
mize the execution time. However, both the efforts completely ignore the communication
overhead. Al-Mouhamed [2] describes research which considers the communication over-
head. He proposes an approximate lower bound on the completion time, and approximate
lower bounds on the number of processors and the number of communication links required
to process the graph within this completion time. An approximate lower bound on the
completion time is also estimated for a given number of processors. These bounds are
estimated by defining the notions of “earliest possible starting time” and “largest possible
delay without increasing the completion time” for each of the subtasks in the graph.

2.2 Datapath Synthesis Research

We are using a mathematical programming approach for the multiprocessor synthesis prob-
lem. Such an approach has been used for the data path synthesis problem. Hafer and
Parker [24, 22] have used a mixed-integer linear programming (MILP) approach to auto-
matically synthesize register-transfer level datapaths, given a data flow/control flow graph
description of the hardware. The approach involves developing various timing relationships
to be satisfied, but does not include interconnection styles or delays, and does not consider
the detailed timing of multiple outputs. Our approach is similar. The differences between
their approach and our approach are discussed in Section 3.3. Some strategies for improv-
ing the computational performance of Hafer’s MILP model are reported by Prakash [59].
Hwang et al. [27, 28] have described an integer linear programming model for the schedul-
ing problem in data path synthesis under resource constraints and time constraints, and
they present a heuristic technique called Zone Scheduling for solving large size problems.

Datapath synthesis research has been at the core of the ADAM system [32, 56]. In the
ADAM system, given a data flow/control flow graph description and the desired constraints
on the cost and performance, pipelined datapaths are automatically synthesized by Sehwa
[54] and non-pipelined by MAHA [55]. Some lower bounds on the cost and performance
of the datapaths are reported in [34, 33].
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The CATHEDRAL-II system [64] synthesizes a multiprocessor architecture, however,
the architecture is almost completely fixed. It uses a set of synchronous interprocessor com-
munication protocols as opposed to the asynchronous protocols that we propose to use.
Its design philosophy is that efficient design synthesis is possible when targeted towards
one particular, well defined system architecture. So, it synthesizes customized multipro-
cessor architectures and each processor is optimized to perform one particular part of the
algorithm. The data paths of the processors are tailored to the application by connecting
a set of Execution Units (EXU’s). The set of available EXU’s is restricted to six. It is
a rule-based system and the emphasis is on how to optimize each processor rather than
on how to configure the overall system. Haroun and Elmasry [25] mention multiprocessor
architecture synthesis for DSP applications, however, this paper primarily concentrates on
the design of an individual processor within the system, not how to configure the overall
system. Selection of CPU design styles was researched by Thomas[72] and implemented
by Lawson[42].

2.3 Array-Processor Synthesis Research

There has been research effort directed towards synthesis of array-processor architectures.
Such architectures are usually characterized by synchronized operation, and all the proces-
sors perform nearly identical and relatively simple computations. Synchronous operation
makes array-processors best-suited for computations displaying reasonably regular struc-
ture and flow of data.

In general, for a given computational task, parallelism could be exploited at different
levels. The first level of parallelism is offered by partitioning the task into smaller subtasks.
The second level is found within each subtask. The regularity desirable for array-processing
is usually found in exploiting the second level of parrallelism. At the first level (exploiting
parallelism among major subtasks), regularity is less common. It is unusual for a task’s
major subtasks to be identical or similar. More often a task contains a mix of quite different
subtasks with quite different processing requirements and consequently heterogeneous sys-
tems are more suitable. Our research is geared towards the synthesis of such heterogeneous
systems.

Kung and Leiserson [37, 39, 38] proposed a number of ad hoc special-purpose VLSI
systolic array architectures for some important algorithms such as matrix-vector, matrix-
matrix multiplications, LU decompositions, recurrence evaluations, and others. Kung et
al. [41] describe a Wavefront Array Processor which is a programmable special-purpose
multiprocessor array suited for recursive and local data-dependent algorithms. Such al-
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gorithms exhibit a continuously advancing wave of data and computational activity, or a
computational wavefront. This notion of computational wavefront is also discussed in [73].
In [40], Kung proposes a methodology for converting parallel recursive algorithms into
synchronous systolic arrays or data-driven wavefront arrays, using the concept of compu-
tational wavefront. Johnsson and Cohen [35] start with an algorithm-representation and
map it onto a VLSI array architecture by using expression manipulation and operator
calculus. Moldovan and Fortes [50, 49, 51, 17, 16] describe a synthesis technique for map-
ping of cyclic loop algorithms into special-purpose systolic arrays. The technique works by
modifying the algorithm using a transformation function which is selected to minimize pro-
cessing time and interconnection complexity for VLSI arrays. The transformation function
is selected to expose hidden parallelism in the algorithm, by using parallelism detection
techniques based on algorithm data dependencies. Cappello and Steiglitz [8] transform
the given algorithm into an abstract model and then apply geometric transforms to design
systolic architectures. Miranker and Winkler [48] extend Fortes’s approach to develop a
more generalized theory and methodology for mapping a given algorithm into a systolic
array. Li and Wah [43] describe a systematic methodology for the design of optimal pure
planar systolic arrays for algorithms that are representable as linear recurrence processes.
They formulate the design problem as a constrained optimization problem in terms of the
systolic array parameters.

2.4 System-Level CAD Tools

There are some system-level CAD tools available. These tools assist the designer during
the design process; they do not automate the process.

The configuration of existing components using predesigned interconnection strategies
was the subject of the R1 expert system [45], a successful package used by DEC to configure
the systems it markets. Sara is a well-known system-level tool package which supports the
designer in making design decisions, but which makes no design decisions of its own[13,
14]. ADAS [9] is a commercial system-level package which supports the designer with
representation and simulation tools. It is a methodology and supporting tools set for system
design. It uses directed graph models for design construction and analysis. Essentially,
the model used is a Petri net-like model. ADAS does not automate the design activity;
it basically provides a CAD environment where the designer iterates through the design
process. Thus, the designer constructs and simulates various designs using the ADAS tools
until (s)he finds a satisfactory design. The most important tool provided by ADAS is the
simulator which is essentially a Petri net simulator.

15



3 The Problem Approach

Our approach is inspired by the work of Chu [10], Talukdar [46], and Hafer [24]. We are
using mathematical programming to produce a formal model for the problem. The model
will be linearized and converted into a MILP (Mixed Integer-Linear Programming) formu-
lation, and then a branch-and-bound program will be used to solve the MILP to synthesize
an optimal architecture for the given application. Such a mathematical model allows us a
deep understanding of the problem and allows us to verily our software more easily, even
if expected run-time problems with larger examples force us to resort to heuristics. Such
an approach allows us to modify, extend and enhance the model to include more design
possibilities and variations without significant reconstruction of existing code. Also, the
approach offers a great degree of flexibility in handling arbitrary constraints. The approach
is called SOS and is also described in [57, 58].

An example model is presented here, which is also described in [60, 61, 62]. The model
assumes point-to-point interconnection; i.e., if a processor py; needs to send data to another
processor pgo, then there must be a direct communication link from py; to paa.

3.1 The Model

A complete mathematical programming formulation of the problem requires specification
of an objective function that has to be optimized and a set of constraints that have to be
satisfied. The objective function can be whatever the designer wishes; e.g., the total system
cost, or the overall system performance. The set of constraints consists of the constraints
that must be satisfied for the overall task to be performed correctly as well as the arbitrary
timing and cost constraints imposed by the designer.

3.1.1 The Constraints

The constraints that must be satisfied for the overall task to be performed correctly consist
primarily of the relations that ensure proper ordering of the subtasks and the data trans-
fers taking into account the timing involved in carrying them out and the relations that
express the conditions for complete and correct system configuration. In order to express
the various constraints, one needs to define certain variables related to the system. The
necessary variables fall into two basic categories:
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o Timing variables: These are real variables which represent timings of various critical

events in the operation of the system. There are three classes of timing variables
defined:

— Data availability timing variables:
* Input data availability, Trx(7,4): Time when the data required by input 7,
of subtask S, is available for use.
* Qutput data availability, Toa(0..): Time when the output data value o,
computed by subtask S, has become available.
— Subtask execution timing variables:
* Subtask execution start, Tss(S,): Time when the execution of subtask S,
actually begins.
* Subtask execution end, Tsp(S,): Time when the execution of subtask S, is
completed.
— Data transfer timing variables:
* Data transfer start, Tes(iap): Time when the communication/transfer of
the data required by input 7,4 of subtask S, actually begins.

