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Abstract

The objective of this dissertation is to understand the program behavior in terms of
shared block accesses in cache-based multiprocessor systems. In this direction, we study
the following issues: develop an analytical program model which captures the program
behavior of shared block accesses, verify the accuracy of the model by comparing model
predictions and simulation results for several parallel algorithms, and evaluate the
performance of general purpose multiprocessor systems through model implementation.

Cache-based multiprocessor systems with a large number of processors are difficult
to evaluate. Prototyping is costly and often impossible and simulations are not flexible
enough and are very time consuming and resource intensive. The major difficulty lies in
the estimation of the coherence overhead. An approximate and economical technique
is to develop an analytical program model for block sharing and then to apply the
model to the various architectures for comparison.

In many cache-based multiprocessor systems, private caches are associated with
each processor and coherence among caches is maintained in hardware by a cache co-
herence protocol. Multithreading, or the concurrent execution of the multiple processes
forming a task is also often supported in these systems. The efficiency of multipro-
cessor systems for a parallel algorithm depends to a large extent on the amount of
sharing in the algorithm as well as the effectiveness of the cache protocol for shared
block accesses.

In this dissertation, we develop a simple program model for block sharing called
the access burst model. This model is based upon the observation that shared writable
data are accessed in critical or semi-critical sections. The program model is applied to
the analysis of multiprocessor systems in steady state. We find an analytical closed-
form solution for all components of the cache coherence overhead for five protocols and
compare the model predictions with the execution-driven simulation results for eight
parallel algorithms. The correlation between cache size and cache coherence overheads
is also studied. The coherence overheads in the infinite cache system are always upper
bounds of those caused in the finite cache system when the same trace of events drive
both systems.
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1 INTRODUCTION

1.1 Motivation for this Dissertation

The importance of parallel processing has been recognized as the complexity of
attempted problems increases. The goal of parallel processing is to reduce exe-
cution time by running concurrent and cooperating processes on multiple pro-
cessors. Parallel processes communicate and synchronize either through shared
writable data or message passing mechanisms. The way in which these com-
munication and synchronization mechanisms are supported has great impact on
system performance.

One of the major problems of parallel systems is maximizing performance.
As the number of processors increases, the demand for memory bandwidth also
increases. Communication among processors is the major bottleneck, especially
with today’s fast microprocessors. Cache memory serves as a bridge between a
processor and main memory, which reduces memory access latency and increases
memory bandwidth. Many researchers [2, 4, 10, 30, 40, 41, 47, 57, 80, 81,
89] have searched for techniques which will reduce communication overheads in
cache-based multiprocessor systems by establishing a framework for performance
evaluation. Solutions to these problems are essential for the success of cache-
based multiprocessor systems.

The three approaches generally used to evaluate the performance of multipro-
cessor systems are measurements, trace-driven simulations, and analytical pro-
gram model, which vary in cost, flexibility, and accuracy. Measurements have
the highest credibility; however, they are limited to existing machines. Some
hardware parameters such as cache block size are not adjustable. Trace-driven
simulations of real programs are usually time-consuming and the systems being
simulated are, in general, limited to small processor configurations. Moreover,
the major drawback for measurements and trace-driven simulations is that they
fail to explain the observed performance level. The results are only valid for
specific benchmarks run on the specific architecture.

A good analytical program model to evaluate multiprocessor systems can be
particularly useful because the analytical program model can be used to quickly
analyze new ideas in architecture. Such a model has theoretical foundations and
can be used to explain experimental data. An objective of this dissertation is to
find a representative analytical program model which captures program behavior
in terms of shared block accesses, reaches the same level of accuracy as that of
trace-driven simulations, and has much higher flexibility. Analytical program
models are the most economical way to evaluate multiprocessor systems.

Performance indices, such as speedup and throughput, provide rough esti-
mates of system performance. These indices, however, do not reveal much useful
information for performance improvement. We intend studying the effects of in-
dices characterizing both the system hardware (such as number of processors in
the system and cache block size) and software behavior (such as write rate and



sharing characteristics), all of which affect the performance of a multiprocessor
system. These performance indices lay out the foundation for fine tuning of both
software and hardware.

Stochastic analytical models are simple. They capture the general behavior
of many applications. Through the derivation of the models, insight is gained
into the important parameters affecting performance. In turn, this insight helps
programmers optimize hardware utilization and exploit parallelism better by
improving the software design. Of course, to be applicable, an analytical program
model must be validated against measurements or trace-driven simulations. The
major contribution of this dissertation is to define an analytical program model,
to validate it against execution-driven simulations !, and to apply it to various
protocols.

1.2 Cache Coherence

In multiprocessor systems, caches introduce the cache coherence problem. Censier
and Feautrier gave a definition of a coherent memory system as follows [17]:

A memory scheme is coherent if the value returned on ¢« LOAD instruc-
tion is always the value given by the latest STORE insiruction with the
same address.

In many cache-based multiprocessor systems (see Figure 1), private caches
are associated with each processor and coherence among caches has to be main-
tained by some mechanisms. The cache coherence problem can be avoided either
by using the shared cache or by making shared objects non-cacheable [71]. The
shared cache which was adopted in the Univac 1100/82 [15] is not feasible for
a system with large number of processors, since the bottleneck of the system is
now transferred from shared-bus to the shared cache. In addition, a longer aver-
age cache access time is incurred because the shared cache cannot be physically
close to all processors. When shared objects are not cached, certain items such
as semaphores or job queues can only be accessed from the shared memory. The
drawback of non-cacheable data is that the access time of these data is substan-
tially increased. Also, in [24], Darema-Rogers et al. pointed out that shared data
accesses account for a large portion of memory accesses. For efficiency, shared
data must therefore be cached.

When shared data are cached, coherence among caches can be maintained
by either software or hardware mechanisms. Cheong and Veidenbaum [18], and
Min and Baer [62] proposed three software-based compiler-directed strategies to
selectively flush caches. Compiler-directed management of caches implies that a

In trace-driven simulations, traces are collected from a real, existing multiprocessor system which serves
as input to a new system being studied. Whereas in execution-driven simulations, this input are generated
by simulating the execution behavior of the new system.



processor has to issue explicit instructions to invalidate cache blocks and special
hardware is needed to support this scheme. Another alternative uses hardware
coherence protocols [10], to maintain the coherence. Cache coherence proto-
cols may suffer from scalability problems; however, they are the most efficient
and user-transparent mechanisms to maintain the consistency of shared data in
bus-based systems. My research applies to architectures in which coherence is
enforced by a hardware protocol.
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Figure 1: A shared-memory multiprocessor system

1.2.1 Cache Coherence Protocols

Cache coherence protocols have been shown to be an important design consider-
ation in shared-bus multiprocessor systems because of the differences in perfor-
mance among protocols [10]. Two classes of such protocols, write-through pro-
tocols and write-back protocols, are identified based upon the actions required
to modify data [49, 63]. In write-through protocols, Stores are immediately
transmitted to shared memory. However, write-back protocols do not update
the shared memory until dirty blocks are replaced in the caches [49]. Archibald
and Baer have shown that write-back protocols generate less bus traffic than
write-through protocols [10]. Thus, in this dissertation, we concentrate only on
write-back protocols.



Write-back protocols can be classified into two categories, namely write- in-
validate protocols and write-broadcast protocols. The first type of protocols
maintains consistency by invalidating all copies in other caches on a Write. The
Basic [30], the Write-Once [44], the Synapse [42], the Berkeley [54] and the Illi-
nois [64] cache coherence protocols fall into this category. On the other hand, in
write-broadcast protocols all copies are updated on a Write by distributing the
new value to all caches. The Firefly [77, 78] and the Dragon [60] cache coherence
protocols belong in this category.

The rest of this subsection describes these coherence protocols in greater
detail. A Write to a shared block can be performed locally (private write) or
globally (shared write). Unlike private writes which only update local cache
blocks, a shared write not only updates the shared block resident in the local
cache, but also changes the status of the copies of the same block present in
remote caches.

Write-Invalidate Protocols

The Basic Cache Coherence Protocol: The Basic cache coherence protocol
[30, 49] is adopted by cache-based multiprocessor systems with no direct cache-
to-cache transfers. All transfers between caches must transit through the shared
memory. This is typical of high-end main-frame multiprocessors such as the IBM
3081 series [20]. A detailed description for the Basic cache coherence protocol
is in Chapter 2.

The Write-Once Cache Coherence Protocol: In [44], Goodman proposed the
Write-Once cache coherence protocol. The Write-Once protocol employs write-
through on every first shared write to a cache block and write-back on all follow-
ing writes until a read access by another processor. After the first shared write
to a shared writable block, the state of the block is assigned as either Reserved or
Dirty. All subsequent accesses to the block are done locally until a miss request
is generated by another cache. This scheme needs cache-to-cache transfers on
miss requests for dirty blocks. During the transfer, shared memory is updated.
This protocol has been implemented in a hierarchical multiprocessor system by
Encore Computer Corporation [87].

The Synapse Cache Coherence Protocol: The Synapse N+1 architecture was a
tightly-coupled MIMD multiprocessor system for on-line transaction processing
[42]. This protocol is developed based on the concept of block ownership. An owner
bit is associated with each block and both shared memory and caches can be the
owner of the block. Ownership by a cache block carries the right to update the
block locally without having to inform other caches and shared memory. Upon a
miss request, if the owner of the requesting block is a cache, the ownership of the
block is transferred to either shared memory or the requesting cache according
to the type of the request, a read miss request or a write miss request. If the re-
quest is a read miss, the ownership of the block is transferred to shared memory



in the cache and a busy acknowledge signal is sent to the requesting cache to
retrieve the block from shared memory. Otherwise, a cache-to-cache transfer is
initiated and the ownership is transferred to the requesting cache along with the
copy of the block. The Synapse protocol avoids the extra memory update on first
shared write incurred by Write-Once protocol; however, it pays a large penalty
on read miss requests when the owner of the block is not shared memory.

The Berkeley Cache Coherence Protocol: This protocol was adopted in the
SPUR multiprocessor project at Berkeley [54] and is based on the concept of
block ownership. Once the ownership for a cache block is obtained, the cache
can update the block locally without initiating additional bus operation. The
protocol overcomes the disadvantage in the Synapse protocol on read miss re-
quests when the owner of the block is a cache. A miss request is satisfied by
the owner of the missing block. All cache-to-cache transfers are done in one
single bus transfer and shared memory is not updated until an owned block is
replaced. Also, if no cache owns the missing block, shared memory is the owner
of the block. This eliminates the need to explicitly represent ownership with an
additional bit in memory as in the Synapse protocol.

Illinois Cache Coherence Protocol: Papamarcos and Patel proposed this low-
overhead cache coherence protocol in 1984 (64]. In this scheme, a new state
called Exclusive-Unmodified is introduced, which eliminates redundant invalida-
tions when a cache identifies that the block is the only cached copy in the system.
In the implementation of this protocol, shared memory is updated during a miss
request for a dirty block. The simultaneous shared memory update reduces the
number of cache-to-memory transfers on dirty block replacement incurred in
the Basic, the Write-Once the Synapse and the Berkeley cache coherence proto-
cols. However, to implement this protocol, a special design for cache snooping
controller is needed to prevent memory latency from dominating the time of
memory-to-cache transfer.

Write-Broadcast Protocols

The Firefly Cache Coherence Protocol: The Firefly protocol has been imple-
mented in the Digital Equipment Corporation Firefly multiprocessor system,
which is a shared memory multiprocessor workstation [78]. Under the Firefly
protocol, caches broadcast the updated word on every shared write; for private
data, a write-back mechanism is adopted. The bus-watching snoopers assert
a special control line called shared line to indicate sharing. When a snooper
detects an operation for a cache block which resides in its cache, it raises the
shared line. In this scheme, a cache can detect whether the retrieved block on
a cache miss is private or not, according to the signal on the shared line. If the
block is a private block, all following writes to the block can take place without
informing other caches. Thus, this protocol has potential performance benefits
for accessing both private and shared blocks.




The Dragon Cache Coherence Protocol: The Dragon protocol is adopted in
a multiprocessor system designed by Xerox PARC [(60]. The protocol is very
similar to the Firefly protocol; the only difference between the two protocols is
that on every broadcast, the Firefly protocol updates the shared memory and
caches at the same time, while the Dragon protocol only updates caches. There
is no memory update in the Dragon protocol until a dirty cache block is replaced.

1.2.2  Performance Analysis of Cache Coherence Protocols

Different approaches have been adopted to tackle the problem of analyzing cache
coherence overhead. In this section, we survey the most important methods that
have been used in recent years.

Dubois and Briggs [30] studied the shared data coherence activity in a shared
memory multiprocessor system with centralized directory coherence scheme.
Each processor in the shared memory multiprocessor system has a private cache
with finite size and its organization is fully associative. The reference stream for
their simulations resulted from the merging of two reference streams, a stream
of private/shared read-only accesses and a stream of shared read-write accesses,
where the first stream is generated based on the Least Recently Used stack
model (LRU) and the second stream is derived based on the Independent Ref-
erence Model (IRM) [75]. The state transitions of shared data in the system are
modeled by semi-Markov diagrams. Analytical solutions are derived for those
diagrams to evaluate the hit ratio degradation due to the sharing of data. Un-
fortunately, the IRM model cannot make a precise prediction of shared data
behavior in multiprocessor systems because it does not reflect the locality of
shared data accesses.

Archibald and Baer [9, 10] used simulations to compare the performance of
cache coherence protocols in shared-bus multiprocessor systems. The replace-
ment policy for shared blocks in caches was random. The workload model they
used is called Multiple Least Recently Used stack model (MLRU) which was
derived from the reference stream developed by Dubois and Briggs [30]; in this
model, if the request is to a shared block, the block number of the reference
is determined using an LRU stack (one stack for each processor). The metric
for protocol comparisons was the system power, which is the number of proces-
sors times their average CPU utilization. Their analysis focused on the degree
of sharing. They found that the system power for all write-back protocols was
comparable when the number of processors is small. When the number of pro-
cessors increases, the broadcast-based protocols are better than the invalidate-
based protocols especially in the case of high contention for shared block. The
protocols such as the Illinois, the Firefly and the Dragon, which can detect pri-
vate and unmodified blocks always perform the best when the degree of sharing
is low. With a high degree of sharing, the Berkeley protocol performed better
than the Illinois protocol. The rest of the protocols can be ranked in terms of
system power as follows: The Write-Once, the Synapse and the Write-Through.



Vernon and Holliday [80] used generalized time Petri-Net to model multipro-
cessor memory systems and studied the bus utilization and system power for
data caches. Again, they used the same workload model which was derived by
Dubois and Briggs [30]. A generalized time Petri-Net can be converted into a
discrete Markov chain and thus can be solved. The protocol was similar to the
Write-Once protocol; however, more features were added to the protocol, such as
a shared line to detect a private unmodified block, and an owned shared state to
allow cache-to-cache transfer of dirty blocks without updating the shared mem-
ory. Their results showed that the shared line increases the system performance
dramatically, especially when the level of sharing is intensive. The only problem
that they had was that the number of states in the discrete Markov chain ex-
plodes when the sum of processors and memory modules were larger than ten
in the system.

Leutenegger and Vernon [57, 81] used mean value analysis to evaluate the
bus interference for the Wisconsin Multicube cache coherence protocol. The
workload derived by Dubois and Briggs [30] was used in this study. The model
includes FCFS scheduling at the bus queues with deterministic bus access time,
asynchronous broadcast invalidations, and asynchronous memory write-back op-
erations. The study indicated that this simple approximate approach yields
comparable results to the generalized time Petri-Net, across a wide range of
parameter values. The computation time is a hundred times less than that in
the generalized time Petri-Net when large systems are studied.

Eggers and Katz [40] used trace-driven simulations to evaluate the coher-
ence overhead in four parallel CAD applications in infinite cache multiprocessor
systems. A model called the Write Run Model is developed for analyzing the
program behavior in terms of shared data accesses. A write run is a sequence of
references to a shared address by a processor, which begins with the first Write
to the address by the processor and ends with an access by another proces-
sor. The average difference between model predictions and simulation results is
around 200% in the Berkeley cache coherence protocol. Nevertheless, the model
can make an accurate prediction, with less than 1% difference between model
predictions and simulation results in the case of the Firefly protocol. The reason
why their model can make an excellent prediction in a given protocol but fails in
another protocol is because the coherence overhead in write-invalidate protocols
is a function of the cache block size contrary to write-broadcast protocols. Their
model can capture only the effects in systems with cache block size equal to one.

In [41], BEggers and Katz used trace-driven simulations to compare the per-
formance of four types of snooping cache coherence protocols, which are write-
invalidate protocols, read-broadcast extension protocols, write-broadcast pro-
tocols and competitive snooping protocols. The systems are bus-based mul-
tiprocessor systems and the sizes of caches are assumed to be infinite. The
read-broadcast extension protocols [45, 68] are enhancement to write-invalidate
protocols. Under read-broadcast, snoops update an invalidated shared block
with data from shared-bus when they detect a read bus operation for the shared



block. The competitive snooping protocols [52, 53] are hybrid protocols which
use both write-invalidate and write-broadcast features to maintain coherence;
they are essentially write-broadcast protocols that switch to write-invalidate
protocols when the breakeven point in terms of coherence overhead between
two types of protocols is met.

Agarwal et al. [4] also used trace-driven simulations to evaluate the perfor-
mance of directory schemes in a small-scale multiprocessor system with infinite
cache sizes. The directory schemes remove the major limitation of the snoopy
schemes, the reliance on broadcasts, while they provide similar efficiency in
handling shared data accesses. The basic bandwidth limitation of the shared
memory and of the directory is mitigated by distributing directories on the pro-
cessor board. This technique allows the bandwidth to both shared memory and
to the directory to scale with the number of processors. A conclusion of the
study is that the performance of directory schemes and snoopy schemes is com-
parable, and the simulations show that most shared writable blocks written into
are present in only a small number of other caches. This make broadcast invali-
dation signals inefficient. They suggested that in each entry of the directory, a
small number of pointers to caches containing the block is sufficient.

Gupta and Weber [47, 86] also used trace-driven simulations to examine the
invalidation pattern of five parallel algorithms in directory-based shared memory
multiprocessor systems with infinite cache sizes. The systems being simulated
have 4, 8, and 16 processors and the effect of these patterns on a directory-based
protocol is investigated. The five parallel algorithms cover a wide range of ap-
plications, including two graph algorithms, a 3-dimensional particle simulator,
one logic simulator and a VLSI global router. Shared data in the five paral-
lel algorithms are classified into five categories, which are code and read-only
data objects, migratory objects, synchronization objects, mostly-read objects
and frequently read-written objects. Their results showed that the number of
copies which are invalidated per invalidation is small for most objects except for
the synchronization objects. The synchronization objects have a very different
invalidation pattern than that of other objects. A write to a synchronization
object usually causes invalidations in a large number of caches. Their results
also showed that it is possible to scale well-written parallel programs to a large
number of processors without an explosion in invalidation traffic.

Yang and Bhuyan [88, 89] used queueing network models to study the cache
coherence overhead in multiple-bus multiprocessor systems; we [34, 35] used
four different program models which are the Independent Reference Model, the
Global Least Recently Used Stack Model, the Multiple Least Recently Used
Stack Model and Independent Reference Model with Critical Sections to study
the miss ratio and system penalty on shared data accesses; Goosen and Cheriton
[46] modeled the program behavior in a shared cache for estimating the load
placed on the shared bus by such a shared cache; and Agarwal [2] modified the
Dubois-Briggs [30] model by adding the processor locality concept to predict the
cache miss rate.
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1.3 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 proposes
a new program model called the access burst program model to study the co-
herence overhead for shared writable blocks in multiprocessor systems. In this
chapter, we start by analyzing a baseline system, the infinite cache model. The
infinite cache model isolates the traffic incurred in maintaining coherence; the
traffic due to replacement is eliminated. Also, the infinite cache model is much
simpler to study than the real system with finite caches, primarily because it is
described by fewer parameters. Because of this simplicity, a closed-form solution
can be found for the model.

Chapter 3 verifies the accuracy of the access burst program model by compar-
ing the model predictions with the execution-driven simulation results of eight
parallel algorithms. The eight algorithms are run on a simulated shared-memory
multiprocessor system in which each processor has a private data cache of infi-
nite size. The eight parallel algorithms are the Jacobi iterative [90], the S.O.R.
iterative [29], the dynamic quicksort [69], the bitonic merge sort [66], the non-
shuffling FFT [19], the shuffling FFT [19], the single source shortest path [26]
and the image component labeling [67] algorithms.

Chapter 4 applies the access burst program model to compare the perfor-
mance of five invalidation-based cache coherence protocols. The protocols are
the Basic, the Write-once, the Synapse, the Illinois and the Berkeley cache co-
herence protocols. Protocols are modeled by Markov chains. An analytical
closed-form solution is derived for all components of the cache coherence over-
head and for all cache coherence protocols in systems with caches of infinite
sizes.

Chapter 5 studies the finite cache effects. Replacements are assumed to be
uniformly distributed throughout the whole execution. The system is again
modeled by a Markov chain. An approximate solution is found for each compo-
nent of the coherence overheads. Again, the accuracy of the model is verified
by comparing the model predictions with execution-driven simulation results for
the eight parallel algorithms.

Finally, Chapter 6 summarizes the research results and outlines future re-
search directions.

11



2 THE ACCESS BURST PROGRAM MODEL

In this chapter, a simple program model for data sharing is introduced and an analytical
closed-form solution is found for all components of the cache coherence overhead in a cache

coherence protocol. The system being studied has caches of infinite sizes and works in steady
state.

2.1 General Assumptions

Several simplifying assumptions are made in this chapter. These assumptions are listed and
their validity is discussed.

Assumption 1: The size of all caches is infinite.
Assumption 2: The models are in steady-state. Initial transients are not included.

The major motivation for studying the infinite cache model is its simplicity. Most param-
eters of the cache do not affect the model prediction, including cache size, cache organization
and cache replacement policy and resulting models are therefore parsimonious. Another rea-
son why the infinite cache model is a compelling model is the result of present trends in
memory chip sizes indicating that fast and large caches are becoming possible. In these
caches, most of the misses are due to the initial loading of the data and to coherence invali-
dations. It is expected that the infinite cache model will become more and more relevant as
the level of integration of memory chips increases.

Modeling transient effects in an infinite cache is not difficult, but the models are not very
interesting: As the program starts, caches are empty and every block referenced in a parallel
algorithm must be loaded into one of the caches. These initial misses are not included in
the models. Their number is simply equal to the total number of different blocks accessed
during the entire execution of the parallel algorithm.

2.2 The Basic Cache Coherence Protocol

The cache coherence protocol considered in this chapter is a write-invalidate protocol called
the Basic cache coherence protocol which is described in Hwang and Briggs’s book [49,
pages 521-525]. The reason that the Basic cache coherence protocol was chosen in this
chapter is because it generates the most complicated cache coherence events. The set of
all cache coherence events generated by the rest of the write-invalidate cache coherence
protocols is included in the set of events generated by the Basic cache coherence protocol.
In the following, a program model is proposed and is solved analytically for the Basic cache
coherence protocol. The techniques described in this chapter can be applied to any one of
the other write-invalidate cache coherence protocols.

In the Basic cache coherence protocol, multiple copies of the same cache block may
be present in different caches, if the copies are Read-Only (RO copies), that is, provided
no processor has modified any word in the block. If a processor needs to modify a word
in a block, it must obtain a Read-Write copy (RW copy), which is a unique copy of the
block and this may involve invalidating copies of the block in other caches. Usually a block
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containing only instructions, private data or shared constants will be tagged as RO, while
blocks containing shared writable data may be tagged as RW. An S-block contains data items
accessed and modified by different processors while a P-block contains data items accessed
by only one processor or Read-Only data. In the protocol selected for study in this chapter,
the following cache events on an S-block may occur in a multiprocessor systems with infinite
caches and in steady-state (refer to Figure 2):

RG)  W(@)

Figure 2: State diagram for a given block in cache i (infinite cache assumption)

R(1) : Read block by processor i.
R(j) : Read block by processor j.
W(i) : Write to block by processor i.
W(j) : Write to block by processor j.

1. Miss: this event occurs when the data is referenced and is not present in the cache.
We denote this event as M (Miss). All misses occurring as a result of the following
events are accounted for as M events. Blocks are always loaded from shared memory
on a miss.

2. Transition from RO to RW: this event occurs when a processor needs to modify a block
already present in another cache as RO; a miss may occur and an invalidation must be
sent to the processor(s) possessing the RO copy(ies). We denote this event as I N_RO
(for I Nvalidation of RO copy(ies)).
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3. Transition from RW to RQO: this event occurs when a processor reads a block present in
another cache as RW. In addition to the occurrence of a miss, a signal must be sent to
the cache possessing the RW copy and this cache must write the block back to shared
memory. We denote this event as CS_RW (Change State of a RW copy).

