Hardware/Software Resolutions for Pipeline
Hazards in Instruction Set Processors

Ing-Jer Huang and Alvin M. Despain

CENG Technical Report 92-18

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-6006

Technical report, 1992

Hardware/Software Resolutions for Pipeline
Hazards in Instruction Set Processors

Ing-Jer Huang and Alvin Despain
Advanced Computer Architecture Laboratory
Department of Electrical Engineering - Systems
University of Southern California

Abstract

This report presents a hardware/software concurrent engineering approach
to the resolution of pipeline hazards. In automatic pipeline synthesis, a
highly pipelined instruction set processor might not be free of pipeline haz-
ards which necessitate software and/or hardware solutions. The register-
related pipeline hazards (RPHs) are caused by various types of inter-
instruction dependencies. The conventional taxonomy for dependencies
(data, anti-data, output) is insufficient for differentiating dependencies in a
pipeline structure. We propose an extended taxonomy consisting of nine
classes <forward/backward/stationary, data/anti-data/output> for the analy-
sis of RPHs. Hardware and software resolutions are then provided for each
class of dependency, including forwarding/duplicate registers in hardware
and up/down instruction reordering in the compiler back-end. The combi-
nation of hardware and software resolutions can be selected with respect to
the characteristics of application benchmarks, in order to balance the per-
formance/cost tradeoff.

1. Introduction

Designing high performance pipelined instruction set processors requires a careful balance
between design choices in both hardware and software. The goals of our automation efforts in
Advanced Computer Architecture Laboratory are twofold: first, we want to develop a systematic
method of constructing both hardware and software components of pipelined ISPs from abstract,
sequential behavioral description [1],[3]; secondly, we attempt to exploit the synergy between
hardware and software in order th achieve higher performance and better cost-effectiveness for
pipelined ISPs. We will addresses the second issue in this report.

This report presents a hardware/software concurrent engineering approach to the resolution of
pipeline hazards in instruction set processors (ISPs). The pipeline hazard is the major hurdle in
pipeline synthesis. It degrades the pipeline performance and complicates the interaction between
micro-architectures and compiler back-ends. We first investigate the complication of hardware
and software.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 1

Technical report, 1992

Pipelining is an effective way to improve the throughputs of ISPs by overlapping the compu-
tation of consecutive instructions. However, both hardware’s and software’s aspects of the Sys-
tems may be affected or modified by pipelining. In hardware, micro-operations with higher degree
of concurrency result in faster instruction firing rate at the costs of some extra hardware and more
complex control such as duplicate functional units and bypassing buses. The relative timing of
micro-operations is modified such that their external behavior may be different from the expected
behavior of the original sequential semantics. The ‘delayed load’ in today’s pipelined RISC pro-
cessors is a typical example: the constimer instruction immediately following the producer ‘load’
will not be able to use the loaded data since they won’t be available until several cycles later;
therefore, the consumer of the data has to be scheduled several cycles after the producer, leaving
some NO-OP slots between the producer/consumer pair. Thus the sequential semantics of instruc-
tion execution is not preserved in the pipelined RISC processors.

The incompatibility between pipelined and sequential implementations calls for the modifica-
tion of the software to compensate for such difference. Moreover, the software may be modified
to take advantage of the hardware’s pipeline structure. For example, modern compilers for pipe-
lined instruction set processors have the explicit knowledge of the pipeline structure. A proper
amount of NO-OPs is inserted between some particular dependent instruction pairs such as
instructions after ‘delayed load” or ‘delayed branch’, in order to preserve the desired behavior.
The compilers can optimize the performance of the compiled codes by reordering instructions to
eliminate the NO-OP slots. On the other hand, the limitation of compilers and the characteristics
of application benchmarks may in turn pose their impact on the hardware pipeline structure. For
example, the small average size of basic blocks in application benchmarks and the complexity of
instruction reordering in a compiler back-end may void a highly pipelined hardware design: most
of the stages are executing NO-OPs since the compiler is unable to find useful instructions to be
scheduled into the NO-OP slots.

The driving force behind such hardware and software interactions is the pipeline hazard
caused by the desire to highly pipeline the ISP. A pipeline hazard happens when the previous
instructions do not release resources in time for the next instruction which depend on the same
resources such that the next instruction is prevented from executing during its designated cycle.
Pipeline hazards are characterized into three categories: structural, data, and control [4]. They are
caused by the conflict use of functional units, registers, and program counter, respectively. In fact,
the control hazard is a special case of data hazards with the datum being the program counter. In
this report we will focus on the register-related pipeline hazards (RPHs)! (data and control haz-
ards).

In this report we will address the problem of RPH resolution in pipeline synthesis. First, we
will present an extended taxonomy of inter-instruction dependencies for the analysis of RPHs.
RPHs are caused by various types of inter-instruction dependencies. However, while trying to
relate RPHs to these dependencies, we found that the conventional taxonomy of dependencies,
i.e., data, anti-data, and output dependency, is insufficient to encapsulate the relative timing of
register accesses in pipeline stages. Therefore, we further differentiate each class of dependency
into forward, backward, and stationary dependencics.

1. The structural hazards exist where the functional units have multi-cycle execution time but are not fully pipelined
[4]. This problem can be bypassed in a synthesis environment where this type of functional units is not supported.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 2

Technical report, 1992

Secondly, we will provide hardware and software resolutions for each type of dependency.
These resolution techniques include inserting forwarding/duplicate registers in hardware, and
generating compilation guides (instruction reordering) to compiler back-ends. The performance/
cost tradeoff of these techniques will be measured with respect to a set of application benchmarks.