* Data transfer end, Tep(iq4): Time when the communication/transfer of the
data required by input ¢, of subtask S, ends.

e Binary variables: These are 0-1 variables which represent the implementation deci-
sions regarding the system configuration. There are two types of binary variables

defined:

— Subtask-to-processor-mapping variable, o4,: The variables of this type spec-
ify the mapping between the subtasks and the processors. o4, = 1 indicates
processor py will implement subtask S,.

— Data-transfer-type variable, vq1,42: The variables of this type specify the data
transfer type for the various data arcs. 441 42 = 1(0) indicates that data transfer
from subtask S,; to subtask S, is a remote (local) transfer.

The necessary constraints have been classified into ten categories:

e Processor-selection constraint: For each subtask S,, a set of processors P, is available
to implement it. In order for the implementation to be correct, one and only one
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processor should be selected to implement the subtask. Thus, for each subtask S,
the following must be satisfied:

5

> oga=1 (3.1.1)

ledE-Pa

Data-transfer-type constraint: ~a1,42 is a variable which indicates whether the data
transfer from the subtask S,; to the subtask S, is a local transfer or a remote
transfer. Now, if the subtasks S, and S,, are mapped to the same processor (say
p4, where p; € P,y and py € P,;), then we know that it is a local transfer, and
thus 7,142 = 0. However, if they are mapped to different processors, then the data
transfer is remote, and thus 741,42 = 1. Thus, the defining equation for 7,1 42 is:

Yal,a2 =1 — Z 0da10d;a2 (3.1.2)
d|pa€Pa1NPyy

We will have such an equation for each pair of subtasks communicating with each
other.

Input-availability constraint: Tra(iqp) is the time the data required at input 7,; will
be available, which will be the time T¢g(2,) when the data transfer has ended. So,
for each input 7,4, we have:

T;A(Z’a'b) = Tcg(ia,b) (3.1.3)

Qutput-availability constraint: Once execution of the subtask S5, begins, a certain
time elapses before an output data value o, produced by the subtask becomes avail-
able. The time elapsed is the time taken in executing fi(o.,.) fraction of the subtask;
and so the time Tp(0,,) must satisfy the following relation:

Toa(0ac) = Tss(Sa) + fa(0ac)(Tse(Sa) — Tss(Sa)) (3.1.4)

We will have such a relation for each output.

Subtask-execution-start constraint: Tss(Sq) is the time the subtask S, begins execu-
tion. There must be a certain relationship between the time a given subtask begins its
execution and the times at which its various inputs become available. Since fa(745)
fraction of the subtask S, can proceed without requiring the input 7,4, the following
relation must be satisfied for all the inputs 4,, to the subtask:

Tra(tap) < Tss(Sa) + faliap)(Tse(Sa) — Tss(Se)) (3.1.5)
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o Subtask-ezecution-end constraint: Once execution of a subtask begins, a time equal
to the execution time of the subtask must elapse before the subtask is completed.
Execution time of the subtask depends on the processor being used for it. A priori
we do not know which processor a given subtask S, is going to be mapped to. Any
processor from the set P, could be selected to execute the subtask S,. The uncertainty
can be expressed by the following relation. The summation acts as a selection since
only one o4, = 1 for each a:

Tsp(Sa) = Tss(Sa) + D 0uaDps(paySa) (3.1.6)

dIPdEPu

For each subtask S,, we need such a relation.

o Data-transfer-start constraint: The time at which transfer of data begins must be
after the output data is produced. For each input data (except for external inputs)
ta2,52 (to the subtask S,,) being supplied by another subtask’s output, if the output
supplying the data is 041 1, the following relation must be satisfied by Tes(ia2,s2):

Tos(tazp) = Toa(0a1,01) (3.1.7)

e Data-transfer-end constraint: The time at which transfer of data ends depends on
whether the transfer is remote or local. A priori, we do not know which case will
occur. However, the two possibilities can be combined into one single relation using
the variable 441,02. Thus, for each input data i, 2 being supplied by another subtask
Sa1, we have:

Ter(tazp2) = Tos(tazp2) + Yar,02PcrVat,e2 + (1 — Ya1,02) Der Vat,a2 (3.1.8)

In the above, the local transfer delay is represented by the parameter Dep which
specifies the time taken in transferring a unit volume of data locally. The remote
transfer delay is represented by the parameter Do which specifies the time taken in
transferring a unit volume of data remotely.

The next two categories of constraints ensure that the hardware resources (processors,
communication links) are shared correctly. These constraints ensure that the same hard-
ware resource is not scheduled to perform more than one function during any given time
interval. In order to express these constraints concisely, we need to define a special function
called an overlap function L (as defined in [24]). The function is defined on two closed
intervals of time, [t1,¢2] and [t3, 4] (where ¢1 < {2 and {3 < t4), as:

1, 1if the intervals overlap
0, otherwise

L([t1,12],[t3,14]) = {
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o Processor-usage-exclusion constraint: If two subtasks S,; and S, are being executed
by the same processor py, then the two subtasks must not be scheduled to be executed
at the same time. The situation that two subtasks S,; and S, are being implemented
by the same processor py implies 04,1 = 0442 = 1. For each processor p; and each
pair of subtasks S,; and S,, such that the sets of processors P,; and P,5 available to
implement the subtasks contain the processor pa, the following relation ensures that
the overlap in the usage of the processor by the two subtasks is prevented:

Jd,alad,QQL([TSS(S'EI)! TSE(SG].)]1 ITSS(SQ2)a TSE(SU.Z)]) =0 (319)

e Communication-link-usage-exclusion constraint: If the data required by two inputs
ta1,51 and 2,49 42 are being transmitted over the same communication link, then the two
data transfers must not be scheduled at the same time. Let us say the input data #,1 41
is supplied by the subtask S,3 and the input data 7,942 is supplied by the subtask S,4.
The two inputs 241 31 and 2,22 will be transmitted over the same communication link
if the two subtasks S,; and S,2 are mapped to the same processor, say pg, and also
the subtasks S,3 and S,4 are mapped to the same processor, say pg; (in that case,
both the inputs will be transmitted over the communication link from processor pg; to
processor pgz ). For each processor pair (pgi, paz) and each pair of inputs i,y 51 and 74042
(to subtasks S,; and S, respectively, and from subtasks S,3 and S,4 respectively)
such that the sets of processors P,; and P,; available to implement the subtasks S,
and S, contain the processor pge and the sets of processors P,3 and P,4 available to
implement the subtasks S,3 and S,4 contain the processor py;, the following relation
ensures that the overlap in the usage of the communication link from processor pg
to processor pge by the two data transfers is prevented:

Ud2,alad2.a20dl|u30d1,u‘lL([TCS(ial,bl)s TCE(ial,bl )]s [TCS(ia2.b2)1 TCE(iaz,bz)]) =0
(3.1.10)

The set of constraints described here should be treated as an example set. The exact
form of constraints used can be tailored to meet the characteristics of the design problem
at hand. Our approach offers a great degree of flexibility in this regard.

3.1.2 Objective Functions

Two of the most important goals that the designer may wish to optimize are the overall
system performance and the total system cost.
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3.1.2.1 Overall System Performance The performance is usually measured by how
fast the system can perform the task. So, it can be represented by the time at which the
task is completed (or all the subtasks are completed). If T is a real variable representing
the time at which the task is completed, then the objective is to minimize Tp.

To ensure that T represents the time at which all the subtasks are completed, we need
to introduce the following constraint in the model (for each subtask S,):

Tr 2 Tsp(Sa) (3.1.11)

3.1.2.2 Total System Cost The total cost of the system can be expressed as the sum
of the costs of the processors selected and the costs of the links created. In order to do so,
we need to define two types of binary variables:

e Processor-selection variable, ;: The variables of this type specify which processors
have been selected in the synthesized architecture. 3; = 1 indicates the processor py
is being included in the system.

e Communication-link-creation variable, xq1,42: The variables of this type specify what
communication links are present in the synthesized architecture. y4 42 = 1 indicates
there exists a communication link from the processor py; to the processor pys in the
designed system.

