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SOS: Synthesis of Application-Specific Heterogeneous
Multiprocessor Systems

Abstract

This paper describes a formal synthesis approach for design of optimal
application-specific heterogeneous multiprocessor systems. The method generates
a static task execution schedule along with the structure of the multiprocessor sys-
tem and a mapping of subtasks to processors. The approach itself is quite general,
but its application is demonstrated with a specific style of design. The approach in-
volves creation of a Mixed Integer-Linear Programming (MILP) model and solution
of the model. A primary component of the model is the set of relations that must
be satisfied to ensure proper ordering of various events in the task execution as well
as to ensure completeness and correctness of the system. Several experiments and
tradeoff studies have been performed using the approach. These results indicate that
the approach can be a useful tool in designing application-specific multiprocessor
systems.



1 Introduction

With VLSI systems becoming more and more commonplace, and with myriads of new
applications for VLSI systems, there is a growing need for design of hardware systems for
specific applications (i.e., hardware systems that will perform given tasks efficiently). This
paper addresses a technique for design of heterogeneous multiprocessor systems for given
applications. Example application tasks where heterogencous multiprocessor systems are
desirable can be found in many domains, including digital signal processing, robotics, and
control of power systems.

We consider a heterogeneous multiprocessor system to be a system which makes use of
several different types of processors, processing components, and /or connectivity paradigms
to optimize performance and/or cost-effectiveness of the system. For example, different
processor/processing component types could include vector processors, SIMD processors,
MIMD processors, special purpose processors, and data-flow processors. Similarly, different
connectivity paradigms could include bus, point-to-point, ring, or a mixture of these. The
Purdue mixed-mode PASM system [35] is an example of a heterogeneous system.

1.1 Motivation for Synthesis

Some questions that come up during the design of application-specific multiprocessor sys-
tems are the following (the list is not exhaustive):

e how to consider all the relevant factors, costs, constraints, and objectives during the
design,

e how to decide the number and types of processors to be included in the system,

how to decide the interconnection between the selected processors,

how to use the designed system effectively to perform the given application task, and

how to map and schedule the subtasks onto the processors.

Obviously, the answers to these questions are difficult to obtain. It is important to devise
systematic methods for designing such systems. As a matter of fact, answers to several
design questions depend on the characteristics of the specific application task under consid-
eration. Hence, it seems appropriate to consider such task characteristics while designing
the system; i.e., the system should be specifically tuned to the application at hand. With



this in mind, we describe an “automatic synthesis approach” for design of application-
specific multiprocessor systems. In such an approach, one starts with a given application
and designs a complete system considering the application characteristics and all other
relevant factors.

1.2 Overview of the SOS Approach

Some of the questions mentioned in Section 1.1 relate to the design of the system while
others relate to how to effectively use the system. It is our view that in order to optimize
overall performance and/or cost-effectiveness of the system, it is imperative to consider is-
sues related to both the types of questions while designing the system. The SOS (Synthesis
Of Systems) approach reflects this view. One of the prime concerns relating to the effective
usage of the system is the issue of scheduling/mapping the application task onto the sys-
tem. Indeed, the SOS approach is scheduling-driven and it deals with scheduling/mapping
as a primary issue. The synthesis technique described here produces a custom multipro-
cessor system, maps the subtasks onto the system and provides a static schedule for the
task execution.

SOS assumes the application domain is specified in terms of a task data flow graph
(Figure 1). The task data flow graph specifies a set of subtasks (nodes in the graph) that
need to be performed and the data precedence between them (arcs in the graph). Given
the task data flow graph, the goal is to synthesize a multiprocessor system which meets
various cost and performance constraints. The multiprocessor system is specified in terms
of a set of processors and the interconnections between them. An example system is shown
in Figure 2. Synthesizing a system involves making decisions about the number and types
of processors, the overall interconnection between the processors, and the scheduling of
subtasks on the processors.

The SOS approach involves creation of a formal model of the multiprocessor synthesis
problem using mathematical programming and the solution of this model. This approach is
a natural outgrowth of the work described by Chu [6], Talukdar [28], and Hafer [18]. Hafer’s
notation has been adopted wherever meaningful to do so. Qur research focuses on the
automatic design of the multiprocessor system ilself, nol merely the mapping of tasks onto
a given system. The SOS approach can be used to explore different interconnection styles;
e.g., bus, point-to-point, ring, or a mixture of these. SOS assumes there is no global clock
and communications between subtasks are asynchronous at the task level. A distinguishing
feature of the research is the fact that SOS designs a truly heterogeneous system, which
allows a more precise tailoring of the synthesized system to a specific application. SOS is
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Figure 1: Example 1 Task Graph



P1a

ll&l!Za

P3a

Toa(011) Tse(S1)

.0 75
Tss(S1) Toa(01,2)
Toa(021) Tse(S2) Toa(041)
s | s 1.5 | 25¢%
T | D T 1 T 2.25 1‘ -
Tss(S2) Toa(022) Tss(S4) Tse(S4)
T(iA(Os.ﬂ
. 1.5 2.5
P3a T 225 | t
Tss(S3) Tsg(S3)
TT(14 1) T?LE(L; 1)
bia2a - 5 1.75 t
Tes(is ) Tce(is1)
lla,3a - ‘Ls iL_ E "—t
Tecs(iz2) Tce(is2)
l2a‘3a : 1 \lfz - t

Figure 2: Synthesized Multiprocessor System I and Schedule for Example 1



capable of handling two types of heterogeneity:

o Heterogeneily of Type-I: This refers to heterogeneity in terms of the functionality of
the processors. Two processors could be different in terms of the types of subtasks they
are capable of performing. This notion allows inclusion of special-purpose processors
in the system.

o Heterogeneity of Type-11: This refers to heterogeneity in terms of the cost-speed char-
acteristics of the processors. Two processors could be capable of performing a given
subtask, but the speeds of execution are different.