These techniques have been integrated into Piper, our pipeline synthesis system for instruction
set processors. Piper automatically generates pipelined RTL designs and interfaces to compiler
back-ends, from abstract behavioral dEscﬁptions of ISPs [1]. In this report, Piper will serve as the
platform for discussion and demonstration of these techniques.

The rest of this report is organized as follows. Section 2 reviews the related work. Section 3
overviews the structure of Piper. Section 4 lists the extended taxonomy of inter-instruction depen-
dencies and their relation to pipeline hazards. The hardware and software resolution strategies are
outlined in Section 5. The consideration of tradeoffs between hardware and software resolution is
discussed in Section 6. Section 7 shows an example of applying above techniques to synthesize a

simple pipelined ISP. We conclude this report with a report on current status and future direction
in Section 8.

2. Related work

Most of the existing pipeline synthesis techniques, such as SEHWA [5], HAL [6], CATHE-
DRA II [7] and PLS [8], are developed for DSP applications. These synthesis techniques avoid
pipeline hazards by limiting the degree of pipelining: the pipelined machines generated should not
have a pipeline latency (the number of clock cycles between the firing of consecutive computing
tasks) less than the minimal achievable latency (MAL) [8] which is the minimal number of clock
cycles before the execution of the next task, in order to prevent pipeline hazards. Pipelined
instruction set processors synthesized with these techniques will suffer from the lower degree of
pipelining. For example, the MIPS R2000 would have to fire an instruction every two cycles
(MAL=2), resulting in three pipeline stages as opposed to five, if it were synthesized with these
technique [1].

ASPD improves the achievable degree of pipelining, at one instruction per cycle, with an
enhanced percolation scheduling algorithm [9]. ASPD deals with the pipeline hazards by flushing
the pipeline. As soon as an instruction which may cause hazards is decoded, the pipeline is
flushed, no matter whether it really causes hazards or not. For example, whenever a ‘delayed load’
is decoded, the pipeline is flushed, regardless of whether the succeeding instructions depend on
the ‘delayed load’. This approach leaves no room for compilers to utilize the delay slots.

While these systems deal with hardware only, the PEAS project addresses the hardware/soft-
ware concurrent engineering for instruction set processors [10]. It automatically generates a
micro-architecture and software components such as compilers and simulators from a set of appli-
cation benchmarks. A proper set of instruction is first selected from a pre-defined super set
according to the benchmarks. A parameterized micro-architecture is then specialized. A compiler
and a simulator are also customized from their super sets (the GNU’s C compiler and simulators).
The difference between Piper and PEAS is that PEAS currently does not handle pipelined proces-
sors, and deals with a super set of pre-defined instructions, while Piper does not select instructions

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 3

Technical report, 1992

but accepts any given instruction set written in a subset of Prolog [1] and generates pipelined pro-
CESSOrs.

3. Overview of Piper: a high level synthesis system for pipelined instruction set
processors and compiler back-ends

Piper and its pre-processor, Fiper, serve as the behavioral domain of ADAS, a full-range
design automation system for micro-processors [3]. They translate the abstract specification of an
instruction set architecture (ISA), written in a subset of Prolog, into pipelined register-transfer
level designs consisting of data paths and control paths. Piper also generates an interface to the
compiler back-end (reorderer), and measures its time and space complexities. The benchmark
characteristics which is obtained through simulation analysis is applied to evaluate the quality of
designs.

Figure I illustrates the conceptual structure of the Piper system. Fiper serves as the front end
of Piper. It translates the ISA specification in Prolog into a sequential abstract finite state machine.

Piper takes the output of Fiper and performs the following tasks: (1). pipeline scheduling; (2)
pipeline hazard resolution; (3). resource allocation.

The first phase, pipeline scheduling, assigns micro-operations into pipeline stages. Pipeline
hazards may be introduced by the pipeline scheduler in a highly pipelining case. These hazards
are resolved in the second phase by a combination of hardware and software resolution strategies.
This is accomplished in two steps: analysis of inter-instruction dependencies, and application of
resolution strategies. In this phase Piper generates a reorder table consisting of reordering con-
straints which instruct the compiler back-end (reorderer) to properly organize the codes for the
pipelined machine synthesized. At the last phase, the hardware resources are allocated, producing
a pipelined RTL level design.

Design decisions made by the pipeline scheduling and hazard resolution affect the perfor-
mance and cost of hardware and the time/space complexities of the compiler back-end. Therefore,
in addition to the design engine, there are a set of estimators and application benchmarks for the
estimation of those effects.

4. The analysis of pipeline hazards

RPHs are caused by inter-instruction dependencies. To resolve a hazard, we have to determine
the type of dependency it involves and choose an appropriate resolution strategy. We first provide
a taxonomy of inter-instruction dependencies which consists of nine types, derived from the cross
products of <forward/backward/stationary> and <data/anti-data/output>.