Using the variables defined above, the objective is to:

MINIMIZE Y BaCa+ C 3 Xad1,d2)

d|pa€P d1,d2|payy EPApaz P

where Cy is the cost of a processor py and CJ, is the cost of building a communication link
between two processors. The variables of type 3, are related to the variables of type o4,.
A processor py will be included in the system if and only if at least one of the subtasks S,
(pa € P,) is mapped to it, which implies that the variable 3, is the logical OR of all the
04, variables. This can be expressed by introducing the following constraint in the model
(for all @ such that pg € P,):

Ba > 044 (3.1.12)

The variables of type x41,42 are also related to the variables of type o4,. A communication
link is created from processor py; to processor pyq if and only if at least one of the subtasks
Sa1 (pa1 € Ph1) mapped to the processor py needs to send data to at least one of the
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subtasks Sas (pa2 € Pa2) mapped to the processor pg. So, the variable ya; 4 is the logical
OR of all the product terms of the form (o4 ,41042,42), where the subtask S,; supplies some
data to the subtask Sg;. This condition leads to the introduction of following constraint
in the model (for all al, a2 such that ps; € P,y and pgs € P,s and subtask S,; sends data
to subtask S,;):

Xdi,d2 2 0d1,a10d2,a2 (3.1.13)

The essence of the model has been presented. It is easy to see that arbitrary constraints
imposed by the designer (within the semantics of the model) can be expressed using the
timing and binary variables defined in the model.

3.2 Synthesis Using the Model
3.2.1 Linearization of the Model

Several constraints comprising the formulation presented in Section 3.1 are non-linear re-
lations. These relations are linearized and the model is converted into a MILP (Mixed
Integer-Linear Programming) formulation.

Equation 3.1.2 is non-linear. It can be linearized by defining a binary variable of the
form 84,41,42 for each product of the form (04410442). Using the new variables defined,
Equation 3.1.2 can be replaced by the following set of linear relations:

Yarwz=1— Y  Saeras (3.2.14)
ledGPalnPaZ

0da1,02 < Odya1 (3.2.15)

6d,a1.a2 S 04,02 (3216)

Now, let us consider linearization of Equation 3.1.9. The constraint says that if two
subtasks S,; and S,; are executed on the same processor py, then there must be no overlap
in their execution time intervals. This implies that either the start time of S,; is sometime
after the completion time of S,; or the start time of 5,5 is sometime after the completion
time of S,1. Let us define a binary variable a,; .2 whose value decides which of the two
possibilities occurs. g1 ,.0 = 1 implies S,; 1s executed first. Using this variable, Equation
3.1.9 can be rewritten as the following pair of non-linear relations:

TSS(SQZ) 2 aal,aZJd,alad,ﬂ2TSE(5al)
TSS(SCLI) 2 (]-_aal,a?)dd,alacf.cz?TSE(Sa'z)
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To linearize the above pair, let us define a constant 7y whose value is larger than the
possible values of all the timing variables in the model. Now, the following two linear
relations express the desired constraint:

Tss(Sa2) 2 TsE(Sa1) = (3 — 1,02 — Odja1 — Oda2) T (3.2.17)
Tss(Sa1) 2 Tsg(Se2) — (24 Qa1,02 — Tdyar — Gaa2) T (3.2.18)

Similarly, to linearize Equation 3.1.10, we need to define a binary variable ®a1,b1,02,b2
Ga1p1,0262 = 1 indicates the data transfer for i, 5 takes place before the data transfer for
la2,52 1f the same communication link is used for both the transfers. Using this variable,
Equation 3.1.10 can be rewritten as the following pair of linear relations:

Tes(tazp2) =2 Tep(lap) — (5 — Gaiptazpm

—04d2,01 — Od2,02 — Odl,a3 — Od1,a4) ] M (3.2.19)
Tes(tap) =2 Tep(laopz) — (4 4+ Patprezpe
—042,01 = 0d2,02 = Od1,a3 — Od1,a4) 1 M (3.2.20)

Finally, non-linear Equation 3.1.13 can be simply rewritten in the following linear form:

Xd1,d2 2 Od1,a1 + Odg,e2 — 1 (3.2.21)

3.2.2 Size of the Linearized MILP Model

Let n be the number of nodes (subtasks) and m the number of edges (data transfers) in the
task graph. Let p = |P| be the total number of processors available for selection as part

of the system. Then the following statements can be made about the worst case growth of
the MILP model.

The number of real (timing) variables grows as O(an + bm), where a and b are some
constants. The number of binary variables grows as O(en? + dm? + ep?), where ¢, d and e
are some constants. The number of constraints grows as O(fp*m? + gpn?), where f and
g are some constants. Although these are the growth rates in the worst case, the actual
numbers of variables and constraints are usually fewer (as we will see in the examples
presented later).



3.2.3 Solution of the Model

The MILP model is solved using a branch-and-bound program, Bozo, developed by L. J.
Hafer of Simon Fraser University [23]. Bozo implements a LP-based branch-and-bound
algorithm and supports binary and real variables. It invokes a commercial linear program-
ming package, XLP, developed by XMP Software, Inc. Some example models have been
created and solved using Bozo to synthesize architectures. These results are reported in
Section 4.

3.3 Comparison with Hafer’s RT-Level Model

As we have mentioned earlier, Hafer and Parker [24, 22] have used a mathematical program-
ming approach for register-transfer level synthesis. Hafer’s RT-level model also involves
expressing timing relationships that must be satisfied for a correct and complete design. At
first sight, it may seem that our model is a replica of Hafer’s model. However, it must be
emphasized that such is not the case. There are some fundamental issues that have to be
addressed differently at the two levels (RT-level vs. system-level). Some of the differences
are listed here:

e Hafer’s model does not take into account the delay associated with the interconnec-
tion of the hardware elements explicitly. Output of a hardware element (operator
or register) is considered to be immediately available at the input of the hardware
element using it. This approach was appropriate at the RT-level as the interconnec-
tion delay (wiring and multiplexer delays) is probably much smaller than the delays
associated with the hardware elements. However, at the system level we can not ig-
nore the interconnection (communication) delays. Output generated by a processor
can not be assumed to be immediately available to another processor; it has to be
communicated through the interconnection network and the delay is by no means
negligible. So, communication delays have to be explicitly taken into account by the
model. Our model makes an attempt in this direction.

e In Hafer’'s model, an operation can not start until all its inputs have become avail-
able. In our model, a subtask can begin its execution even with some (or no) inputs
available. At the RT-level, the requirement that all inputs be available before an
operation starts is probably acceptable; however, at the system level it is not accept-
able as a subtask may not require a particular input until it reaches a certain point
in its execution. Theoretically speaking, it is conceivable that even at RT-level there
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Execution Time

Proc. COSt 51 Sz Sg Sq
o 4 1y 1] -1 3
P2 5 Iy 20 1
Pa 2 - 3 1 =

Table 1: Execution Time and Cost Table for Four-Node Graph

are operations which can start without requiring all inputs. However, the number
of such operations and the performance loss seem to be low enough to ignore such
operations in order to keep the model simple at the RT-level.

e In Hafer’s model, all the outputs of an operation become available only after the
operation is completed. In our model, some of the outputs of a subtask can become
available even before the subtask is completed. Once again, discussion similar to the
previous point applies here.

4 Experiments and Preliminary Results

The approach outlined in Section 3 was used to experiment with two example task graphs.
The first example consists of four subtask nodes, while the second consists of nine. Some
of the data related to these examples is taken from [46].

4.1 Example 1: Four-Node Task Graph

This example data flow graph is shown in Figure 1. Associated fr and f4 parameters are
also given in the figure, constraining input/output timing for the subtasks.

We assume we have available three types of processors: py, p2, p3. The costs of these
processors and the execution times of various subtasks on the processors are given in
Table 1. An entry of ‘=’ in the table implies that the particular processor is functionally
not capable of performing the particular subtask. As is obvious from the table, different
processors have different cost-speed-functionality characteristics.