4. Transition from RW to RW in a different cache: this event occurs when a cache needs
to modify a block which is owned as RW by another cache; it implies a write back
to shared memory, a miss and an invalidation. This event is denoted as IN_RW

(I Nvalidation of a RW copy).

When writable blocks are actively shared, copies must be transferred among caches and
invalidation signals must be sent. As the number of processors actively sharing an S-block
increases, the invalidation activity usually increases.

2.3 Analytical Models

The access pattern to shared data in multiprocessor systems depends on the algorithm.
Synchronization data (such as locks) and other shared operands are two broad classes of
shared variables. Synchronization data are used to coordinate process execution or to protect
shared operand accesses.

Kung [55] classifies multitasked algorithms into synchronized and asynchronous algo-
rithms. In asynchronous algorithms, accesses to shared operands are not protected and each
processor may access the data as it needs them. In synchronized algorithms, accesses to
shared data are restricted, either by explicit synchronization or simply by structuring the
forking and joining of processes. In synchronized algorithms, shared writable data are ac-
cessed either in critical sections [7] (only one process can access the data at a time either
to Read or to Write) or in semi-critical sections [21] (multiple processors can read a data
item at a time, but if a process has to modify the data item, it must do so in mutual exclu-
sion). Figures 3 (a) and (b) illustrate both access patterns. In these figures, only accesses
to a specific shared datum are shown.

2.3.1 Analytical Model for one S-block

The program model is derived from the model in [75]. We had to extend this model because
it did not capture the locality of references to shared writable data. In another paper [28],
two additional program models are presented for which the effect of cache coherence can
be solved analytically and which take into account the accesses made in critical sections
and semi-critical sections. All these program models can be defined as a special case of the
following model. The program model that we are about to define assumes that accesses by
one processor to a shared writable block are done in uninterrupted bursts. Besides modeling
critical section accesses, the access burst model takes into account the locality of references
on S-blocks.

The P processors execute independent streams of instructions and generate homogeneous
streams of references. S-blocks belong to different sets; all S-blocks in a set are accessed with
the same pattern, even if they are accessed by different processors. The program model,
model parameters and coherence overheads are identical for all the S-blocks in a set.
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Figure 3: (a) Access pattern to a shared writable datum protected by critical sections. (b)
Access pattern to a shared writable datum protected by semi-critical sections.

R;: Read access to shared datum X by processor j
W;: Write access to shared datum X by processor j

Let gs be the fraction of references to S-blocks. The fraction of S-block accesses that are
for a particular S-block 7 is p; with i=1,...,N, and N, is the total number of shared writable
blocks. S-block ¢ is shared by J; processors (J; < P, the total number of processors in the
system). Processors access an S-block ¢ in bursts. [; is the average burst size, that is, the
average number of accesses to the block during an access burst. An isolated access is counted
as a burst of size one. The average burst size can be found by dividing the total number of
references by the number of access bursts. For example, for the program fragments of Figure
3 the average burst sizes are /; = 2 (Figure 3(a)) and [; = 1.75 (Figure 3(b)), assuming that
one cache block contains only one data element.

The fraction of processor references which start an access burst for a given S-block i is
qs - pi/l;. The basic approximation of the analytical model is that access bursts are indepen-
dent from one another. When a processor completes an access burst, all the J; processors
have the same probability of starting the next access burst to the S-block. We designate by
W; the probability that the block is modified during an access burst. Because of the infinite
cache assumption, there is no interference among cache accesses to different blocks and the
events occurring for one block are independent of the events occurring for any other block;
the state transitions of S-block 7 can be observed in isolation.

The global state of an S-block 7 is described by the number of caches possessing a copy
of the block and by the status RO or RW of the block. The global states are denoted by
1_.RW, 1_RO, 2_RO,..., J;_RO. We can ignore the identity of specific processors because the
multiprocessor is homogeneous and symmetric.

The Markov chain for the state transitions of S-block 7 is shown in Figure 4 (we have
dropped the index ¢ in the Figure for clarity. Note that all parameters are for a given S-block
t). The state of the Markov chain is the global state of the block whenever an access burst
is completed (except for the state MEM, which is the state of the block before the first
reference to it). It is clear from the Figure 4(a) that states M EM and 1_RO are transient
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1—- & (1-w)

J=1

(b)
Figure 4: (a)Markov chain for the state transitions of an S-block shared by J processors
(including transient states). (b)Markov chain for the state transitions of an S-block shared
by J processors (without transient states).
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states. IMigure 4(b) shows the reduced Markov chain where the transient states have been
removed. We will only solve the Markov chain of Figure 4(b). A state transition occurs
in this state diagram every time a burst of accesses is completed by one processor. The
transition probabilities from state k_RO, k < J;, are found as follows.

1. From state k_RO to state k + 1_RO: The probability of this transition is the product
of the probability that the next burst contains only Read accesses, (1 — W;), and of
the probability that the access burst is made in one of the J; — k other caches, (LJ'—“)

2. From state k_RO to state k_RO: This is the case when the next access burst contains
only Read accesses in one of the k caches. The transition probability is (1 — W,-)Ji",.

3. From state k_RO to state 1_RW: This is the case when the next access burst modifies
the block. The transition probability is W;.

The transition probabilities from states 1_RW and J; _RO are derived from similar arguments.

This finite state Markov chain is aperiodic and irreducible [6]. Denote by Pr(1) and by
Pr(k), k=2,...,J;, the state probabilities of state 1_RW and states k_RO respectively. The
state probability distribution is given by the set of equations: (see for example [6])

(J.' — k4 l)(l — ‘/V,')
(Ji = KL = W5) + JiW:

Pr(k) = Pr(k—1), fork=2,..,J; (1)

and

JiW;
PO = Gna - wy v o

With these state probabilities, we can compute the probability of occurrence of each
coherence event. When there are k copies in k processor caches a miss occurs at the beginning
of a new access burst, that is, at a state transition in Figure 4(b), if the next processor to
start an access burst is one of the (J;— k) processors without a copy in their cache. Therefore,
the fraction of references to S-block z which miss in the cache is equal to the fraction of state
transitions causing a miss divided by the average burst length /;.

1 (Ji—1)

Pr(M;) = I Pr(1) -

7 + Pr(2) - (JiJ'_; 2) + ..+ Pr(J; —1)- JL’ (3)

After some transformations, one finds simply (see Appendix A):

_1 (- )W y
Prigh= L 14+ (Li—- )W, 2

In the Markov graph of Figure 4(b) a transition from state 1_RW to state 1_RW results
from three possible sequences of events:

1. the processor owning the RW copy of the block has started a new burst of accesses for
the same block; no event is recorded for S-block 7 in this case;
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2. a different processor has started an access burst for S-block i and its first access to the
block is a Write; an event of type IN_RW must be recorded for S-block i;

3. a different processor has started an access burst for S-block i and its first access to the
block is a Read followed by a Write; one event of type C'S_RW followed by one event
of type IN_RO must be recorded.

In order to differentiate between the 2nd and the 3rd cases, we have to introduce a new
factor f;, which is the fraction of Write bursts! so that the first access is a Write. f; can
easily be computed from a string of references. For example, in Figure 3(a), f; = 0.75, and,
in Figure 3(b), fi = 0.5. Taking into account this problem, one can derive the fraction of
references to S-block ¢ that result in a given event.

An invalidation of RO copies occurs whenever an access burst modifies a block in an RO
state. It also occurs in a transition from 1_RW to 1_RW, provided the second access burst is
executed by a different processor and starts with a Read. Therefore, the fraction of accesses

to S-block : invalidating RO copies in other caches is given by:

Pr(IN_RO:) = %[Wl..(l_Pr(l))-f-I'V,-.(l—f,-).Pr(l). J;;1
_ L (=)W (1-Wi- f)
. Ji— 1+ W, '

A change of state from RW to RO occurs whenever a burst leaving the block in state 1_RW
is followed by a burst starting with a Read access by a different processor. Therefore, the
fraction of references to S-block ¢ changing the state from RW to RO is:

Pr(CS_RW;) = :l Pr(l)-(l-w,-)-J";l+Pr(1)-w.--(1-f,-)-‘]";1
1 (K1) Wi (1-W- f)
Tk -1+W; '

An invalidation of a RW copy occurs whenever an access burst leaving the block in state
1_RW is followed by a Write from any other processor. The fraction of references to S-block
¢ causing such an event is therefore:

J;i—1

PrINRW:) = 1-Pr()-fi- W=
_ 1 (L)W W s

o J—-1+W;

Finally, the number of copies which are invalidated by an invalidation can be computed as
follows: Let X; be the average number of copies for S-block z in the system in steady state,
where X; = S¥=% k. Pr(k). When an invalidation signal for S-block i is broadcast, X; — 1
and X; copies will be invalidated, in the case of a white hit and of a write miss, respectively.
The average number of copies which are invalidated by an invalidation is

X; Ji — X;

INVi= 2 (Xi= 1)+ =

!By definition, a Write burst is an access burst containing at least one Write access.

Xi

18



After some transformations, one finds simply (see [36]):

(J; =1)

V% = L4(J;=1)- W

In these equations, Pr(1) is given by equation (2).

2.3.2 System Effects

We use the results of the previous section to model the effect of cache coherence on the over-
all system performance under the assumptions of Section 3.1. Two performance measures
are derived: the miss ratio and the average coherence penalty.

Miss ratio
In the infinite cache model, if the transients are not included, the miss rate is given by
the miss rate on shared writable blocks:

N,
Pr(M) =gq,- Y pi- Pr(M) (5)

=1

where N, is the total number of shared writable blocks. The value for Pr(M;) is obtained
by applying equation (4) and depends on different values of the parameters for different S-
block 7. In many cases, the terms in the above sum can be clustered by grouping the shared
writable blocks into sets; within a set all blocks are referenced with the same pattern, and
therefore have the same value of Pr(M;).

To find Pr(M) from equation (5), we need to specify the model parameters for all sets of
blocks. In the studies presented in [30, 10, 80], there is only one set of parameters. Implicitly,
it is assumed that the models can be applied to a single average set including all the shared
writable blocks, and parameters are therefore computed as averages. For the eight examples
presented in the next chapter, this approach is shown to be acceptable.

Average Coherence Penalty

A processor runs at maximum speed when no cache misses or coherence events occur. To
each coherence event corresponds an average penalty, Agvenr. The penalty associated with
an event is defined as the average time that a processor is blocked at the occurrence of the
event. The average coherence penalty per memory reference to S-block 7 is:

A o= PT(M;) DYVE PT(IN_RO;) - MIN_RO
'f'PT‘(CS_RH/,) - Xes_rw + pT‘(IN_RH/,) * AIN_RW -

If we do not include the transients, the average coherence penalty in the infinite cache
system 1s given by the sum of the coherence penalties on each shared writable block i:

N,
)‘to!al =4qs- EP: * ’\t' (6)

i=1
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Therefore to compute the system coherence penalty, S-blocks can be clustered into a few
sets in which blocks have the same model parameters. The average penalty could also be
approximated by the penalty for an average block.

The average coherence penalty adversely affects the processor efficiency. In powerful
and expensive main frame multiprocessors, any loss of processor efficiency is critical for the
performance/cost ratio of the system. If T} is the mean execution time of an instruction
in the uniprocessor system (in microsecond), and if r is the average number of memory
references per executed instruction, the average instruction execution time is T + 7 Ayorar,
and the MIPS rate (Million of Instructions Per Second) per processor is

1

MIPS rate = ———.
rate Tl + r’\toia!

The speed-up of the system is therefore equal to

T,-P

d—up=——",
e up T + rAotal

where P is the number of processors in the system.

2.4 Conclusion

In this chapter, we have presented and solved a simple program model for caching of shared
writable blocks in multiprocessor systems. The simplicity and generality of the results stem
from the infinite cache hypothesis. The infinite cache model is independent of all cache
parameters, such as cache organization and replacement policy. The shared writable block
accesses in multiprocessor systems with infinite caches can be modeled by a discrete Markov
chain. Analytical closed-form solutions are found for all cache coherence components. In the
next chapter, we will validate the model by comparing the model predictions with execution-
driven simulation results of several parallel algorithms.
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3 MULTITASKED ALGORITHMS

In this chapter, the accuracy of the access burst program model is verified by comparing
the model predictions with the execution-driven simulations of eight parallel algorithms for
shared-memory multiprocessors in which each processor has a private data cache of infinite
size.

To simulate the parallel algorithms, a simulation methodology described in [31] was
applied. In this methodology, the algorithm is actually executed on a uniprocessor and the
multiprocessing effect is obtained by executing the process of each simulated processor in
turn. The simulator switches from one simulated processor to another on each data access
and synchronization primitive execution.

The eight parallel algorithms are Jacobi iterative, Successive Over Relaxation iterative,
dynamic quicksort, bitonic merge sort, non-shuffling FFT, shuffling FFT, single source short-
est path and image component labeling algorithms. The class of algorithms selected is a class
of iterative algorithms which has been the subject of many other papers (for example, see
[22]). These algorithms exhibit shared data contention and can be easily mapped to the
analytical model of the previous section.

3.1 Relaxation Algorithms for Solving Partial Differential
Equations

In this section, we consider two iterative schemes [90], the Jacobi and the Successive Over
Relaxation (S.0.R.) algorithms, to solve Laplace’s equation V22 = O on a rectangular domain

of R2.

3.1.1 The Jacobi Iterative algorithm

We apply the model to one particular multitasked algorithm, the Jacobi iterative algorithm
[90] which is an iterative, compute-intensive algorithm. The algorithm consists of updating
the points of a rectangular grid in each iteration. Let L x N be the size of the rectangular
grid where N is the horizontal dimension and L is the vertical dimension. The grid is divided
into P partitions, where P is the number of processors. P = ¢ - p, where p and q are the
number of partitions on the horizontal and the vertical sides of the grid. We assume that
P is a power of 2. If P is a square number, we choose p = q¢ = V'P; otherwise, we choose
q=+/P/2and p = P/qg =+/2-P. This partitioning strategy is shown in Figure 5 and 6.
The boundary conditions add a total of 2- (L + N) grid points, so that the total number of
grid points is actually L- N+2-(L+ N), and these points are not modified during execution.

The Jacobi iterative algorithm requires maintaining two grids. In each iteration, every
point of a grid is updated by using the values of the four neighbors in the other grid and after
each iteration, the processors have to synchronize. In general, a processor has to synchronize
with no more than four neighbors while at the same time the two grids are interchanged [37].
In the algorithm, the equation for the update of an iterate in the (K + 1)th iteration is:

(K+1) -

( (K) (K) (K) (K)
)

% B el +eiih + 2]

1
4
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In a multiprocessor system, a natural decomposition of this problem is to allocate one
partition of the grid points to each processor. Figure 5 illustrates the case of an § x 8 grid
and four processors. In the case of cache block size equal to one (B=1)!, there are 2 - (8+3)
boundary grid points which are Read-Only data elements and can be treated as P-blocks.
The grid points adjacent to these boundary points are called outer grid points. The reference
pattern to outer grid points is different than the pattern to inner grid points. For the inner
grid points, the S-blocks can be further divided into two sets according to the number of
processors accessing the S-blocks. The sets of S-blocks are circled in Figure 5. There are
only three sets of S-blocks in this figure: (1) inner grid points with J = 2, (2) outer grid
points with J = 2, and (3) inner grid points with J = 3.

The infinite cache condition is met when the data cache of each processor is large enough
to contain all the grid elements accessed by the processor. In this case, steady-state is reached
after the first iteration. This important algorithm is therefore a good benchmark to apply
the model. Shared writable data are accessed in semi-critical sections in the Jacobi iteration
algorithm. In one iteration, the S-blocks in one grid are Read-Only and are accessed by
different processors, and in the next iteration they are modified by a single processor in a
critical section phase. The parameters of the model are therefore easily derived. Consider,
for example, a grid size of 128 x 128, P = 4 and B=1; the parameters of each set can be
computed as follows:

1. For the inner grid points with J=2, the total number of accesses in a multiple Read
phase is four and in the next iteration (critical section phase), the total number of
accesses is one Write. For every two iterations, there are five accesses and five bursts
(one of the five bursts is a Write burst); the values of the parameters are J=2, I=1,
and PV:%. Since there is only one access in the Write burst, the value of the parameter
f is equal to one.

2. For the outer grid points with J=2, the reference pattern is very much like the previous
set except that the total number of accesses in the multiple Read phase is three since
the boundary points need not be updated during the execution. Hence, the values of
the parameters are J=2, [=1, W:% and f=1.

3. For the inner grid points with J=3, the behavior is exactly the same as that of the set
of inner grid points with J=2. The values of the parameters are J=3, {=1, W'zé and

f=1

Table 1 shows the computed value of the model parameters, where the column labeled p,
contains the fraction of processor references to the S-blocks in the set, that is, ps = ¢s 24 P13
the column labeled n, contains the total number of S-blocks in the set. The miss and penalty
columns contain the total contribution of the data set to the overall data miss ratio and to
the average coherence penalty, that is, miss=p, - M; and penalty=p, - A;, where i refers to
any S-block in the set. The unit for the penalties is the average penalty for a miss. We have
chosen the following penalties for each event: Ay = Acs_rw = Aiv_rw = 0.75 + 0.25 - B,
Aiv_ro = 0.5 (remember that events CS_RW and IN_RW cause one miss and one write-
back access to occur). From Table 1, it appears that the inner grid points shared by two

1B=1 stands for a cache block containing a data element.
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processors dominate the overall miss ratio and average coherence penalty. Table 1 shows the
correlation between model results and simulated values.

Table 1: Jacobi Iterative Algorithm (P=4, 128 x 128 grid, B=1)

Set J| W [1L]|f Ps N, miss | penalty
Inner | 2 1 0.200 | 11 |0.03027 | 992 | model 0.00505 | 0.01211
simulation | 0.00605 | 0.01261
Quter | 2 | 0.250 | 1| 1 |0.00039 | 16 | model 0.00008 | 0.00019
simulation | 0.00010 | 0.00020
Inner [ 3 |0.200 [ 1|1 ]0.00024 | 8 | model 0.00007 | 0.00013
simulation | 0.00010 | 0.00014

In the Jacobi iterative algorithm, when the cache block size increases, the number of sets
of S-blocks also increases. For instance, there are five sets of S-blocks when B=2, eight sets
of S-blocks when B=4, and ten sets of S-blocks when B=8.

Consider the Jacobi iterative algorithm with a cache block size of four data elements and
a grid size of 128 x 128. Arrays are stored row-wise. Figure 6 shows eight different types of
S-blocks, named type 1 to type 8. There are 248 type 1 S-blocks and each type 1 S-block
is referenced 20 times in two iterations (four Reads and one Write per data element). The
total number of references in an iteration is 163,840 (128 - 128 - 5 - 2) and the value of p,
for type 1 S-blocks is 0.003027. Type 1 S-blocks are shared by two processors, that is J = 2.
The reference string to a type 1 S-block contains 20 isolated Reads in one iteration (multiple
Read phase), and two Write bursts in the next iteration (critical section). The two iterations
alternate. Therefore, the total number of access bursts to the S-block for the four elements
is 18. The value of W is 2/18 = 0.1111 and [ is 20/18 = 1.1111. Since the first reference
in a Write burst of type 1 S-block is always a Write, the value of f is one. Similarly, we
can compute the value of these parameters for type 2 to type 8 S-blocks. Table 2 to 5 lists
the values of parameters for P=4, grid size of 128 x 128, and B=2, B=4, B=8, and B=16,
respectively. Jable C.1 in Appendix C displays the average values of parameters for different
cache block sizes.

Table 2: Values of parameters for the five different sets of S-blocks in the case of the Jacobi
iterative algorithm with a grid size of 128 X 128 (B=2).

Set Ps 7 W l I
Type 1 | 0.01514 | 2.0000 | 0.2000 | 1.0000 | 1.0000
Type 2 | 0.00020 | 2.0000 | 0.2500 | 1.0000 | 1.0000
Type 3 | 0.01514 | 2.0000 | 0.1111 | 1.1111 | 1.0000
Type 4 | 0.00024 | 2.0000 | 0.2000 | 1.0000 | 1.0000
Type 5 | 0.00024 | 4.0000 | 0.2000 | 1.0000 | 1.0000
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Table 3: Values of parameters for the eight different sets of S-blocks in the case of the Jacobi
iterative algorithm with a grid size of 128 X 128 (B=4).

Set,

Ps

J

W ] 7

Type 1
Type 2
Type 3
Type 4
Type 5
Type 6
Type 7
Type 8

0.03027
0.00041
0.01465
0.00037
0.00757
0.00012
0.00049
0.00012

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
4.0000
4.0000

0.1111 | 1.1111 | 1.0000
0.1429 | 1.1429 | 1.0000
0.0588 | 1.1765 | 1.0000
0.0769 [ 1.1538 | 1.0000
0.2000 | 1.0000 | 1.0000
0.2000 | 1.0000 | 1.0000
0.1111 | 1.1111 | 1.0000
0.2000 | 1.0000 | 1.0000
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Table 4: Values of parameters for the ten different sets of S-blocks in the case of the Jacobi
iterative algorithm with a grid size of 128 X 128 (B=8).

Set Dy 7 W 1 7
Type I | 0.06055 | 2.0000 | 0.0588 | 1.1765 | 1.0000
Type 2 | 0.00078 | 2.0000 | 0.0769 | 1.2308 | 1.0000
Type 3 | 0.01367 | 2.0000 | 0.0303 | 1.2121 | 1.0000
Type 4 | 0.00043 | 2.0000 | 0.0345 | 1.2069 | 1.0000
Type 5 | 0.03406 | 2.0000 | 0.0769 | 1.1538 | 1.0000
Type 6 | 0.00031 | 2.0000 | 0.0476 | 1.1905 | 1.0000
Type 7 | 0.00011 | 2.0000 | 0.1111 | 1.1111 | 1.0000
Type 8 | 0.00037 | 3.0000 | 0.0769 | 1.1538 | 1.0000
Type 9 | 0.00098 | 4.0000 | 0.0588 | 1.1765 | 1.0000
Type 10 | 0.00037 | 4.0000 | 0.0769 | 1.1538 | 1.0000

Table 5: Values of parameters for the twelve different sets of S-blocks in the case of the
Jacobi iterative algorithm with a grid size of 128 X 128 (B=16).

Set Ps J W ] T
Type 1 | 0.12109 | 2.0000 | 0.0303 | 1.2121 | 1.0000
Type 2 | 0.00156 | 2.0000 | 0.0400 | 1.2800 | 1.0000
Type 3 | 0.01172 | 2.0000 | 0.0154 | 1.2308 | 1.0000
Type 4 | 0.00046 | 2.0000 | 0.0164 | 1.2295 | 1.0000
Type 5 | 0.09271 | 2.0000 | 0.0345 | 1.2069 | 1.0000
Type 6 | 0.00040 | 2.0000 | 0.0189 | 1.2264 | 1.0000
Type 7 | 0.00010 | 2.0000 | 0.0588 | 1.0000 | 1.0000
Type 8 | 0.00030 | 2.0000 | 0.0244 | 1.1951 | 1.0000
Type 9 | 0.00020 | 2.0000 | 0.0345 | 1.1379 | 1.0000
Type 10 | 0.00128 | 3.0000 | 0.0345 | 1.2069 | 1.0000
Type 11 | 0.00195 | 4.0000 | 0.0303 | 1.2121 | 1.0000
Type 12 | 0.00085 | 4.0000 | 0.0345 | 1.2069 | 1.0000
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In the case of an M x M Jacobi array, when the cache block size exceeds \%—;{— 1, processors
update S-blocks alternately, and the number of references [ in each burst is equal to one; J
can be as high as 2 /P or even P, W = 1, and f=1 [36].

We have applied the above analysis for block sizes from 1 to 16, P=4, and for a grid size
of 128 x 128. Figures 16 and 17 show the comparison between model predictions (dotted
curve) and simulation results (plain line) for the system miss ratio and the system penalty.
These curves are valid for any number of processors P provided B < —“\/—% + 1 [36]. These
two Figures show that the analytical program model can make very good predictions for the

Jacobi iterative algorithm when the cache block size is greater than two (error is less than

11%).