For simplicity, we will assume a pipelined machine with stage time of one cycle throughout -
this section. With this assumption, a micro-operation of an instruction executed at its C’th cycle
belongs to the C’th stage of the pipeline. The generalized case of stage time being multiple cycles
will be discussed in Section 5.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors B

Technical report, 1992

Benchmark
trace
Analysis

Piper (Pipeline \

Scheduling Piper
Design ‘L Performance
Engine Cost
Hazard Analysis
Resolution

Resource
Allocation

Ccontrol path

(Interface to the compiler back-end)

Figure 1 The structure of Piper system

4.1 An extended taxonomy of inter-instruction dependencies in pipelined ISPs

An inter-instruction dependency in a pipeline structure can be described in terms of the ter-
nary tuple (P, Ry, Ry). Rp, and R are the register access patterns (read/write) of the preceding and
succeeding instruction, respectively. The conventional taxonomy of dependencies is encapsulated
by this pair of parameters: data (R » =write, R, =read; or, read after write), anti-data (Rp =read, R;
=write; or, write after read), and output (Rp =write, R, =write; or, write after write) dependency.
On the other hand, P describes the relative position of register accesses in a pipeline structure of a
dependent instruction pair. The possible values of P are: forward, backward, and stationary. Thus
P provides a classification of dependencies from a pipeline structure’s point of view. Figure 2
shows the relative positions for the register accesses of preceding and succeeding instructions.
Suppose the instruction instA accesses register x at C,’th cycle (at C,’th stage), and the
instruction instB accesses register x at Cp’th cycle (at Cp’th stage), with C,; < Cp. Now we are
ready define the first two classes of dependencies with respect to C, and Cy, and the precedence of
instruction pairs: forward and backward dependency.

A forward dependency happens when a preceding instruction accesses a register at an earlier
stage and a succeeding instruction accesses the same register at a latter stage such as the instA-
instB pair (instA followed by instB); a backward dependency happens when a preceding
instruction accesses a register at a latter stage and a succeeding instruction accesses the same reg-
ister at an earlier stage such as the inst B-instA pair (instB followed by instA). Note that
both forward and backward dependencies potentially co-exist in the hardware for any pair of

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 5

Technical report, 1992

Pipeline stages

1 % Ly n
= © @ == 00 00 o0 =
IA\
access¥eg. X access reg. X
instruction insta instruction instB

Forward depen(@ instA followed by instR
@ard dependency] instB followed by instA

1 ' {C=C=0C) n
= @ © r»oo o0 = © © =

L

Pipeline stages

access reg. X

instruction instA, instB

Stationary dependency

Figure 2 Forward, backward and stationary dependencies and pipeline stages

instructions which access the same registers at different cycles (except the read-read case). The
actual direction of the dependency (forward or backward) in an application program is determined
by the relative precedence relationship of the instruction pair; for example, the instA-instB
pair has a forward dependency and the instB-instA pair has a backward dependency.

The third class of dependency is stationary dependency which happens when the preceding
and succeeding instructions access the same register at the same cycle (C, = Cp).

After defining the forward, backward and stationary dependencies, now we are ready to fur-
ther refine dependencies into nine types. By applying the conventional taxonomy to each class of
dependency, we have forward data, forward anti-data, forward output, backward data, backward
anti-data, backward output, stationary data, stationary anti-data, and stationary output depen-
dency. Table 1 summarizes these nine types of dependencies.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 6

Technical report,

1992

The preceding
instruction access

register x at cycle Cp

The succeeding
instruction access
register x at cycle Cg

Types of register accesses

Read after Write
(R,=write, Rg=read)

Write after Read
(Rp=read, R=write)

Write after Write
(Ry=write, Ry=write)

Cp < C forward data depen- | forward anti-data forward output
(P=forward) dency dependency dependency
Cp>Cs backward data backward anti-data | backward output
(P=backward) dependency dependency dependency
Cp=C; stationary data stationary anti-data | stationary output

(P=stationary)

dependency dependency dependency

Table 1 Inter-instruction dependencies for pipelined instruction set processors

4.2 Pipeline hazards and inter-instruction dependencies

Not all classes of dependencies cause pipeline hazards. A backward dependency definitely
causes a pipeline hazard because when the succeeding instruction reaches the stage where it
accesses a register, the preceding instruction hasn’t arrived at the stage (a latter stage) where it
accesses the same register (as the instB-instA pair in Figure 2). For example, a ‘delayed
load’ instruction immediately followed by another instruction which use the loaded datum is a
pipeline hazard which involves a backward dependency.

A forward dependency does not cause any pipeline hazard. The instA-instB pair in Fig-
ure 2 is an example of a forward dependency. Instruction instA accesses register x at stage C,,
leaving enough time (Cp, - C, +1 cycles) for the succeeding instruction instB to reach stage Cp
to access X. However, even though forward dependency does not cause any pipeline hazard, a
proper handle of it may eliminate another backward dependency (for example, the instB-
instA pair in Figure 2). We will further explain this issue in Section 5.

The stationary dependency is the most stand-along class of dependency. It does not cause any
pipeline hazard, nor does it interfere with other classes of dependencies. The succeeding instruc-
tion can access the same register in the next cycle right after the preceding instruction’s access.
Instructions exhibiting stationary dependencies never access the same register simultaneously.
There is no delay slot required for instruction pairs with stationary dependencies. Therefore, the
stationary dependency is the most desired way of handling inter-instruction dependency in the
pipeline synthesis. This transcribes to a design goal in the scheduling phase of pipeline synthesis
which requires accesses to the same registers in different instructions be scheduled to the same
cycle. However, this goal might not achievable with respect to other design constraints. For exam-
ple, aligning register accesses to the same cycle may effectively lengthen the critical path. When a
stationary dependency can not be preserved, forward and backward dependencies occur, which
necessitate some forms of resolution to ensure the proper behavior.