Design || Runtime (sec) || Cost | Performance
1 11 14 2.5
2 24 13 3
3 28 7 4
4 37 5 7

Table 2: Architectures for Four-Node Graph

In this example the volume of data that needs to be communicated is one unit at each
arc in the graph. Local transfer delay is given to be negligible; i.e., Do, = 0. We are also
given the communication link characteristics. The cost of a link, Cr, is one unit; and the
remote transfer delay for a unit volume of data over a link, Dgg, is also one unit.

The MILP model for the example consists of 93 variables, 21 timing and 72 binary, and
174 constraints. The complete model is given in Appendix C. Bozo was used to generate
4 non-inferior architectures. These different architectures were generated by changing the
constraint value for the total cost of the system, and optimizing the overall performance
of the system. Bozo’s runtime to generate each of these designs is of the order of a few
seconds. These runtimes are on a system with CPU type Solbourne Series5e/900 (similar
to Sun SPARCsystem 4/490) with 128 MB of memory. Cost, performance and runtime for
the four designs are given in Table 2.

A brief discussion of these designs follows:

e Design 1: This design consists of 3 processors: p;, - a processor of type pi, pa. -
a processor of type po, and ps, - a processor of type ps. Processor p;, performs
subtask Sy, processor p,, performs subtasks S; and S; in that order, and processor
P3a performs subtask S3. There are three communication links: [y, 24, L1434, and la, 34.
Data 14 gets transmitted on link /1, 2,, data i3, gets transmitted on link /4,34, and
data 235 gets transmitted on link ly, 3,. As an illustration, this architecture is shown
in Figure 2. A detailed schedule for the various events is also shown in the figure.

o Design 2: This design is similar to design 1, and also consists of 3 processors: pi,,
P2a, and ps,. However, it has only two links: [y, 2,4, and 1, 3.. Presence of fewer links
forces a change in the mapping between the resources and the events. Processor py,
performs subtasks S; and S; in that order, processor ps, performs subtask Sy, and
processor ps, performs subtask S3. Data 24 gets transmitted on link /i, 2,, data i34
and data 73, get transmitted on link /y, 3, in that order.
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Table 3: Execution Time and Cost Table for Nine-Node Graph

e Design 3: This design consists of 2 processors: pj, - a processor of type py, and pa, -
a processor of type ps. Processor py, performs subtasks S; and S4 in that order, and
processor ps, performs subtasks S; and S; in that order. There is a communication
link: ly43,. Data i3 gets transmitted on link /y, 3,.

e Design 4: This design consists of just 1 processor: ps, - a processor of type p,. The
processor performs the subtasks S;, S;, S3, and S4 in that order.

Some tradeoff studies were performed using this example, which are reported in Ap-
pendix A.

4.2 Example 2: Nine-Node Task Graph

The data flow graph is shown in Figure 3. For this example, we assumed that a subtask
requires all the inputs before it can start and that none of the outputs from a subtask
become available until its execution is over. Again, there are three types of processors,
with the costs and the execution times given in Table 3. The volume of data is one unit for
each arc. We are given: D¢, = 0, Dgr = 1. For this graph, we synthesized architectures
for two different styles of interconnection.

4.2.1 Point-to-Point Interconnection

Here, as before, if two processors need to communicate, then there must be a direct link
between them; and the cost of building a link Cp, = 1.

The MILP model consists of 272 variables, 47 timing and 225 binary, and 1081 con-
straints. We generated 5 non-inferior architectures by changing the constraint value for
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Design || Runtime (min) || Cost | Performance
1 62.2 15 5
2 445.17 12 6
3 538.67 8 7
4 75.18 7 8
5 6416.87 5 15

Table 4: Architectures for Nine-Node Graph (Point-to-Point)

the total system cost, and optimizing the system performance. Bozo’s runtime for each of
these designs is of the order of a few hours, except for design 5. Cost, performance and
runtime for the five designs are given in Table 4. Discussion of the designs is given in
Appendix Section B.1.

4.2.2 Bus-Style Interconnection

In this interconnection style, the system consists of a set of processors and a bus connecting
all the processors to each other. So, the cost of the system is dominated by the costs of
the processors selected. Qur approach is capable of modeling such a system.

The model essentially remains similar to the model described in Section 3.1, except for
a few differences. One difference is that there are no communication-link-creation variables
in the bus-architecture model. Another difference is in the form of the communication-
link-usage-exclusion constraint. Here, if any two data transfers are of remote type, then
they both get transmitted over the same bus and exclusion in the usage of the bus must
be ensured. So, Equation 3.1.10 gets replaced by the following:

Yaz,a1Vad,a2L([Tes(tar,n1)s Top(tar,n)], [Tes(tazpe)s Tor(iazp2)]) = 0

For each pair of inputs 7,141 and Z,24; (to subtasks S,; and S,2 respectively, and from
subtasks Sq3 and Sg4 respectively), the above relation ensures that the overlap in the usage
of the bus by the two data transfers is prevented.

The MILP bus-architecture model for the nine-node graph example consists of 200
variables, 47 timing and 153 binary, and 416 constraints. Three non-inferior architectures
were generated by changing the constraint value for the total system cost, and optimizing
the system performance. Runtime for each of these designs is of the order of a few hours.
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Design || Runtime (min) || Cost | Performance
1 107.3 10 6
2 89.53 6 7
3 61.52 5 15

Table 5: Architectures for Nine-Node Graph (Bus-Style)

Table 5 gives the statistics for the three designs. Discussion of the designs is given in
Appendix Section B.2.

4.3 Discussion of the Results and Future Work

Looking at the results described in Sections 4.1 and 4.2, it can be concluded that our
approach does show promise for small examples. For the smaller example of four nodes,
the runtime of the order of a few seconds should definitely be acceptable since an optimal
design is ensured in return. Even for the nine-node example, the runtime of the order of a
few hours is not extremely prohibitive for an optimal design. Depending upon the situation,
the runtime of a few hours may indeed be acceptable if the optimality of the design is very
crucial. Such may be the case because a human designer may actually require much longer
design time if it is necessary to ensure the optimality of the design. The human designer
may still not be sure about the optimality and the correctness of the design.

It is clear that the approach is usable for smaller examples depending upon the situation
and the amount of runtime that the designer is willing to pay for. However, it is also quite
clear that as the size of the designs grows, a point will be reached when the runtimes are
certainly prohibitive. The only way to continue with this approach then would be to devise
better solution strategies for the model. So, one direction of future research is aimed at
improving the runtime.

The specific model discussed does not address several issues that may be of interest to
the designer. For example, memory design in not included in the model. Similarly, the
designer may be interested in other styles of interconnection. So, the other direction of
future research is aimed at generating models which address these other aspects of design.
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A Some Tradeoff Studies Using Four-Node Graph

In this appendix, we describe some experiments that were performed to study the role of
inter-subtask communication in synthesis of the systems. The study was performed by
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varying the ratio between communication times and execution times.

A.1 Experiment 1: Increase the Communication Time

In this experiment, we increased the volume of data to be transferred for each arc in the
four-node task graph. All the other parameters remained as given in Section 4.1.

When the volume of data is doubled for each of the arcs (i.e., the volume is two units
instead of one), 3-processor designs become inferior. Only two designs remain non-inferior:
2-processor design and uniprocessor design.

The 2-processor design also becomes inferior when the volume of data is made six times
(i.e., the volume is six units for each arc). Only, the uniprocessor design remains non-
inferior.

A.2 Experiment 2: Increase the Execution Time

In this experiment, we increased the size of each of the subtasks (and thus the execution
times in Table 1). All the other parameters remained as given in Section 4.1.

When the size of each of the subtasks is doubled (and hence the execution time is
doubled for each of the processor types), the number of non-inferior designs becomes five
(instead of four). The new non-inferior design is a 3-processor design. This design consists
of 3 processors: pia, p1» - two processors of type p;, and ps, - a processor of type ps.
Processor py, performs subtasks Sy and S; in that order, processor py; performs subtasks
S4, and processor ps, performs subtasks S;. There are two communication links: Iy, 15, and
l1a,30- Data 247 gets transmitted on link ly4,15, and data i3, and data i3, get transmitted
on link /i, 3, in that order.