A complete mathematical programming formulation of the problem requires specifica-
tion of an objective function that has to be optimized and a set of constraints that have
to be satisfied. The objective lunction can be any function which can be linearized; e.g.,
the total system cost, or the overall system performance. The set of constraints consists
of the correctness constraints that must be satisfied for the overall task to be performed
correctly as well as the arbitrary timing and cost constraints imposed by the designer.
The correctness constraints consist primarily of the relations that ensure proper ordering
of the subtasks and the data transfers, taking into account the timing involved and the
relations that express the conditions for complete and correct system configuration. In
order to express the various constraints and the objective function, SOS defines certain
variables related to the system. The necessary variables fall into two basic categories: the
timing variables (real variables which represent timings of various critical events in the
operation of the system) and the binary variables (0-1 variables which represent the imple-
mentation decisions regarding the system configuration). Several constraints comprising
the mathematical programming model turn out to be non-linear relations. These relations
are linearized and the model is converted into an MILP (Mixed Integer-Linear Program-
ming) formulation. Bozo' [17] solves the MILP model by invoking a commercial linear
programming package, XLP, developed by XMP Software, Inc.

SOS is being developed as part of the USC (Unified System Construction) Project [31].
The strength of SOS lies in the fact that it is quite general and flexible. The approach
allows us to modify, extend and enhance the model to include more design possibilities
and variations easily. The exact form of constraints used can be tailored to meet the
characteristics of the design problem at hand. Also, the approach offers a great degree of
flexibility in handling arbitrary constraints as they can be expressed using the timing and
binary variables defined in the model.

'A branch-and-bound program to solve MILP problems which has been developed by L. J. Hafer of
Simon Fraser Univ.



The organization of the rest of the paper is as follows. Section 2 briefly surveys some
of the related research. Section 3 describes the SOS approach in detail by elpplying it to a
specific style of design; Section 3.1 presents the computation model used to represent the
application task to be executed on the system, Section 3.2 describes the architecture style
chosen for the system to be designed, Section 3.3 describes the complete SOS mathematical
programming model for the style under consideration, and Section 3.4 describes how to
linearize the specific SOS model and solve it as an MILP problem. Section 4 describes
some examples and experimental results in detail; Section 4.1 presents some synthesis
experiments with an example of four subtasks, Section 4.2 describes some tradeoff studies
using the same example, and Section 4.3 describes some synthesis experiments with another
example (nine subtasks). Section 5 outlines possible applications of the SOS approach and
how the specific SOS model can be extended to deal with more complex design problems.
Finally, Section 6 summarizes the paper and concludes that SOS can be a useful tool.

2 Previous Related Research

SOS is a scheduling-driven synthesis approach for application-specific multiprocessor sys-
tems. Synthesis methodologies for such systems are not well researched yet. The related
past research of others covers a broad range of topics, which we briefly review here.

The multiprocessor scheduling problem has been researched quite extensively [20, 11, 8,
1, 14, 24] (although no effort is directed towards synthesis). However, most of the solutions
concentrate on homogeneous systems. Earlier solutions did not consider communication
overhead. Many solutions revolve around the idea of List Scheduling (LS) heuristic. Fer-
nandez and Bussell [11] propose a lower and an upper bound on the number of processors
required to execute a task precedence graph in a time not exceeding the length of the critical
path. They also determine a lower bound on the execution time for a given number of pro-
cessors. Kasahara and Narita [24] describe heuristic algorithms, combining critical path
ideas with branch-and-bound, for scheduling to minimize the execution time. However,
neither of the efforts includes communication overhead. Some scheduling heuristics con-
sidering communication overhead are also reported; e.g., ELS heuristic [22], ETF heuristic
[22], and MH heuristic [10]. Al-Mouhamed [3] proposes an approximate lower bound on
the completion time, and approximate lower bounds on the number of processors and the
number of communication links required to process a task precedence graph within this
completion time. An approximate lower bound on the completion time is also estimated
for a given number of processors.



There have been a number of research efforts directed towards the problem of task allo-
cation for a given system. Several variants of the problem have been considered and several
different approaches have been investigated. Inspired by Stone’s work on the two-processor
problem [36], graph-theoretic techniques have been researched for serially partitioned tasks
(i.e, even though there are m subtasks, only one is active at one time); e.g., [33, 4]. In
[5], Bokhari extends the prior research for serially partitioned tasks [4] to parallel tasks by
explicitly taking concurrency into account. Shen and Tsai [34] model the task assignment
problem as a graph matching problem. In [23], Indurkhya et al. use an analytical approach
for modeling and optimization of multiprocessing execution time for random-graph models
of programs. They derive an optimal task-assignment policy by optimizing the execution
time and confirm intuitive results for the 2-processor and n-processor cases. Nicol [30]
and Haddad [15] describe similar research. Heuristic approaches have also been applied to
the task allocation problem [9, 7, 19]. Houstis [19] describes heuristic algorithms for task
allocation to homogeneous bus connected systems. An iterative algorithm is also given to
determine the optimal number of processors.

Mathematical Programming has also been applied to the problem of task allocation for
a given system. Chu et al. [6] described an integer 0-1 programming approach to the
problem. They considered the problem of optimal allocation of a set of m subtasks to a set
of p (fixed) processors already interconnected in some fashion. Ma et al. [27] also report an
integer programming model for task allocation. However, the models described in [6, 27]
do not consider the effects of precedence relations in the data flow among the subtasks.
We are using a similar approach for synthesis and we take into account the precedence
relations. Nonlinear programming has been used for task allocation under an assumption
that the given task can be split into arbitrary size subtasks [2, 16]. A limitation of such
research is that it is not directly applicable to practical situations where partitioning can
usually be done only at specific points.