In the following section, we will present the hardware and software resolutions for pipeline
hazards caused by forward or backward dependencies.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 7

Technical report, 1992

Pipeline stages Cy Cs Cy Cs
X - Xﬂ Xf;g Xf3
Data Path -
D= =R
Instruction instA
stream: t=1 >
Instruction)
stream: t=4 ot

Figure 3 Hardware resolution: forwarding registers (Xﬂ, X1, Xr3)

5. Hardware and software resolution strategies

We first overview the general hardware/software resolution strategies, and then associate them
with various types of pipeline hazards.

5.1 General hardware and software resolution strategies

5.1.1 Hardware resolution

For some of register-related pipeline hazards, the most straightforward way to resolve them in
hardware is to use additional registers. Two types of additional registers can be employed: for-
warding and duplicate registers.

Forwarding registers carry the data along with the instruction stream in the pipeline. In Figure
3 a datum D is set to register X by instruction instA in stage C,, and then is forwarded in the
pipeline via forwarding registers. The datum moves along the pipeline synchronously with
instA. The advantage of forwarding is that as soon as the current datum of register X is for-
warded to next stage, X is free for next datum. This is analogous to adding extra latches (delays)
in pipeline synthesis for DSP applications.

Duplicate registers release the burden of temporary registers. In Figure 4 (a) a temporary reg-
ister T connects two sources S; and S and two destinations D; and D5. There are four possible
connection patterns. All connections are mutually exclusive, with ¥ being the bottleneck of the
data traffic. Suppose that the real connections to be established by T are S;->D; and Sy->D», and
better performance will be achieved when these two connections can be made concurrently. Then

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 8

Technical report, 1992

S; S Sy So
register Y regiéter Y register Y'
" ‘l’ Y
D; D, D, D,
(a). (b).

Figure 4 Hardware resolution: duplicate registers

adding a duplicate register Y’ to create two data paths will ease the traffic and improve the perfor-
mance as shown in Figure 4 (b).

5.1.2 Software resolution

The major technique used in software (compiler back-end) to resolve pipeline hazards is
instruction reordering. As described in Section 1, the desired behavior of an instruction stream
may be distorted due to the change in the relative timing of micro-operations, caused by pipelin-
ing. Instruction reordering restores the desired sequential semantics of an instruction stream by
reordering the sequence of instructions.

There are two directions in reordering: up and down reordering. In Figure 5 (a) is a piece of
sequential codes where instruction instB follows and depends on instA. The cases (b) and (c)
of Figure 5 are the reordered codes for some pipeline structures. In case (b) the instruction instB
is moved up and ahead of instA, whereas in case (¢) instB is moved down and apart from
instA. There are usually constraints (windows) about these movements: W, being the maximal
numbers of slots instB can be moved ahead of instA and Wp,,,, being the minimal number of
slots instB has to be moved down from instA. For the example in Figure 5, Wy, and W,y
are three and two, respectively.

5.2 Inter-instruction dependencies and their applicable resolutions

In this subsection we will provide applicable hardware and/or software resolutions to pipeline
hazards caused by forward or backward dependencies. For ease of discussion, we will use the
same pipeline architecture and instruction pairs in Figure 2 as an example, assuming stage time of
one cycle. The generalized case where a pipeline stage takes multiple cycles will be provided in
Section 5.2.3.

5.2.1 Forward dependencies

We first discuss forward dependencies. A forward dependency is the case of instA-instB
pair (instA followed by instB) (Figure 2). As mentioned in Section 4.2, a forward dependency

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 9

Technical report, 1992

Up-reordering Sequential code Down-reordering
instB K
Wiy

instA instA Waown Tnsta

instB \ .
: instB

(b). (). (c).

(instB depends on instA)

Figure 5 Software resolution: instruction reordering

does not cause pipeline hazards; however, some resolutions can be optionally applied to improve
the system performance.

Forward data dependency

The forward data dependency is the case where instA writes to register X and instB reads
X as shown in Figure 6. There are two ways to resolve this type of dependency: forwarding regis-
ters or up-reordering.

First, one forward register per stage can be allocated to stages C, to Cp_j (total of Cp-C,-1
forward registers) (Figure 6 (b)). A side effect of this approach is that the related backward anti-
data dependency (instB-instA pair) is automatically resolved. This approach is preferable in
the case where both instA-instB and instB-instA pairs happen very frequently in the
application programs, at the cost of additional registers in the data path.

Secondly, instead of hardware resolution, one can choose to optionally move instruction
instB ahead of instA (up-reordering) at most Cp—-C,-1 slots (cycles) as shown in Figure 6 (c).
This has the advantage of hiding the possible delay slots associated with the instruction instB
(for example, instBis a ‘delayed load’ instruction), at the cost of longer compilation time in the
compiler back-end.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors " 10

Techmical report, 1992

Pipeline stages

1 o Cy n Notations:
= © @ oe oo <;x oo x<-: writes x
’I\ <-x: reads x
instA A instB
[Forward data de@> instA followed by instB
Z (a).
Hardware resolution: Software resolution:
forwarding registers up-reordering

rereee

X =>x"=> X" ->esese sy :
) v ’ instB 4
(Cp-C,-1) forwarding registers : E

Wyp=Cp~Cy-1

insta

Figure 6 Forward data dependency and its resolutions

Forward anti-data dependency

The forward anti-data dependency is the case where instA reads register X and instB
writes to X as shown in Figure 7. The applicable resolution is the up-reordering in the compiler

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 11

Technical report, 1992

back-end as described above.