When the size of each of the subtasks is further increased and made three times the
original size, the number of non-inferior designs becomes seven (as opposed to five for the
double-size case above). The two new additions are: a 4-processor design and a new 2-
processor design. The 4-processor design consists of pyq, p1y - two processors of type p1, p2a
- a processor of type p2, and pa, - a processor of type p3. Processor p;, performs subtask
S1, processor py; performs subtask Sy, processor py, performs subtask Sy, and processor pa,
performs subtask S;. There are three communication links: l1424, (10,34, and l1p3.. Data
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i4, gets transmitted on link /1,94, data i3, gets transmitted on link ly, 3,, and data 3.2
gets transmitted on link /y43,. The new 2-processor design consists of py, - a processor
of type py, and py, - a processor of type p;. Processor p;, performs subtask S; and S,
in that order, and processor py, performs subtasks Ss and Sy in that order. There is a
communication link: ly,9,. Data i3, data 73, and data iy, get transmitted on link lia,2a
in that order.

The results of experiment 1 and 2 essentially indicate that as the ratios between the
inter-subtask communication (in time units) and the sizes of subtasks (in time units) in-
crease, designs with fewer processors are synthesized as they can achieve the same perfor-
mance with lower costs. However, as the sizes of subtasks increase (and thus inter-subtask
communication becomes relatively negligible), multiprocessing becomes useful and designs
with more processors are synthesized as they can provide better performance.

B Discussion of the Designs for Nine-INode Graph

In this appendix, we describe the synthesized designs for the nine-node task graph.

B.1 Point-to-Point Interconnection

As we mentioned in Section 4.2.1, five designs were synthesized for this style.

e Design 1: This design consists of 3 processors: p;, - a processor of type p;, p2. - a
processor of type pa, and ps, - a processor of type ps. Processor p;, performs subtasks
S3, Se¢ and Sy in that order, processor p;, performs subtasks S, S5, S and S; in
that order, and processor p3, performs subtasks S; and Sg in that order. There are
four communication links: /14,26, 10,305 {2030, and lzq14. Data igo and data iz get
transmitted on link ly, 2, in that order, data ig; gets transmitted on link ly, 3., data
t9,1 gets transmitted on link Iy, 3., and data 74, gets transmitted on link l34 14-

o Design 2: This design also consists of 3 processors: pi., p1p - two processors of type
p1, and pa, - a processor of type ps. Processor p;, performs subtasks Sy, S; and S7 in
that order, processor py;, performs subtasks Ss, Sg and Sg in that order, and processor
P3. performs subtasks S,, S5 and Sg in that order. There are two communication
links: li4,34, and I3, 1. Data g5 gets transmitted on link ly, 3., and data ig; gets
transmitted on link /s, 1.
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e Design 3: This design consists of 2 processors: p;, - a processor of type p;, and pa, -
a processor of type ps. Processor p;, performs subtasks Ss, Sg, Sy, S7 and Sy in that
order, and processor ps, performs subtasks S;, S, S5 and Sg in that order. There are
two communication links: /1,34, and l3,1,. Data 25 gets transmitted on link Iy, 34,
and data ¢4, and data ig; get transmitted on link /3,1, in that order.

o Design 4: This design is similar to design 3, and also consists of 2 processors: piq,
and ps,. However, it has only one link: l,3,. Presence of only one link forces a
change in the mapping between the resources and the events. Processor p,, performs
subtasks S3, Sg, 51, S4 and S7 in that order, and processor ps, performs subtasks Sy,
Ss, Sg and Sg in that order. Data ig» and data ig; get transmitted on link /;, 3, in
that order.

e Design 5: This design consists of just 1 processor: py, - a processor of type p;. The
processor performs the subtasks Sy, Sy, Sy, S5, Ss, S3, S7, S¢ and Sy in that order.

B.2 Bus-Style Interconnection

As we mentioned in Section 4.2.2, three designs were synthesized for this style.

e Design 1: This design consists of 3 processors: pj., p1s - two processors of type p,
and ps, - a processor of type ps. Processor p;, performs subtasks Sy, Sy and S7 in that
order, processor py, performs subtasks S3, Sg and Sy in that order, and processor pa,
performs subtasks S;, S5 and Sg in that order. Data 157 and data 79 get transmitted
on the commeon bus in that order.

e Design 2: This design consists of 2 processors: p;, - a processor of type p;, and pa, -
a processor of type ps. Processor p;, performs subtasks S3, Sg, S4, S7 and Sy in that
order, and processor ps, performs subtasks 57, Sg, S5 and Sg in that order. Data ig,
and data 79 get transmitted on the common bus in that order.

e Design 3: This design consists of just 1 processor: ps, - a processor of type p;. The
processor performs the subtasks S,, Sy, Si, S3, Ss, S8, S¢, S9 and S7 in that order.
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C The MILP Model for Four-Node Graph

In this appendix, we present the complete MILP model for the four-node task graph. The
model is written in the XML2 Modeling Language, the syntax of which is described in
[74]. Bozo accepts input in this format. PARAMETERS in the model list the constant
parameter values; VARIABLES list the real variables (or the timing variables in our case);
VARIABLES BINARY list the 0-1 variables; EQUATIONS list the constraints and the
objective function (the equation SYSTIM is the objective function in this case).

C.1 The Model

$ FOUR-NODE-TASK-GRAPH MODEL

$ PARAMETERS

! Constant parameter values used in the model
QTAV_11

@TAV_21
QTAV_42

100
100
100

QTP_11 =
QTP_12 =
QTP_21 =
QTP_22 =
@TP_23 =
QTP_32 =
@TP_33

QTP_41 =
QTP_42 =

=W o= N W e W

@DCR =
av_31 =
Qv_32 =
ev_41 =
@p_31 =
@D_32 =

e T S S e



@D_41

Q@TMAX

QTMAX2
QTMAX3
QTMAX4
Q@TMAX5

@COST_1

]

@COST_2 =

@COST_3

QC_LINK

QCMAX

QFI_11
QFI_21
QFI_31
QFI_32
QFI_41
QFI_42

QFI_111
QFI_211
QFI_311
QFI_321
QFI_411
QFI_421

@F0_11
QF0_12
@F0_21
QFD_22
QF0_31
QF0_41

@F0_111

o

QF0_121 =

@F0_211

15
30
45
60
75

40
50
20
10

22

o O O © © O S O O O O O O O O O O C

o

0

.25
.25
.25
.50
.25
.50

.75
.75
.75
.50
.TH
.50

.50
.75
.50
.75
.75
.15

.50
+25
.50



@F0_221 = 0.25
@F0_311 = 0.25
QF0_411 =

I
o
b
[6)]