3.1.2 The S.O.R. iterative algorithm

In the 5.0.R. iterative algorithm [29, 50], the data decomposition and allocation are the
same as those in the Jacobi iterative algorithm. However, only one copy of the grid is
needed and iterates are updated according to the red/black ordering: grid elements which
are in even positions (the sum of the indexes is even) are tagged as black, others as red and
each iteration proceeds in two sweeps. The red elements are updated in the first sweep, and
the black elements are updated in the second sweep. After each sweep, each processor has
to synchronize with no more than four neighbors. Each processor has the same number of
red and of black iterates. The equation for the update of an iterate in the (K+1)th iteration
is
2% = (1= w) o+ 2o (2 4+ 24 o+ 2],

where w is the relaxation factor.

In systems with B=1, during one sweep of the algorithm, some shared grid points are
read by multiple processors, and some others are read and modified by one processor. As

for the Jacobi iterative algorithm, there are three sets of shared writable blocks. The values
of parameters are derived as follows:

1. For the inner grid points with J=2, the total number of accesses in a multiple Read
phase is four and in the next sweep (critical section phase), the accesses are a Read
followed by one Write. That is, for every iteration, there are six accesses and five bursts
(one of the five bursts is a Write burst). Therefore, the values of the parameters are
J=2, l:g, and Wzé. Since the first access in the Write burst is always a Read, the
value of the parameter f is equal to zero.

2. For the outer grid points with J=2, the reference pattern is very much like the previous
set except that the total number of accesses in the multiple Read phase is three since
the boundary points need not be updated during the execution. Hence, the values of
the parameters are J=2, I=3, W=1 and f=0.

3. For the inner grid points with J=3, the behavior is exactly the same as that of the set
of inner grid points with J=2. The values of the parameters are J=3, =2, W=1 and

f=0.

(511
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Table 6 displays the comparison between the model predictions and the simulation results
of the 5.0.R. iterative algorithm. Again, it appears that the set containing the inner grid
points shared by two processors dominates the miss and penalty results. There is consensus
between the model predictions and the exact values.

Table 6: 5.0.R. iterative algorithm (P=4, 128 x 128 grid, B=1)

Set J| W I |.f Ps N, miss | penalty
Inner | 2 | 0.200 | 1.20 | 0 | 0.03027 | 496 | model 0.00420 | 0.01009
simulation | 0.00505 | 0.01261
Outer | 2 | 0.250 | 1.25 [ 0 | 0.00041 | 8 | model 0.00007 | 0.00015
simulation | 0.00008 | 0.00021
Inner | 3 | 0.200 [ 1.20 | 0 | 0.00024 | 4 | model 0.00006 | 0.00011
simulation | 0.00008 | 0.00014

In the S.O.R. algorithm for any cache block size the number of sets of S-blocks are the

same as in the Jacobi iterative algorithm. However, the reference patterns to the S-blocks

~ in the sets are different. When the cache block size is greater than one, an S-block is read

and written in every sweep because red and black grid elements are mixed in a cache block.

Table C.3 in Appendix C shows the average values of parameters for different cache block
sizes.

In the case of an M x M S5.0.R. array, when the cache block size exceeds .\,71% +1, S-blocks

are updated alternately by different processors. In this case, J can be as high as 2 - /P or
even P, W = é, [=1, and f=1.

Figures 18 and 19 illustrate the results of the system miss ratios and system penalities
for different cache block sizes for a 128 x 128 grid. These curves are independent of the
number of processors provided B < % + 1.

3.2 Parallel Sorting
3.2.1 Dynamic Quicksort

Quicksort [69] is a divide-and-conquer algorithm, which sorts a file A[1], A[2], ..., A[N] by
rearranging it to make the condition that A[l], ..., A[j-1] < A[j] < A[j+1], ..., A[N] hold
for some j, and by recursively applying the same procedure to the subfiles A[1], ..., A[j-1]
and A[j+1], ..., A[N]. At the end of each splitting phase, in a multiprocessor system, the
larger subfile is processed by the same processor and a descriptor of the smaller subfile is
stored into a global job queue. An idle processor keeps on checking the global job queue and
grabs a subfile descriptor when the global job queue is not empty.

In this algorithm, while a processor splits a subfile, no other processor accesses any data
item in the subfile and shared data are therefore accessed in critical sections. Every data
item in the file may be accessed by all processors.

Table C.5 in Appendix C illustrates the average values of parameters for different cache
block sizes. Results are shown for a two processor, four processor and eight processor systems
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with data file size of 32,768. Each of the simulated points is an average result of simulation
runs for ten independent random files. The values of the parameters are average values and
obtained from the simulator.

Figures 20 and 21 show the system miss ratio and the system penalty obtained from the
model predictions (dotted line) and from the simulation results (plain line). Even though
the relative error in these two Figures is large when the number of processors is two, the
model is very good at predicting the general trend.

3.2.2 Bitonic Merge Sort

In this section, we present Batcher’s bitonic merge sort algorithm [66], which has been
the basis for many other parallel sorting algorithm. The fundamental operation of the
algorithm is called compare-ezchange in which two numbers are routed into a comparator,
and exchanged according to the sign of the comparator so that they are in the proper order.
Given a bitonic sequence?, a single compare-exchange step divides the sequence into two
bitonic sequences of half the length. Applying this step recursively yields a sorted sequence,
which can be thought of as half a bitonic sequence of twice the length. In other words, a
bitonic merge transforms a bitonic sequence into a set of two bitonic sequences with the
property that every element in the first sequence is smaller than any element in the second
sequence. Therefore, once the entire set of N elements has been transformed into a single
bitonic sequence, the sorting is finished.

Table C.7 in Appendix C illustrates the average values of parameters for different cache
block sizes. As for the dynamic quicksort algorithm, results are shown for two processor, four
processor and eight processor systems with data file size of 32,768. Each of the simulated
point is an average result of simulation runs for ten independent random files. The values of
the parameters are obtained from the simulator and are average values.

Figures 22 and 23 show the system miss ratio and the system penalty obtained from the
model predictions (dotted line) and from the simulation results (plain line). Again, these
two figures show almost total agreement between model predictions and simulation results.

3.3 Fast Fourier Transform

In this section, we consider two different algorithms to evaluate the discrete Fourier transform
(DFT), the non-shuffling FFT and the shuffling FFT algorithms [19].

3.3.1 Non-Shuffling FFT Algorithm

The one-dimensional non-shuffling FFT algorithm [19] for N data items is represented by a
butterfly graph with log; N stages. A bit-reversal permutation is applied at some point of
the algorithm, so that the results are stored in the same order as the initial data items. Let

_21\ bitonic sequence is a sequence of numbers A[0), A(1], ..., A[N-1] with the property that (1) there
exists an index #, 0 < < N — 1, such that A[0] through A[i] is monotonically increasing and A[i] through

A[N —1] is monotonically decreasing, or else (2) there exists a cyclic shift of indices so that the first condition
is satisfied [66].
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s(k), k=0,1,2,...,N-1 be N samples of a time function. The DFT of s(k) is defined to be the
discrete function z(j), 7=0,1,2,...,N-1, and

N-1
()= 3 s(k) e
k=0

where j=0,1, ..., N-1 and 1= /—1.

In the non-shuffling FFT algorithm, we divide the array of N items into P chunks con-
taining —?,'- consecutive items. Each processor computes the FFT for its chunk, containing %
data items. For N=16 and P=4, the non-shuffling FFT algorithm is illustrated in Figure
7. In general, each S-block is shared by (log,P + 1) processors and the algorithm can be
divided into two parts. In the first part, that is, in the first 1092% stages of the butterfly,
every shared block is accessed by one processor. In the second part, that is, in each of the
last log, P stages of the butterfly, each shared block is first read by two processors and then
modified by a single processor in a critical section. Synchronization is necessary in this algo-
rithm and is denoted by dotted lines in Figure 7. In general, 2 log; P synchronization points
are needed in the second part (if the algorithm uses two copies of the array and alternates
between the copies only log, P synchronization points would be needed [36].)

There is only one set of shared writable blocks in this algorithm. Each S-block is shared
by (log2 P + 1) processors, J = logs P + 1. In the first part of the algorithm, computation
can be done locally, where every S-block is accessed in a critical section. In the second part
of the algorithm, for every butterfly computation stage, each S-block access can be mapped
into the semi-critical section case. In the multiple Read phase, each S-block is read 2- B
times, and then followed by a critical section with B Writes. The total number of bursts is
therefore [1 + (2- B 4+ 1) - log2 P]. The values of parameter W is

B log, P + 1
" 14 (2-B+1)-logP’

Note that the references of an S-block in the first part of the algorithm are in a Write burst
which starts with a Read. The total number of accesses to an S-blocks is (3 - B - log, V).
Therefore, the value of parameter [ is

= 3-B-logaN
T 1+(2-B+1)-log P’

The total number of Write bursts is (logaP + 1) and all Write bursts in the second part of
the algorithm start with a Write. The value of parameter f is thus equal to

_ logP
" log, P +1°

Table C.9 in Appendix C illustrates the average values of the parameters for different
cache block sizes. Results are shown for two processor, four processor and eight processor
systems with a data file size of 65,536.

Figures 24 and 25 show the system miss ratio and the system penalty obtained from the
model predictions (dotted line) and from the simulation results (plain line).
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3.3.2 Shuffling FFT Algorithm

Another algorithm for FFT in multiprocessor systems is the shuffling FFT [19]. In this
algorithm, computations of partial FFTs alternate with shuffling stages in which data are
passed among processors. Only two processors can share an S-block. Figure 8 presents the
shuffling FFT algorithm for an example where N=16 and P=4. There is much more locality
in this algorithm. Coherence activity is reduced significantly, making this algorithm more
suitable for cache-based systems. ‘

During each butterfly computation and each shuffling stage, each shared block may be
read and updated by only one processor. There is only one set of shared writable blocks in
this algorithm and each block is shared by two processors when B < N/P [36], that is, J=2.
The total number of butterfly /shuffling stages is 2 [ :—:;’—:‘% 1. In the algorithm, Writes always

occur in the butterfly computation phases and never occur in the shuffling phases. Because
of the alternation between Reading and Writing phases, the value of parameter IV is

[ 2y 1+ 1

logz 5

_Q[jﬁil,f_;rH 1

092

W

where the 1’ in the formula corresponds to the Write operation at the end (see Figure 8).
In each butterfly computation, there are [B - (3 log X + 1)] accesses to the S-block and in
the shuffling phase there are B Reads. The total number of accesses to the S-block is thus
equal to {B - [(3 logg% + 2)- [l 7 4 1]}. The value of parameter [ is equal to

log2 &

B-[(3logp + 2)-[ 25 1+1]
2[ 2851+ 1 '

092 F

=

Since the first operation in the butterfly computation stage always starts with a Write except
the first butterfly computation stage, the value of parameter f is equal to
loga N
- [ log2 5

[y 1+ 1

°92°F

Table C.11 in Appendix C shows the average values of parameters for different cache block
sizes. As for the Non-shuffling FFT, results are shown for two processor, four processor and
eight processor systems with data file size of 65,536.

Figures 26 and 27 show the system miss ratio and the system penalty obtained from the
model predictions (dotted line) and from the simulation results (plain line). Again, these
two figures show conclusive agreement between model predictions and simulation results.

3.4 Single Source Shortest Path Algorithm

The single source shortest path algorithm is the most commonly encounted problem in the
study of transportation and communication networks [26]. In this algorithm, a breadth-first
search is employed for finding shortest paths from a single vertex (vertex source) to all other
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vertices in a directed graph, where each edge (z,y) has a positive length. If vertex z and
vertex y do not connect directly, the length of the edge (z,y) is infinite. Also, the length of
the edge (z,z) is infinite, that is, there is no self loop in the graph. The length of a path is
the sum of the lengths of edges on the path, and the distance of a vertex, D[v] for vertex v,
is the minimum length of any path to that vertex from vertex source and D[source]=0.

At the beginning of the algorithm, a MASTER process creates K — 1 concurrent processes
called WORKER processes. During the execution of the algorithm, the K processes share
the computation load as long as there are tasks to be performed. In the path finding step,
each process repeatedly deletes a node from a queue, @, and updates the distance array
(array D)® and the path array (array P)*. In addition to a WORKER'’s tasks, the MASTER
process is responsible for finishing the initialization step and for synchronizing the initiation
and termination of the algorithm.

Table C.13 in Appendix C illustrates the average values of parameters for different cache
block sizes for the distance array (array D). Results are shown for two processor, four
processor and eight processor systems. Graphs are random graphs of 128 nodes and the
average connectivity of each node is 96. Each of the simulation results is an average result
of simulation runs for ten independent random files.

Figures 26 and 27 show the system miss ratio and the system penalty for distance array
obtained from the model predictions (dotted line) and from the simulation results (plain
line).

Every element in the array D has to be accessed in critical sections. Table C.15 in
Appendix C illustrates the average values of parameters for the lock array associated with
the distance array (lock D). Figures 28 and 29 show the system miss ratio and the system
penalty for the lock array obtained from the model predictions (dotted line) and from the
simulation results (plain line).

3.5 Imaging Component Labeling Algorithm

In this section, we study an intermediate level task in image processing, labeling the con-
nected components of a binary image [67]. The N x N image pixels are stored in an array
which is partitioned and allocated to P processors as in the Jacobi iterative algorithm.

The image component labeling algorithm is also known as the connected ones algorithm
which consists of associating labels with 1 valued pixels of a binary image such that any two
pixels have the same label if and only if they lie in the same connected component, which is
a maximal region of 1 valued pixels. In this algorithm, we adopt the 8-connectedness, which
is two pixels are connected if they are adjacent vertically, horizontally and diagonally. After
each iteration, the processors have to synchronize. In general, a processor has to synchronize
with no more than four neighbors.

The infinite cache condition is met when the data cache of each processor is large enough
to contain all the pixels accessed by the processor. In this case, steady state is reached after
the first iteration.

3The distance array reflects the currently computed shortest distances. At the end of the computation,
it stores the shortest distances from the source node to all nodes.
4The path array stores those paths which correspond to the distances recorded in the distance array.
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Table C.17 in Appendix C illustrates the average values of parameters for different cache
block sizes, where 3/4 of pixels are 1 valued pixels. Results are shown for a four processor
system with array size of 128 x 128. Each of the simulation results is an average result of
simulation runs for ten independent random files.

Figures 30 and 31 show the system miss ratio and the system penalty obtained from the
model predictions (dotted line) and from the simulation results (plain line). Again, these
two figures show close agreement between model predictions and simulation results.

3.6 Discussion of Results

It has been observed that the combined effects of critical sections (for all block sizes) and of
the spatial locality [70] of accesses (for block sizes larger than one) to shared writable blocks
result in access bursts to those blocks by different processors. Based on this observation, we
have extended a previous program model for the sharing of data, and we have tried to match
the model predictions and the results from simulations of algorithms in multiprocessors with
infinite caches.

It appears that iterative algorithms such as the Jacobi or the S.0.R. and the image
component labeling algorithm are very well suited to cache-based systems with large data
caches, because shared block contention is low (in realistic cases, the number of processors
sharing a given writable block is less than four and the fraction of accesses to shared writable
block is low). Figures 14, 15, 16, 17, 30 and 31 show that bigger block sizes do not improve
the overall hit rate on shared writable blocks and cause more penalty since false sharing®
effects exist when the cache block size is greater than two in the case of P=4 and grid size of
128 x 128. When cache block size changes from one to two, since the average miss rate on
each S-block access decreases (i.e., M; decreases) and the number of accesses to such blocks
remains the same (i.e., ¢, unchanged), the miss rate decreases. In addition, the probability
of a coherence event per access to S-blocks decreases, and the event penalty increases. It
does not, however, match with the decrease in the probability of the coherence event. This
results in the decrease of the total penalty. When the cache block size is greater than two,
the bigger the cache block size, the bigger the system miss ratio and total penalty. This
occurs because the average miss rate on each S-block access decreases (i.e., M; decreases)
but the number of accesses to such blocks increases (i.e., g, increases). The probability of
a coherence event per access to S-blocks decreases, but this is more than compensated for
by the increase of ¢, and of the penalty associated with each coherence event. Therefore,
for shared data accesses, the block size should be small (one or two data elements). Note
that this conclusion is only valid if the caches are large enough to contain all data across
successive iterations. The first iteration causes large number of misses for the initial load of
data and instructions and a bigger block size helps these transients.

The results of quicksort and bitonic merge sort are the average values of results of multiple
random input files. Bigger block sizes do not improve the performance of the quicksort
algorithm when cache block size is greater than eight since large cache blocks have higher

SFalse sharing is induced by the collocation of different data items in the same cache block. For an
algorithm with no false sharing, the miss rate can never be increased when cache block size increases in
infinite cache-based multiprocessor systems.
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probability to be accessed by multiple processors at the same time. This is also the effect of
false sharing. Because the input file array is a linear array, if there was no false sharing, the
miss ratio would be halved when the cache block size is doubled. There is no false sharing in
the bitonic merge sort when the cache block size is less than problem size divided by number
of processors (that is, B < %) and the miss ratio and system total penalty decrease when
the cache block size increases.

Bigger block sizes also improve the performance of the FFT routines since there is no false
sharing in the two FFT algorithms when B < %- While the penalties on individual coherence
events increase with the block size, the probability of the coherence events decreases and the
number of shared block accesses causing these events remains constant, as the block size
increases.

As for the iterative algorithms and the dynamic quicksort algorithm, false sharing effect
exists in the single source shortest path algorithm. Bigger cache block sizes cannot improve
the performance of the algorithm. The false sharing effect becomes more noticeable when
the number of processors in the system is greater than eight or the cache block size is greater
than 16.

In all the simulations we ran, there is a maximum block size beyond which the per-
formance drops sharply. This block size depends on the size of the problem and on the
decomposition of the algorithm (i.e., the number of processors) [36]. -

Figures 9 to 13 summarize the accuracy of the access burst program model by comparing
model predictions and simulation results. It appears that for the eight algorithms studied
in this thesis, the precision of the model based on the idea of access bursts in many cases
is good. It appears that the models and their parameters are sufficient to approximate the
shared block contention effect for some important parallel algorithms, and in the case of the
infinite cache model.

If we look at the comparisons between model and simulations, it appears that the non-
shuffling FFT results in the worst predictions. In the case of the non-shuffling FFT, the
model predicts that the coherence overhead will increase with P, the number of processors,
while the simulations predict that it remains constant. A closer look at Figure 7 shows that
an S-block is not shared by all log, P 4 1 processors at all times but rather that it is shared
by different groups of two processors at different stages of the computation. Applying the
model with J=2 would yield a much improved prediction of the model.

We never expected the models to fit exactly each case: Because of the large data reduc-
tion in the stochastic models, a given model with given parameter values maps on different
algorithms with different behaviors. In fact, the stochastic model should represent the av-
erage algorithm among all algorithms with a given set of parameters. In this context, it is
probably more relevant to analyze the correlation between model and simulation than to try
to match the simulation for a given algorithm with the model. Figures 9 to 13 correlate the
model predictions with the simulation results for five performance metrics, in the case of all
the simulations that we have run. In these figures, we have plotted the values predicted by
the analytical model as a function of the values predicted by the simulation model. There
is a high correlation except for IN_RW. In Figure 12, for some algorithms, the simulation
results show that the JIV_RW is zero because a shared writable block can only be modified
by one processor. The model predictions, however, may reach up to 0.025 because in the
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analytical model every processor has the same probability to start the next new burst for
the shared writable block. If the values of parameters W and f for the block are not zero,
the probability of event JN_RW from the model prediction is not equal to zero.
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Figure 28: The system miss ratio (lock D) for
the single source shortest path algorithm (128
nodes) (plain line: simulation results, dotted
line: model predictions) (e: P=2, 0: P=4, x:
P=8)
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Figure 29: The system total penalty (lock D)
for the single source shortest path algorithm
(128 nodes) (plain line: simulation results,
dotted line: model predictions) (e: P=2, o:
P=4, x: P=8)
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4 A PERFORMANCE COMPARISON OF CACHE
COHERENCE PROTOCOLS BASED ON THE
ACCESS BURST MODEL

The choice of a cache coherence protocol is an important design consideration in multipro-
cessor systems. Several protocols have been proposed and techniques must be developed to
compare their relative merits in different computing environments.

In this chapter, we compare five write-invalidate protocols for their effectiveness in han-
dling shared writable blocks. The access burst program model is applied to the different
protocols.

Protocols are modeled by Markov chains; an analytical closed-form solution is derived
for all components of the cache coherence overhead and for all cache coherence protocols in
systems with caches of infinite sizes.

4.1 Introduction

In this chapter we apply the access burst model to compare the effectiveness of different
coherence protocols in handling shared writable blocks. The access burst model was intro-
duced in Chapter 2, and is based on the observation that shared writable blocks are accessed
in critical or semi-critical sections. Caches are assumed to have infinite sizes and models are
derived for computations in steady-state. This simplification drastically reduces the number
of parameters in the models. The results obtained are an indication of protocol efficiency
for very large caches and compute-intensive, iterative algorithms. Many of these algorithms
exist for asynchronous multiprocessors [12]. An example of such an algorithm is given at the
end of the chapter.

To study write-broadcast protocols in steady state and in a system with infinite caches is
trivial since the only coherence events are Writes to shared writable blocks. Therefore, the
coherence overhead can be measured by the probability of a Write to any shared writable
block multiplied by the average time that a processor is blocked at the occurrence of the
event. Hence, in this chapter, we concentrate on write-invalidate protocols only.

The remainder of this chapter is organized as follows. In Section 4.2, the access burst
model is applied to the analysis of five write-invalidate protocols. In Section 4.3, we com-
pare the predictions of the model with execution-driven simulations on the Jacobi iterative
algorithm. Finally, the efficiencies of the protocols are compared to the model in Section 4.4.

4.2 Cache Coherence Protocols

In this section, five different cache coherence protocols are described and analyzed. A closed-
form formula for the overhead of each coherence event is derived based on the access burst
program model.



4.2.1 The Basic Coherence Protocol

This coherence protocol was described in detail in Chapter 2. A block may exist in one of
three states in a cache: INVALID (no copy of the block in the cache), RO (Read-Only; an
arbitrary number of caches can have this block, and all the copies are identical), and RW
(Read-Write; the block has been locally modified since it was brought into the cache and the

shared memory copy is stale).

Protocol Description
The Basic coherence protocol works in steady state as follows:

1. Read hit: The block may be accessed locally without delay.

2. Read miss: If a remote cache has an RW copy of the block, the modified block must
first be written back to shared memory, and then shared memory supplies the block to
the requesting cache. Otherwise, the block comes directly from shared memory. Each
cache with a copy of the block sets the state of its copy to RO.

3. Write hit: If the copy of the block is in state RO an invalidation signal must be sent
to all other caches. The state of the local copy is changed to RW.

4. Write miss: A Write miss is treated like a Read miss with the following difference: if
copies exist in other caches, they are invalidated and the state of the local copy is set

to RW.

Coherence Analysis

The detailed coherence analysis for the Basic cache coherence protocol has been described
in Chapter 2. In this protocol, four coherence events exist, which are miss (M), transition
from RO to RW (IN_RO), transition fro RW to RO (CS_RW), and transition fro RW to
RW (IN_RW). An average penalty, A, is associated with each of these events. The penalty
associated with an event is defined as the average time a processor is blocked at each occur-
rence of the event. Let us define ¢,,. and t;,, as the times taken by the transfer of a cache
block between shared memory and a cache and by the invalidation of a block in a different
cache, respectively. Thus, Aps is equal to tme, Arn_po is equal t0 tiny, Acs_pw is equal to
tme, and Ary_pw is equal to t,..

Closed-Form Derivation
The protocol is modeled as a discrete Markov diagram shown in Figure ??. An analytical

closed-form solution is derived for the probabilities of the four coherence events and are listed
as follows:

1 (=)W
Pelih =g I+ -1 -w"
pungo) = L U=V )
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and:

P(CS_RW) = % (J - 1)J- i_ifl.ilp;w.f),

1 (J—1)-Ww2.
PUNJ?W):T'( J—)1+Wf

The total penalty is

Aotal = P(M)- Ay + P(IN_RO) - Ain_ro

+P(CS_R"V) : /\CS_RW + P(IN-RW) . /\IN_RW

l_{ J-(J=1)-W-(1+W)
(

1+(J-1)-W)-(J-1+W) ™

(-1 -W-(1-W-f)
J—1+W | -

[

+

4.2.2 The Write-Once Coherence Protocol

In the Write-Once protocol [44, 87|, a block in a cache can be in one of four states: INVALID,
VALID (as RO in the Basic protocol), RESERVED (a datum in the block has been locally
modified exactly once since it was brought into the cache and shared memory is updated),
and DIRTY (data in the block has been locally modified more than once since it was brought
into the cache and the shared memory copy is stale).

Protocol Description

The Write-Once coherence protocol works in steady state as follows:

1.

