Improving the Performance of Data Caches in
Systems with Large Miss Latencies

Koray Oner and Michel Dubois

CENG Technical Report 92-14

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-4475



IMPROVING THE PERFORMANCE OF DATA CACHES IN SYSTEMS
WITH LARGE MISS LATENCIES

Koray Oner and Michel Dubois
University of Southern California
Department of EE-Systems

Los Angeles, CA90089-2562

Abstract

With current and projected processor technologies, memory accesses are quickly becoming a major
bottleneck of modern computing systems. Even with a good cache, the miss penalty can be so high that
the processor works at greatly reduced efficiency. Whereas stores can be buffered in a store buffer to
hide store miss penalties, loads cannot be dealt with so easily because the processor needs the data

returned by the load.

In this paper we introduce a simple processor/cache architecture with non-blocking loads. We
then report results of trace-driven simulations of several FORTRAN DO-Loops. We first show that the
architecture is ineffective unless loads can be hoisted away from the instructions that need the returned
value. We then apply load hoisting to the loops and show the possible performance improvements for

the systems with very large load miss latencies.



1 INTRODUCTION

With the improvements in VLSI technology and processor architecture, the gap between
the speed of processors and the speed of memory systems made of DRAMs (Dynamic Random
Access Memories) is widening. Observing the past and present trends we can say that this speed
gap will probably continue to widen unless a major breakthrough occurs in memory technology.
One very successful technique to deal with this technological reality is to access the main memory
through very fast buffers called cache memories, which take advantage of the locality observed in
most programs to serve memory requests faster. When a reference is not found in cache (miss), it
must be loaded from the main memory. The time taken by a miss is called the miss latency. While
the miss is being processed, the processor may be capable of executing different instructions, but
it must eventually block when an instruction needs the returned value. The time during which the
processor is blocked on a miss is called the miss penalty. Miss penalties affect the efficiency and
the MIPS rate of the processor. Currently miss latencies are 10 to 50 cycles, but in the near future
we can expect latencies in the range of 100 to 200 cycles, especially in multiprocessor systems.

In general, stores can be buffered in a store buffer to hide the store miss penalty. Load
misses cannot be dealt with so easily because the processor must wait for the data on a load. In
systems with large miss latencies loads must be non-blocking both in the processor and in the data
cache so that processor execution can be overlapped with load misses. Caches that do not block
the processor on a miss have been called non-blocking or lockup-free caches [4, 5, 6, 8, 11].

Other than lockup-free caches different techniques are proposed to solve the memory
access latency problem. One of them is prefetching the data much before its usage. Therefore,
data will be in the cache when it is needed by the load instruction. Prefetching can be done in soft-
ware [4, 6, 10] or in hardware [13]. Prefetching will be explained in more detail in the next sec-
tion.

Another method is called Multi-threading[23] in which processor does context switching
between different instruction streams in case of a cache miss. In this method more than one regis-
ter set should be present on the chip and the processor should be able to do context switching very
fast. Therefore, multi-threading processors are much more complex. Moreover, having several
running contexts decreases the hit rate of the cache.

The last method is observed in Decoupled Access/Execute Architectures[24, 25]. In these
systems operand access and execution are decoupled and two (or more) processors process two
(or more) separate instruction streams. These processors communicate via hardware queues
which try to smooth the changes in data supply and request rates providing higher average trans-
fer rate even in a system with low peak transfer rate capacity. In [25] two memory systems are
examined: fast (Memory access time (Tm) = 1 cycle) and slow (Tm = 4 cycles). In our study we
go beyond this and examine memory systems with memory access latencies up to 200 cycles.

While a load miss is being resolved by the cache, i.e. while the load miss is pending in the
cache, the processor is free to execute instructions following the load for as long as these instruc-
tions do not need the data returned by the load. Depending on the cache architccturlc, more than
one miss may be pending at any time. Since the hit ratio of instructions is usually very high and

stores can be buffered in a store buffer, data load misses usually are the largest contributing factor



to the overall miss penalty. If misses can be totally overlapped with the execution of other instruc-
tions, then the system becomes tolerant to the miss latency in the sense that the latency does not
affect the performance. Several recent papers have reported very encouraging results [6, 10] on
the effectiveness of lockup-free caches. Nevertheless, very few implementations exist in commer-
cial systems [1, 2, 3, 12]. One reason is the complexity of non-blocking caches. Non-blocking
caches in commercial systems have support for a single pending miss, which is a serious limita-
tion as we will see. In this paper we propose a non-blocking processor/cache architecture which
eliminates the complexity of current designs and supports an unlimited number of pending
misses.