$ VARIABLES
! Real (timing) variables in the model

TSS_1, TssS_2, TSS_3, TSS_4

TSE_1, TSE_2, TSE_3, TSE_4

TOA_11, TOA_12, TOA_21, TOA_22, TOA_31, TOA_41
TCS_31, TCS5_32, TCS_41

TCE_31, TCE_32, TCE_41

TSYS

$ VARIABLES BINARY
I 0-1 variables in the model

SIG_1A1, SIG_2A1

SIG_1A2, SIG_1B2, SIG_2A2, SIG_2B2, SIG_3A2

SIG_2A3, SIG_2B3, SIG_2C3, SIG_3A3, SIG_3B3

SIG_1A4, SIG_1B4, SIG_1C4, SIG_2A4, SIG_2B4, SIG_2C4, SIG_2D4

GAM_13, GAM_23, GAM_14
BET_1A, BET_1B, BET_1C, BET_2A, BET_2B, BET_2C, BET_2D, BET_3A, BET_3B

CHI_1A1B, CHI_1A1C, CHI_1A2A, CHI_1A2B, CHI_1A2C, CHI_1A2D, CHI_1A3A,
CHI_1A3B

CHI_1B2A, CHI_1B2B, CHI_1B2C, CHI_1B3A, CHI_1B3B

CHI_2A1A, CHI_2A1B, CHI_2A1C, CHI_2A2B, CHI_2A2C, CHI_2A2D, CHI_2A3A,
CHI_2A3B

CHI_2B2A, CHI_2B2C, CHI_2B3A, CHI_2B3B

CHI_3A2A, CHI_3A2B, CHI_3A2C, CHI_3A3B

DEL_2A13, DEL_1A14, DEL_2A14, DEL_2A23, DEL_2B23, DEL_3A23

ALF_12, ALF_24, ALF_34



PHI_3132, PHI_3141, PHI_3241
$ EQUATIONS

| Constraints in the model

MAPTSK1 SIG_1A1 + SIG_2A1 =E= 1
MAPTSK2 SIG_1A2 + SIG_1B2 + SIG_2A2 + SIG_2B2 + SIG_3A2 =E=
MAPTSK3 SIG_2A3 + SIG_2B3 + SIG_2C3 + SIG_3A3 + SIG_3B3 =E=
MAPTSK4 SIG_1A4 + SIG_1B4 + SIG_1C4
SIG_2A4 + SIG_2B4 + SIG_2C4 + SIG_2D4 =E= 1
DTTYP_13 .. GAM_13 + DEL_2A13 =E= 1
DDL2A131 .. DEL_2A13 - SIG_2A1 =L= 0
DDL2A133 .. DEL_2A13 - SIG_2A3 =L= O
DTTYP_14 .. GAM_14 + DEL_1A14 + DEL_2A14 =E= 1
DDL1A141 .. DEL_1A14 - SIG_1A1 =L= 0
DDL1A144 .. DEL_1A14 - SIG_1A4 =L= 0
DDL2A141 .. DEL_2A14 - SIG_2A1 =L= O
DDL2A144 . DEL_2A14 - SIG_2A4 =L= O
DDTYP_23 .. GAM_23 + DEL_2A23 + DEL_2B23 + DEL_3A23 =E= 1
DDL2A232 .. DEL_2A23 - SIG_2A2 =L= 0
DDL2A233 .. DEL_2A23 - SIG_2A3 =L= 0
DDL2B232 .. DEL_2B23 - SIG_2B2 =L= 0
DDL2B233 .. DEL_2B23 - SIG_2B3 =L= 0
DDL3A232 .. DEL_3A23 - SIG_3A2 =L= 0
DDL3A233 .. DEL_3A23 - SIG_3A3 =L= 0
BEGTSK1 @FI_111 % TSS_1 + QFI_11 * TSE_1 =G= @TAV_11
BEGTSK2 .. @QFI_211 *% TSS_2 + @FI_21 % TSE_2 =G= @TAV_21
BEGTSK31 .. @FI_311 * TSS_3 + QFI_31 * TSE_3 - TCE_31 =G= 0
BEGTSK32 .. @FI_321 * TSS_3 + QFI_32 * TSE_3 - TCE_32 =G= 0
BEGTSK41 .. @FI_411 * TSS_4 + QFI_41 * TSE_4 - TCE_41 =G= 0
BEGTSK42 .. QFI_421 * TSS_4 + QFI_42 * TSE_4 =G= QTAV_42
ENDTSK1 TSE_1 - TSS_1 - @TP_11 * SIG_1A1 - @TP_12 * SIG_2A1 =E=
ENDTSK2 TSE_2 - TS5_2 - QTP_21 * SIG_1A2 - @TP_21 * SIG_1B2
- @TP_22 * SIG_2A2 - @TP_22 * SIG_2B2 - @QTP_23 * SIG_3A2
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ENDTSK3

ENDTSK4

OUTPUT11 ..
OUTPUT12 ..
OUTPUT21 .

OUTPUT22 ..
OUTPUT31 ..
OUTPUT41 ..

SYST11
SYST12
SYST13
SYST14
SYST21
SYST22
SYST23
SYST24
SYST31
SYST32
SYST33
SYST34
SYST41
SYST42
SYST43
SYST44

BEGCOM31 ..
BEGCOM32 ..
BEGCOM41 ..

ENDCOM31 ..
ENDCOM32 ..
ENDCOM41 ..

PLP1A121 ..

=E= 0

TSE_3 - TSS_3 - @QTP_32 * SIG_2A3 - @TP_32 * SIG_2B3

- QTP_32 * SIG_2C3 - QTP_33 * SIG_3A3 - QTP_33 * SIG_3B3

TSE_4 -

- QTP_42 * SIG_2C4 - Q@TP_42 * SIG_2D4

TOA_11
TOA_12
TOA_21
TOA_22
TOA_31
TOA_41

TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS
TSYS

TCS_31
TCS_32
TCS_41

TCE_31
TCE_32
TCE_41

TSS_2 -

=E

TSS_4 - QTP_41 * SIG_1A4 - QTP_41 * SIG_1B4
- Q@QTP_41 * SIG_1C4 - QTP_42 * SIG_2A4 - QTP_42 * SIG_2B4

@QFO_111
QF0_121
@F0_211
Qr0_221
QF0_311
QF0_411

TSE_1 +
TSE_1 +
TSE_1 +
TSE_1 +
TSE_2 +
TSE_2 +
TSE_2 +
TSE_2 +
TSE_3 +
TSE_3 +
TSE_3 +
TSE_3 +
TSE_4 +
TSE_4 +
TSE_4 +
TSE_4 +

TOA_11
TOA_21
TOA_12

TCS_31
TCS_32
TCS_41

TSE_1 -

=E= 0

* TSS_1 - @FO_11 * TSE_1 =E=
* TSS_1 - QF0_12 * TSE_1 =E=
* TSS_2 - @QF0_21 * TSE_2 =E=
* TSS_2 - @QF0_22 * TSE_2 =E=
* TSS_3 - QF0_31 % TSE_3 =E=
* TSS_4 - QF0_41 * TSE_4 =E=

TSS_1 =G= 0

TSS_2 =G= 0

TSS_3 =G= 0

TS5_ 4 =G= 0

TSS_1 =G= 0

TSS_2 =G= 0

TSS_3 =G= 0

TSS_ 4 =G= 0

TSS_1 =G= 0

TSS_2 =G= 0

TSS_3 =G= 0

TSS_4 =G= 0

TSS_1 =G= 0

TSS_2 =G= 0

TS8_ 3 =G= 0

TSS_4 =G= 0

=G= 0

=G= 0

=G= 0

- @D_31 * GAM_13 =E= 0

- @D_32 * GAM_23 =E= 0

- @D_41 * GAM_14 =E= 0

QTMAX * ALF_12 - Q@TMAX * SIG_1A1
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PLP1A120 .

PLP2A121 ..

PLP2A120 ..

PLP2A13

PLP1A14

PLP2A14

PLP2A23

PLP2B23

PLP3A23

PLP1A240 ..

PLP1B241 ..

PLP1B240 ..

PLP2A241 ..

PLP2A240 ..

PLP2B241 ..

PLP2B240 ..

PLP2A341 .

PLP2A340 ..

PLP2B341 ..

=@=

=G=

=@G=
PLP1A241 ..