One research effort by Talukdar and Mehrotra [28] is oriented towards synthesis of
multiprocessors. In this work, a simplified and similar version of our problem is described,
and the goal is to find a minimum execution time system which meets the system cost
constraint. The problem is modeled using mathematical programming, though the solution
procedure is heuristic and iterative. The core of the solution procedure consists of an
interactive program that estimates the minimum execution time of the task for a given
system. In this work, no explicit consideration is given to the delays and costs associated
with the communication links. Our research models the communication links explicitly.

Mathematical programming has also been applied to the data path synthesis problem.
Hafer and Parker [18] used a mixed-integer linear programming approach to automatically
synthesize register-transfer level datapaths, given a data flow/control flow graph description
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(?f the hardware. Hwang et al. [21] have described an integer linear programming model
for the scheduling problem in data path synthesis under resource constraints and time
constraints.

There have been research efforts directed towards synthesis of array-processor architec-
tures [25, 12, 29, 26]. Such architectures are usually characterized by synchronized oper-
ation, and all the processors perform nearly identical and relatively simple computations.
Synchronous operation makes array-processors best-suited for computations displaying rea-
sonably regular structure and flow of data. However, more often a task contains a mix
of quite different subtasks with quite different processing requirements and consequently
heterogeneous systems are more suitable. Our research is geared towards the synthesis of
such heterogeneous systems.

Superconcurrency [13] is a research effort directed towards heterogeneous processing. It
is a form of distributed heterogeneous processing developed to support a variety of Navy
High Performance Computing requirements. It is a general technique for matching and
managing a heterogeneous suite of super-speed processors.

3 A Specific SOS Model

As mentioned in Section 1.2, the SOS approach is quite general and it can be applied to
several varying design situations and design styles. The approach involves creation of a
mathematical programming model and solution of the model. Depending on the specific
design problem at hand, a specific model can be created. The challenge is to come up with
the specific mathematical programming model applicable to the design problem at hand.
The answer lies in the general characteristics of the application tasks as well as the systems
being considered. Let us refer to the relevant characteristics of the application tasks as
the task model, and those of systems as the system model. The task model describes the
computational model underlying the application task. The system model describes the
style of architecture used to implement the task. The task model and the system model
together determine the mathematical programming model to be created. The application
task itsell determines the specific constraints to be used to solve a particular problem.
Having discussed the SOS approach in general above, we now describe application of the
approach to a specific task model and system model.
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3.1 A Representative Task Model

The task consists of a set of subtasks. Each subtask requires certain input data and
produces certain output data. Inputs to a subtask may come from other subtasks and
outputs from a subtask may go to other subtasks. The set of subtasks and the input-
output relationships among them can be expressed by a task data flow graph (directed
acyclic graph) as shown in Figure 1. The subtask nodes are labelled Sy, S, etc. (S, in
general). The input end of a data arc is labelled i, if it provides the 6 input to subtask
Sa, and the output end is labelled o, if it transmits the ¢'* output from the subtask S,.
Although we represent the task by a data flow graph, we consider a subtle distinction
between our model and the traditional model. With the traditional meaning, a subtask
would require all the inputs before starting its execution and none of the outputs would
be available until after its execution was over. However, in our model subtasks do not
require all the inputs before starting their execution and they may produce some outputs
even before their completion. To express this possibility, each input 7,; has a parameter
fr(iap) associated with it which is the fraction of the subtask S, that can proceed without
requiring the input 7,;. Similarly, each output o,. has a parameter f4(0,.) associated
with it which specifies that the output o, . becomes available when f4(0,,) fraction of the
subtask S, is completed.

For each subtask S,, a set P, represents the set of processors capable of executing it. A
data arc from node S,; to node S,; implies that some data is transferred from the subtask

S.; to the subtask S,,. The volume of data transferred varies from arc to arc, and a
parameter V,; .2 specifying the volume is associated with each arc.

3.2 A Representative System Model

The multiprocessor system is specified in terms of the processors selected and the intercon-
nection architecture between them. For the specific style under consideration, we assume
point-to-point interconnection; i.e., if a processor pa needs to send data to another pro-
cessor pga, then there must be a direct communication link from pg; to psa. Fach processor
is assumed to have local memory, and all the interprocessor communication takes place by
message-passing over communication links. The subtasks get executed on the processors
and the necessary data transfers take place over the communication links.

A processor could be executing at most one subtask at any given time. Also, one and
only one processor performs a given subtask. So, once execution of a subtask begins on a
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processor, the subtask occupies the processor for an uninterrupted duration of time before
it completes. The length of the duration is equal to the execution time of the subtask,
which depends on the processor type on which it is performed. A parameter, denoted
as Dpg(Fy, S,), specifies the execution time for the subtask S, if the processor type P, is
selected to perform it. Hence, il two subtasks are to be executed by the same processor,
one must be scheduled to begin after the other is completed.

The data transfer corresponding to an arc from node S,; to node S,; may be a remote
transfer (if S,y and S,, are mapped to different processors); or it may be a local transfer
within the same processor (if S,; and S,, are mapped to the same processor). Delay
associated with a data transfer depends on whether it is a remote transfer or a local
transfer?. The local transfer delay is represented by the parameter Doy which specifies
the time taken in transferring a unit volume of data locally. The remote transfer delay
is represented by the parameter Deop which specifies the time taken in transferring a unit
volume of data remotely. In practice, the time spent in performing a remote data transfer
depends on the amount of traffic in the interconnection network; if two data transfers
are supposed to take place over the same communication link at the same time, then the
second can only start after the first is completed (The second set of data will remain held
in the local memory of the processor producing it). Essentially, the time spent in remote
transfer consists of the waiting time and the actual transfer time. The parameter Depr only
captures the actual transfer time component. The waiting time component is captured in
the mathematical programming model as a delay in scheduling the communication by
enforcing exclusion in the usage of the communication links. Similar to subtask execution,
once a data transfer operation begins, the communication link is released only after the
operation is completed; i.e., the link is busy for an uninterrupted duration of DerViataz
time units if V,; 42 1s the volume of data associated with the operation.