To be effective, however, this architecture needs significant compiler help. Loads that miss
in the cache must be moved away from the first instruction which uses its target register. In this
paper, we examine the effectiveness of a basic code motion transformation to take advantage of
non-blocking loads both in the processor and in the cache. Simple code motion transformations
are applied to selected programs of the Lawrence Livermore Loops [9]. We first identify the fea-
tures of the code in each LDOpl which may hinder code motion. Then we classify the Lawrence
Livermore Loops according to these features and we select five Loops. The selected Loops are
compiled and the compiled code is transformed by hand to produce code with different amounts
of code hoisting. Using an instruction-level SPARC simulator we then generate traces for the
original code produced by the compiler and for the transformed code. These traces are used to
drive a simulator for various miss latencies. Our results show that a simple load hoisting proce-
dure can be very effective in the case of many loops. Based on the simulation results, refinements
to both the basic load hoisting procedure and cache architecture are proposed to further improve
Loop performance in the presence of large miss latencies.

In Sections 2 and 3, we describe the processor and cache architectures simulated in this
study, as well as the simple code motion procedure applied to the Loops. The selection of five
Loops is done in Section 4. In Section 5, the simulation results are presented and discussed.
Finally, in Sections 6 and 7, we propose possible improvements and conclude.

2 LOCKUP-FREE CACHE ARCHITECTURES

Even small miss ratios are detrimental to the throughput of very fast processors. For exam-
ple, if we consider a processor capable of executing one instruction per cycle when the cache
always hits, the average time to execute an instruction is 1+ - T, , where T, is the miss penalty
and r is the average number of misses per instruction. If 7, is larger than 100 processor cycles,
the efficiency of the processor is less than 50% even if r is 1%. This problem is even more severe
for superscalar/superpipelined processors [12], in which the average number of instructions exe-
cuted per cycle may be two or three. To offset the effects of the large miss penalties, the cache
must be non-blocking or lockup-free.

The implementation of a lockup-free cache was first described in Kroft’s paper [8]. In
Kroft’s design the cache controller stores information about misses in a set of fully associative
registers, called Miss Status Holding Registers (MSHRs), and then sends the miss request to main

1. In the text Lawrence Livermore Loops are referred as ‘Loop” while general DO-Loops are referred as
‘loop’.



memory. Each MSHR contains the following information: cache buffer address, input request
address, input identification tags (one per word), send-to-CPU indicators (one per word), in-input-
stack indicators (one per word), partial write codes (one per word), number of words processed
for that specific cache block, valid information, and obsolete indicator. Kroft makes a useful dis-
tinction between primary and secondary misses. A primary miss is the first pending miss for a
cache block. Depending on the block size and the miss latency there may be several pending sec-
ondary misses. A secondary miss occurs on data blocks for which there is a primary pending miss;
a secondary miss is most likely to be a hit in the case of a blocking cache and therefore should not
trigger a memory request in a lockup-free cache. In his design, Kroft allocates one MSHR for
each primary or secondary miss. The total number of pending misses is bounded by the total num-
ber of MSHRS. Kroft recommends to use at most four MSHRs based on his evaluations. His rec-
ommendation may be valid if no code transformation is applied. In our study we have observed at
times six pending primary misses. When all MSHRs are busy the occurrence of a miss causes the
cache to block. Therefore the number of MSHRs is a severe limitation to reducing the miss pen-
alty.

Lockup-free caches were used before Kroft’s paper; most IBM mainframes after the IBM
3033 have a lockup-free cache with one MSHR [3]. More recently, lockup-free caches were also
proposed for the RP3 prototype in [1]. In [5], Kroft’s design was simplified by storing the infor-
mation about pending misses in the cache block itself. To be able to do this the authors added a
new cache state called ‘“Transit’ which means that a miss is pending for the cache block. Their
design solves the limitations due to the number of MSHRS, but still requires saving extensive
information about the miss; moreover it does not address the added complexity of the processor,
which must support non-blocking loads. Non-blocking loads are implemented for example in the
IBM 801 RISC processor [2] and in the IBM RS/6000 superscalar machine [12]. In these
machines, when a load misses in the cache, the processor executes subsequent instructions in par-
allel with the load miss; later, when the load completes, a low-level trap must interrupt the proces-
sor and must direct it to load the value in a specific register. We call such non-blocking loads in-
register loads, because they reserve a register to store the value returned by the load. Right after
the completion of an in-register load, the data is both in cache and in register.