- Q@TMAX * SIG_1A2

=G=

- @TMAX3

TSS_1 - TSE_2 + @QTMAX * ALF_12 - Q@TMAX #* SIG_1A1

- Q@TMAX * SIG_1A2

=G=

- Q@QTMAX2

TSS_2 - TSE_1 - QTMAX * ALF_12 - @TMAX * SIG_2A1

- Q@TMAX * S5IG_2A2

=@G=

- @TMAX3

TSS_1 - TSE_2 + @TMAX * ALF_12 - @TMAX * SIG_2A1

- @TMAX * SIG_2A2

=G=

- @TMAX2

TSS_3 - TSE_1 - Q@TMAX * SIG_2A1

=G=

- @TMAX2

TS5_4 - TSE_1

=G=

- QTMAX2

TSS_4 - TSE_1

- QTMAX2

TSS_3 - TSE_2

=G=

- @TMAX2

TSS_3 - TSE_2

- @TMAX2

TSS_3 - TSE_2

- @TMAX2

TSS_4 - TSE_2

- @TMAX * SIG_1A4

QTMAX

@TMAX

QTMAX

QTMAX

@TMAX

@TMAX
=G=

TSS_2 - TSE_4 + @TMAX

- @TMAX * SIG_1A4

=G=

TSS_4 - TSE_2 - Q@TMAX

- Q@TMAX * SIG_1B4

==

TSS_2 - TSE_4 + QTMAX

- @TMAX * SIG_1B4

=G=

TSS5_4 - TSE_2 - @TMAX

- @TMAX * SIG_2A4

=G=

TSS_2 - TSE_4 + QTMAX

- @TMAX * SIG_2A4

=G=

TSS5_4 - TSE_2 - Q@TMAX

- Q@TMAX * SIG_2B4

=@G=

TSS_2 - TSE_4 + @TMAX

- @TMAX * SIG_2B4

=G=

TSS_4 - TSE_3 - @QTMAX

- @TMAX * SIG_2A4
TSS_3 - TSE_4 + Q@TMAX * ALF_34 -
- O@TMAX * SIG_2A4

=G=

=G=

TSS_4 - TSE_3 - QTMAX

* SIG_1A1

* SIG_2A1

* SIG_2A2

* SIG_2B2

* SIG_3A2

*

- @TMAX3

* ALF_24 -

- @TMAX2

* ALF_24 -

- @TMAX3

* ALF_24 -

- @QTMAX2

* ALF_24 -

- @TMAX3

* ALF_24 -

- QTMAX2

* ALF_24 -

- QTMAX3

* ALF_24 -

- @TMAX2

* ALF_34 -

- @TMAX3

- @TMAX2

* ALF_34 -
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QTMAX

@TMAX

QTMAX

@TMAX

@TMAX

@TMAX

QTMAX

Q@TMAX

QTMAX

@TMAX

QTMAX

Q@QTMAX

Q@TMAX

Q@QTMAX

QTMAX

QTMAX

*

*

*

*

*

*

SIG_2A3

SIG_1A4

SIG_2A4

SIG_2A3

SIG_2B3

SIG_3A3

ALF_24 - @TMAX * SIG_1AZ2

SIG_1A2

SIG_1B2

SIG_1B2

SIG_2A2

SIG_242

SIG_2B2

SIG_2B2

SIG_2A3

SIG_2A3

SIG_2B3



PLP2B340 ..

PLP2C341 .

PLP2C340 ..

CLP31321 ..

CLP31322 ..

CLP31323 ..

CLP31324 ..

CLP31411 ..

CLP31412 ..

CLP31413 ..

CLP31414 ..

CLP31415 ..

CLP31416 ..

CLP32411 ..

CLP32412 ..

CLP32413 ..

CLP32414 ..

- @TMAX * SIG_2B4
TSS_3 - TSE_4 + Q@QTMAX * ALF_34 - @TMAX * SIG_2B3
- Q@QTMAX * SIG_2B4
TSS_4 - TSE_3 - @TMAX * ALF_34 - QTMAX * SIG_2C3
- Q@TMAX * SIG_2C4
TSS_3 - TSE_4 + QTMAX * ALF_34 - QTMAX * SIG_2C3
- @TMAX * SIG_2C4

TCS_32
- @TMAX
TCS_31
- @TMAX
TCS_32
- @TMAX
TCsS_31
- Q@TMAX
TCS_41
- Q@TMAX
TCS_31
- @TMAX
TCS5_41
- @TMAX
TC5_31
- @TMAX
TCS_41
- @TMAX
TCS_31
- Q@TMAX
TCS_41
- @TMAX
=G=

TCE_31 -
SIG_1A2
TCE_32 +
SIG_1A2
TCE_31 -
SIG_2A2
TCE_32 +
SIG_2A2
TCE_31 -
SIG_2A4
TCE_41 +
SIG_2A4
TCE_31 -
SIG_2B4
TCE_41 +
SIG_2B4
TCE_31 -
SIG_2C4
TCE_41 +
SIG_2C4
TCE_32 -

=G= - QTMAX3

=G= - QTMAX2

=G= - Q@QTMAX3

=G= - Q@TMAX2
@TMAX * PHI_3132
=G= - @TMAX3
@TMAX * PHI_3132
=G= - Q@TMAX2
@TMAX * PHI_3132
=G= - Q@TMAX3
@TMAX * PHI_3132
=G= - QTMAX2
@TMAX * PHI_3141
=G= - QTMAX3
QTMAX * PHI_3141
=G= - Q@TMAX2
QTMAX * PHI_3141
=G= - Q@TMAX3
QTMAX * PHI_3141
=G= - @TMAX2
@TMAX * PHI_3141
=G= - Q@TMAX3
QTMAX * PHI_3141
=G= - QTMAX2
Q@TMAX * PHI_3241

SIG_2A4 - QTMAX * SIG_1A2

- @TMAXS

TCS_32 - TCE_41 + Q@TMAX % PHI_3241
- @TMAX * SIG_2A4 - Q@TMAX * SIG_1A2

=G=

- @TMAX4

TCS_41 - TCE_32 - QTMAX * PHI_3241
- @TMAX * SIG_2B4 - QTMAX * SIG_1A2

=G=

- @TMAXS5

TCS_32 - TCE_41 + @TMAX * PHI_3241
- QTMAX * SIG_2B4 - QTMAX * SIG_1A2

=G=

- Q@TMAX4
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|

QTMAX *

@TMAX =*

@TMAX *

@TMAX *

QTMAX *

QTMAX *

QTMAX =*

QTMAX =*

QTMAX =*

@TMAX *

QTMAX *
QTMAX *

QTMAX *
QTMAX *

QTMAX *
Q@TMAX *

QTMAX *
QTMAX *

SIG_1A1

SIG_1A1

SIG_2A1

SIG_2A1

SIG_2A3

SIG_2A3

SIG_2B3

SIG_2B3

SIG_2C3

SIG_2C3

SIG_1A1
SIG_2A3

SIG_1A1
SIG_2A3

SIG_1A1
SIG_2B3

SIG_1A1
SIG_2B3



CLP32415 ..

CLP32416 ..

CLP32417 ..

CLP32418 ..

CLP32419 ..

CLP32414 ..

MAP_1A1
MAP_1A2
MAP_1A4
MAP_1B2
MAP_1B4
MAP_1C4
MAP_2A1
MAP_2A2
MAP_2A3
MAP_2A4
MAP_2B2
MAP_2B3
MAP_2B4
MAP_2C3
MAP_2C4
MAP_2D4
MAP_3A2
MAP_3A3
MAP_3B3

LN1A1B14 ..

TCS_41 - TCE_32 - Q@TMAX * PHI_3241
- @TMAX * SIG_2C4 - QTMAX * SIG_1A2

=G= - @TMAXS5

TCS_32 - TCE_41 + @TMAX * PHI_3241
- @TMAX * SIG_2C4 - @TMAX * SIG_1A2

=G= - QTMAX4

TCS_41 - TCE_32 - Q@TMAX * PHI_3241
- Q@QTMAX * SIG_2B4 - @TMAX * SIG_2A2

=G= - @TMAXS5

TCS_32 - TCE_41 + Q@TMAX * PHI_3241
- @TMAX * SIG_2B4 - QTMAX * SIG_2A2

=G= - Q@QTMAX4

TCS_41 - TCE_32 - Q@TMAX % PHI_3241
- Q@TMAX * SIG_2C4 - QTMAX * SIG_24A2

=G= - @TMAXS

=G= -

BET_1A
BET_1A
BET_14
BET_1B
BET_1B
BET_1C
BET_2A
BET_2A
BET_2A
BET_2A
BET_2B
BET_2B
BET_2B
BET_2C
BET_2C
BET_2D
BET_3A
BET_3A
BET_3B

TCS_32 - TCE_41 + QTMAX * PHI_3241
- Q@TMAX #* SIG_2C4 - QTMAX * SIG_2A2
QTMAX4

SIG_1A1
SIG_1A2
SIG_1A4
SIG_1B2
SIG_1B4
SIG_1C4
SIG_2A1
SIG_2A2
SIG_2A3
SIG_2A4
SIG_2B2
SIG_2B3
SIG_2B4
SIG_2C3
SIG_2C4
SIG_2D4
SIG_3A2
SIG_3A3
SIG_3B3

CHI_1A1B - SIG_1A1 - SIG_1B4
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QTMAX
Q@TMAX

QTMAX
Q@TMAX

QTMAX
@TMAX

Q@TMAX =
@TMAX *

QTMAX

Q@QTMAX *

Q@TMAX
Q@TMAX

SIG_1A1
SIG_2C3

SIG_1A1
SIG_2C3

SIG_24A1
SIG_2B3

SIG_241
SIG_2B3

SIG_2A1
SIG_2C3

SIG_2A1
SIG_2C3



LNiAlC14 ..
LN1A2A13 ..
LN1A2A14 ..
LN1A2A23 ..
LN1A2B13 ..
LN1A2B14 ..
LN1A2B23 ..
LN1A2C13 ..
LN1A2C14 ..
LN1A2C23 ..
LN1A2D14 ..
LN1A3A13 ..
LN1A3A23 ..
LN1A3B13 ..
LN1A3B23 ..
LN1B2A23 ..
LN1B2B23 .