Our system model assumes overlap between computation and I/0 operations. A subtask
can produce output data at intermediate points of its execution. Transfer of such output
data can start as soon as it is available (obviously, only if required communication links are
available) without delaying the completion of the subtask. It is not necessary to wait for the
completion of the subtask before starting the transfer of the output data, since it is assumed
the processor executing this subtask does not get involved in the data transfer operation.
Data transfer operations are taken care of by I/O modules. We assume for this specific
model that each processor in the system will have the necessary 1/O modules. Similarly,
the processor receiving the data does not get involved in the data transfer operation, and
could be performing computations while the data is being received by its I/O module (and
so the inputs of the subtask could arrive after the processor has already started executing

2Local transfer delay could be negligible compared to the remote transfer delay.
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the subtask).

A set P represents the set of all the processors (with varying functionality, cost and
performance) available for selection as part of the synthesized system, where P = U, P,.
Associated with each processor p; € P is a parameter Cy which specifies the cost of the
processor. (7, specifies the cost of creating a communication link between two processors.

3.3 The Mathematical Programming Model
3.3.1 The Constraints

In order to express the various constraints, the following variables need to be defined.

THming Variables: There are three classes of timing variables.

o Data availability timing variables:
— Input data availability, Tis(i,4): Time when the data required by input 7, of
subtask S, is available for use.
— Qutput data availability, Tos(04.): Time when the output data value o, com-
puted by subtask S, has become available.
o Subtask execulion timing variables:
— Subtask execution start, Tss(S,): Time when the execution of subtask S, actually
begins.
— Subtask execution end, Tsp(S,): Time when the execution of subtask S, is com-
pleted.
e Data transfer timing variables:
— Data transfer start, Tes(izs): Time when the transfer of the data required by
input i, of subtask S, actually begins.
— Data transfer end, Tep(ias): Time when the transfer of the data required by
input 2,5 of subtask S, ends.

Binary Variables: There are two types of binary variables.

o Subtask-lo-processor-mapping variable, o4.: The variables of this type specify the
mapping between the subtasks and the processors. ¢4, = 1 indicates processor pq
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will implement subtask S,,.

o Dala-transfer-type variable, 4,1 42: The variables of this type specily the data transfer
type for the various data arcs. 4,142 = 1(0) indicates that data transfer from subtask
Sa1 to subtask S,; is a remote (local) transfer.

The necessary constraints have been classified into ten categories as follows.

Processor-selection constraint: For each subtask S,, a set of processors P, is available
to implement it. In order for the implementation to be correct, one and only one processor
should be selected to implement the subtask. Thus, for each subtask S,. the following
must be satisfied:

>, Tia=1 (3.3.1)

d|pg€Pa

Data-transfer-type constraint: v, 42 is a variable which indicates whether the data trans-
fer from the subtask S,; to the subtask S,; is a local transfer or a remote transfer. Now,
if the subtasks S,; and S, are mapped to the same processor (say pg, where pg; € P,; and
pd € Pyo), then we know that it is a local transfer, and thus 7,; ., = 0. However, if they
are mapped to different processors, then the data transfer is remote, and thus y,1,.2 = 1.
Thus, the defining equation for v, 42 is:

Yal,a2 = ] = Z Td,a1Td,a2 (-332)
d|pg€Pa1NPaz

We will have such an equation for each pair of subtasks communicating with each other.

Input-availability constraint: Tya(i,p) is the time the data required at input 2,4 will be
available, which will be the time T (i) when the data transfer has ended. So, for each
input 2,4, we have:

Traliap) = Top(iap) (3.3.3)

Output-availability constraint: Once execution of the subtask S, begins, a certain time
elapses before an output data value o, . produced by the subtask becomes available. The
time elapsed would be the time taken in executing f4(0a,c) fraction of the subtask; and so
the time Tp4(0,c) must satisly the following relation:

TO.‘l(oa.C) ] T‘SS(Su) 4 .f‘f‘\(au,c)(’l‘SE(Stt) = Y‘SS(‘S'H)) (534)

We will have such a relation for each output.



Subltask-execution-start constraint: Tsg(S,) is the time the subtask S, begins execution.
There must be a certain relationship between the time a given subtask begins its execution
and the times at which its various inputs become available. Since fa(tas) fraction of the
subtask S, can proceed without requiring the input 4,,, the following relation must be
satisfied for all the inputs i, to the subtask:

Tra(iap) < Tss(Sa) + faliap)(Tse(S.) — Tss(Sa)) (3.3.5)

Subtask-execution-end constraint: Once execution of a subtask begins, a time equal to
the execution time of the subtask must elapse before the subtask is completed. Execution
time of the subtask depends on the processor type being used for it. A priori we do not
know which processor type a given subtask S, is going to be mapped to. Any processor
from the set P, could be selected to execute the subtask S,. The uncertainty can be
expressed by the following relation (where T'yp(pa) represents the type of the processor
p4). The summation acts as a selection since only one o4, = 1 for each a:

Tse(Sa) =Tss(Sa)+ Y. oaaDps(Typ(pa), Su) (3.3.6)
dlpdepu

For each subtask S,, we need such a relation.