Pipeline stages
1 Cy Cp n
- oo <= 00 o (X< o e =S

instA o instB

| Forward anti-da@ instA followed by instB

Software resolution: up-reordering

1IMsTe ;
Wupzcb' Cali] : E
instA
e _______ - — —

Figure 7 Forward anti-data dependency and its resolution

Forward output dependency

The forward output dependency is the case where both instA and instB write to register X
as shown in Figure 8. There are two ways of resolving this type of dependency: duplicate registers
or up-reordering.

Duplicate registers eliminate the forward output dependency such that instA and instB
become independent instructions. The side effect is that the backward output dependency
(instB-instA pair) is also eliminated as well. However, this hardware resolution can be
applied only when there is no circular dependency with respect to the register involved.

Figure 9 shows an example of a circular dependency. The instruction pair instA-instC
exhibits forward output dependency with respect to register X. However, the dependencies with
respect to X exhibited by other instruction pairs instB-instC and instC-instA close a
dependency loop instA-instB-instC-instA such that the attempt to allocate a duplicate
register X' to instA will require instB to access X' which will in turn require instC to access
X', resulting in that register X becomes obsolete and a new forward output dependency (with
respect to X') is created for the instA-instC pair which invalidates the previous effort to elim-
inate the forward output dependency (with respect to X) for the instA-instC pair.

The circular dependency checking can be applied in two scopes. It can be applied against the
pipeline structure as in the example in Figure 9. This is a conservative approach. On the other

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 12

Technical report, 1992

Pipeline stages

I o Cp n
= e e ee oo x;ilf--» ®e =]
instA instB
| Forward Oulpm@cﬁ» instA followed by instB
S I
Hardware resolution: Software resolution:

duplicate register x’ up-reordering

Figure 8 Forward output dependency and its resolutions

Pipeline stages

instA X<—

1nstc X‘("*—/

Figure 9 Circular dependency

hand, in an application specific environment, the circular dependency check can be applied
against the application programs since some circular dependency exists in the pipeline structure
might not exist in the applications. For example, if the instA-instB dependency never exists
in the application programs, then the dependency loop is broken, which validates the insertion of
duplicate register X'in an attempt to eliminate the instA-instC dependency.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 13

Technical report, 1992

Pipeline stages
1 Cs Cp n
= © @ = 0 ® oo oe =l

instA instB

@ara dependency | instB followed by insta

Software resolution: down-reordering

inétA
Waown=Cp-Cat1 :

instB

Figure 10 Backward dependencies and their resolution

Forward output dependencies can also be resolved by the optional up-reordering in the com-
piler back-end as described previously.

5.2.2 Backward dependencies

A backward dependency is the case of instB-instA pair (instB followed by insta).
There is a software resolution (down-reordering) available for all backward dependencies. The
dependent instruction instA has to be moved away, downward from its predecessor instB for
at least Cp-Cy+1 slots (Wgy,,,=Cp-Cy+1) to ensure that instA access the target register after
instB’s access (Figure 10). The compiler back-end can fill in these slots with NO-OPs or reorder
some other independent instructions into these slots.

The backward output dependency can be also resolved in hardware with the same technique,
duplicate registers, as in the case of forward output dependency (Figure 10 (b)). Circular depen-
dency check has to be performed before a duplicate register can be inserted. Unfortunately, there
is no hardware resolution for backward data/anti-data dependencies.

5.2.3 Summary and extension

Here we summarize the resolution strategies for inter-instruction dependencies in Table 2. In
this table we extend the resolution strategies for pipeline machines with multi-cycle stage time:
every instruction spends § cycles in a stage before it advances to next stage. Therefore, a micro-
operation executed at the C’th cycle of its execution path will be executed at the mod (C/S) +1’th
cycle of the [€/S T'th stage. In this table it is assumed that inst2 and instB access register X

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 14

Technical report, 1992

at the C,’th and Cy’th cycles of their execution paths, respectively. Please note that the constant
M in the rows of anti-data dependencies is used to adjust for the case of master-slaved registers.

In?;;ﬁégﬁ;on Hardware resolution Software resolution
 Forward registers « Side effect of h/w resolution:
total number &Y forward registers: backward anti-data dependency
Forward data [(Cp-Cp) /8 1-1 (instB-instA) is resolved
(instA-instB)
* N/A » Optional up-reordering:
W=l (Cp=Cg) /8 T-1
Forward anti- * N/A * Optional up-reordering
data Wyp=l (Cp-Cq+21) /8 1-1
(instA-instB)
* Duplicate register « Side effect of h/w resolution:
backward output dependency
Forward output (instB-instAa) is resolved
(instA-instB)
* N/A » Optional up-reordering:
Wp=l (Cp-Cp) /8 1-1
Backward data | * N/A « Down-reordering
(instB-insta) Wgown=L(Cp—C,) /S 1+1
Backward anti- | ¢ N/A » Down-reordering
data Waown=L(Cp-Ca=M) /8 J+1
(instB-instA)
* Duplicate register « Side effect of h/w resolution:
forward output dependency
Backward output (instA-instB) is resolved
(instB-instA)
* N/A » Down-reordering
W ioun=L(Cp=Cp) /S J+1

Table 2 Hardware/Software resolution strategies for inter-instruction dependencies
*. M= 1 for master-slaved registers; M=0 otherwise.