2

Read hit: The block may be accessed locally without delay.

Read miss: If a remote cache has the copy of the block in state DIRTY, the remote
cache supplies the block to the requester and updates shared memory at the same time.
Otherwise, the block is loaded from shared memory. All caches having a copy of the
block set its state to VALID.

Write hit: If the block is already in state DIRTY or RESERVED, the Write can be
processed locally without delay and the state of the block is always set to DIRTY.
If the block is in state VALID, the word being modified is written through to shared
memory, block copies in other caches are invalidated and the state of the block 1s set

to RESERVED.

Write miss: If one remote cache owns a copy of the block in state DIRTY, the block is
loaded from the remote cache and the remote cache invalidates its own copy; otherwise,
the block is loaded from shared memory. Upon detecting the write miss signal on shared
bus, all caches with the copy of the block invalidate their copies at the same time. Once
the block is loaded, the Write takes place and the state of the block is always set to
DIRTY.
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1.D : Dirty copy

1_R : Reserved copy

k_V : k processors own a valid copy
Figure 32: Markov chain for the Write-Once coherence protocol

We denote the state of a block in the system by 1_R, 1.D, 2.V ..., J_.V, where 1_R or 1_D
mean that the block is owned by one cache and is a RESERVED or DIRTY copy, respectively;
k.V means that there are VALID copies of the block in k caches. The discrete Markov chain
for the Write-Once coherence protocol is shown in Figure 32. This discrete Markov diagram
is the same as the one shown in Figure ??(b) with the following differences. The state 1_RW
in Figure 77(b) is split into two states, 1_.R and 1_D; at the end of each Write burst, the
next state is 1_D if a miss occurs; otherwise, the next state is 1_R.

Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: This event is like the M event in the Basic cache coherence protocol except
that the block is supplied by a remote cache rather than shared memory if the remote
cache has a DIRTY copy of the block. Hence, some misses cause cache-to-cache trans-
fers (these miss events are denoted M -cc), and some misses cause memory-to-cache
transfers (these misses are denoted M_mc.) P(M_cc) is equal to [P, _p - (J — 1)/J]/1;
P(M.me) is equal to [(Py_r - (J = 1)/J) + 322 Py - (J — )1/

2. Transition from VALID to RESERVED: this event, denoted C'S_V_R (Change
State from Valid to Reserved), occurs either at the end of a Write burst when no miss
event happens in the burst, or occurs in a transition from 1_R to 1_R, provided the
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second access burst is executed by a different processor and starts with a Read. The
modified word is written through to shared memory. Thus, P(CS_V_R) is equal to
W-1=f)-Pr-(J=D/I+TW- Pryv-jlI|l.

3. Transition from DIRTY to VALID: this event, denoted CS_D (Change State of
a DIRTY copy), is very much like the CS_RW event in the Basic cache coherence
protocol except that the cache having the DIRTY copy of the block supplies the block
to the requesting cache and at the same time updates shared memory. P(CS_D) is
equal to [PLp-(1-W)-(J-1)/J+Pip-W-(1-f)-(J—1)/J)/I. When the
time to update shared memory is longer than the time of a cache-to-cache transfer, an
extra penalty must be added to the miss penalty for the CS_D event. On the other
hand, in systems where the latency of updating shared memory is less than that of the
cache-to-cache transfer, no extra penalty is needed to account for memory update. At
the end of the M event, shared memory has already been updated.

In addition to the t,,. and t;,, defined previously, we define two new terms, f,0-4 and
tee, which are the times to write a word to shared memory and to transfer a block between
two caches, respectively. Hence, Aps_mc is equal to £,.. Apr_ec 1s equal to t... Ags_v_r which
is equal t0 tyord- Acs_p is equal to taigy where tgirr=(tme — tec)y if tme > tee, or taip=0,
otherwise.

Closed-Form Derivation
From Figure 32, we can equate the state probability equations:

_ I J—j
J_J]'(].._I/V)PI_D:l*Vpl_R"i'Z"'TJ’WPJ—Va
i=2
=1 L
w+It =) Pa=3 1w,
i=2

_ J-1
(W + J_J‘? (1=W)) Py === (1= W) (Pro+ Pig),

and:

—k J—(k-1
(W’—}-J—J&-(l —W))- Py :—-(7—)-(1 = W), - P~y
for 3< k< J

After transformations similar to those in Appendix A, we have:

b _ I W (2 2IW —2] —2W +2)
T =1+ W (14 (J - 1)W)

and:
W (J=J- WP+ W-1)
T -1+ W) (1+ (- 1)W)
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Therefore, the probability of each event can be written as follows:

1 (J=1)- W2 (J2+2JW —2J —2W +2)
PiMcey=1 J-1+W)E-(1+([-0DW)

1 (J=1)-W-(1=W)-(J2+2JW —2J —3W +1)
P(Mmm) =7 (J-1+W)-(1+(J - W) ’

P(CSVR) = %.{(J (J-1-W-1-Ww)  (J-1D-W .(1_”}’

—-1+I’V)-(1+(J—1)LV) J-1+W
and

1 (J=1)-W2.(1— fW) - (J2+2JW —2J —2W + 2)

P(CS.D) = T (J—1+W)2-(1+(J-1W)

The total penalty is:

)‘totaf = P(A{—CC) : Ak!_cc + P(M,mc) ' ’\ﬁf_mr:
+P(CS_V-R) - Acs.v_.r+ P(CS_D) - Acs_p
1 {(J—l)oW2A(J2+2JW—2J—2W+2) _

1 (J—1+W)e-(1+(J-1)W) e
(J=1)-W-(1-W)-(J2+2JW —-2J —3W +1)
(J—1+W). (14 (J - 1)W)
(J—=1)-W-(1-W?) (J-1)-W2-(1-f)
[(J—1+W)-(1+(J— 1)) J—1+W } word

(J—1)-W2- (1 fW)- (S +2IW -2 —2W +2)
+ J—1+W)E-(1+(J - 1)W) ' ‘*‘”}'

4.2.3 The Synapse Coherence Protocol

In the Synapse protocol [42], there is a single-bit tag with each cache block in shared memory,
indicating whether shared memory is o respond to a miss on that block. If a remote cache
has a modified copy of the block, the bit inhibit shared memory from supplying the block.
This bit can prevent a possible race condition when the remote cache does not respond
quickly enough to inhibit shared memory.

A cache block may be in one of the three states: INVALID, VALID (as RO in the Basic
protocol), and DIRTY (as RW in the Basic protocol).

Protocol Description
The Synapse coherence protocol works in steady state as follows:

1. Read hif: The access may be processed locally without delay.
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2. Read miss: If a remote cache has a DIRTY copy of the block, the modified block must
first be written back to shared memory; the tag bit of the block in shared memory is
set; the remote cache invalidates its local copy and sends a busy acknowledge signal
to the requesting cache. When the requesting cache receives this busy signal, it must
send an additional read miss request in order to get the copy of the block from shared
memory. In all other cases, the block is directly supplied by shared memory. The state
of the loaded block is always set to VALID.

3. Write hit: If the block is in state DIRTY in local cache, the Write can be processed
locally without delay. If the local copy of the block is in state VALID, the procedure
is as follows: shared memory has to transfer the ownership along with the copy to the
requesting cache and each cache with a copy of the block observes this bus transaction
and at the same time invalidates its copy of the block.

4. Write miss: If a remote cache has a DIRTY copy of the block, the remote cache
transfers the ownership along with the block copy to the requester. If all copies of the
block in the system are VALID, shared memory supplies the copy to the requesting
cache and each cache which has a VALID block copy invalidates its copy at the same
time. The tag bit in shared memory is reset.

We can denote the states of a block in the system by 1.D, 1.V, 2.V ..., J.V, where 1_D is
the state in which the block is owned by one cache and is a DIRTY copy; £_V means that
there are VALID copies of the block in k caches. If we observe state transitions at the end
of each access burst, the discrete Markov chain of the Synapse coherence protocol can be
drawn as shown in Figure 33. This discrete Markov diagram is the same as the one shown
in Figure ??(b), with one exception: one additional state, 1.V, is introduced.

D : Dirty copy

i_V : i processors own the valid copy

Figure 33: Markov chain for the Synapse coherence protocol

50



Coherence Analysis
Three possible cache coherence events can occur:

1. Miss: There are two types of miss events (as in the Write-Once protocol). These
events are denoted M _cc and M _mc for the cases of cache-to-cache and memory-to-
cache transfers respectively. A miss causes a cache-to-cache transfer when a remote
cache has a DIRTY copy of the block and the access burst is a Write burst. Therefore,
P(M _cc) is equal to [W - P, p - (J —1)/J]/l; P(M_mc) is equal to [((1 — W) - P p-
(J = )/0) + L2 Py (I = )1

Transition from VALID to DIRTY on hit: this event, denoted IN_V_h (INval-
idation of Valid Copy(ies) on hit), occurs either at the end of a Write burst when no
miss event happened in the burst, or in a transition from 1_D to 1.D, provided the
second access burst is executed by a different processor and starts with a Read. This
event includes a block transfer from shared memory to the requesting cache. Thus,

P(INV_h) is equal to [W- (1= f)- Pip-(J = 1)/J + I, W - Py - 5/J)/1;

o

3. Transition from DIRTY to VALID: this event, denoted C'S_D, is the same as the
CS_RW event in the Basic cache coherence protocol. P(CS_D) is equal to [P _p-(1—
W)~ (J = 1)/J + P W (1= ) (J — D/J)L

The penalty of each event is: As_. is equal to tc; Ays_me 15 equal to tpe; Arv_v_p is equal to
tme; and Acs_p is equal to t,,,.

Closed-Form Derivation
From Figure 33, we can derive the state probabilities from the following equations:

J—1 L
A =W)Po=3 W Fx,

i=1

J—1 J -1
(W_'_T_(l_LV))PIHv:-—J—(l—nf)P],_D,

and:
J—k J—=(k-1
(W+T'(1—W))'Pk_v=_%—)'(1—W)'P(k—1]—v*

Jor 2<€ k< J.

After transformations similar to those in Appendix A, we have:

JW
il P T L
_ a 2
p(M_CC)=l.(J_1)_W,
I JT=14+W
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and:

(J=1)-W-(1=W)-(J+JW — W)
(J—1+W)-(1+(J=1)W)

P(M.me) = % .

The probability of other events can be written as follows:

PUNy.a) = L UZN-W-L+IW W2~ fW - {1+ {J - W)

I (J—1+W)-(1+(J - )W) :

and:

F = 1) Weift =
P(CSJ)):%.( 1} —H;-{—(IW W)

The total penalty for the Synapse protocol is:

Atotat = P(M_cc) - Apee + P(M_mc) - Apt_me
+P(IN..VJl) : /\JN_V_h + P(CS_D) & ACS-D
B l{(J—l)-W?_ (J=1)-W-(JW —=2W +J +2) .
I\ J=14+W =7 (J=-1+W)- 0+ -1W) ™
_2-(J—1)-W2Af_t }
J—1+W el

4.2.4 The Illinois Coherence Protocol

In the Illinois protocol [64], a block in a cache can be in one of four states: INVALID,
EXCL-UNMOD (Exclusive-Unmodified; no other cache has this block; data in block is con-
sistent with shared memory), SHARED-UNMOD (Shared-Unmodified; as RO in the Basic
protocol) and EXCL-MOD (Exclusive-Modified; as RW in the Basic protocol).

Protocol Description
The scheme works in steady state as follows:

1. Read hit: The access may be processed locally without delay.

2. Read miss: If a remote cache has an EXCL-MOD copy of the block, the remote cache
sends the copy to the requesting cache and at the same time updates shared memory.
Otherwise, any one cache supplies the copy to the requester. Both caches set their

copy to SHARED-UNMOD.

3. Write hit: If the local copy of the block is in state EXCL-MOD, it can be updated
without delay. Otherwise, the Write cannot be processed until an invalidation signal
is sent. The copy in the local cache is set to EXCL-MOD.

4. Write miss: A write miss request is broadcast to all caches. Each cache with the copy
of the block invalidates its copy. The block is always loaded from a remote cache and
its state is set to EXCL-MOD.
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We can denote the state of a block in the system by 1_E, 2_5,..., J.S, where 1_E means
that the block is owned by one cache and is an EXCL-MOD copy; £.5 means that there
are SHARED-UNMOD copies of the block in k caches. The discrete Markov chain of the
Illinois coherence protocol is the same as the one shown in Figure ?7(b) provided that the
state names are changed.

Coherence Analysis
Three possible cache coherence events can occur:

1. Miss: This event is like the M event in the Basic cache coherence protocol except
that the block is always supplied by a cache. P(M) is equal to [(P,_g - (J —1)/J) +

Tio3 Pis- (I = 1)1/
2. Transition from SHARED-UNMOD to EXCL-MOD on hit: This event, de-
noted IN_S_h (INvalidation of SHARED-UNMOD Copy(ies) on hit), and the IN_V _h

event in the Synapse cache coherence protocol are alike except that the coherence
overhead of this event is to broadcast an invalidation signal. P(IN_S_h) is equal to

W-(=f)-Pip-(J=1)[J+Tjma W~ Pis-j/J]/L

3. Transition from EXCL-MOD to SHARED-UNMOD: This event, denoted
CS_E (Change State of an EXCL-MOD copy), is the same as the CS_D event in
the Write-Once cache coherence protocol. P(CS_E) is equal to [P, g - (1 — W) - (J —
DI+ Pg-W-(1-f) (J-1)/J]/L

The penalty of each event is: Ay is equal to tec, Ajy s is equal to t;n,, and Ags_g is equal
to taisy where tgifr=(tme — tec), if tme > tee, OF tdir =0, otherwise.

Closed-Form Derivation

The state probability equations of the Illinois cache coherence protocol are the same as

those of the Basic cache coherence protocol. The probability of each event can be written
as follows:

—— l (J=1)-W
P = I 1+(J-1)- W’
. L (J-1)-W-(1-W? (J—-1)-W?-(1-f)
TR S S {(J—l+W)-(1+(J—1)W)+ J-1+W }
and:
PCS.E) - l_(J—l)-W-(l—W-f)-

[ J-1+W
And the total penalty for the Illinois protocol is:

Atotal = P(M) cAn P(IN-S_h) “AIN_S_h + P(CS_E) - Aes_e

B .1“{ (J=1)-W P +(J—1)-W-(1—W-f) -

I 1+ (J=-1)-W ™ J—1+W i

+{ (J=1)-W-(1-W? (J=1)-W?2-(1— f)
(J=1+W)-(1+(J-1)W) J—1+W Jt}

53



4.2.5 The Berkeley Coherence Protocol

In the Berkeley protocol [54], a block in a cache can be in one of the following four states:
INV (INValid; as INVALID in the Basic protocol), UNO (UNOwned; as RO in the Basic
protocol), EXC (owned EXClusively; the block copy is unique, and therefore it can be up-
dated locally without delay; the cache must respond to any request on the bus for a copy
of the block; this state is equivalent to the RW in the Basic protocol), or NON (Owned
NON-exclusively; the block copy is owned, but it cannot be modified without informing the
other caches). At any time up to one NON copy and several UNO copies of a block can
exist. In steady state, there is one and only one NON copy of a block in the system if there
exist some UNO copies of the block. On the other hand, there is never a NON copy of the
block in the system if there is an EXC copy of the block. The cache, which has a copy of the
block in state NON or EXC, is called the owner of the block. If a block is not owned by any
cache, shared memory is the owner. In a system with infinite caches in which replacements
never occur, the memory cannot be an owner in steady state.

Protocol Description
The Berkeley protocol works as follows in steady state, for the case of infinite caches.

1. Read hit: The access is processed locally without delay.

2. Read miss: The block is always loaded from another cache and its local state is set to

UNO.

3. Whrite hit: If the local copy of the block is in state EXC, the Write is processed without
delay. Otherwise, all copies must be invalidated before the Write can be processed; the
cache sets its copy to state NON.

4. Write miss: The block always comes from another cache and each cache with the copy
of the block invalidates its copy. The requesting cache sets its copy to state EXC.

We can denote the state of a block in the system by 1_E, 2_N,..., J_N, where 1_£ means
that the block is owned by one cache and is an EXC copy; k-N means that there are one
NON and (k—1) UNO copies of the block in k caches. Provided the state names are changed,
the Markov chain is the same as the one shown in Figure 77(b).

Coherence Analysis
In this scheme, two possible cache coherence events can occur:

1. Miss: The fraction of misses in this protocol is given by the same expression as in the
Illinois protocol, that is, P(M) = [(Pig - (J — 1)/J) + X125 P - (J = 3)/J1/L.

2. Transition from UNO to NON on hit: The fraction of references causing this event
IN_U_h (INvalidation of UNO Copy(ies) on hit), is given by the same expression as
for the event I N_S_h in the Illinois protocol, that is, P(IN Uh)=[W-(1-f)-Pg-

(J =1/ + i W Py 511/



The penalty of each event is: Ay = tee, and Arnv_v_n = tine.

Closed-Form Derivation ‘
The state probability equations of the Berkeley cache coherence protocol is the same as
those of the Basic cache coherence protocol. The probability of each event can be written

as follows:

1 (J-1)-W

P(M) l -m,

and:

P(INU L) =

1 (J—1) - W-(1-W? (J—1)-W2-(1—f)}
7‘{(J—1+W)-(1+(J—1)W) J—14+W '

And the total penalty is:

'\tof.af = P(l"f) . AM + P(IN_UJI) ¢ AIN_U_}:

1 [(-1)-w (J—=1)-W-(1-W? »
L 1+(J-1)W " (J-1+W)-1+(J-1W) ™
(J-1-W2-(-f)
+ J—l-{—w tmu =

4.3 Multitasked Jacobi Iterative Algorithm

In this section, we apply the model to one particular multitasked algorithm, the Jacobi
iterative algorithm, to solve Laplace’s equation V2z = 0 on a rectangular domain of R”.
The Jacobi iterative algorithm is an iterative, compute-intensive algorithm. The infinite
cache condition is met when the data cache of each processor is large enough to contain all
the grid elements accessed by the processor. In this case, steady-state is reached after the
first iteration. This important algorithm is therefore a good benchmark to apply the model.
The details of the algorithm can be found in Section ??. In this algorithm, we have identified
eight sets of shared writable blocks. The values of the parameters for each set is given in
Table 77 for a grid size of 128 x 128.

In the computation of the total penalty, we examine two different systems. In system 1,
the cache-to-cache transfer time is taken as eight time units: one time unit for bus arbitration,
one time unit for address transfer, four time units for a block access and transfer, and two
time units for acknowledgement. The memory-to-cache transfer time is taken as ten time
units because an access to the memory takes six time units. The time to write a word to
shared memory is seven time units: one time unit for bus arbitration, one time unit for
address transfer, three time units for a word transfer and memory access, and two time
units for acknowledgement. An invalidation signal only takes two time units: one for bus
arbitration and one for signal broadcasting. The difference between system 1 and system 2
is the cache-to-cache transfer time. In system 2, the time to retrieve a block in a remote
cache is eight time units so that the total cache-to-cache transfer time is twelve time units.
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Therefore, in system 1, a cache-to-cache transfer takes less time than a memory-to-cache
transfer. It is the opposite in system 2.

In the following, we will express all penalties in units of the penalty of transferring a
single word between a cache and the shared memory, that is, Ay,rq = 1. If the penalty to
read a word from memory is the same as the penalty to write a word to memory, then we
can estimate the performance improvement due to the caching of shared writable data as
1 — Aotar. In particular if Ajprar > 1, then caching shared writable data is not productive,
The penalties of different coherence events in system 1 are t,. = 10/7, tee = 8)T, pora =1
and tiny = 2/7; in system 2, they are tme = 10/7, tee = 12/7, twera = 1 and t;n, = 2/17.

From Table 77, we can calculate the miss ratio, M, and the total penalty, Aar, for the
Jacobi iterative algorithm for the five different protocols. The results are compared to the
results of execution-driven simulations for the five protocols in Table 7, Table 8 and Table 9.
The difference between model predictions and simulations in most cases is never more than
12.5%.

Table 7: Comparison between the miss ratios of the model and of the simulation

Protocol Model Simulation | Difference
Prediction Result (%)
Basic 0.004920 0.005518 10.83%
Write-Once | 0.004920 0.005518 10.83%
Synapse 0.008665 0.008622 0.50%
Illinois 0.004920 0.005518 10.83%
Berkeley 0.004920 0.005518 10.83%

Table 8: Comparison between the total penalties of the model and of the simulation (system

N _ 10 8 S . 2
1: L'fmc = 7 tcc =T tword =T tmu — ?)

Protocol Model Simulation | Difference
Prediction | Result (%)
Basic 0.015141 0.016540 8.46%
Write-Once | 0.011190 0.011615 3.66%
Synapse 0.023576 0.019955 18.15%
[linois 0.008030 0.008074 0.54%
Berkeley 0.006825 0.007185 5.01%

4.4 Discussion

The performance metrics derived from the model are the miss ratio and the total coherence
penalty. This discussion applies for steady-state computations in systems with infinite caches,
and for block sharing patterns for which the access burst model is acceptable.
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Table 9: Comparison between the total penalties of the model and of the simulation (system

2: te = g, tee = 1_73‘ tword = %a Liny = ?)
Protocol Model Simulation | Difference
Prediction | Result (%)
Basic 0.015141 0.016540 8.46%
Write-Once | 0.011545 0.011191 3.16%
Synapse 0.023929 | 0.021288 12.41%
Illinois 0.009636 0.010338 6.79%
Berkeley 0.009636 0.010338 6.79%
4.4.1 Miss Ratio

The miss ratio is given by the sum of P(M_cc) and P(M_mc). The Basic, the Write-once,
the Illinois and the Berkeley coherence protocols have very similar Markov chains, and the
same miss ratio, which is

1 (J-1)-W
Py =7 1+(J-1)-W

(1)

The transition from state 1_RIV to state 2_RO is replaced by a transition from D to 1_V in
the Synapse coherence protocol; in this case the miss ratio is

1 J-(J=1)-W ,
-1 W)- 1+ (T -1)- W) (2)

P(M)

This value is always higher than the value of equation (1) since J is always larger than
J—=14+W (W <1). The miss ratio is displayed in Figure 34 for different value of J and for
W=0.25 and in Figure 35 for different value of W and for J=16. The access burst model
predicts that the miss ratio on S-blocks shared by 16 processors is more than 0.6 /I, even for
cases where W is less than 15%. Also, when either W=0.25 and J > 16 or J=16 and W >
0.25, the miss ratio is insensitive to either J or W; however, if we can double the value of (,
the miss ratio will be halved. It appears therefore that the average burst length is critical
to maintaining a good hit ratio on shared writable blocks.

4.4.2 Total Penalty

Figures 36 and 37 display the product (penalty x [) as a function of W and J when f=1,
and Figures 38 and 39 show the product (penalty x ) as a function of W and J when
f=0 (two extreme cases) for system 1. From these four figures, the Berkeley coherence
protocol always shows the best performance. The Illinois coherence protocol always has less
total penalty than the Write-once coherence protocol. The Basic or the Synapse coherence
protocols always exhibit the worst performance. Qur examples show that, under the access
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burst model with f=1, with J less than 10 and W=0.25, the Synapse coherence protocol
shows the worst performance; however, when J is larger than 10 and W=0.25, the Basic
coherence protocol has the worst penalty for shared block accesses; when f=0, the total
penalty of the Synapse protocol is always higher than that of the Basic protocol. These
conclusions are similar to those of Archibald and Baer’s, in [10].

The above conclusion may vary for different values of the penalties, which in turn depend
on the architecture of the system. For system 2, Figures 40 and 41 display the product
(penalty x [) as a function of W and J when f=1, and Figures 42 and 43 show the product
(penalty x [) as a function of W and J when f=0. From these four figures, the Berkeley
coherence protocol always has the same penalty as the Illinois coherence protocol since
there is no extra time needed to update shared memory when the C'S_E event occurs. The
Write-once coherence protocol has the least penalty in most cases except that in the case of
W=0.25, f=0 and J < 4 and in the case of J=16, f=0 and W > 0.5, the Illinois and the
Berkeley coherence protocols show the best performance. The average penalty of the Illinois
and the Berkeley coherence protocols is less than the average penalty of the Basic and the
Synapse coherence protocols except in the case of J=16 and W is less than 0.15. When
work load model f is equal to zero, the Synapse coherence protocol always shows the worst
performance. However, when f is equal to one, the Basic coherence protocol pays more
penalty than the Synapse coherence protocol in the case where W=0.25 and J is greater
than 16 and in the case where J=16 and W is larger than 0.1.