Data-transfer-start constraint: The time at which transfer of data begins must be after
the output data is produced. Except for external inputs, for each input data 7,250 (to
the subtask S,3) being supplied by another subtask’s output, if the output supplying the
data is 0411, the following relation must be satisfied by Tos(iazs2), the start of the data

transfer:
TC'S("'ZuZ,b'.Z) Z TOA(Oul,c[) (33?)

Data-transfer-end constraint: The time at which transfer of data ends, Tcg, depends
on whether the transfer is remote or local. A priori we do not know which case will occur.
However, the two possibilities can be combined into one single relation using the variable
Yat.a2- Thus, for each input data .2, being supplied by another subtask S,;, we have:

3 & <

TC-'E(?'&?,b‘.Z) = TCS(?:ﬂ.b.’!) + ql'!zl,aQDC'R“/:z'l.uZ + (1 = "J'ul,rLZ)DCfIJI/;:I.cl‘.Q (336)

The next two categories of constraints ensure that the hardware resources (processors,
communication links) are shared correctly. These constraints ensure that the same hard-

ware resource is not scheduled to perform more than one function during any given time
interval. In order to express these constraints concisely, we need to define a special function

13



f:&llled an overlap function L (as defined in [18]). The function is defined on two closed
intervals of time, [t1,42] and [t3,#4] (where 11 < {2 and 13 < t4), as:

, _ 1, if the intervals overlap
L([tl, (.2], [B, id]) = { 0. othermise I

Processor-usage-exclusion constraint: If two subtasks S,; and S,; are being executed
by the same processor py, then the two subtasks must not be scheduled to be executed at
the same time. The situation that two subtasks S,; and S,; are being implemented by
the same processor p; implies ¢4, = 04,0 = 1. For each processor p; and each pair of
subtasks S,; and S, such that the sets of processors P,; and P,, available to implement
the subtasks contain the processor py, the following relation ensures that the overlap in
the usage of the processor by the two subtasks is prevented:

04,a10d,02L([Tss(Sa1), Tse(Sar)), (Tss(Saz), T'se(Sa2)]) = 0 (3.3.9)

Communication-link-usage-exclusion constraint: If the data required by two inputs 241 4
and 7,942 are being transmitted over the same communication link, then the two data
transfers must not be scheduled at the same time. Let us say the input data 7,4 is
supplied by the subtask S,3 and the input data 7,94 is supplied by the subtask S,4. The
two inputs 7,1 51 and i, 40 will be transmitted over the same communication link if the two
subtasks S,; and S,, are mapped to the same processor, say pg, and also the subtasks
S.3 and S,4 are mapped to the same processor, say pg (in that case, both the inputs will
be transmitted over the communication link from processor py to processor pg2). So, for
each processor pair (par,paz) and each pair of inputs 2441 and ia42, if the input 2,0
is being supplied from S,3 to S, and the input 74942 from Suy to Sag then the following
relation ensures that the overlap in the usage of the communication link from processor
pa1 to processor pgp by the two data transfers is prevented:

Oa2.a1042.020d1,030d1 ,aa L([Tos(iar )y Teg(tarp)]s [Tos(tazpe), Tee(tazp)]) = 0 (3.3.10)

The above constraint also captures the waiting times associated with the remote data

transfers.

3.3.2 Objective Functions

Two of the most important goals that the designer may wish to optimize are the overall
system performance and the total system cost.

14



Overall System Performance: The performance is frequently measured by how fast
the system can perform the given task, the time at which the task is completed (or all the
subtasks are completed). If T is a real variable representing the time at which the task is
completed, then the objective is to minimize Tp.

To ensure that Tr represents the time at which all the subtasks are completed, we need
to introduce the following constraint in the model (for each subtask S,):

Total System Cost: The total cost of the system can be expressed as the sum of the
costs of the processors selected and the costs of the links created. In order to do so, we
need to define two types of binary variables as follows.

Processor-selection variable, 8;: The variables of this type specify which processors have
been selected in the synthesized architecture. 3; = 1 indicates the processor py is being
included in the system.

Communication-link-creation variable, x4 42 The variables of this type specify what
communication links are present in the synthesized architecture. y41 42 = 1 indicates there
exists a communication link from the processor py to the processor pg in the designed
system.

Using the variables defined above, the objective is to

MINIMIZE 5" BaCa+ Y Xa1,42CL

dlps€P d1,d2|pyy €PAp g €F

where Cy is the cost of a processor py and C, is the cost of building a communication link
between two processors, as defined in Section 3.2. The variables of type 84 are related to
the variables of type g4.. A processor py will be included in the system if and only if at
least one of the subtasks S, (ps € P.) is mapped to it, which implies that the variable 34 is
the logical OR of all the oy, variables. This can be expressed by introducing the following
constraint in the model (for all a such that py € P, ):

Bi > 0u (3.3.12)

The variables of type yar.q2 are also related to the variables of type ouq. A communication
link is created from processor pg to processor pyy if and only if at least one of the subtasks
S.1 (pa1 € Puy) mapped to the processor pg needs to send data to at least one of the
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subtasks Su» (pa2 € Pa2) mapped to the processor pyy. So, the variable ygi .49 is the logical
OR of all the product terms of the form (0d1,01042,02), where the subtask S,; supplies some
data to the subtask S,;. This condition leads to the introduction of following constraint
in the model (for all al, a2 such that py € P,y and pgs € P,» and subtask S,; sends data
to subtask S,»):

Xd1,d2 2 Od1,a10d2,02 (3.3.13)

The essence of the model has been presented. It is easy to see that arbitrary constraints
imposed by the designer (within the semantics of the model) can be expressed using the
timing and binary variables defined in the model.