6. Consideration of hardware/software tradeoffs

The hardware and software resolutions provide different performance/cost tradeoffs. In an
application specific environment, the tradeoff can be tuned towards the characteristics of the
application benchmarks.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 15

Technical report, 1992

Final forwarding
register chain

Figure 11 Sharing forwarding registers

6.1 Performance and cost with respect to hardware

A forwarding register in a stage can be shared by all forward data-dependent instruction pairs
whose forward data dependencies span across this stage, regardless of the target registers they
depend on. For example, suppose the forward data-dependent instruction pairs instA-instB
(depending on register X) and instC-instD (depending on register ¥) require forwarding reg-
isters from stage C, to stage C4 and from Cj to Cs, respectively, as shown in Figure 11. Then the
final data path would have a total of four forwarding registers, with forwarding registers in stages
C3 and Cy shared by the X and Y forwarding paths. Therefore, the utilization of a forwarding reg-
ister of a stage is the summation of frequencies of the forward data dependencies in the bench-
marks which span across the same stage. In this sense, forwarding registers are more desired in
the data path for application benchmarks exhibiting larger amount of forward data dependencies
across the same pipeline stages.

Forwarding registers improve the performance in that they eliminate pipeline hazards caused
by backward anti-data dependencies with respect to the same instruction pairs. The compiler
back-end also benefits from them since less amount of reordering has to be done. On the other
hand, the existence of forwarding registers prevents the up-reordering of the dependent instruc-
tions such as instB and instD in the previous example. This may be an undesirable result if
instB and instD are instructions of ‘delayed load’ type (involving a backward data depen-
dency with a instruction following them) since they will degrade the performance unless they are
scheduled earlier. Therefore, the decision of whether to employ forwarding registers depends
heavily on the relative frequencies of dependent instruction pairs in the application benchmarks.

The use of duplicate registers is more restricted, compared with the use of forwarding regis-
ters. A duplicate register can not be shared unless it is for writing to the same register at the same
stage. The performance advantage of duplicate registers is that they remove both forward and

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 16

Technical report, 1992

backward output dependencies. Therefore, duplicate registers are feasible only when there is a
high frequency of output dependent instruction pairs in benchmarks and the two register writes
are separated by many pipeline stages (large performance penalty). However, duplicate registers
may change the instruction semantics if they are applied to architected registers instead of tempo-
rary registers.

6.2 Performance and cost with respect to software

The compilation complexity of the compiler back-end for the pipelined ISP generated
depends on the number of up/down reordering constraints, as well as the reorder distances (W, up
and Wg,,,,). Generally speaking, the larger number of reordering constraints and longer reorder
distances, the more time the compiler back-end spends to compile the codes. We model this rela-
tionship by asking the compiler writer to express the time/space complexities in terms of those
factors. For example, the time complexity of some compiler back-end may be expressed as
L°E-D,,m where L is the average basic block size, E is the number of down-reordering con-
straints, and D,,,, is the maximal reorder distance. Now we can compare the complexity of the
compiler back-end for various pipelined implementations by substituting their associated L, E,
and D,,,, values into the expression.

The code expansion (static/dynamic) due to the inserted NO-OPs by the compiler back-end
can be approximated through the analysis of application benchmarks. The characteristics derived
from the analysis includes instruction pair frequencies and instruction level parallelism. For
example, suppose that the dynamic frequency of instruction pair instA-instB is 10%, the
down-reordering constraint requires that instA and instB be separated by at least five slots
(Wgpwn=5), and the instruction level parallelism is two, then the average code expansion due to
the inserted NO-OPs between insta and instB will be roughly 30% of the original dynamic
code size((5-2)*10%).

Finally, for each pipelined processor p, the run time performance with respect to a benchmark
can be approximated by the following equations:

Exp = ZDx‘s!FI_- (1-C) -R;-A+A
1

¢ - AM
’ LP - Exp
A
T =
P L}J - Exp

where Ey, is the dynamic code expansion due to the insertion of NO-OPs, S, is the speedup of
pipelined processor p with respect to non-pipelined processor, and 7}, is the throughput of pipe-
lined processor p.

Distpj is the number of NO-OPs (in the worst case) to be inserted between a consecutive
instruction pattern j for pipelined processor p, R; is frequency of the consecutive instruction pat-
tern j, Ly, is the pipeline latency of pipelined processor p, M is the instruction cycle time in a non-
pipelined processor, A is the total number of instructions in the simulation trace, and C; is the
compression factor for consecutive instruction pattern j which means that, empirically, the per-
centage of NO-OPs which can be deleted by reordering instructions. Cj can be empirically

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 17

Technical report, 1992

approximated by (instruction level parallelism -1)/Distpj, and can be set to zero for the worst case
analysis.

The product AM is the total number of cycles when the benchmark is executed on the non-
pipelined processor while the product L,Ey;, is the total number of cycles executed on the pipe-
lined processor p.

For more details please refer to [1§ and [2].