Overall, we have seen that the miss ratio is roughly the same for all coherence protocols.
The coherence protocols can be ranked in terms of increasing penalty (or decreasing effi-
ciency). For system 1, the order is: the Berkeley, the Illinois, the Write-once, the Synapse
and the Basic coherence protocols. For system 2, the order is: the Write-once, the Berkeley,
the Illinois, the Synapse and the Basic coherence protocols. Therefore, while the Write-once
coherence protocol is an average coherence protocol for system 1, it becomes the best coher-
ence protocol for system 2 because the cache-to-cache transfer time has only a minor effect
on the Write-once coherence protocol. Hence, the choice of a coherence protocol is greatly
affected by the system architecture and parameters. The model proposed in Chapter 2 can
be used for rapid evaluations of various protocols for a given system.

4.5 Conclusion

In this chapter we have applied the access burst program model to five coherence protocols
for the caching of shared writable blocks in multiprocessor systems with infinite caches. The
trend towards large caches seems inevitable in general-purpose computing because of the
large hit ratio required by more powerful processors and because of the expected availability
in a few years of VLSI chips with several megabytes of memory. Iterative, compute-intensive
algorithms occur very often in multiprocessor algorithms [12]. The hypothesis of infinite
caches is obtained when the data cache is large enough to contain all the data accessed by
each processor, and steady state is reached after the first iteration.

It is remarkable that all coherence components are very simple to analyze by using the
access burst program model for accessing shared writable blocks in the infinite cache envi-
ronment. The maximum number of parameters needed for the most complicated case 1s no
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more than four. The infinite cache results for a given set of S-blocks are independent of all
cache parameters (organization, replacement policy) and of the reference pattern to other
blocks. This is a distinct advantage, considering the complexity of the problem investigated
in this dissertation. Because the model can be easily derived analytically, eflicient evaluation
of the whole design space can be done.
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5 Finite Cache Effects

In this chapter, the finite cache effects are studied. First we prove some inclusion properties
among similar finite cache systems and we compare their coherence overhead. Then we
extend the access burst program model to the case of finite cache systems. Replacements
are assumed to be uniformly distributed throughout the whole execution. We apply the
model to the Basic cache coherence protocol and the finite cache system is modeled by a
discrete Markov chain. An approximate solution is found for each component of the coherence
overhead. Again, the accuracy of the model is verified by comparing the model predictions
with execution-driven simulation results for several parallel algorithms.

6 Introduction

Although the infinite cache model provides a convenient environment for analyzing the exe-
cution of a wide class of problems on multiprocessors, in the real-world, cache size is always
finite in the sense that one can find important problems whose working set size cannot fit
into multiprocessor caches. In such a case, the infinite cache model fails to represent the
real-world model and clearly finite cache effects should be explored.

The infinite cache model is much simpler to study than the real-world system with finite
caches, mainly because it is described by fewer parameters. On the other hand, modeling
finite-cache effects is very complex [?] because the number of parameters that potentially
affect the outcome of the model is very large. In a finite-cache system, the hit ratio depends
on many factors such as the block size, cache size, cache organization, cache replacement
policy and cache coherence protocol [?].

6.1 Correlation Between Cache Size and Cache Coherence
Overhead

In Chapters 2 and 4, we studied in detail five write-invalidate cache coherence protocols. In
these write-invalidate cache coherence protocols, the cache events on a shared writable block
in a multiprocessor system! are M (Miss), IN_RO, CS_RW and IN_RW. These events and
their associated penalty were identified for different protocols in Section 2.2 and in Chapter
4.

In this section, we will also denote the number of misses due to invalidations by M, that
due to replacements by Mp, and that due to initial loading by Min;. The total number
of misses is M such that M = M; + Mp 4+ M;,,. Furthermore, we will denote the subset
of IN_RO events such that the local cache miss by IN_RO_m and the local cache hit by
IN_RO_h. Note that IN_RO = IN_RO.m + IN_RO_h. Table 10 lists only those events in
different protocols which have nonzero penalty associated with them (see Chapter 4.2).

We first identify the configurations of systems which can be compared with each other,

based on the type of events listed in the previous section. The parameters which can affect
the coherence overhead are:

1D ,
Different cache coherence protocols may have different names for the same cache coherence event.

63



Table 10: Cache coherence events with non-zero penalties

Protocols | M | IN_.RO_m | IN_RO_h | CS_RW | IN_RW
Basic ® ® ® ® ®
Write-Once | ® ® @
Synapse ® & ®
Illinois ® ® ®
Berkeley | ® ®

- the cache size
- the cache block size
- the set size

- the replacement policy
- the cache coherence protocol (including write policy)

- the interleaved trace (this therefore includes the number of processors)

For two systems with different cache sizes to be compared, the following restrictions on
these parameters must apply.

1. The cache block size has to be identical in both systems [?, ?].

2. The cache coherence protocols and the global interleaved trace have to be the same for
all the systems under comparison so that the relative order of references from different
processors is the same across different systems. Similar restrictions can be found in

[7]-

6.1.1 Inclusion Property

No Invalidation

A property called the inclusion property [?] must be satisfied in order to enable a com-
parison of two systems. In the absence of invalidations, the inclusion property can be stated
as follows:

Definition 1 Inclusion Property (no invalidation): Cache Cy includes cache Cy if after any
series of references, any block present in C; is also present in C.

In the absence of invalidations, the inclusion property holds for systems that have the
same block size, do not prefetch, and use the same set-mapping function (the same number
of sets) with a stack replacement algorithm in each set [?]. Hill and Smith [?] have also
proved the inclusion property for systems which have the same block size, do not prefetch
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and use arbitrary set-mapping functions; the restrictions are that the replacement algorithm
in each set must be LRU that the set-mapping function of the larger cache refines® that of
the smaller cache and that the associativity of larger cache is no less than that of the smaller
cache.
Invalidations

We now define an inclusion property in the presence of invalidations. The address trace
is a vector of N addresses r(k), k=1,...,N. These records contain the block addresses
of consecutive references made by a processor and are ordered in program order. There
are a total of I invalidations received by the processor. Each invalidation ¢, :=1,...,] is
characterized by a couple (A;,k;), where A; is the block address and £; is the position in the
trace where the invalidation 7 is inserted (that is between r(k;) and r(ki41)). In the following,
we will refer to index k as the time.

In the presence of invalidations, a replacement policy may be oblivious to invalidations.
In this case, the stack management algorithm for each set does not distinguish between
valid or invalid blockframes. A replacement algorithm is non-oblivious to invalidations if
it distinguishes between valid and invalid blockframes. The strategy we consider here for
non-oblivious replacement is as follows. If there is any invalid block in a set at the time
of replacement in that set, then the stack management chooses any one of the invalidated
block; valid blocks are only victimized if there are no invalid blocks in the set.

In caches with invalidations, the inclusion property is defined as follows.

Definition 2 Inclusion Property (with invalidations): Cache C; includes cache Cy iff, for
all traces and for any set of invalidations, we have

V(C;) CV(Ch)

at all times k, where V(C') is the set of valid blocks in C.

Asst_lmption 1 When we compare two systems with finite caches, C; and C, (C, > C3), we
restrict the caches to have the following features:

1. same cache block size

2. LRU replacement in each set
3. set-mapping function of C; refines that of C,

4. associativity of Cj is at least equal to that of C,

Under these assumption, the inclusion property holds in the absence of invalidations,
that iS, Cg Q C]_-

*Set-refinement: Set-mapping function f5 refines set-mapping function f, if f2(z) = fa(y) implies fi(z) =
f1(y), for all blocks z and y [?).
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Proposition 1 If the replacement algorithm is oblivious to invalidations, and under As-
sumption 1, the inclusion property holds in the presence of invalidations.

Proof: First of all we extend the addresses in the original trace by log,[ bits in the most
significant bit positions. Initially, these extensions are all set to zeroes in all trace records.
We also assume that the tags in cache have been extended by log,I bits; tag matching is
done on the address and its extension.

We preprocess the extended trace as follows. For each i, i=1,..,], we scan the trace
records following record k;;;. Each of these records with address A; have their address
extension set to z, the identity of the invalidation. The timestamp of a memory block with
address A at time k is either zero or the identity of the latest invalidation to address A.

This procedure simply renames the memory blocks after invalidations. Since the inclusion
property is independent of the trace and since for LRU the replacement is not affected by
the value of addresses, the inclusion property also holds for the extended trace and the cache
with the tag extensions in the most significant bit positions, that is, Co*** C C,***, in the
sense of definition 1.

In the cache we can also see the extension field as a way to tag invalidations: a block
with address A is valid in the cache iff its tag extension is equal to its current timestamp.
From this perspective, there is a one to one correspondence between each block contained in
the cache with tag extension and each block contained in the cache without extension at any
time k, and the inclusion property also holds for the cache with no tag extension. Namely,
we have that if block ¢ is present and invalid in Cs, then it is also present and invalid in Cy;
also if block 4 is present and valid in C; it is also present and valid in Cy. Therefore Cy C Cy
in the sense of definition 2. L

In an infinite cache system, a special case of a larger cache system, the restrictions
imposed on replacement algorithms and associativities become irrelevant as there are no
replacements. The inclusion property between infinite and finite caches, therefore, holds
with milder restrictions and these are

same cache block size

]

same cache coherence protocol

same interleaved trace

no prefetching

6.1.2 Finite Cache Systems

In this subsection, we compare the number of coherence events in two multiprocessor systems
with different cache sizes. It is assumed that the inclusion property holds in the presence
of invalidation, that is, C; C C;. From the previous section, we know that Cy C C; when
C, has infinite size and same block size as Cy. Also if C; has finite size, we require that
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Assumption 1 holds and that the replacement algorithm is oblivious to invalidations.

Proposition 2. The number of invalidation misses in the system with larger cache size (Cy)
is greater than or equal to that in the system with smaller cache size (Cy). That is,

M;(Cy,B) > M;(C,,B)

Proof: If P; makes two consecutive references (either Read or Write) to a block at time t,
and time t. (see Figure 44), for the block stored in the cache of P;, there are two possible
cases to consider based on the references between t, and t.:

1. No write by P; (j # i) occurs between time ¢, and t.. As a result, at time ¢, no miss
due to invalidation occurs in P; regardless of the cache size.

o

At least one write by P; (j # i) occurs between time ¢, and ¢, and the first write occurs
at time t, (see Figure 44). At time ., in the system with larger cache size (C}), an
invalidation miss occurs in P; occurs provided no replacement takes place before time
ty; otherwise, the miss occurs at time ¢, due to a replacement. Because of the inclusion
property, the number of invalidation misses in the system with C5 cache can therefore
never exceed that in the system with C| cache in this case.

For the Synapse coherence protocol, if P;’s access at time ¢, is a Read, the argument given
earlier for other protocols is valid. However, at time ,, if the access is a Write to the block,
and if the first reference by P; (j # 1) is a Read or a Write at time #;, then the aforementioned
argument can still be applied.

When P; references the block for the very first time, a miss occurs in both systems under

consideration; but this is not an invalidation miss. [ |
R/W by P; R/W by P;
S > h > time
I T |
t tp te

Figure 44: Trace for Proposition 2 and 3

Proposition 3. The total number of misses in the system with larger cache size (Cy) is less
than or equal to that in the system with smaller cache size (Cy). That is,
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M(Ca,B) > M(Cy,B).

Proof: This results directly from the inclusion property.

Proposition 4. The number of IN_RO_h events in the system with larger cache size (C;)
is greater than or equal to that in the system with smaller cache size (Cy). That is,

IN_RO_h(Cy,B) > IN_RO_h(C,B).

Proof: Consider two consecutive Writes to a block made at time ¢, by P; and at time ¢, by
P; (see Figure 45).

1. No Read by P (k # i) occurs between time ¢, and t,. No IN_RO_h event occurs in
both systems at time ¢, in P; since either the state of the block in P; remains RW (the
only copy in the system) or the block has been replaced (no copy of the block exists
in the systems) at time ¢.

2. 1 = j and at least one Read by P (k # i) occurs between time ¢, and #,. In the
system with larger cache (C;), an IN_RO_h event occurs in F; at time ¢, provided no
replacement takes place before time fy; otherwise, no IN_RO_h event occurs at time
¢, since no copy of the block exists in the system at time ¢,. Because of the inclusion
property, the number of /N_RO_h events in the system with C; cache can therefore
never exceed that in the system with C; cache in this case.

3. 1 j and at least one Read by P; between time ¢, and ¢;. The argument is as in case
2

4. i # j and at least one Read by P (k # i and k # j) occurs between ¢, and t;. No
IN_RO_h event occurs in both systems at time ¢, in P; since P; does not own the copy
of the block at time t;. [ ]

Proposition 5. The number of IN_RO events in the system with larger cache size (Cy) is
greater than or equal to that in the system with smaller cache size (C3). That i,

IN_RO(Cy,B) > IN_RO(C,,B).

Proof: If P; writes to a block at time ¢, and the next write in the system to the same block
is made by any processor P; at time ¢ (see Figure 45), two possible cases exist:
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Figure 45: Trace for Proposition 4 and 5

1. No Read is made by P (k # i) between time t, and t,. No IN_RO event occurs at
time #5 in both systems in P; since either the state of the block in P; remains RW or
the block has been replaced (i.e., no copy of the block exists in the systems) at time
ty.

2. At least one Read by P (k # i) occurs between time ¢, and ¢;. In the system with
larger cache (C,), an IN_RO event occurs in P; at time ¢, provided no replacement
takes place before time t;; otherwise, no IN_RO event occurs at time ¢, since no copy
of the block exists in the system at time ¢,. Because of the inclusion property, the
number of IN_RO events in the system with C, cache can therefore never exceed that
in the system with C) cache in this case. [ |

Proposition 6. The number of CS_RW events in the system with larger cache size (C,) is
greater than or equal to that in the system with smaller cache size (Cy). That is,

CS_RW(C1,B) > CS_RW(C,B).

Proof: If P; writes to a block at time ¢, and the next Read by a different processor to the
same block at time #; (see Figure 46), two possible cases exist:

1. At least one Write is made by Py (k # i) between time ¢, and t,. No CS_RW event
occurs at time %, in P; since either the state of the block in P, has already been
invalidated or the block has been replaced before time ¢,.

2. No Write occurs is made by P; (k # i) between time ¢, and t;. In the system with
larger cache (C}), an CS_RW event occurs in P; at time ¢, provided no replacement
takes place before time t; otherwise, no CS_RW event occurs at time ¢, since the
block does not exist in P; at time ¢;. Because of the inclusion property, the number
of CS_RW events in the system with C; cache can therefore never exceed that in the
system with C; cache in this case. |
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Figure 46: Trace for Proposition 6

Proposition 7. The number of IN_RW events in the system with larger cache size (Cy) is
greater than or equal to that in the system with smaller cache size (Cy). That is,

IN_RW(C:,B) > IN_RW(C,,B).

Proof: If P; writes to a block at time t, and the next write to the same block by P; (j # 1)
at time t, (see Figure 47), two possible cases exist:

1. At least one Read is made by Pi (k # i) between time ¢, and ;. No IN_RW event
occurs in the systems at time ¢, in P; since either the state of the block in F; has
already been changed to RO or the block has been replaced (or has been invalidated
for the Synapse protocol) before time 2.

2. No Read by Py (k # i) occurs between time ¢, and ;. In the system with larger cache
(Cy), an IN_RW event occurs in P; at time ¢, provided no replacement takes place
before time t;; otherwise, no IN_RW event occurs at time ¢; since the block does not
exist in P; at time t;. Because of the inclusion property, the number of IN_RWW events
in the system with C; cache can therefore never exceed that in the system with C,

cache in this case. s
W by P W by P;
\ l
>< >< time
to b

Figure 47: Trace for Proposition 7
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When a processor modifies an S-block, it has to check the other caches in the system to
invalidate all possible copies. This operation is called Cross — interrogate, and is denoted
by XI. The number of XTI events is equal to the sum of the number of IN_RO events and
IN_RW events.

Corollary 1. The number of X events in the system with larger cache size (C}) is greater
than or equal to that in the system with smaller cache size (C5). That is,

XI1(Cy,B) > XI(Cy,B).

Corollary 2.

M(c0,B) > M;(C,B)
M(C,B) > M(co,B)
IN_RO_h(c0,B) > IN_RO_h(C,B)
IN_RO(c0,B) > IN_RO(C,B)
CS_RW(c0,B) > CS_RW(C,B)
IN_RW(oo,B) > IN_RW(C,B)

XI(o0,B) 2 XI(C,B)

where B is the cache block size and C is the cache size.

6.2 The Access Burst Program Model for Finite Caches

In infinite cache systems, the access burst model can be characterized by parameters
s, J, W ,land f which have been discussed in detail in Chapter 2. In finite cache systems,
replacements are assumed to be uniformly distributed throughout the whole execution and
no replacement occurs in the processor which generates the current burst for S-block i. A
new parameter r; for finite cache systems is defined as the fraction of number of replacements
to number of accesses for the S-block i. Note that for infinite cache systems, the value of
parameter r; is always zero since no replacement can occur.
The global state of S-block ¢ is described by the number of caches possessing a copy of
the block and by the status RO or RW of the block. The global states are denoted by MEM,
1. RW, 1.RO, 2RO, ..., JRO, where MEM is the state in which no cache has a copy of
S-block i. A state transxtxon occurs at the time when a burst is completed by a processor
or at the time when a copy of the S-block is replaced. The average number of accesses in
between two state transitions, b;, for S-block ¢ can be computed as follows:

l;
i+ 17

where [; is the total number of accesses per access burst, and r; - I; + 1 is the total number
of state transitions in a burst which is the sum of the numbe1 o[ state transitions caused by
replacements (r; - I;) and an additional transition which ends the burst. The probability of
starting a state transition is therefore LPi The probability that a state transition is caused
by a replacement for S-block 7, R;, is therefore

b,‘ =

rik

Ri=——.
ri- L+ 1

(1)
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The Markov chain for the state transitions of S-block 7 is shown in Figure 48 (We have
dropped the index 7 in the Figure for clarity. Note that all parameters are for a given S-block
i.) The transition probabilities from state k_RO, 1 < k < J;, are found as follows.

1. From state k_RO to state (k — 1).RO: The probability of this transition is the proba-
bility that a copy of the block is replaced, which is R;.

2. From state k_RO to state (k+ 1).RO: The probability of this transition is the product
of the probability that the transition is generated by the end of a burst, (1 — R;), of
the probability that the next burst contains only Read accesses, (1 — W;), and of the

probability that the access burst is made in one of the J; — k other caches, (i*JL“-)

3. From state k_RO to state k_RO: This is the case when the state transition is generated
because of the end of a burst, and the next access burst contains only Read accesses
in one of the k£ caches. The transition probability is (1 — W;) - (1 — I) - -j;—

4. TFrom state k_RO to state 1_RW: This is the case when the state transition is generated
because of the end of a burst, and the next access burst modifies the block. The
transition probability is W; - (1 — R;).

The transition probabilities from states MEM, 1_RO, 1_RW and J;_RO are derived from
similar arguments.

From the definitions of cache coherence events listed in Section 7?7, we can compute the
probability of occurrence of each coherence event. When no copy of S-block 7 is present in
the system, a miss occurs at the beginning of a state transition, that is, at the beginning of
a new access burst. If there are k copies in the system, a miss occurs at the beginning of
a new access burst when the next processor starting the access burst is one of the (J; — k)
processors without a copy in their caches. Therefore, the fraction of references to S-block 1
which miss in the cache is equal to the fraction of state transitions causing a miss divided
by the average number of accesses in between two state transitions.

Pr(M;) = %:{Pr(MEM) + Pr(1_RW) - (J‘; Y. - gy

k=J;-1 (J, _ k)

4 1= Ry} - Pr(k_RO)} . (2)
2 J

=]

In order to find Pr(M;) analytically, we first compute X S;, the average number of copies
of S-block 7 in steady state.

k=J;

XS; = Pr(1.RW) + S k- Pr(k-RO). (3)
k=1
From Equations (2) and (3), we have
XS;

bi- Pr(M;) = (1— R))- (1 - ==) + Ri - Pr(MEM). (4)
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Figure 48: Markov chain for the state transitions of an S-block shared by J processors (finite
cache case)
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In steady state, the number of misses is equal to the number of copies which are either
replaced or invalidated; this yields

Ji—1
b;-PT‘(ﬂ’f,')=m+T"¥S;'I/V;-(l—R;). (5)

1]
From the above two equations, we have

Ji-(1=2-Ri + R - Pr(MEM))

TR o) W L

Substituting in Equation (4), we have

v 1 (ki=1)-W:-(1-2R:i+ R:- Pr(MEM))
ridl =sd g [+(J=1)- W, |

If we lump the states 1_.RW, and k_RO (k = 1,...,J;) into a state called CHE, the
Markov diagram in Figure 48 can be reduced to the Markov diagram in Figure 49. I'rom the
reduced discrete Markov diagram, the global flow balance equation can be written as

Pr(MEM) - (1 — R;)=[l — Pr(MEM)]- R; - 6,

Pr(1_RO)+Pr(1_RW)
1-Pr(MEM)

R; > Pr(MEM). (7)

and 0 < § < 1. Therefore,

where § is equal to R -

This yields

(Ji=1)- Wi (1= R

1
A <" —
PT(I‘L) __,TI—I_ b;’ 1+(J1—1)I"/|

That is,

J—=1)-W;-(1—-R; .
PT(!’\I;)ST’.‘-}-%-( 1+)(J|-—1)(-W;R1). (b)

Similarly, the rest of the coherence events can be equated and solved analytically, which

are listed as follows: o
The fraction of accesses to S-block 7 invalidating RO copies in other caches is given by

Pr(IN.RO;) = bl pr(l_RW).w.--J"—J‘_l-u —f)-(1—Ry)
+£§ Pr(i_RO) - W;-(1 - Ri)| . (9)
s 1 Wi(1 — R (1 = Wif;) — (1 — Wi)(1 = Ri) — Wi(1 — fi)]
~ Ji—-(1-Wy)-(1-Ry)
. 1Wi(1 = R)[Ji(1 = Wifi) — (1 = Wi)(1 — Ri) — Wi(l — fi)]_

—

J; = (1 = Wa)~(1 — B}
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R . Pri-RO)+Pr(1_RW)
1-Pr(MEM) .
Figure 49: A reduced Markov chain for the state transitions of an S-block shared by J

processors (finite cache case)

The fraction of references to S-block 7 changing the state from RW to RO is

Pr(CS-RW;) = 61' Pr(l,RW)-(l—W.-)-%-(l—R;)
+Pr(1_RW)-W,--?-(1—_&)-(1—&) .

1 (fi—-1)-Wi-(1—We-£)-(1 - R

b; Ji—(1=-W)-(1-R)

- l.(J‘—l)'I’V,'(].—VV,f,)(l-—R,) (10)
T L-(1-W)-(1-R)

The fraction of references to S-block 7 causing such an event is therefore

Pr(IN_RW) = bi [Pr(l_RW) W J"J‘_ Losa-ryl.

_ 1 (=1 WP fie(1- R
Tk G- (I-W)-(1—R)
_ 1 (h-1)-W?-fi-(1-R) 1
L L-(1-W)-(1-R) (11)

The second term on the right hand side of inequality (8) is an upper bound for the
invalidation miss rate, Pr(My,). The difference between this term and the miss rate in the
infinite cache model is (1 — R;) which appears in the numerator of inequality (8). Since R; is
a proper fraction, that is 0 < R; < 1, the above inequality supports Proposition 2 discussed
in Section 6.1.2. Similarly, inequality (10) and Equalities (10) and (11) support Propositions
4,5, and 6, respectively.

Unlike the infinite cache systems, in the finite cache systems, only approximate system
effects can be obtained since we assume that S-blocks are analyzed in isolation. This is done
by summing the individual contributions of all S-blocks. In the finite cache model, when a
system works in steady state, the invalidation miss rate generated by S-blocks is:

N,
Pr(My) = q.- ) _pi- Pr(My,), (12)

i=1
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where N, is the total number of shared writable blocks. The average system coherence
penalty generated by S-blocks is:

N,
)\cohercncc ={qs- Zp: : /\h (13)
i=1
where /\; = PT‘(!‘W[.-) < /\M -+ PT(IN_RO,) * A[N_RO + PT‘(CS_RI/V,) . Acs__m.p -+ P?‘(IN..RPV;) ¥
AIN_RW .

6.3 Multitasked Algorithms

In this section, the accuracy of the analytical model for finite cache systems is verified
by comparing the model predictions with the execution-driven simulation results of seven
parallel algorithms. The seven algorithms are the Jacobi iterative, the 5.0.R. iterative, the
quicksort, the bitonic merge sort, the non-shuffling FFT, the shuffling FF'T and the image
component labeling algorithms. Simulation methodology was described in Chapter 3.