3.4 Synthesis Using the Model
3.4.1 Linearization of the Model

Several constraints comprising the mathematical programming model presented in Section
3.3 are non-linear relations. In order to solve the model as an MILP, these relations must
be linearized and the model converted into an MILP formulation.

Eq. (3.3.2) is non-linear. It can be linearized by defining a binary variable of the form
dd.a1.a2 Tor each product of the form (04410442). Using the new variables defined, Eq.
(3.3.2) can be replaced by the following set of linear relations:

Yal,e2 = 1 - Z 5(1,(:].,:12 (3414)
d|r3d€f’u1nf’n'z

01,02 < Odal (3.4.15)

6({,«1,02 S Td,a2 (34]_6)

Now, let us consider linearization of Eq. (3.3.9). The constraint says that if two subtasks
5.1 and S, are executed on the same processor py, then there must be no overlap in their
execution time intervals. This implies that either the start time of S,y is sometime after
the completion time of S,2 or the start time of S, is sometime after the completion time of
S.1. Let us define a binary variable ag; 42 whose value decides which of the two possibilities
OCCUTS. (ra1q42 = | implies S,y is executed first. Using this variable, Eq. (3.3.9) can be
rewritten as the following pair of non-linear relations:

Tss(Sa2) 2 Q10204010402 T5E(Sa1)

TSS("Q‘”) 2 (1'fau1.a'Z)Ud,u]o-d,aQTSE('S'uz)
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To linearize the above pair, let us define a constant Ty whose value is larger than the
possible values of all the timing variables in the model. Now, the following two linear
relations express the desired constraint:

Tss(Sa2) 2 Tse(Sa1) = (3 = Qate2 = Gda1 — ae2) T (3.4.17)
TSS(Sa'l) 2 TS'E'('S.(L?) - (2 b Cyla2 — Odnl — Jd‘uz)TM (3.4.18)

Similarly, to linearize Eq. (3.3.10), we need to define a binary variable ¢q1 1,022
Oa1p1,a262 = 1 indicates the data transfer for 2,4, takes place before the data transfer
for 249 42 if the same communication link is used for both the transfers. Using this variable,
Eq. (3.3.10) can be rewritten as the following pair of linear relations:

TCS(E(I'.Z,M) 2 JC'E'(iuI.b[) - (5 - d)nl,b'l a2,b2 = Od2,01 — Od2,a2 — Td1,03 — gdl,tz-’l)IB!‘,ng)
C.S'(zal.bl) 2 ICE(ica'Z.b?) = (4 + ¢al,b1.c12.b2 — 0d2,a1 — Td2,a2 — Odl,03 — o-dl,u-l)mfl’-go)
Finally, non-linear Eq. (3.3.13) can be simply rewritten in the following linear form:

Xd1,d2 2 Odi,al + Tdze2 — 1 (3.4.21)

3.4.2 Solution of the Model

The linearized MILP model is solved using the Bozo program [17]. As a result of solving
the model, we get the following information as outputs:

e a multiprocessor system; i.e., the chosen set of processors and the interconnection
architecture,

e a schedule for the subtasks, and

e detailed timing information for computation and transfer of data.

4 Experiments and Results

The specific model described in Section 3 was used to experiment with two example task
graphs. The first example consists of four subtask nodes, while the second consists of nine.
Some of the data related to these examples is taken from [28].
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Table 1

Processor Characteristics - Example 1

Execution Time

Proc. || Cost || Sy | S2 | S5 | Sy
y2i| 4 1 1 - 3
P2 9 3] L] 2| 1
P3 2 -1 3] 1] -

4.1 Example 1: Four-Subtask Task Graph

This example data flow graph is shown in Figure 1. Associated fp and f4 parameters are
also given in the figure, constraining input/output timing for the subtasks. We assume
we have available three types of processors: py, po, and ps. The costs of these processors
and the execution times of various subtasks on the processors are given in Table I. An
entry of ‘=" in the table implies that the particular processor is functionally not capable of
performing the particular subtask. As is obvious from the table, different processors have
different cost-speed-functionality characteristics. In this example the volume of data that
needs to be communicated is one unit at each arc in the graph. Local transfer delay is given
to be negligible; i.e., Doy, = 0. We are also given the communication link characteristics.
The cost of a link, C, is one unit; and the remote transfer delay for a unit volume of data
over a link, D¢pg, is also one unit.

The MILP model for the example consists of 21 timing and 72 binary variables, and 174
constraints. Bozo was used to generate 4 non-inferior® systems. These different systems
were generated by changing the constraint value for the total cost of the system, and
optimizing the overall performance of the system. Bozo’s runtime to generate each of these
designs is on the order of a few seconds. These runtimes are on a Solbourne Series5e/900
(similar to Sun SPARCsystem 4/490) with 128 MB of memory. Cost, performance and
runtime for the four designs are given in Table II. A briel discussion of these designs
follows.

Design 1: This design consists of 3 processors: py, - a processor of type pi, pa - a
processor of type ps, and pa, - a processor of type ps. Processor pi, performs subtask Si,
processor py, performs subtasks S, and Sy in that order, and processor ps, performs subtask

3A system (characterized by its cost and performance) is considered non-inferior if cost (performance)
can not be improved without degrading performance (cost).
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Table I1

Example 1 Systems

Design || Runtime (see) || Cost | Performance
1 11 14 2.5
2 24 13 3
3 28 7 4
4 37 5 7

S3. There are three communication links: l14 24, 14,34, and ly, 3,. Data iy, gets transmitted
on link /1, 24, data i3 gets transmitted on link lj, 3., and data i3 gets transmitted on link
l34,30. As an illustration, this system is shown in Figure 2. A detailed schedule for the
various events is also shown in the figure.