LN1B2C23 ..
LN1B3A23 ..
LN1B3B23 ..
LN2A1A14 .

LN2A1B14 ..
LN2A1C14 ..
LN2A2B13 ..
LN2A2B14 ..
LN2A2B23 ..
LN2A2C13 ..
LN2A2C14 ..
LN2A2C23 ..
LN2A2D14 ..
LN2A3A13 ..
LN2A3A23 ..
LN2A3B13 ..
LN2A3B23 ..
LN2B2A23 ..
LN2B2C23 .

LN2B3A23 ..
LN2B3B23 ..
LN3A2A23 ..
LN3A2B23 ..

CHI_1A1C
CHI_1A2A
CHI_1A2A
CHI_1A2A
CHI_1AZ2B
CHI_1A2B
CHI_1A2B
CHI_1A2C
CHI_1A2C
CHI_1A2C
CHI_1A2D
CHI_1A3A
CHI_1A3A
CHI_1A3B
CHI_1A3B
CHI_1B2A
CHI_1B2B
CHI_1B2C
CHI_1B3A
CHI_1B3B
CHI_2A14A
CHI_2A1B
CHI_2A1C
CHI_2A2B
CHI_2A2B
CHI_2A2B
CHI_2A2C
CHI_2A2C
CHI_2A2C
CHI_2A2D
CHI_2A3A
CHI_2A3A
CHI_2A3B
CHI_2A3B
CHI_2B2A
CHI_2B2C
CHI_2B34A
CHI_2B3B
CHI_3A2A
CHI_3A2B

SIG_1A1
SIG_1A1
SIG_1A1
SIG_1A2
SIG_1A1
SIG_1A1
SIG_1A2
SIG_1A1
SIG_1A1
SIG_1A2
SIG_1A1
SIG_1A1
SIG_1A2
SIG_1A1
SIG_1A2
SIG_1B2
SIG_1B2
SIG_1B2
SIG_1B2
SIG_1B2
SIG_2A1
SIG_2A1
SIG_2A1
SIG_2A1
SIG_2A1
SIG_2A2
SIG_2A1
SIG_2A1
SIG_2A2
SIG_2A1
SIG_2A1
SIG_2A2
SIG_2A1
SIG_2A2
SIG_2B2
SIG_2B2
SIG_2B2
SIG_2B2
SIG_3A2
SIG_3A2

SIG_1C4
SIG_2A3
SIG_2A4
SIG_2A3
SIG_2B3
SIG_2B4
SIG_2B3
SIG_2C3
SIG_2C4
SIG_2C3
SIG_2D4
SIG_3A3
SIG_3A3
SIG_3B3
SIG_3B3
SIG_2A3
SIG_2B3
SIG_2C3
SIG_3A3
SIG_3B3
SIG_1A4
SIG_1B4
SIG_1C4
SIG_2B3
SIG_2B4
SIG_2B3
SIG_2C3
SIG_2C4
SIG_2C3
SIG_2D4
SIG_3A3
SIG_3A3
SIG_3B3
SIG_3B3
SIG_2A3
SIG_2C3
SIG_3A3
SIG_3B3
SIG_2A3
SIG_2B3
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LN3A2C23 ..
LN3A3B23 ..

MAP1A1B
MAP1A1C
MAP1B1C
MAP2A2B
MAP2A2C
MAP2A2D
MAP2B2C
MAP2B2D
MAP2C2D
MAP3A3B

SYSCOST

SYSTIM

b ook B RS EEE A

TN I N R AR

CHI_3A2C - SIG_3A2 - SIG_2C3

CHI_3A3B - SIG_3A2 - SIG_3B3

BET_1A -
BET_1A -
BET_1B -
BET_2A -
BET_2A -
BET_2A -
BET_2B -
BET_2B -
BET_2C -
BET_3A -

@COST_1
@COST_2
@COST_2
Q@QC_LINK
@C_LINK
@C_LINK
@C_LINK
@C_LINK
@C_LINK
QC_LINK
QC_LINK
@C_LINK
@C_LINK
Q@QC_LINK
QC_LINK

¥ O K X X X K K X ¥ K ¥ ¥ ¥ *

1000 TSYS

BET_1B
BET_1C
BET_1C
BET_2B
BET_2C
BET_2D
BET_2C
BET_2D
BET_2D
BET_3B

BET_1A +
BET_2A +
BET_2D +
CHI_1A1B
CHI_1A2B
CHI_1A3A
CHI_1B2A
CHI_1B3A
CHI_2A1A
CHI_2A2B
CHI_2A3A
CHI_2B2A
CHI_2B3B
CHI_3A2A
CHI_3A3B

! Objective function for the model

]
1

(]
]

]
1]

(7]
1

1]

(]
]

]
]

1]
(@]
]

]
1]

[
]
O O O O O © O O O

QCOST_1 =*
@COST_2 *
QCOST_3 *
+ Q@C_LINK
+ QC_LINK
+ QC_LINK
+ QC_LINK
+ QC_LINK
+ Q@C_LINK
+ QC_LINK
+ QC_LINK
+ Q@C_LINK

+ QC_LINK
=N=

GAM_13 + GAM_23 + GAM_14

@COST_1
@COST_2
@COST_2
QC_LINK
@C_LINK
@C_LINK

* X ¥ ¥ ¥ *

BET_1A +
BET_2A +
BET_2D +
CHI_1A1B
CHI_1A2B
CHI_1A3A

@COST_1 =*
QCOST_2 *
@COST_3 *
+ QC_LINK
+ QC_LINK
+ QC_LINK
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1}

Q@ Q
n o
1 |

e

BET_1B + QCOST_1 * BET_1C
BET_2B + QCOST_2 * BET_2C
BET_3A + @QCOST_3 * BET_3B
@C_LINK * CHI_1A2A

*
*

* X X K X ¥ ¥

CHI_1A1C
CHI_1A2C
CHI_1A3B
CHI_1B2B
CHI_1B3B
CHI_2A1B
CHI_2A2C
CHI_2A3B
CHI_2B2C

CHI_3A2B

+
+

@C_LINK

@C_LINK

@C_LINK
@C_LINK

@C_LINK

@C_LINK

*

*

* %

*

CHI_1A2D

CHI_1B2C

CHI_2A1C
CHI_2A2D

CHI_2B3A

CHI_3A2C

BET_1B + @COST_1 * BET_1C
BET_2B + QCOST_2 * BET_2C
BET_3A + @QCOST_3 * BET_3B
* CHI_1A1C + @C_LINK * CHI_1A2A
* CHI_1A2C + QC_LINK * CHI_1A2D
* CHI_1A3B



$ BOUNDS

$ END

+ + + + + + + + 4+

@C_LINK
@QC_LINK
@C_LINK
QC_LINK
Q@C_LINK
@C_LINK
@C_LINK
QC_LINK
@C_LINK

* OR K X K ¥ ¥ ¥ ¥

CHI_1B2A
CHI_1B3A
CHI_2A1A
CHI_2A2B
CHI_2A3A
CHI_2B2A
CHI_2B3B
CHI_3A2A
CHI_3A3B

@C_LINK
QC_LINK
@QC_LINK
@C_LINK
@C_LINK
QC_LINK

+ + + 4+ + +

+ QC_LINK
=N=
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CHI_1B2B
CHI_1B3B
CHI_2A1B
CHI_2A2C
CHI_2A3B
CHI_2B2C

CHI_3A2B

+

+ o+

+

+

QC_LINK

QC_LINK
@C_LINK

@C_LINK

@C_LINK

* CHI_1B2C

*

CHI_2A1C
* CHI_2AZ2D

* CHI_2B3A

* CHI_3A2C