For simplicity, we study only the direct mapping cache since there is no replacement
policy associated with the cache organization. A probe is inserted in the execution-driven
simulator to derive the values of parameter r for the seven parallel algorithms, which are
illustrated in Appendix D. With the values of parameters J, W, [, and f discussed in Chapter
3, the system invalidation miss ratio and the system coherence penalty for the seven parallel
algorithms are computed and shown in Figures 50 to Figure 63.

From these figures, the bigger the cache size is, the higher the invalidation miss ratio
and coherence penalty. This is because the average life time of an S-block in the large cache
is longer. As a result, the coherence penalty for the S-block can be expected to be higher.
The model predictions and simulation results are close for the Jacobi iterative, the 5.0.R.
iterative, the quicksort and the image component labeling algorithms. The discrepancy
observed between model predictions and simulation results for the non-shuffling FFI'T, the
shuffling FFT and the bitonic merge sort algorithms can be explained as follows: In the
shuffling FFT and bitonic merge sort algorithms, the number of bursts is equal to the number
of synchronization points, which is usually less than ten. However there are thousands of
replacements in the simulations. This violates the assumption that no replacement occurs
in the processor which generates the current burst. For the non-shuffling FF'T algorithm,
S-blocks will definitely be replaced before the next burst begins. That is, the coherence
penalty for S-blocks is equal to zero. From the equation 1, we can see that R never takes
the value of one. This implies the coherence penalty is never zero for the non-shuffling FI'T
algorithm; therefore, the model predictions are far from accurate for the three algorithms.
The model has to be further refined to take care of such inaccuracies.
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Figure 50: The system invalidation miss ra-
tio for the Jacobi iterative algorithm (P=4,
grid size of 128 x 128) (plain line: simula-
tion results, dotted line: model predictions)
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Figure 51: The system coherence penalty for
the Jacobi iterative algorithm (P=4, grid size
of 128 x 128) (plain line: simulation results,
dotted line: model predictions) (e: B=4, o:
B=8)
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Figure 52: The system invalidation miss ra-
tio for the S.0.R. iterative algorithm (P=4,
grid size of 128 x 128) (plain line: simula-
tion results, dotted line: model predictions)
(e: B=4, o: B=8)
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Figure 53: The system coherence penalty for
the S.0.R. iterative algorithm (P=4, grid size
of 128 x 128) (plain line: simulation results,
dotted line: model predictions) (e: B=4, o:
B=8)
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Figure 54: The system invalidation miss ratio
for the dynamic quicksort (B=8, N=32768)
(plain line: simulation results, dotted line:
model predictions) (e: P=4, o: P=8)
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Figure 55: The system coherence penalty
for the dynamic quicksort (B=8, N=32768)
(plain line: simulation results, dotted line:
model predictions) (e: P=4, o: P=8)
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Figure 56: The system invalidation miss ratio
for the bitonic merge sort (B=8, N=32768)
(plain line: simulation results, dotted line:
model predictions) (e: P=4, o: P=8)
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Figure 57: The system coherence penalty
for the bitonic merge sort (B=8, N=32768)
(plain line: simulation results, dotted line:
model predictions) (e: P=4, o: P=8)
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Figure 58: The system invalidation miss ra-
tio for the non-shuffling FFT algorithm ( B=8,
N=65536) (plain line: simulation results, dot-
ted line: model predictions) (e: P=4, o:
P=8)

Aﬁ?gﬁrence /q.s

0.001
1}( 1K 4K

Cs
16K 64K

Figure 59: The system coherence penalty
for the non-shuffling FFT algorithm (B=8,
N=65536) (plain line: simulation results, dot-
ted line: model predictions) (e: P=4, o:
P=8)
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Figure 60: The system invalidation miss ra-
tio for the shuffling FFT algorithm (B=S8,
N=65536) (plain line: simulation results, dot-
ted line: model predictions) (e: P=4, o:
P=8)
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Figure 61: The system coherence penalty for
the shuffling FFT algorithm (B=8, N =65536)
(plain line: simulation results, dotted line:
model predictions) (e: P=4, o: P=8)
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Figure 62: The system invalidation miss ra-
tio for the image component labeling algo-
rithm (P=4, grid size of 128 x 128) (plain
line: simulation results, dotted line: model
predictions) (e: B=4, o: B=8)
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Figure 63: The system coherence penalty
for the image component labeling algorithm
(P=4, grid size of 128 x 128) (plain line:
simulation results, dotted line: model predic-
tions) (e: B=4, o: B=8)
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5 Summary and Conclusions

We have proposed a model of block sharing and solved the model analytically; we have
compared the predictions from the model with the simulation results for eight important
parallel algorithms, and we have applied the model to compare the effectiveness of five write-
invalidate cache coherence protocols for accessing shared writable blocks. The model, based
upon stochastic processes, appears to be a good approximation to shared block contention
effects in multiprocessor systems. This chapter reiterates the most significant results of the
dissertation and discusses directions for future research.

5.1 Concluding Remarks

In this dissertation, a simple program model, namely the access burst program model, used to
capture the program behavior in terms of shared block accesses in cache-based multiprocessor
systems was introduced. We started by analyzing a baseline system, the infinite cache
multiprocessor system. In the infinite cache multiprocessor system, the traffic incurred in
maintaining coherence is isolated and the traffic due to replacement is eliminated. Most
parameters of the cache system, such as cache size, cache organization and cache replacement
policy, do not affect the outcome of model predictions. The infinite cache system is therefore
much simpler to study than the real system with finite caches.

Another reason to study the infinite cache system is because the trend towards large
caches seems inevitable in general-purpose computing and also because of the large hit ratio
required by more powerful processors and the expected availability of VLSI chips in a few
years. In these caches, most of the misses are due to the initial loading of the data and to
coherence invalidations. It is expected that the infinite cache model will become more and
more relevant as the level of integration of memory chips increases.

We first applied the access burst program model on the Basic cache coherence protocol.
When a processor completes an access burst for a shared writable block, all processors are
assumed to have the same probability to start the next access burst to the block. The
shared writable block accesses were modeled by a discrete Markov chain and an analytical
closed-form solution was found for all components of the cache coherence overhead in the
protocol. It is remarkable that all coherence components are very simple to analyze based
on the access burst program model for accessing shared writable blocks in the infinite cache
environment. The maximum number of parameters needed for the most complicated case is
no more than four.

We then validated the accuracy of the access burst program model by comparing the
model predictions with the execution-driven simulations of eight parallel algorithms. It
appears that the model can demonstrate very accurate predictions on several parallel algo-
rithms.

One of the applications for the access burst program model is to study and compare the
effectiveness in handling shared writable blocks by different cache coherence protocols. The
model was therefore applied to the five write-invalidate cache coherence protocols. Protocols
are modeled by Markov chains; an analytical closed-form solution is derived for all compo-
nents of the cache coherence overhead and for the protocols in systems with caches of infinite
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sizes. It turns out that protocols perform differently for different block sizes and for different
cache-to-cache and memory-to-cache transfer times.

Another reason that the infinite cache model is so attractive is because its outcome
represents an upper bound on the coherence overhead in the finite cache system. In this
dissertation, we clarified this point by proving a series of propositions. These propositions are
true for all multiprocessor systems provided the hardware organizations in the two systems
that we compare are identical except for cache size. The propositions are also true for any
possible traces of accesses to the caches provided that the same trace of events drive all
systems.

Finally, we studied the finite cache effects. In the finite cache systems, replacements
are assumed to be uniformly distributed throughout the whole execution. Again we applied
the access burst program model to the Basic cache coherence protocol and modeled the
finite cache system by a discrete Markov chain. An approximate solution was found for each
component of the coherence overhead. The accuracy of the model predictions was verified by
comparing the model predictions with execution-driven simulation results for several parallel
algorithms.

5.2 Suggestions for Future Work

The research presented in this dissertation provides a basis for futher investigations. Addi-
tional algorithms should be studied in order to understand the program behavior in detail.
Different types of shared blocks have to be identified and classified based on the model param-
eter characteristic. Since different types of shared blocks may have very distinct reference
patterns, different optimization strategies should be adopted. This information certainly
helps parallel compilers to improve system performance.

Since the access burst program model is a good approximation to cache-based multi-
processor systems, it describes the parallel program behavior very well. This suggests that
the model can serve as the basis for generating artificial traces which may be used to study
future computer systems.

In the model all processors are assumed to have the same probability of starting the
next access burst on the same block, after a burst is completed. It is clear that this may
not be a good approximation for some parallel algorithms such as the non-shuffling FI'T
algorithm. Rather, it seems that a processor which has just finished an access burst has
a higher probability of starting the next one. The model could therefore be refined by
introducing a new parameter which captures this affinity.

Computing systems presently being built or simulated are in general limited to config-
urations of a small number of processors. Most parallel computers available commercially
have 16 or less processors. Simulations are very time-consuming when the configuration of
simulated systems are large; multiprocessor traces are not available for such systems. The
access burst program model does not have these limitations to study the performance of sys-
tems with a large number of processors. With the estimation of the values of parameters for
two, four, eight and sixteen processor systems, the values of parameters for the system with
a large number of processors can be obtained through extrapolation. Of course, extensive
simulations have to be performed in order to verify the model predictions.
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Other areas for research include the effect of migration, preemption and dynamic schedul-
ing. Solutions to all these problems are essential for the success of cache-based multiprocessor

systems.
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A Miss Ratio Derivation

Let’s denote
J
Xi=P_pw+ > k- Piro,
k=2
and
J
X2 =Pirw+ Yk Pi_po.
k=2
After multiply both sides of equation (3.1) of Section 4.1 by k, we obtain for k=2,...,J
k-[J=k-(1=-W)]-Pcpo=k-[J—(k=1)]-(1 — W) Py,
or
k-[J—k-(1=W)]: Pipo= {(k=1)-[J=(k-1)]-(1—-W)
+ [J—(k—1)]- (1= W)} P,
or
[k-J—=k*-(1=W)]- Pc_ro
= =Wy =1) (b= 1) = (k—=1] : By,

where P(k-—l) = P,_pw for k=2 and P(k_1) = P(k-—l]_RO otherwise.

Let’s sum all the left hand sides of these equations and let’s equate the result to the sum of
the right hand sides; we have
JXi—=J-Prw—-(1-W)-Xo4+(1-W)-P_rw
= J-(1-W)-(1=Prpo+([J-1)-(1=-W)-(X;—=J-P;ro)
—(1 = W)-(Xo—J* Ps_ro).
After some simplification, we have

J-(J-1)-(1-W)]- X1 = J-(1-W)+(J-1+W)- P rw

=
or
")
X_
Tl (I -1)-W
But
X, J-1 I
= iy ——i® ——— P po=Ils- P(M
1 7 7 Pi_rw :\Z=:2 ¥ k_ro = ls - P(M)
Therefore,
1 J—-1)-W
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B Source Codes

B.1 Source Codes of the Jacobi Iterative Algorithm

.
¥

Process MASTER

BEGIN

L
L2:

L3:

wait_a:=0; wait_b:=0; sync:=0;
modify:="no"; done:="no";
barrier_1:="close"; barrier_2:="close";

barrier_3:="close";
prevmax:=0.0;
P=4;
FOR i:=2 STEP 1 UNTIL P DO
CREATE process WORKER(i);
LOCK sync; sync:=sync+1; UNLOCK sync;
LOCK sync;
IF sync != P THEN
BEGIN
UNLOCK sync; GOTO L2;
END
ELSE BEGIN
UNLOCK sync;
wait_a:=0; barrier_2:="close";
LOCK barrier_1; barrier_1:="open"; UNLOCK barrier_1;
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
Alm,n]:=(B[m-1,n]+B[m+1,n]+B[m,n-1]+B[m,n+1])/4;
maxi:=-999999; ; -999999 is the minus infty
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
BEGIN
sum:=0.0;
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
sum:=sum+A [m,n] ;
IF sum > maxi THEN maxi:=sum;
END
IF FABS(maxi-prevmax) > 0.000001 THEN modify:="yes";
prevmax:=maxi;
LOCK wait_a; wait_a:=wait_a+1l; UNLOCK wait_a;
LOCK wait_a;
IF wait_a !'= P THEN
BEGIN
UNLOCK wait_a; GOTO L3;
END
ELSE BEGIN 2
UNLOCK wait_a;
IF modify = "yes" THEN

BEGIN

modify:="no";

wait_b:=0; barrier_3:="close";

LOCK barrier_2; barrier_2:="open"; UNLOCK barrier_2;
END
ELSE BEGIN
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LOCK done; done:="yes'"; UNLOCK done;

LOCK barrier_2;

barrier_2:="open";

UNLOCK barrier_2;

GOTO L5;
END
FOR m:=1 STEP 1 UNTIL

N/sqrt(P) DO

FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
B[m,n] :=(A[m-1,n]+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;

maxi:=-999999;
FOR m:=1 STEP 1 UNTIL
BEGIN

sum:=0.0;

; —999989 is the minus infty
N/sqrt(P) DO

FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO

sum:=sum+B[m,n] ;
IF sum > maxi THEN
END
IF FABS(maxi-prevmax)
modify:="yes";
prevmax:=maxi;
LOCK wait_b; wait_b:
L4: LOCK wait_b;
IF wait_b != P THEN
BEGIN
UNLOCK wait_b;
END '
ELSE BEGIN
UNLOCK wait_b;
IF modify = "yes" T
BEGIN
modify:="no";
sync:=0;
LOCK barrier_3;
GOTO L1;
END
ELSE BEGIN

maxi:=sum;

> 0.000001 THEN

=wait_b+1; UNLOCK wait_b;

GOTO L4;

HEN

barrier_1:="close'";
barrier_3:="open"; UNLOCK barrier_3;

LOCK done; done:="yes"; UNLOCK done;

LOCK barrier_3;
END
L5:END

. Process WORKER(i)}

barrier_3:="open"; UNLOCK barrier_3;

BEGIN
prevmax:=0.0;
L1: LOCK sync; sync:=sync+l; UNLOCK sync;
L2: LOCK barrier_i;
IF barrier_1 != "open" THEN
BEGIN
UNLOCK barrier_1; GOTO L2;
END

ELSE UNLOCK barrier_1;

FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO
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L3:

L4:

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]1+1}*N/sqrt(P) DO
Alm,n] :=(B[m-1,n]+B[m+1,n]+B[m,n-1]1+B[m,n+1])/4;

maxi:=-999999; ; -999999 is the minus infty
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO
BEGIN

sum:=0.0;

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO

sum:=sum+A[m,n];

IF sum > maxi THEN maxi:=sum;

END

IF FABS(maxi-prevmax) > 0.000001 THEN
modify:="yes";

prevmax:=maxi;

LOCK wait_a; wait_a:=wait_a+l; UNLOCK wait_a;

LOCK barrier_2;

IF barrier_2 != "open" THEN

BEGIN
UNLOCK barrier_2; GOTO L3;

END

ELSE BEGIN

UNLOCK barrier_2;

LOCK done;

IF done !'= "yes" THEN
UNLOCK donse;

ELSE BEGIN
UNLOCK done;

GOTO LS5;
END
END
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO
Blm,n] :=(A[m-1,n]+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;

maxi:=-999999; ; -999999 is the minus infty
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO
BEGIN

sum:=0.0;

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO

sum:=sum+B [m,n] ;

IF sum > maxi THEN maxi:=sum;

END

IF FABS(maxi-prevmax) > 0.000001 THEN
modify:="yes";

prevmax:=maxi;

LOCK wait_b; wait_b:=wait_b+1; UNLOCK wait_b;

LOCK barrier_3;

IF barrier_3 != "open" THEN

BEGIN
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UNLOCK barrier_3; GOTO L4;

END
ELSE BEGIN
UNLOCK barrier_3;
LOCK done;
IF done != "yes'" THEN
BEGIN
UNLOCK done; GOTOD L1;
END
ELSE UNLOCK done;
END

L5:END

B.2 Source Codes of the S.O.R. Iterative Algorithm

; Process MASTER

2

BEGIN
wait_a:=0; wait_b:=0; sync:=0;
modify:="no"; done:="no";
barrier_1:="close"; barrier_2:="close";

barrier_3:="close";
prevmax:=0.0;
P=4;
FOR i:=2 STEP 1 UNTIL P DO
CREATE process WORKER(i);
Li: LOCK sync; sync:=sync+l; UNLOCK sync;
L2: LOCK sync;
IF sync != P THEN
BEGIN
UNLOCK sync; GOTO L2;
END
else BEGIN
UNLOCK sync;
wait_a:=0;
barrier_2:="close";
LOCK barrier_1; barrier_1:="open";
UNLOCK barrier_1;
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
IF (m+n) mod 2 = O THEN
BEGIN
Alm,n]:=(1-w) A[m,n]
+w(A[m-1,n]+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;
maxi:=-999999; ; -999999 is the minus infty
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
BEGIN
sum:=0.0;
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
sum:=sum+A[m,n] ;
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IF sum > maxi THEN maxi:=sum;
END
IF FABS(maxi-prevmax) > 0.000001 THEN modify:="yes";
prevmax:=maxi;
LOCK wait_a; wait_a:=wait_a+l; UNLOCK wait_a;
L3: LOCK wait_a;
IF wait_a !'= P THEN
BEGIN
UNLOCK wait_a; GOTO L3;
END
else BEGIN
UNLOCK wait_a;
IF modify = "yes" THEN
BEGIN
modify:="no";
wait_b:=0;
barrier_3:="close";
LOCK barrier_2; barrier_2:="open";
UNLOCK barrier_2;
END
else BEGIN
LOCK done; done:="yes"; UNLOCK done;
LOCK barrier_2; barrier_2:="open"; UNLOCK barrier_2;
GOTO L5;
END
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
IF (m+n) mod 2 = 1 THEN
Alm,n] :=(1-w) A[m,n]

+ w(A[m-1,n]+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;
maxi:=-999999; ; =999999 is the minus infty
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
BEGIN

sum:=0.0;
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
sum:=sum+A[m,n] ;
IF sum > maxi THEN maxi:=sum;
END
IF FABS(maxi-prevmax) > 0.000001 THEN modify:="yes";
prevmax:=maxi;
LOCK wait_b; wait_b:=wait_b+1; UNLOCK wait_b;
L4: LOCK wait_b;
IF wait_b !'= P THEN
BEGIN
UNLOCK wait_b; GOTO L4;
END
else BEGIN
UNLOCK wait_b;
IF modify = "yes" THEN
BEGIN
modify:="no";
sync:=0;
barrier_1:="close";
LOCK barrier_3; barrier_3:="open";
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UNLOCK barrier_3;

GOTO L1;

END

else BEGIN
LOCK done; done:="yes"; UNLOCK done;
LOCK barrier_3; barrier_3:="open";
UNLOCK barrier_3;

END

L5:END

; Process WORKER(i)

BEGIN
prevmax:=0.0;
Ll LOCK sync; sync:=sync+l; UNLOCK sync;
L24 LOCK barrier_1;
IF barrier_1 != "open" THEN
BEGIN
UNLOCK barrier_1i; GOTO L2;
END

ELSE UNLOCK barrier_1;
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL ([(i-1) mod sqrt(P)]+1)*N/sqrt(P) DO
FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO
IF (m+n) mod 2 = O THEN
Alm,n] :=(1-w) A[m,n]

+ w(A[m-1,n)+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;
maxi:=-999999; ; -999999 is the minus infty
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO

BEGIN

sum:=0.0;

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]1+1}*N/sqrt(P) DO
sum:=sum+A [m,n] ;

IF sum > maxi THEN maxi:=sum;

END

IF FABS(maxi-prevmax) > 0.000001 THEN modify:="yes";

prevmax:=maxi;

LOCK wait_a; wait_a:=wait_a+1; UNLOCK wait_a;
L3: LOCK barrier_2;

IF barrier_2 != "open" THEN

BEGIN

UNLOCK barrier_2; GOTO L3;

END

else BEGIN

UNLOCK barrier_2;

LOCK done;

IF done !'= "yes" THEN
UNLOCK done;

else BEGIN
UNLOCK done;
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GOTOD L5;
END
END
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO

FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO
IF (m+n) mod 2 = 1 THEN

Alm,n]:=(1-w) A[m,n]

+ w(A[m-1,n]+A[m+1,n]+A[m,n-1]+A[m,n+1])/4;
maxi:=-999999; ; —999999 is the minus infty
FOR m:={[(i-1) mod sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1) mod sqrt(P)]+1}*N/sqrt(P) DO

BEGIN

sum:=0.0;

FOR n:={[(i-1)/sqrt(P)]}*N/sqrt(P) +1 STEP 1
UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO
sum:=sum+A [m,n] ;

IF sum > maxi THEN maxi:=sum;

END

IF FABS(maxi-prevmax) > 0.000001 THEN modify:="yes";

prevmax:=maxi;

LOCK wait_b; wait_b:=wait_b+1; UNLOCK wait_b;
L4: LOCK barrier_3;

IF barrier_3 f= "open'" THEN

BEGIN

UNLOCK barrier_3; GOTO L4;

END

else BEGIN

UNLOCK barrier_3;

LOCK done;

IF done != "yes" THEN

BEGIN
UNLOCK done; GOTO L1;

END

ELSE UNLOCK done;

END
L5:END

B.3 Source Codes of the Bitonic Merge Sort

; Process MASTER

BEGIN
a[N]:=999999; ; a[N] is the largest number in the array a[]
done:=P;
FOR i:=0 STEP 1 UNTIL P DO

ps[i]:="idle";
initialize Q to contain input file descriptor
FOR i:=1 STEP 1 UNTIL P DO

97



CREATE process WORKER(i);
Li: LOCK Q;
IF Q is empty THEN
BEGIN
IF ps[0]="busy" THEN
BEGIN
pS [0] :=”id19“ ;
LOCK done; done:=done+1; UNLOCK done;
IF done=P THEN
BEGIN
UNLOCK Q; GOTO L3;
END
ELSE BEGIN
UNLOCK Q; GOTO L1;
END
END
ELSE
IF done=P THEN
BEGIN
UNLOCK Q; GOTO L3;
END
ELSE BEGIN
UNLOCK Q; GOTOD L1;
END
END
ELSE BEGIN
IF ps[0]="idle" THEN
BEGIN
LOCK done; done:=done-1; UNLOCK done;
END
ps[0] :="busy";
delete Q’s head file descriptor and store it in r and m
where r and m are the locations of the first and the
last elements of the file, respectively
UNLOCK Q
L2: size:=m-r+1;
pivot:=a[r]; jr=m+1; i:=r;
DO
BEGIN
DO i:=i+1; while (a[i] < pivot);
DO j:=j-1; while (a[j] > pivot);
IF (i < j) THEN
BEGIN
temp:=al[il; alil:=aljl; aljl:=temp;
END
end WHILE (j >= i);
temp:=aljl; aljl:=alr]; alr] :=temp;
IF (j=r and m=i-1) then GOTO L1i;
IF j=r THEN
BEGIN
r:=i; GOTO L2;
END
IF i>=m THEN
BEGIN
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m:=j; GOTO L2;

END

IF size/2 > (j-r+1) THEN

BEGIN ; return the shorter file descriptor to
LOCK Q;
insert r and j at the tail of Q;
r:=i;

END

ELSE BEGIN
LOCK Q
insert i and m at the tail of Q;
m:=j;

END

GOTO L2;

END
L3:END

; Process WORKER(i)
BEGIN
Li: LOCK Q;
IF Q is empty THEN
BEGIN
IF ps[i]l="busy" THEN
BEGIN
ps[i]:="idle";
LOCK done; done:=done+l; UNLOCK done;
IF done=P THEN
BEGIN
UNLOCK Q; GOTO L3;
END
ELSE BEGIN
UNLOCK Q; GOTO Li1;
END
END
ELSE
IF done=P THEN
BEGIN
UNLOCK Q; GOTO L3;
END
ELSE BEGIN
UNLOCK Q; GOTO L1;
END
END
ELSE BEGIN
IF ps[i]="idle" THEN
BEGIN
LOCK done; done:=done-1; UNLOCK done;
END
ps[i] :="busy";
delete Q’s head file descriptor and store it in r and m
where r and m are the locations of the first and the
last elements of the file, respectively
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UNLOCK Q
L2: size:=m-r+1;

pivot:=a[r]; ji=m+1; i:=r;

DO

BEGIN
DO i:=i+1; while (ali] < pivot);
DO j:=j-1; while (a[j] > pivot);
IF (i < j) THEN
BEGIN

temp:=a[i]; ali]:=alj]; alj]:=temp;

END

end WHILE (j >= 1);

temp:=alj]; aljl:=alr]; alr]:=temp;