Design 2: This design is similar to design 1, and also consists of 3 processors: pia, p2q,
and ps,. However, it has only two links: 1,24, and lj,3,. Presence of fewer links forces
a change in the mapping between the resources and the events. Processor pi, performs
subtasks S; and Sy in that order, processor py, performs subtask Sy, and processor ps,
performs subtask Si. Data ¢4, gets transmitted on link [y, 2., data i3, and data i35 get
transmitted on link /lj, 3, in that order.

Design 3: This design consists of 2 processors: py, - a processor of type py, and pa,
- a processor of type ps. Processor py, performs subtasks S; and Sy in that order, and
processor ps, performs subtasks Sz and Sj in that order. There is a communication link:
lia3q- Data i3 gets transmitted on link /14 3..

Design 4: This design consists of just 1 processor: py, - a processor of type pa. The
processor performs the subtasks S,, S|, S3, and Sy in that order.

4.2 Tradeoff Studies Using the Four-Subtask Graph

Some tradeoff studies were performed using the example in Section 4.1. We studied the
role of inter-subtask communication in synthesis of the systems. The study was performed
by varying the ratio between communication times and execution times.
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4.2.1 Experiment 1: Increase the Communication Time

In this experiment, we increased the volume of data to be transferred for each arc in the
four-subtask task graph. All the other parameters remained as given in Section 4.1.

When the volume of data is doubled for each of the arcs (i.e., the volume is two units
instead of one), 3-processor designs become inferior. Only two designs remain non-inferior:
the 2-processor design and the uniprocessor design.

The 2-processor design also becomes inferior when the volume of data is made six times
the original volume (i.e., the volume is six units for each arc). Only the uniprocessor design
remains non-inferior.

4.2.2 Experiment 2: Increase the Execution Time

In this experiment, we increased the size of each of the subtasks (and thus the execution
times in Table I). All the other parameters remained as given in Section 4.1.

When the size of each of the subtasks is doubled (and hence the execution time is
doubled for each of the processor types), the number of non-inferior designs becomes five
(instead of four). The new non-inferior design is a 3-processor design. This design consists
of 3 processors: pir., p1s - two processors of type py, and ps, - a processor of type ps.
Processor p1, performs subtasks S and Sy in that order, processor py, performs subtask
S4, and processor ps, performs subtask Sy. There are two communication links: ly, 14, and
l1a32. Data i4, gets transmitted on link /14,15, and data 735 and data i3, get transmitted
on link /;,3, in that order.

When the size of each of the subtasks is further increased and made three times the
original size, the number of non-inferior designs becomes seven (as opposed to five for the
double-size case above). The two new additions are a 4-processor design and a new 2-
processor design. The 4-processor design consists of pi4, p1s - two processors of type p1; P2a
- a processor ol type pz, and ps, - a processor of type ps. Processor Pia performs subtask
S1, processor pyy pe1fom1s subtask S,, processor py, performs subtask Sy, and processor pa,
pex[onm. subtask S3. There are three communication links: 11,245 (1a30. and ljp3.. Data
i41 gets transmitted on link /i, 24, data i3y gets transmitted on link l10,30. and data 133
gets transmitted on link {j3.. The new 2-processor design consists of py, - a processor
of type py, and pa, - a processor of type py. Processor pi, performs subtask S, and S,
in that order, and processor pa, performs subtasks S3 and Sy in that order. There is a
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Table 111

Processor Characteristics - Example 2

Execution Time
Proc. COSL Sl Sg .,'3 S,; 55 Sﬁ H",‘ Ss .: '9
™ 4 21 2 1 1] 1] 1| 3| =] 1
P2 b} 3 1| I 3 1| 2] 1| 2] 1
P3 2 1 1] 2 = 3| 1| 4] 1| 3

communication link: /1, 2,. Data i3, data i3, and data 14, get transmitted on link /1, 2,
in that order.

The results of experiments 1 and 2 essentially indicate what is known intuitively, that
as the ratios between the inter-subtask communication (in time units) and the sizes of
subtasks(in time units) increase, designs with fewer processors are synthesized as they can
achieve the desired performance with lower costs. However, as the sizes of subtasks increase
(and thus inter-subtask communication becomes relatively less important ), multiprocessing
becomes useful and designs with more processors are synthesized as they can provide better
performance.

4.3 Example 2: Nine-Subtask Task Graph

The data flow graph is shown in Figure 3. For this example, we assumed that a subtask
requires all the inputs before it can start and that none of the outputs from a subtask
become available until its execution is over. Again, there are three types of processors,
with the costs and the execution times given in Table III. The volume of data is one unit
for each arc. We are given: D¢y, = 0, Der = 1. For this graph, we synthesized systems
for two different styles of interconnection.

4.3.1 Point-to-Point Interconnection Experiments

Here, as before, if two processors need to communicate, then there must be a direct link
between them, and the cost of building a link ¢, = 1. The MILP model consists of
47 timing and 225 binary variables, and 1081 constraints. We generated 5 non-inferior
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Table 1V

Example 2 Systems (Point-to-Point)

Design || Runtime (mzan) || Cost | Performance
1 62.2 15 5
2 445.17 12 6
3 538.67 8 7
4 75.18 7
5] 6416.87 5 15

systems by changing the constraint value for the total system cost, and optimizing the
system performance. Bozo’s runtime for each of these designs is on the order of a few
hours, except for design 5. Cost, performance and runtime for the five designs are given in
Table IV. A brief discussion of the designs follows.