7. Example

In this section we illustrate these resolution techniques with a synthesis example. SMJ is an
accumulator-based instruction set processor with nine instructions including ‘add’, ‘and’, ‘sub’,
‘shr” (shift right), ‘store’, ‘load’, ‘jump’, ‘brn’ (branch on negative) and ‘nop’. For its instruction
set specification, please refer to [3]. This machine has a critical path of six clock cycles, and a
minimal achievable latency of five. Piper returned six possible pipeline latencies ranging from
one to six. The pipeline latency of six is a sequential implementation. Any pipelined implementa-
tion with a pipeline latency less than five would have some pipeline hazards. The highly pipelined
one has six stages and fetches an instruction every cycle. This implementation has 178 inter-
instruction dependencies. Therefore, the maximal performance speedup (w.r.t. non-pipelined
implementation) of this implementation is six, but the average speedup of an application will be
degraded due to pipeline hazards. We will focus how the resolution techniques are applied to
pipeline hazards of this six-stage machine.

Figure 12 shows the pipeline schedule of SMI (the input to the pipeline hazard resolution
phase of Piper): a finite state representation of the machine and the pipeline stages. Only states
related to instruction fetch and instructions ‘add’, ‘store’, ‘load’ and ‘brn’ are shown here. Bub-
bles represent states. The state in stage three is the decode state. States in stages four, five and six
are conditionally executed, according to the opcode. The contents of bubbles are register accesses
we are interested in this discussion. Empty bubbles contain RTLs which are not of interest here.
The thick bi-directional arcs are forward/backward inter-instruction dependencies associated with
those register accesses. These arcs are labelled as PC-1, MAR-1, MAR-2, etc. There are fourteen
dependencies in the figure such as the forward anti-data dependency of PC, backward data depen-
dency of PC (shown as the bi-directional arc PC-1), etc.

Figure 13 shows the instruction pair analysis for the benchmark concat which we will use to
evaluate the various resolution strategies. The first field is the instruction pair: [preceding instruc-
tion, succeeding instruction]. The second field is the frequency with which the associated instruc-
tion pair exists in the dynamic execution trace. The average instruction level parallelism for
concat is about one since most of the instructions access the accumulator. This observation
implies that hardware resolutions may be preferable over software resolutions since there will be
very few independent instructions which can be reordered into the NO-OP slots.

We will use the analytical models developed in Section 6.2 to evaluate the effective speedups
(w.r.t. the non-pipelined design) and relative time complexities of the reorder (compiler back-end)
for pipelined designs synthesized with various resolution strategies.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 18

Technical report, 1992

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Stage 5:

Stage 6:

Notations:

X<- write to x inter-instruction -5 .
<-X read x { dependency J/Slﬂlﬁ transition @ retired state

Figure 12 Pipeline stages and state transitions for instructions: load, store, add, brn

instruction_pattern_count([add,and],0.03). instruction_pattern_count([load,add],0.14).
instruction_pattern_count([add,brn],0.03). instruction_pattern_count([load,and],0.02).
instruction_pattern_count([add,store],0.13). instruction_pattern_count([load,load],0.02).
instruction_pattern_count([and,store],0.06). instruction_pattern_count([load,store],0.21).
instruction_pattern_count([brn,jump],0.01). instruction_pattern_count([store,add],0.02).
instruction_pattern_count([brn,load],0.02). instruction_pattern_count([store,jump],0.03).
instruction_pattern_count([jump,load],0.04). instruction_pattern_count([store,load],0.24).

Figure 13 Instruction pattern analysis for a benchmark concat

Now let’s investigate the resolutions to these dependencies. First, let’s consider all-software
resolution. Piper found sixteen up-reordering and down-reordering constraints, respectively. In
Table 3 lists the reorder constraints derived from the dependencies PC-1, AC-1, and MDR-1.
Note that some of the reorder constraints can be covered by others because a dependent instruc-
tion pair may contain more than one inter-instruction dependency. For example, reorder con-
straints derived for the instruction pair (alllnstructions, brn) from dependency MDR-1 can be

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 19

covered by the ones derived from PC-1. The performance and cost of the design generated with

Technical report, 1992

all-software resolution is listed in Table 4 under column ‘Design 1°.

Dependent Racidie
pair Reorder Preceding Succeeding di [ac r (eW
f=forward, direction instruction instruction $ Vil; ce) u
b=backward down
PC-1:f “|up “all instructions | brn 4
PC-1:b down brn all instructions | 5
AC-1:f up brn load 2
AC-1:b down load brn 2
MDR-1:f |up all instructions | bm 2
MDR-1:b | down brn all instructions | 2

Table 3 Some reorder constraints for six-staged SM1

We can add a duplicate register for mar to resolve its output dependencies between stage one
and three which involves instructions ‘add’, ‘and’, ‘load’ and ‘store’. These patterns exist in our
benchmark with a total frequency of 92%. This hardware resolution removes four up/down reor-
dering constraints, respectively, and improves the performance by 87% (1.43 to 2.67 in speedup)
and reduces the reordering complexity by 19% (1.31 to 1.06 in relative time complexity). This is
shown in column ‘Design 2’ of Table 4. The speedup improvement is very significant since for
every ‘add’, ‘and’, ‘load’, and ‘store’ in the execution trace, one ‘nop’ has to be inserted to avoid
the output conflict of mar, if it were not duplicated. (max is a special register. A duplicate of it
requires a two-port memory support).