IF (j=r and m=i-1) then GOTO L1;

IF j=r THEN

BEGIN
r:=i; GOTO L2;

END

IF i>=m THEN

BEGIN
m:=j; GOTO L2;

END

IF size/2 > (j-r+1) THEN

BEGIN ; return the shorter file descriptor to Q
LOCK Q;
insert r and j at the tail of Q;
r:=i;

END

ELSE BEGIN
LOCK Q
insert i and m at the tail of Q;
m:=j;

END

GOTO L2;

END
L3:END

B.4 Source Codes of the Bitonic Merge Sort

; Process MASTER
BEGIN
wait_a:=0; wait_b:=0; switch:="A";
barrier_a:="close"; barrier_b:="close";
FOR p:=1 STEP 1 UNTIL P-1 DO
CREATE process WORKER(p);
p:=0;
FOR 1:=1 STEP 1=2%1 UNTIL 1<N/P DO
FOR sl:=1 STEP sl=s1/2 UNTIL 1 DO
FOR i:=0 STEP 1 UNTIL i<N/(2%P) DO
BEGIN
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idx:=p*N/P+i/s1#2%sl+ilsl;
IF (idx/(2#1))%2 = O THEN
BEGIN
IF a[idx] < a[idx+sl] THEN
BEGIN
temp:=alidx];
alidx] :=alidx+sl];
a[idx+sl] :=temp;
END
END
ELSE BEGIN
IF alidx] > a[idx+sl] THEN
BEGIN
temp:=alidx];
alidx] :=a[idx+sl];
alidx+sl] :=temp;
END
END
END
FOR 1:=N/P STEP 1=2%1 UNTIL 1<N DO
BEGIN
FOR sl:=1 STEP sl=sl1/2 UNTIL N/(2%P) DO
BEGIN
IF switch = "A" THEN
BEGIN
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
L1i: LOCK wait_a;
IF wait_a '= P THEN
BEGIN
UNLOCK wait_a; GOTO L1i;
END
ELSE BEGIN
UNLOCK wait_a;
wait_b:=0;
barrier_b:="close";
switch:="B";
LOCK barrier_a; barrier_a:="open";
UNLOCK barrier_a;
END
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
L2: LOCK wait_b;
IF wait_b != P THEN
BEGIN
UNLOCK wait_b; GOTO L2;
END
ELSE BEGIN
UNLOCK wait_b;
wait_a:=0;
barrier_a:="close";
switch:="A";
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LOCK barrier_b; barrier_b:="open";
UNLOCK barrier_b;
END
END
FOR i:=0 STEP 1 UNTIL i<N/(2%P) DO
BEGIN
idx:=(N/(2*s1)<P)7
p/ (2%P*s1/N)*2%s1+p) (2%xP*s1/N)*(N/(2+P) ) +i:
p*¥N/P+i/sl*2%s1+i¥sl;
IF (idx/(2%1))%2 = 0 THEN
BEGIN
IF alidx] < a[idx+sl] THEN
BEGIN
temp:=alidx];
a[idx] :=alidx+sl];
a[idx+sl] :=temp;
END
END
ELSE BEGIN
IF al[idx] > a[idx+sl] THEN
BEGIN
temp:=a[idx];
alidx] :=al[idx+sl];
alidx+sl] :=temp;
END
END
END
END
FOR sl:=N/(4%P) STEP sl=sl1/2 UNTIL 1 DO
FOR i:=0 STEP 1 UNTIL i<N/(2*P) DO
BEGIN
idx:=(N/(2%s1)<P)?
p/ (2%P*s1/N)*2%s1+p’(2%P*s1/N) *(N/(2%P) ) +i:
p*N/P+i/s1%2%sl+ilsl;
IF (idx/(2%1))%2 = O THEN
BEGIN
IF a[idx] < a[idx+sl] THEN
BEGIN
temp:=a[idx];
alidx] :=alidx+sl];
a[idx+sl] :=temp;
END
END
ELSE BEGIN
IF a[idx] > a[idx+sl] THEN
BEGIN
temp:=alidx];
a[idx] :=alidx+sl];
a[idx+sl] :=temp;
END
END
END
END
END



; Process WORKER(i)
BEGIN
FOR 1:=1 STEP 1=2%1 UNTIL 1<N/P DO
FOR sl:=1 STEP sl=sl/2 UNTIL 1 DO
FOR i:=0 STEP 1 UNTIL i<N/(2xP) DO
BEGIN
idx:=p*N/P+i/sl*2%sl+ijsl;
IF (idx/(2%1))%2 = 0 THEN
BEGIN
IF alidx] < a[idx+sl] THEN
BEGIN
temp:=al[idx];
alidx] :=a[idx+sl];
alidx+sl] :=temp;
END
END
ELSE BEGIN
IF alidx] > a[idx+sl] THEN
BEGIN
temp:=a[idx];
a[idx] :=alidx+sl];
alidx+sl] :=temp;
END
END
END
FOR 1:=N/P STEP 1=2%1 UNTIL 1<N DO
BEGIN
FOR sl:=1 STEP sl=s1/2 UNTIL N/(2%P) DO
BEGIN
IF switch = "A" THEN
BEGIN
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
L LOCK barrier_a;
IF barrier_a != "open" THEN
BEGIN
UNLOCK barrier_a; GOTO L1;
END
ELSE UNLOCK barrier_a;
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
L2: LOCK barrier_b;
IF barrier_b != "open" THEN
BEGIN
UNLOCK barrier_b; GOTO L2;
END
ELSE UNLOCK barrier_b;
END
FOR i:=0 STEP 1 UNTIL i<N/(2*P) DO
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BEGIN
idx:=(N/(2%s1)<P)?
p/ (2%P*s1/N)*2xs1+p), (2#P*s1/N)*(N/(2%P) ) +i: .
p*N/P+i/sl*2%sl+i)sl;
IF (idx/(2%1))%2 = O THEN
BEGIN
IF alidx] < a[idx+sl] THEN
BEGIN
temp:=a[idx];
alidx] :=al[idx+sl];
a[idx+sl] :=temp;
END
END
ELSE BEGIN
IF al[idx] > a[idx+sl] THEN
BEGIN
temp:=al[idx];
al[idx] :=a[idx+sl];
alidx+sl] :=temp;
END
END
END
END
FOR sl:=N/(4%P) STEP sl=s1/2 UNTIL 1 DO
FOR i:=0 STEP 1 UNTIL i<N/(2%P) DO
BEGIN
idx:=(N/(2%sl)<P)7?
p/ (2%P*s1/N)*2%s1l+p¥ (2%P*s1/N)*(N/(2%P) ) +i:
p*N/P+i/s1*2%sl+ijsl;
IF (idx/(2%1))%2 = O THEN
BEGIN
IF alidx] < al[idx+sl] THEN
BEGIN
temp:=alidx];
al[idx] :=a[idx+sl];
a[idx+sl] :=temp;
END
END
ELSE BEGIN
IF alidx] > a[idx+sl] THEN
BEGIN
temp:=alidx];
a[idx] :=a[idx+sl];
alidx+sl] :=temp;
END
END
END
END
END
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B.5 Source Codes of the Non-Shuffling FFT Algorithm

’

: Process MASTER

" BEGIN

L1

L2z

wait_a:=0; wait_b:=0; switch:="A";
barrier_a:="close"; barrier_b:="close";
FOR p:=1 STEP 1 UNTIL P-1 DO
CREATE process WORKER(p);
:=0;
gOR m:=1 STEP m:=m*2 UNTIL m<N/P DO
BEGIN
i:=2%m;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN
theta:=-1*PI*(j-1)/m;
omega:=COMPLEX(COS(theta) ,SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)*N/P DO
BEGIN
jj:=k+m;
temp:=omega*DATA[jj];
DATA[jj]:=DATA[k]-temp;
DATA[k] :=DATA[k] +temp;
END
END
END
mask:=1;
FOR m:=N/P STEP m:=m#%2 UNTIL m<N DO
BEGIN
IF switch = "A" THEN
BEGIN
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
LOCK wait_a;
IF wait_a !'= P THEN
BEGIN
UNLOCK wait_a; GOTO L1;
END
ELSE BEGIN
UNLOCK wait_a;
wait_b:=0;
barrier_b:="close'";
switch:="B";
LOCK barrier_a; barrier_a:="open";
UNLOCK barrier_a;
END
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
LOCK wait_b;
IF wait_b != P THEN
BEGIN
UNLOCK wait_b; GOTO L2;
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END
ELSE BEGIN
UNLOCK wait_b;
wait_a:=0;
barrier_a:="close";
switch:="A";
LOCK barrier_b; barrier_b:="open";
UNLOCK barrier_b;
END
END
i:=2%m;
index:=0;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN
theta:=-1%PI*(j-1)/m;
omega:=COMPLEX(COS(theta) ,SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)xN/P DO
BEGIN
sign:=mask&p;
IF sign = O THEN
local[index] :=DATA[k] +omega*DATA [k+m] ;
ELSE local[index] :=DATA[k]-omega*DATA [k-m] ;
index:=index+1;
END
END
IF switch = "A" THEN
BEGIN
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
LOCK wait_a;
IF wait_a != P THEN
BEGIN
UNLOCK wait_a; GOTO L3;
END
ELSE BEGIN
UNLOCK wait_a;
wait_b:=0;
barrier_b:="close";
switch:="B";
LOCK barrier_a; barrier_a:="open";
UNLOCK barrier_a;
END
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
LOCK wait_b;
IF wait_b != P THEN
BEGIN
UNLOCK wait_b; GOTO L4;
END
ELSE BEGIN
UNLOCK wait_b;
wait_a:=0;
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barrier_a:="close";

switch:="A";
LOCK barrier_b; barrier_b:="open";
UNLOCK barrier_b;
END

END

index:=0;

FOR k:=p*(N/P)+1 STEP 1 UNTIL (p+1)*N/P DO

BEGIN

DATA[k] :=local[index] ;
index:=index+1;
END
mask:=mask*2;
END
END

; Process WORKER(i)
BEGIN
FOR m:=1 STEP m:=m*2 UNTIL m<N/P DO
BEGIN
1:=2%m;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN '
theta:=-1*PI*(j-1)/m;
omega:=COMPLEX(COS(theta),SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)*N/P DO
BEGIN
jj:=k+m;
temp:=omega*DATA[jj];
DATA[jj]:=DATA[k]-temp;
DATA[k] :=DATA[k]+temp;
END
END
END
mask:=1;
FOR m:=N/P STEP m:=m%*2 UNTIL m<N DO
BEGIN
IF switch = "A" THEN
BEGIN
LOCK wait_a; walt_a:=wait_a+1;
UNLOCK wait_a;
L1i: LOCK barrier_a;
IF barrier_a != "open" THEN
BEGIN
UNLOCK barrier_a; GOTO L1;
END
ELSE UNLOCK barrier_a;
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
L2: LOCK barrier_b;
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IF barrier_b != "open" THEN

BEGIN
UNLOCK barrier_b; GOTO L2;
END
ELSE UNLOCK barrier_b;
END
i:=2%m;
index:=0;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN

theta:=-1%PI*(j-1)/m;
omega:=COMPLEX(COS(theta) ,SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)*N/P DO
BEGIN
sign:=maské&p;
IF sign = O THEN
local[index] :=DATA[k] +omega*DATA [k+m] ;
ELSE local[index] :=DATA[k]-omega*DATA[k-m] ;
index:=index+1;

END
END
IF switch = "A" THEN
BEGIN
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
L3: LOCK barrier_a;
IF barrier_a != "open'" THEN
BEGIN
UNLOCK barrier_a; GOTO L3;
END
ELSE UNLOCK barrier_a;
END
ELSE BEGIN
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
L4: LOCK barrier_b;
IF barrier_b != "open" THEN
BEGIN
UNLOCK barrier_b; GOTO L4;
END
ELSE UNLOCK barrier_b;
END
index:=0;
FOR k:=p*(N/P)+1 STEP 1 UNTIL (p+1)*N/P DO
BEGIN

DATA[k] :=local [index];
index:=index+1;
END
mask:=mask*2;
END
END
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B.6 Source Codes of the Shuffling FFT Algorithm

1
’

1

Process MASTER

BEGIN

L1i:

wait_a:=0; wait_b:=0;
barrier_a:="close"; barrier_b:="close";
FOR p:=1 STEP 1 UNTIL P-1 DO
CREATE process WORKER(p);
p:=0;
FOR iter:=1 STEP 1 UNTIL CEILING(LOG(N)/LOG(N/P)) DO
BEGIN
FOR m:=1 STEP m:=m*2 UNTIL m<N/P DO
BEGIN
i:=2%m;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN
theta:=-1*PI*(j-1)/m;
omega:=COMPLEX(COS(theta) ,SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)*N/P DO
BEGIN
jj:=k+m;
temp :=omega*DATA[jj];
DATA[jj]:=DATA[k]-temp;
DATA[k] :=DATA[k] +temp;
END
END
END
LOCK wait_a; wait_a:=wait_a+1;
UNLOCK wait_a;
LOCK wait_a;
if} wait_a != P then}
BEGIN
UNLOCK wait_a; GOTO L1;
END
ELSE BEGIN
UNLOCK wait_a;
wait_b:=0;
barrier_b:="close";
SWITCH:="B";
LOCK barrier_a; barrier_a:="open";
UNLOCK barrier_a;
END
index:=0;
k:=p;
if} k<P/2 then}
BEGIN
FOR i:=k#2%N/P+1 STEP 2 UNTIL i<(k+1)*2xN/P DO
local[index] :=DATA[i];
index:=index+1;
END
ELSE BEGIN
k:=k-P/2;
FOR i:=k*2%xN/P+2 STEP 2 UNTIL (k+1)*2%N/P DO
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L2:

b

END

local[index] :=DATA[i];
index:=index+1;
END
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
LOCK wait_b;
if} wait_b != P then}
BEGIN
UNLOCK wait_b; GOTO L2;
END
ELSE BEGIN
UNLOCK wait_b;
wait_a:=0;
barrier_a:="close";
SWITCH:="A";
LOCK barrier_b; barrier_b:="open";
UNLOCK barrier_b;
END
index:=0;
FOR k:=p*(N/P)+1 STEP 1 UNTIL (p+1)*N/P DO
BEGIN
DATA[k] :=local[index];
index:=index+1;
END
END

; Process WORKER(i)

.
?

Li:

BEGIN

FOR iter:=1 STEP 1 UNTIL LCEIL(LOG(N)/LOG(N/P))
BEGIN
FOR m:=1 STEP m:=m#*2 UNTIL m<N/P DO
BEGIN
i:=2%m;
FOR j:=1 STEP 1 UNTIL m DO
BEGIN
theta:=-1*PI*(j-1)/m;
omega:=COMPLEX (COS(theta) ,SIN(theta));
FOR k:=j+p*(N/P) STEP i UNTIL (p+1)*N/P DO
BEGIN
jj:=k+m;
temp:=omega*DATA[jj];
DATA[jj]:=DATA[k]-temp;
DATA[k] : =DATA[k] +temp;
END
END
END
LOCK wait_a; wait_a:=wait_a+l;
UNLOCK wait_a;
LOCK barrier_a;
if} barrier_a != "open" then}
BEGIN
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L23

END

UNLOCK barrier_a; GOTO L1;
END
ELSE UNLOCK barrier_a;
index:=0;
k:=p;
if} k<P/2 then}
BEGIN
FOR i:=k#*2%N/P+1 STEP 2 UNTIL i<(k+1)*2%N/P DO
local[index] :=DATA[i];
index:=index+1;
END
ELSE BEGIN
k:=k-P/2;
FOR i:=k*2%N/P+2 STEP 2 UNTIL (k+1)*2*N/P DO
local[index] :=DATA[i];
index:=index+1;
END
LOCK wait_b; wait_b:=wait_b+1;
UNLOCK wait_b;
LOCK barrier_b;

if} barrier_b != "open" then}
BEGIN
UNLOCK barrier_b; GOTO L2;
END
ELSE UNLOCK barrier_b;
index:=0;
FOR k:=p*(N/P)+1 STEP 1 UNTIL (p+1)*N/P DO
BEGIN

DATA[k] :=local[index] ;
index:=index+1;

END

END

B.7 Source Codes of the Single Source Shortest Path

; Process MASTER

BEGIN

L

L2:

msyn:= "yes"; wait:=0; done:=0;
FOR i:=2 STEP 1 UNTIL K DO
CREATE process WORKER(i);
FOR u:=1 STEP K UNTIL NODES DO
D[u] :=999999; ; 999999 is the infinite number
IF wait < K-1 THEN GOTO Li1;
D[SOURCE] :=0;
initialize Q to contain SOURCE only;
LOCK Q;
IF Q is empty THEN GOTO L3;
delete Q’s head node u;
UNLOCK Q;
msyn:="no";
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FOR each arc (u,v) that starts at u DO

BEGIN ; reach successor node of u
newdv:=D[ul+d(u,v);
LOCK D[v];

IF D[v] <= newdv THEN
UNLOCK D[v];
ELSE BEGIN
P[v]:=u;
D[v] :=newdv;
UNLOCK D[v];
msyn:="yes"; LOCK Q; MYSN:="no";
IF v was never in Q THEN
insert v at the tail of Q;
IF v was in Q, but is not currently in Q THEN
insert v at the head of Q;
UNLOCK Q;
END
END
msyn:="yes";
GOTO L2;
L3: IF wait = K-1 THEN GOTO L4;
UNLOCK Q;
GOTO L2;
L4: done:=1;
UNLOCK Q;
L5: IF done < K THEN GOTO LS;
END

; Process WORKER(i)

BEGIN
FOR u:=1 STEP K UNTIL NODES DO
D[u] :=999999; ; 999999 is the infinite number
L1: IF msyn = "yes" THEN GOTO L3;
LOCK Q;

IF Q is empty THEN GOTO L2;
delete Q’s head node u;
UNLOCK Q;
FOR each arc (u,v) that starts at u DO
BEGIN ; reach successor node of u
newdv:=D[u]+d(u,v);
LOCK D[v];
IF D[v] <= newdv THEN
UNLOCK D[v];
ELSE BEGIN
P[v] :=u;
D[v] :=newdv;
UNLOCK D[v];
LOCK Q;
IF v was never in Q THEN
insert v at the tail of Q;
IF v was in Q, but is not currently in Q THEN
insert v at the head of Q;
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UNLOCK Q;

END
END
GOTO L1i;
L2 UNLOCK Q;
GOTO L1;
L3: LOCK wait; wait:=wait+1; UNLOCK wait;
L4: IF done > O THEN GOTO LS;
IF msyn = "yes" THEN GOTO L4:
LOCK wait; wait:=wait-1; UNLOCK wait;
GOTO Li;
L5 LOCK done; done:=done+l; UNLOCK done;

END

B.8 Source Codes of the Image Component Labeling

; Process MASTER

?

BEGIN
WAIT:=0; SYNC:=0;
MODIFY:="no"; DONE:="no";
BARRIER_1:="close"; BARRIER_2:="close";

FOR i:=1 STEP 1 UNTIL N DO
FOR j:=1 STEP 1 UNTIL N DO
B[i,j]:=i*N+j;
FOR i:=2 STEP 1 UNTIL P DO
CREATE process WORKER(i);

L1: LOCK SYNC; SYNC:=SYNC+1; UNLOCK SYNC;
L2: LOCK SYNC;
IF SYNC !'= P THEN
BEGIN
UNLOCK SYNC; GOTO L2;
END
ELSE BEGIN
UNLOCK SYNC;
WAIT:=0;
BARRIER_2:="close";
LOCK BARRIER_1; BARRIER_1:="open";
UNLOCK BARRIER_1;
FOR m:=1 STEP 1 UNTIL N/sqrt(P) DO
FOR n:=1 STEP 1 UNTIL N/sqrt(P) DO
BEGIN
IF A[m,n] '= O THEN
BEGIN
newindex:= MIN(neighbors of the B[m,n],
where Alm,n] != 0);
IF Alm,n] > newindex THEN

BEGIN
A[m,n] :=newindex;
MODIFY:="yes";
END
END
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L3:

.
)

END

END
LOCK WAIT; WAIT:=WAIT+1; UNLOCK WAIT;
LOCK WAIT;
IF WAIT !'= P THEN
BEGIN
UNLOCK WAIT; GOTO L3;
END
ELSE BEGIN
UNLOCK WAIT;
IF MODIFY = "yes" THEN
BEGIN
MODIFY:="no";
SYNC:=0;
BARRIER_1:="close";
LOCK BARRIER_2; BARRIER_2:="open";
UNLOCK BARRIER_2;
GOTO L1;
END
ELSE BEGIN
LOCK DONE; DONE:="yes"; UNLOCK DONE;
LOCK BARRIER_2; BARRIER_2:="open";
UNLOCK BARRIER_2;
END

; Process WORKER(i)

.
2

L1
L2:

BEGIN

L34

LOCK SYNC; SYNC:=SYNC+1; UNLOCK SYNC;
LOCK BARRIER_1;
IF BARRIER_1 != "open" THEN
BEGIN
UNLOCK BARRIER_1; GOTO LZ;
END

ELSE UNLOCK BARRIER_1;

FOR m:=([(i-1) mod sqrt(P)]*N/sqrt(P))+1 STEP 1
UNTIL ([(i-1) mod sqrt(P)]+1)*N/sqrt(P) DO
FOR n:={[(i-1)/sqrt(P)]*N/sqrt(P)}+1 STEP 1

UNTIL {[(i-1)/sqrt(P)]+1}*N/sqrt(P) DO
BEGIN
IF A[m,n] '= O THEN
BEGIN
newindex:= MIN(neighbors of the B[m,n],
where A[m,n] != 0);
IF Alm,n] > newindex THEN

BEGIN
Alm,n] :=newindex;
MODIFY:="yes";
END
END
END
LOCK WAIT; WAIT:=WAIT+1; UNLOCK WAIT;

LOCK BARRIER_2;
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IF BARRIER_2 != "open" THEN

BEGIN
UNLOCK BARRIER_2; GOTO L3;
END
ELSE BEGIN
UNLOCK BARRIER_2;
LOCK DONE;
IF DONE != "yes" THEN
BEGIN
UNLOCK DONE; GOTO Li;
END
ELSE UNLOCK DONE;
END

END
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C Values of Parameters

Table C.1: Values of parameters for the Jacobi iterative algorithm

P J W l 7

2.007767 | 0.200631 | 1.000000 | 1.000000
2.015504 | 0.156849 | 1.054330 | 1.000000
2.022593 | 0.109776 | 1.113308 | 1.000000
2.027502 | 0.061006 | 1.174254 | 1.000000

2.029576 | 0.031288 | 1.211260 | 1.000000

S N NN
= 00 e 0

Table C.2: Miss ratio and total penalty for the Jacobi iterative algorithm

P B P?‘(M)sim PT(A’I)model’ /\sim A:-m:uiel

41 1 1 0.006324 0.005197 | 0.015604 | 0.012434
4 | 2 | 0.004743 0.004035 | 0.013333 | 0.011712
4 | 4 | 0.005508 0.004895 | 0.020741 | 0.019122
4 | 8 | 0.005936 0.005608 | 0.033905 | 0.033046
4|16 | 0.006037 0.005993 | 0.058431 | 0.058993

Table C.3: Values of parameters for the S.0.R. iterative algorithm

P| B J 144 [ ¥

2.007874 | 0.200000 | 1.200000 | 0.000000
2.015625 | 0.442285 | 2.650226 | 0.000000
2.023529 | 0.419091 | 3.490986 | 0.000000
2.027559 | 0.466962 | 6.195342 | 0.000000
2.027559 | 0.485815 | 12.062616 | 0.000000

NN SN NN
0 B B

—
(=]
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Table C.4: Miss ratio and total penalty for the S.0.R. algorithm

P| B PT(M).ﬂ'm PT(M)modcl A.n'm ’\modcl

4 | 1 | 0.005208 0.004323 | 0.013014 | 0.010774
4| 2| 0.005177 0.003650 | 0.015461 | 0.010912
4 | 4 | 0.006534 0.004643 | 0.026015 | 0.018473
4 | 8 | 0.008512 0.005840 | 0.050708 | 0.034856
4 {16 | 0.009553 0.006432 | 0.094307 | 0.064005

Table C.5: Values of parameters for the quicksort

B

J

%4

[

f

CO & BN —

—
(=)

2.000000
2.000000
2.000000
2.000000
2.000000

0.848454
0.927254
0.911621
0.749614
0.527073

8.524792
16.102846
27.379687
33.515399
25.878085

0.000000
0.005311
0.035968
0.161327
0.419271

CO = D =

b=
(=]