Design 1: This design consists of 3 processors: pj, - a processor of type pi, pa. - a
processor of type ps, and ps, - a processor of type ps. Processor py, performs subtasks 53,
Se and Sy in that order, processor py, performs subtasks Sy, S5, Sg and S; in that order,
and processor ps, performs subtasks S; and Sg in that order. There are four communication
links: 114245 lia,30 l20,30s and lyg 1. Data 29 and data iz, get transmitted on link [;, 2, in
that order, data ig; gets transmitted on link /1, 3,, data 29 gets transmitted on link 54 34,
and data 14, gets transmitted on link I3, 14.

Design 2: This design also consists of 3 processors: pia, p1s - two processors of type
p1, and pa, - a processor of type p3. Processor py, performs subtasks Sy, Sy and S7 in
that order, processor py; performs subtasks S, S and Sy in that order, and processor ps,
performs subtasks Sy, S5 and Sg in that order. There are two communication links: {1430,
and l3,15. Data is; gets transmitted on link lj, 3., and data ig, gets transmitted on link
lSa,lb-

Design 3: This design consists of 2 processors: py, - a processor of type pi, and ps,
- a processor of type ps. Processor pj, performs subtasks S3, Sg, Si, S7 and Sy in that
order, and processor ps, performs subtasks Sy, Sz, S5 and Sg in that order. There are two
communication links: 11,34, and l3,1.. Data tg; gets transmitted on link /434, and data
i41 and data i, get transmitted on link l3,,1, in that order.



Table V

Example 2 Systems (Bus-Style)

Design || Runtime (min) || Cost | Performance
1 107.3 10 6
2 89.53 6 7
3 61.52 b 15

Design 4: This design is similar to design 3, and also consists of 2 processors: pj,, and
P3.. However, it has only one link: {,3,. Presence of only one link forces a change in the
mapping between the resources and the events. Processor py, performs subtasks S5, Sg,
S1, S84 and S7 in that order, and processor ps, performs subtasks Sz, S5, Sg and Sy in that
order. Data 19 and data ig; get transmitted on link [, 3, in that order.

Design 5: This design consists of just 1 processor: ps, - a processor of type p;. The
processor performs the subtasks S,, Sy, Sy, Ss, Ss, S3, S7, Se and Sy in that order.

4.3.2 Bus-Style Interconnection Experiments

In this interconnection style, the system consists of a set of processors and a bus connecting
all the processors to each other. The cost of the system is dominated by the costs of
the processors selected. The SOS approach is capable of modeling such a system. The
MILP bus-architecture model for the nine-subtask graph example consists of 47 timing
and 153 binary variables, and 416 constraints. Three non-inferior systems were generated
by changing the constraint value for the total system cost, and optimizing the system
performance. Runtime for each of these designs is on the order of a few hours. Table V
gives the statistics for the three designs. A brief discussion of the designs follows.

Design 1: This design consists of 3 processors: pia, pis - two processors of type p;, and
Paa - a processor of type ps. Processor p, performs subtasks Sy, Sy and S7 in that order,
processor py, performs subtasks Sa, S¢ and Sy in that order, and processor ps, performs
subtasks Ss, S5 and Sg in that order. Data iz, and data ig; get transmitted on the common
bus in that order.

Design 2: This design consists of 2 processors: py, - a processor of type py, and ps, - a
processor of type ps. Processor py, performs subtasks Ss, Sg, Sy, S7 and Sg in that order,
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and processor ps, performs subtasks Si, Ss, S5 and Sg in that order. Data 74,, data is,
and data 29, get transmitted on the common bus in that order.

Design 3: This design consists of just 1 processor: pa, - a processor of type p,. The
processor performs the subtasks Sy, S;, Sy, Si, S5, Ss, Ss, S9 and S7 in that order.

5 Application of the Approach to Other Design
Scenarios

In Section 3, we described application of the SOS approach to a specific task model and
system model. In Section 4, we reported the supporting experimental results for the specific
model. It must be emphasized that the approach can be applied to several other design
scenarios. As reported in Section 4.3.2, the approach has already been applied to a system
model for bus-style interconnection, and the corresponding MILP model can be found in
[32]. The approach can be applied to other interconnection styles. The MILP model for
ring interconnection is being developed. Future work would involve development of the
MILP models for different interconnection styles and their combinations.

As the reader might notice, in the specific model of Section 3, each processor is assumed
to have local memory, but the cost of memory is not included in the system cost explicitly.
The MILP model has been extended to perform local memory design. The extended
model takes care of such cost explicitly. Solution of the model would output how much
local memory is required at each processor in the synthesized system. Shared-memory
systems can also be modeled using the SOS approach. The MILP model for shared-memory
systems is being developed. Future work would involve dealing with more complex memory
issues/structures.

The specific model of Section 3 assumes overlap between computation and I/O opera-
tions. An MILP model can also be developed for the situation when such an overlap is
not possible. Again, the specific model does not explicitly consider the costs associated
with the I/O modules. Future work would involve extension of the model to handle costs
associated with 1/O modules and memory buffers required at the I/O modules.
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6 Conclusions

In this paper, we have presented a scheduling-driven approach for synthesizing optimal
multiprocessor systems for given applications. The approach is applicable to several design
situations, and we discussed how to apply it to a specific task model and system model.
The crux of the approach lies in a mathematical programming model reflecting the design
problem.

Several experiments have been conducted using the approach, and the results are re-
ported. Most of the experiments were performed for the specific model discussed in the
paper. The experiments indicate that the approach can indeed be used for synthesizing
different systems for a given application, depending on the cost-performance requirements
imposed by the designer. The approach has also been applied to a system model for
bus-style interconnection, and some experiments with this model are reported.

Some tradeoff studies were also performed to study the role of inter-subtask commu-
nication. The reported results verify the intuitive expectation that heavy inter-subtask
communication leads to designs with fewer processors and multiprocessing is more useful
only when inter-subtask communication is reasonable.
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