A further hardware resolution involves the forward data dependency MDR-1. The reorder
constraints by dependency MDR-1 require that two ‘nop’ be inserted after ‘brn’. A forwarding
register chain consisting of two registers can be allocated in stage three and four such that ‘brn’
can carry its own copy of mdr along the pipeline until it reaches stage five where it accesses mdr,
leaving stage two immediately available for next instruction. This strategy allows other instruc-
tions to be reordered into the delay slots of ‘brn’, which further improves the speedup to 2.84 and
reduces the relative time complexity of reorderer to 1, as shown in column ‘Design 3’ of Table 4.

One observation about the reorder constraints for various designs of SM1 is that the maximal
reorder distance remains as five while the number of constraints decreases as more hardware
resources are invested. This is because that the maximal reorder distance in this example is
derived from the backward data dependency PC-1 between stage one and five which does not
have applicable hardware resolution. Therefore, the decrease in the time complexity of the com-
piler back-end benefits solely from the decrease in the number of constraints as hardware
increases.

In summary, we have demonstrated the RPH resolution of SMI with strategies ranging from
all software to some combinations of software and hardware. We have shown the estimated cost

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 20

Technical report, 1992

and performance for each possible design. Designers can select one appropriate design based
upon the application domain and the design goal.

Design 1 Design 2 Design 3

Registers (h/w resolution) <dg,mar,1> | <dg,mar,1>
<type, target register, number> <fg,mdr,2>
dg = duplicate register - o

fg = forward register

Reorder constraint (s/w resolution) <d, 16,5> | <4, 12, 5> <d, 11, 5>
<direction, # of constraint, maximal reorder | <u, 16, 4> | <u, 12, 4> <u, 11, 4>
distance>

u=up, d=down

Estimated speedup of the given benchmark | 1.43 2.67 2.84
(w.r.t. non-pipelined)

Relative time complexity of the reorderer 1.31 1.06 1
(compiler back-end)

Table 4 Designs with various combinations of hardware/software resolutions

8. Concluding remarks

We have proposed an extended taxonomy of inter-instruction dependencies for the analysis of
register-related pipeline hazards in instruction set processors, and then presented hardware and
software resolutions for the hazards. These resolutions include forwarding/duplicate registers in
hardware, and up/down instruction reordering in software (compiler back-end). The register-
related pipeline hazards are resolved according to the types of the inter-instruction dependencies
they involve. In an application specific environment, the combination of hardware and software
resolutions can be tuned towards the characteristics of the application benchmarks. These tech-
niques have been integrated into our pipeline synthesis system Piper for instruction set processors
in two phases: analysis of inter-instruction dependencies, and application of resolution strategies.
A pipelined micro-architecture and an interface (reorder table) to the compiler back-end are gen-
erated as the outputs of Piper.

Current limitations include: (1). we are not able to resolve structural pipeline hazards since
Piper does not handle multi-cycle non-fully-pipelined functional units (only single-cycle and
fully-pipelined functional units are supported). (2). All various pipelined designs for an instruc-
tion set specification assume the same clock cycle length which is not realistic in a real design and
may distort the performance estimation. (3). Better dependency analysis and resolution strategies
for instructions involving register files are yet to be developed since the actual register access pat-
terns can not be determined from the instruction set specification. (4). Better designs can be
obtained if the analysis of pipeline hazards is fed back to the pipeline scheduling phase. (5). Finer
controls between hardware and software such as the architectural support for delayed branch with
annulling slots are to be investigated. These limitations will be our focus in future work.

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 21

Technical report, 1992

Reference

[1] Ing-Jer Huang and Alvin Despain, “High Level Synthesis of Pipelined Instruction Set Pro-
cessors and Back-End Compilers,” Proc. of 29th DAC, June, 1992

[2] Ing-Jer Huang “Piper: an Integrated Design Automation System for Instruction Set Pro-
cessors,” USC Technical Report, in preparation

[3] Iksoo Pyo, et al., “Applicaﬁo?i-Driven Design Automation for Microprocessor Design,”
Proc. of 29th DAC, June, 1992

[4] John L. Hennessy and David A. Patterson, “Computer Architecture A Quantitative Ap-
proach,” Morgan Kaufmann Publishers, pp. 257-278, 1990

[5] Nohbyung Park and Alice Parker, “Sehwa: A Software Package for Synthesis of Pipelines
from Behavioral Specifications,” Trans. on CAD, Vol. 7, No. 3, March 1988

[6] Pierre B. Paulin and John P. Knight, “Force-Directed Scheduling for the Behavioral Syn-
thesis of ASIC’s,” IEEE Transactions on Computer-Aided Design, Vol. 8, No. 6, June 1989

(7] Gert Goossens, Jan Rabaey, Joos Vandewalle and Hugo De Man, “An Efficient Microcode
Compiler for Application Specific DSP Processors,” IEEE Transactions on Computer-
Aided Design, Vol. 9, No. 9, September 1990

(8] Cheng-Tsung Hwang et al., “Scheduling for Functional Pipelining and Loop Winding”,
Proc. of the 28th Design Automation Conference, 1991

[9] Mauricio Breternitz Jr. and John Paul Shen, “Architecture Synthesis of High-Performance
Application-Specific Processors”, Proceedings Design Automation Conference, 1990

[10] Masaharu Imai, Alauddin Alomary et al., “An Integer Programming Approach to Instruc-
tion Implementation Method Selection Problem,” Proc. of Euro-DAC, 1992

[11] Peter M. Kogge, The Architecture of Pipelined Computers, MacGraw-Hill, 1981

Hardware/Software Resolutions for Pipeline Hazards in Instruction Set Processors 22