3.318430
3.371045
3.466228
3.612498
3.784725

0.813541
0.912845
0.905091
0.746883
0.528214

6.489117
12.230106
20.779997
25.614908
20.374663

0.000000
0.005142
0.035184
0.158215
0.410923

O 00 GO 00 O[O0 W Wi i x| 0O O MO b MY

GO W D —

—
D

4.580748
4.722295
4.987490
5.434978
6.080918

0.796530
0.904706
0.902003
0.753985
0.538388

5.717353
10.754544
18.253418
22.793013
18.419391

0.000000
0.005526
0.034770
0.151325
0.393345
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Table C.6: Miss ratio and total penalty for the quicksort

B

Pr(M)yim

Pr(n{)modcl

A.u'm

'\model

o = o =

—t
D

0.076779
0.043321
0.025626
0.018372
0.018343

0.053844
0.029878
0.017417
0.012784
0.013338

0.189578
0.134391
0.111185
0.124287
0.210876

0.134610
0.089562
0.069384
0.075928
0.131903

o = o —

—
(=21

0.115593
0.063170
0.036758
0.025725
0.024854

0.100710
0.055926
0.033234
0.025811
0.029217

0.269707
0.191843
0.157567
0.171496
0.278288

0.239917
0.164091
0.129343
0.143337
0.250823

OO OD OO0 C0 OO| s i Wi oi x| B O O B2 |
[0 B~ I

—
D

0.138924
0.074812
0.043398
0.030225
0.028873

0.129502
0.071694
0.042866
0.033773
0.039757

0.314974
0.216137
0.169846
0.176905
0.278211

0.300451
0.207880
0.165058
0.183151
0.324799

Table C.T:

Values of parameters for the bitonic merge sort

"

J

i%

l

S

2.000000
2.000000
2.000000
2.000000
2.000000

0.833081
0.833113
0.833138
0.833171
0.833268

80.011102
160.022205
320.044409
640.088818
1280.177637

0.000000
0.000000
0.000000
0.000000
0.000000

2.333333
2.333333
2.333333
2.333333
2.333333

0.785900
0.785945
0.785990
0.786070
0.786230

51.569922
103.139844
206.279687
412.559375
825.118750

0.000000
0.000000
0.000000
0.000000
0.000000

ot —
el R R B R e anl =R R lve

CO OO OO O OOl 00 W i B B B DD DD

2.714286
2.714286
2.714286
2.714286
2.714286

0.750638
0.750716
0.750794
0.750940
0.751204

35.102570
70.205139
140.410278
280.820557
561.641113

0.000000
0.000000
0.000000
0.000000
0.000000
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Table C.8: Miss ratio and total penalty for the bitonic merge sort

o

Pr(M)sim

Pr(ﬁf)madel

’\sim

/\modcl

0.003124
0.001562
0.000781
0.000391
0.000196

0.002841
0.001420
0.000710
0.000355
0.000178

0.007809
0.004685
0.003124
0.002343
0.001955

0.007101
0.004261
0.002841
0.002131
0.001776

o s b0 | o 00 b n2 =Ly

b
(=]

0.009376
0.004688
0.002344
0.001173
0.000556

0.009707
0.004854
0.002427
0.001214
0.000607

0.021880
0.013155
0.008792
0.006612
0.005519

0.023826
0.014304
0.009542
0.007162
0.005972

(o721 =~ NN =S N I o N A R ST W o)

cO o oo OO
OO v B

—
n

0.018494
0.009247
0.004623
0.002312
0.001156

0.020333
0.010167
0.005084
0.002542
0.001271

0.041175
0.024792
0.016597
0.012506
0.010457

0.048430
0.029130
0.019455
0.014618
0.012201

Table C.9:

Values of parameters for the non-shuffling FFT

"o

J

14

l

¥

2.000000
2.000000
2.000000
2.000000
3.000000

0.250000
0.166667
0.100000
0.055556
0.029412

12.000000
16.000000
19.200000
21.333333
22.588235

0..500000
0..500000
0..500000
0..500000
0..500000

=
TR R e L oo

—
o3 ]

3.000000
3.000000
3.000000
3.000000
3.000000

0.285714
0.181818
0.105263
0.057143
0.029851

6.857143
8.727273
10.105263
10.971429
11.462687

0.666667
0.666667
0.666667
0.666667
0.666667

o = D =

OO OO OO 00 OO(00 o W i W] D o B D

it
D

4.000000
4.000000
4.000000
4.000000

4.000000

0.300000
0.187500
0.107143
0.057692
0.030000

4.800000
6.000000
6.857143
7.384615
7.680000

0.750000
0.750000
0.750000
0.750000
0.750000
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Table C.10: Miss ratio and total penalty for the non-shuffling FFT

P?'(ﬂ’[)_,,‘m I)T(M)modd )\,"m /\mm{e[

0.020833 0.016667 | 0.052083 | 0.040625
0.010417 0.008929 | 0.031251 | 0.026414
0.005208 0.004735 | 0.020832 | 0.018821
0.002604 0.002467 | 0.015624 | 0.014768
0.001302 0.001265 | 0.013020 | 0.012640
0.041667 0.053030 | 0.104168 | 0.104246
0.020833 0.030556 | 0.062499 | 0.070457
0.010417 0.017210 0.041668 | 0.052036
0.005208 0.009348 | 0.031248 | 0.042068
0.002604 0.004915 | 0.026040 | 0.036791
0.062500 0.098684 | 0.156250 | 0.177519
0.031250 0.060000 | 0.093750 | 0.124403
0.015625 0.035473 | 0.062500 | 0.095416
0.007812 0.019979 | 0.046872 | 0.079689
0.003906 0.010751 | 0.039060 | 0.071329

o R ] e N i LB CRN R C] o
b e - B B =R R e RS R M vy

Table C.11: Values of parameters for the shuffling FFT

Sy

J W l f
2.000000 | 0.600000 | 18.799999 | 0.666667
2.000000 | 0.600000 | 37.599998 | 0.666667
2.000000 | 0.600000 | 75.199997 | 0.666667
2.000000 | 0.600000 | 150.399994 | 0.666667
2.000000 | 0.600000 | 300.799988 | 0.666667
2.000000 | 0.600000 | 17.600000 | 0.666667
2.000000 | 0.600000 | 35.200000 | 0.666667
2.000000 | 0.600000 | 70.400000 | 0.666667
2.000000 | 0.600000 | 140.800000 | 0.666667
2.000000 | 0.600000 | 281.600000 | 0.666667
2.000000 | 0.600000 | 16.400000 | 0.666667
2.000000 | 0.600000 | 32.799999 | 0.666667
2.000000 | 0.600000 | 65.600000 | 0.666667
2.000000 | 0.600000 | 131.199997 | 0.666667
2.000000 | 0.600000 | 262.399994 | 0.666667

oo = DD =

—
[=2]

CO = b —

p—
(=]

oo oo 00 0| 0o W i B B B B B BT
w0 B b

p—
(=]
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Table C.12: Miss ratio and total penalty for the shuffling FI'T

Pl B PT(]W),,-,“ Pr(nf)model )\sim Arm:udc!

2| 1 | 0.010639 0.009973 | 0.026596 | 0.022939
2| 2 | 0.005319 0.004987 | 0.015957 | 0.013963
2 | 4 | 0.002659 0.002493 | 0.010638 | 0.009475
2| 8 | 0.001330 0.001247 | 0.007980 | 0.007231
2 |16 | 0.000665 0.000623 | 0.006650 | 0.006109
4|11 | 0.017045 0.015980 | 0.042613 | 0.036754
4| 2 | 0.008523 0.007990 | 0.025569 | 0.022372
4 | 4 | 0.004262 0.003995 | 0.017046 | 0.015181
4 | 8 | 0.002131 0.001998 | 0.012785 | 0.011586
4 (16 | 0.001065 0.000999 | 0.010650 | 0.009788
8 | 1 | 0.021341 0.020008 0.053353 | 0.046018
8| 2 | 0.010671 0.010004 | 0.032012 | 0.028011
8| 4 | 0.005336 0.005002 | 0.021343 | 0.019007
8 | 8 | 0.002668 0.002501 | 0.016007 | 0.014506
8116 | 0.001334 0.001250 | 0.013335 | 0.012255

Table C.13: Values of parameters for the shortest path (array D)

B

J

|14

[

f

CO B DD =

—
D

2.000000
2.000000
2.000000
2.000000
2.000000

0.016015
0.018783
0.018888
0.016465
0.013757

3.131582
3.673498
3.687437
3.225471
2.656094

0.007598
0.099374
0.160561
0.206814
0.252902

[ T

[
(o]

4.000000
4.000000
4.000000
4.000000
4.000000

0.011215
0.012127
0.011509
0.009945
0.008347

2.075626
2.238288
2.110080
1.815390
1.514768

0.012947
0.134514
0.226021
0.298764
0.378907

0O Co 00 00 C0| 00 W Wi i i 1o b b oY

SO = D -

o
{2 ]

8.000000
8.000000
8.000000
§.000000
8.000000

0.009636
0.009551
0.008700
0.007580
0.006690

1.764406
1.738429
1.578921
1.371178
1.206036

0.020354
0.186201
0.317634
0.420822
0.524920
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Table C.14:

Miss ratio and total penalty for the shortest path (array D)

P | B | Pr(M)sim | Pr(M)modei A Amodel

211 0.000425 0.000418 0.001035 | 0.001046
2 | 2 | 0.000425 0.000417 0.001248 | 0.001251
21 4 0.000426 0.000418 0.001675 | 0.001670
2 | 8 | 0.000424 0.000417 0.002516 | 0.002503
2 |16 | 0.000431 0.000425 0.004277 | 0.004245
4|1 0.001080 0.001255 0.001702 | 0.001902
4 | 2 | 0.001021 0.001256 0.002008 | 0.002325
4 | 4 | 0.000979 0.001266 0.002668 | 0.003194
4 | 8§ | 0.000963 0.001278 0.004044 | 0.004933
4 [ 16 | 0.000979 0.001291 0.006939 | 0.008442
S| 1 0.002381 0.003193 0.003082 | 0.003922
S| 2 0.002166 0.003214 0.003533 | 0.004873
S| 4 0.002015 0.003241 0.004598 | 0.006775
8| 8 0.001944 0.003276 0.006913 | 0.010608
8 [ 16 | 0.001970 0.003307 0.011919 | 0.018299

Table C.15: Values of parameters for the shortest path (Lock)

hU

J

W

[

f

2.000000
2.000000
2.000000
2.000000
2.000000

0.694307
0.631367
0.588347
0.573504
0.569084

6.268677
7.629046
8.254337
7.975233
6.804678

0.026948
0.089268
0.173938
0.243362
0.300680

R R g R N e L°°

—
D

4.000000
4.000000
4.000000
4.000000
4.000000

0.603533
0.553122
0.536362
0.540971
0.548917

3.679258
4.110187
4.126874
3.828271
3.248385

0.038105
0.133794
0.235190
0.303074
0.354967

CO CO OO 00 CO[C0 W W o W 2 N0 o

O = D

—
[=2]

§8.000000
8.000000
8.000000
8.000000
8.000000

0.542311
0.516249
0.523668
0.538540
0.547287

2.805754
2.910837
2.750539
2.489579
2.135066

0.052579
0.189223
0.300325
0.362667
0.406702
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Table C.16: Miss ratio and total penalty for shortest path (Lock)

P | B | Pr(M)sim | Pr(M)modet |  Asim Amodel

211 | 0.024193 0.013939 | 0.060483 | 0.034717
2| 2 | 0.018077 0.010817 | 0.053689 | 0.032146
2| 4 | 0.015558 0.009569 0.061158 | 0.037785
2| 8 | 0.015693 0.009745 0.092611 | 0.057788
2 (16 | 0.018248 0.011365 | 0.180312 | 0.112677
4 [ 1 | 0.034244 0.036141 | 0.084935 | 0.078099
4 [ 2 | 0.028415 0.031336 | 0.082840 | 0.079345
4 | 4 | 0.027700 0.030847 | 0.106379 | 0.103752
4 | 8 | 0.030415 0.033362 | 0.174981 | 0.170032
4 116 | 0.037088 0.039535 | 0.354557 | 0.339716
8| 1 | 0.043884 0.063697 | 0.108161 | 0.123877
8| 2 | 0.041292 0.060758 | 0.117967 | 0.139392
8| 4 | 0.045130 0.064497 | 0.169104 | 0.199717
8| 8 | 0.052456 0.071682 | 0.293467 | 0.340097
8 | 16 | 0.064764 0.083865 0.597574 | 0.674214

Table C.17: Values of parameters for the image component labeling

P

B

J

W

[

f

N R N N

CO = D —

[
D

2.003205
2.005219
2.006617
2.007839
2.009751

0.048688
0.047128
0.048858
0.055315
0.063706

2.085569
2.861882
3.986631
7.046703
12.355282

0.005083
0.007692
0.012630
0.019564
0.037664

Table C.18:

Miss ratio and total penalty for the image component labeling

B

P‘J"(M)_,;m

Pr(M)moder

'\sim

/\modcl

[ N SO SN LS

CO W BN

—
(=]

0.000225
0.000199
0.000177
0.000180
0.000197

0.000198
0.000176
0.000167
0.000175
0.000195

0.000528
0.000564
0.000673
0.001041
0.001907

0.000493
0.000526
0.000666
0.001044
0.001945




D Finite Cache Results

Table D.1: Values of r, miss ratio and total penalty for the Jacobi iterative

B

Cs

T

Pr(M)sim

Pr(M) model

Asim

Amadal

256
512
1024
2048
4096
8192
16384
32768
65536

0.373044
0.276659
0.166079
0.166033
0.165943
0.103180
0.079119
0.000000
0.000000

L F]
0.029263
0.033382
0.051470
0.051516
0.051606
0.073448
0.079203
0.103658
0.103658

9s
0.035212
0.041904
0.052910
0.052915
0.052926
0.061519
0.065393
0.101641
0.101641

UF]
0.102136
0.111110
0.169732
0.169812
0.169969
0.254595
0.288753
0.385115
0.385115

9s
0.136582
0.161249
0.201882
0.201901
0.201941
0.234158
0.248963
0.347415
0.347415

S S N N N N N T S S S e o

O CO OO CO GO 0O OO0 GO GO i o i i o b o i

256

512
1024
2048
4096
8192
16384
32768
65536

0.534464
0.323938
0.081982
0.081960
0.081916
0.061682
0.053518
0.000000
0.000000

0.017528
0.018499
0.026599
0.026621
0.026665
0.033715
0.036043
0.053672
0.053672

0.008764
0.013165
0.028567
0.028569
0.028575
0.031285
0.032493
0.051612
0.051612

0.096435
0.099506
0.141483
0.141543
0.141664
0.182557
0.199818
0.303952
0.303952

0.051991
0.076829
0.162722
0.162736
0.162768
0.178327
0.185367
0.272178
0.272178
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Table D.2: Values of r, miss ratio and total penalty for the S.O.R. iterative

P

Cs

T

PT(M)sim

Pr(M] modet

Xt

Amnodsl

256
512
1024
2048
4096
8192
16384
32768
65536

0.285201
0.156088
0.156032
0.155936
0.133963
0.051851
0.000000
0.000000
0.000000

9a
0.048155
0.060682
0.060738
0.060834
0.061122
0.096875
0.122148
0.122148
0.122148

gs
0.033609
0.046573
0.046581
0.046594
0.049762
0.065838
0.118930
0.118930
0.118930

93
0.171179
0.241339
0.241437
0.241605
0.270970
0.392846
0.482965
0.482965
0.482965

2
0.135314
0.185658
0.185688
0.185738
0.198043
0.261147
0.389375
0.389375
0.389375

e e =T~ S (% N =N - N - S N S

OO0 CO 0D GO OO OO 00 00w i i oba o W o b | By

256
512
1024
2048
4096
8192
16384
32768
65536

0.274955
0.078183
0.078159
0.078118
0.072758
0.014730
0.000000
0.000000
0.000000

0.034559
0.055057
0.055081
0.055122
0.055233
0.069466
0.076767
0.076767
0.076767

0.015707
0.032122
0.032126
0.032132
0.033019
0.046136
0.073405
0.073405
0.073405

0.200141
0.330902
0.330968
0.331081
0.341863
0.418870
0.455303
0.455303
0.455303

0.094280
0.189748
0.189772
0.189807
0.195010
0.274110
0.366125
0.366125
0.366125
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Table D.3: Values of r, miss ratio and total penalty fo

r the quicksort

B

C,

T

Pr(_M)nim

Pr(M)modet

.’l.um

Amodel

256

512
1024
2048
4096
8192
16384
32768
65536

0.064126
0.054876
0.047778
0.041435
0.032969
0.020986
0.009400
0.000000
0.000000

9a
0.008623
0.008985
0.009526
0.010530
0.013296
0.019013
0.025056
0.030137
0.030137

Qs
0.008929
0.009901
0.010797
0.011742
0.013277
0.016227
0.020470
0.025595
0.025595

s
0.048488
0.050366
0.053127
0.058291
0.073478
0.105659
0.138626
0.163962
0.163962

0.051197
0.056569
0.061499
0.066676
0.075064
0.091122
0.114257
0.142677
0.142677

O 0O OO OO0 OO OO CO C0 OO Wi W W o o o o | Mg

CO OO0 OO OO0 OO CO CO CO CO|Co OO OO0 CO OO0 OO0 CO OO OO

256

512
1024
2048
4096
3192
16384
32768
65536

0.062791
0.052433
0.043255
0.033563
0.023735
0.014626
0.006465
0.000000
0.000000

0.010924
0.012302
0.014770
0.018882
0.023616
0.027795
0.031523
0.034424
0.034424

0.012782
0.014325
0.016022
0.018279
0.021259
0.024921
0.029266
0.033700
0.033700

0.062160
0.069987
0.084113
0.107709
0.134400
0.156859
0.175600
0.188449
0.188449

0.071823
0.080088
0.089126
0.101084
0.116803
0.136096
0.159109
0.182930
0.182930
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Table D.4: Values of r, miss ratio and total penalty for the bitonic merge sort

P

B

Cl

T

Pr(M)sim

PI’(J‘I.I) model

Asim

Amadal

256

512
1024
2048
4096
8192
16384
32768
65536

0.283192
0.228664
0.181870
0.142855
0.111565
0.027766
0.008216
0.000000
0.000000

gs
0.000011
0.000021
0.000043
0.000087
0.000260
0.000433
0.001213
0.001559
0.001559

92
0.000009
0.000011
0.000014
0.000018
0.000023
0.000087
0.000254
0.001205
0.001205

9s
0.000030
0.000058
0.000118
0.000239
0.000938
0.003550
0.007278
0.008792
0.008792

s
0.000055
0.000067
0.000085
0.000110
0.000140
0.000531
0.001538
0.007194
0.007194

0o OO0 OO0 OO0 OO OO 00 OO OO i W fb i f b o e i

GO OO0 OO0 OO0 CO CO OO GO CO|Co C0 OO 00 C0 OO OO 00 CO

256

512
1024
2048
4096
8192
16384
32768
65536

0.283323
0.228787
0.181967
0.142834
0.052921
0.026008
0.008191
0.000000
0.000000

0.000028
0.000056
0.000110
0.000297
0.000705
0.001709
0.002340
0.002636
0.002636

0.000021
0.000025
0.000032
0.000041
0.000106
0.000207
0.000546
0.002897
0.002897

0.000077
0.000154
0.000303
0.001333
0.005251
0.010149
0.012976
0.014253
0.014253

0.000127
0.000155
0.000194
0.000249
0.000647
0.001253
0.003248
0.013994
0.013994




Table D.5: Values of r, miss ratio and total penalty for the non-shuffling FFT
P| B C.s = Pr(M)sim Pr{M)modet Asim Amadel
9 Qs ¥} s
256 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
512 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
1024 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
2048 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
4096 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
8192 | 0.125000 | 0.000000 | 0.017702 | 0.000000 | 0.093432
16384 | 0.062500 | 0.041667 | 0.026671 | 0.153648 | 0.136678
32768 | 0.031250 | 0.052083 | 0.034565 | 0.187500 | 0.174521
65536 | 0.000000 | 0.062500 | 0.046296 | 0.249999 | 0.233216
256 | 0.125000 | 0.000000 | 0.019585 | 0.000000 | 0.100196
512 | 0.125000 | 0.000000 | 0.019585 | 0.000000 | 0.100196
1024 | 0.125000 | 0.000000 | 0.019585 | 0.000000 | 0.100196
2048 | 0.125000 | 0.000000 | 0.019585 | 0.000000 | 0.100196
4096 | 0.125000 | 0.000000 | 0.019585 | 0.000000 | 0.100196
8192 | 0.062500 | 0.034722 | 0.030270 | 0.144097 | 0.149054
16384 | 0.041667 | 0.041666 | 0.036261 | 0.171439 | 0.175994
32768 | 0.020833 | 0.048611 | 0.044250 | 0.222657 | 0.212120
65536 | 0.000000 | 0.052083 | 0.054687 | 0.278646 | 0.261065

Co Co Cn 0o O OO OO CO Oof v o i b b b Wb B s
GO GO CO GO CO OO GO CO OO|(CHO OO OO GO GO OO OO0 Co GO
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Table D.6: Values of r, miss ratio and total penalty for the shuffling FFT
P B Ca r PT'“”)M'm P"’U‘”modet Asiniy AmQH

'¥] 9s 9z UF]

256 | 0.144864 | 0.000000 | 0.000101 | 0.000000 | 0.000603
512 | 0.144842 | 0.000000 | 0.000101 | 0.000000 | 0.000603
1024 | 0.144798 | 0.000000 | 0.000101 | 0.000000 | 0.000603
2048 | 0.144709 | 0.000000 | 0.000102 | 0.000000 | 0.000606
4096 | 0.144531 | 0.000000 | 0.000102 | 0.000000 | 0.000606
8192 | 0.141335 | 0.000000 | 0.000104 | 0.000000 | 0.000621
16384 | 0.023674 | 0.001894 | 0.000535 | 0.010417 | 0.003141
32768 | 0.021780 | 0.002841 | 0.002663 | 0.016099 | 0.009108
65536 | 0.000000 | 0.002841 | 0.002663 | 0.017046 | 0.015445

256 | 0.146294 | 0.000000 | 0.000115 [ 0.000000 | 0.000690

012 | 0.146246 | 0.000000 | 0.000115 | 0.000000 | 0.000690
1024 | 0.146151 | 0.000000 | 0.000116 | 0.000000 | 0.000692
2048 | 0.145960 | 0.000000 | 0.000116 | 0.000000 | 0.000693
4096 | 0.142530 | 0.000000 | 0.000118 | 0.000000 | 0.000705
8192 | 0.025697 | 0.001742 | 0.000569 | 0.009581 | 0.003341
16384 | 0.023955 | 0.002613 | 0.000603 | 0.014807 | 0.003537
32768 | 0.023084 | 0.003049 | 0.002858 | 0.017423 | 0.009793
65536 | 0.000000 | 0.003049 | 0.002858 | 0.018294 | 0.016577

GO CO CO CO GO 00 GO C0 OO W i b s o s s W
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&

le

: Values of r, miss ratio and total penalty for the image labeling

Cs

r

PriM ) aim

P"'(M)mod'el

Asim

Amodel

256
512
1024
2048
4096
8192
16384
32768
65536

0.979180
0.978254
0.978112
0.977881
0.976826
0.973625
0.971150
0.000000
0.000000

9s
0.001161
0.001598
0.001598
0.001598
0.001598
0.001859
0.001878
0.011504
0.011504

LF)
0.001518
0.001519
0.001519
0.001520
0.001521
0.001526
0.001530
0.011755
0.011755

93
0.005836
0.007779
0.007779
0.007779
0.008029
0.009997
0.011190
0.045703
0.045703

LE]
0.006418
0.006422
0.006423
0.006427
0.006431
0.006451
0.006466
0.046865
0.046865

N S S N T S -~ S S - Bas]

D.7
B
4
il
1
4
4
4
1
1
4
8
8
8
8
8
8
8
8
8

256
512
1024
2048
4096
8192
16384
32768
65536

0.981803
0.981170
0.981079
0.980934
0.980171
0.977927
0.976910
0.000000
0.000000

0.000738
0.000880
0.000880
0.000880
0.000880
0.000902
0.000908
0.007244
0.007244

0.000560
0.000560
0.000560
0.000560
0.000561
0.000562
0.000563
0.007491
0.007491

0.005458
0.006521
0.006521
0.006521
0.006722
0.007631
0.008129
0.043306
0.043306

0.003505
0.003508
0.003508
0.003508
0.003511
0.003518
0.003524
0.044779
0.044779
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