Non-blocking loads may also simply access the data without storing the value in a register.
We call such loads in-cache loads. Right after the completion of an in-cache load the data is in
cache. With in-cache loads, compiler-controlled prefetching can be done to reduce the miss rate.
However, to be successful, this approach requires the overhead of prefetching to be low. This
overhead comes from added execution: the prefetch load is an additional instruction and must be
preceded by its address computation. Additionally, prefetch instructions increase memory traffic
when data is prefetched unnecessarily. A prefetch is useless if the following in-register load for
the same address would be a hit, or if the block is replaced between the prefetch and the corre-
sponding in-register load. Techniques must be developed to minimize the number of generated
prefetch instructions and to save the computed address of the prefetch load so that it can be reused
by the corresponding in-register load. Porterfield’s [10] proposed the idea of Overflow Iteration to
predict loads that miss in the cache and to generate prefetch instructions for these loads only. He
also suggested to use separate registers for storing the calculated addresses. So far, the perfor-
mance studies of non-blocking caches has been confined to prefetching with in-cache loads [4, 6,
10] carefully hand-placed in the code. Recently, in his paper Baer [13] has proposed a hardware



scheme which does in-cache prefetching based on the prediction of the execution of the instruc-
tion stream. By contrast, in our paper, we rely exclusively on in-register loads and on a simple
code hoisting procedure which can be performed by the compiler.

We now propose a combined processor/cache architecture, which practically eliminates
the complexity traditionally associated with non-blocking in-register loads and non-blocking
caches. An interesting feature of the architecture is the way in-register load misses are dealt with.
When an in-register load misses in the cache, the address of the word is loaded in the register and
the register is locked (using a one-bit tag such as the tag used to detect hazards on registers [7]).
The subsequent instruction reading the data blocks the processor and the address in the register is
then used to access the cache. The cache interacts with the processor as follows:

e Primary miss: a cache block frame is allocated (implying a possible replacement) and the
state of the block is set to pending. A pending block cannot be replaced. If the access is an
in-register load, the address is returned to the processor and stored in the register; the register
is tagged as busy. In all cases, the block is loaded in cache from memory and neither the
processor nor the cache are blocked while the miss is pending.

e When an instruction reads a busy register an implicit load is triggered using the address in
the register. An implicit load always blocks the processor, the point being that the data is
needed to complete the instruction execution.

e When the implicit load completes (whether it missed or not) the register is loaded with the
data value and the register is unlocked.

o Secondary miss: a secondary miss is detected when the accessed block is pending in the
cache and the tags of the memory request and the mapped block are the same, In the case of
an in-register load the address is stored in the register and the register is tagged busy. No
request is sent to memory. The cache and the processor remain unblocked.

e In the case of a conflict miss to a pending block the processor is blocked until the first
pending access is completed. (A conflict miss occurs if the tags of the memory access and
the mapped cache block are different.)

In this design, we do not need to keep track of pending loads and their target registers in
MSHRs, which limited the number of pending misses in Kroft's design. Secondary store and load
misses are handled automatically and load completion traps in the processor are eliminated.

3 CODE MOTION

In order to increase the overlap of load misses with execution, each load instruction must
be hoisted in the code away from the following instructions which use its target registers. We
define the dependency distance as the minimum number of processor cycles between the load and
the first following instruction which reads the target register (either another load or a register-to-
register instruction). In the code generated by current compilers, the dependency distances are
very short (typically a few processor cycles) because current compilers generate code for archi-
tectures with blocking loads. Although the IBM RS6000 employs a lockup-free cache, our study
of the assembly code generated by the RS6000’s C compiler indicates that IBM does not perform
code transformations to exploit it. Warren reports that such optimizations are possible but that
IBM does not exploit them [12]. In most cases loads are issued just before register-to-register



instructions in order to reduce register consumption. By contrast, the primary goal of compilers
for non-blocking cache/processor architectures should be to generate code with long dependency
distances. In fact, since a hit in the cache does not waste processor cycles, the only loads to move
are the ones that are likely to miss. Ideally compilers should try to predict the load misses and
move these loads only, since moving al/l loads is wasteful of registers.

In the case of FORTRAN DO-loops load hoisting can be facilitated by pipelining the loads
across iterations of the loop: memory values needed in iteration i are loaded in iteration i-k, k
being the number of stages in the pipeline; once they have been pipelined the loads are hoisted as
far up in the body of the loop as possible. We call this first technique load pipelining. Load pipe-
lining is similar to a more general technique called software pipelining [14, 15, 16, 17, 18, 19], but
it is limited to loads and is implemented at the intermediate code or assembly code levels. Loop
unrolling at the source code level followed by load hoisting in the body of the unrolled loop
achieves a similar result. Loop unrolling technique has been used to improve the execution time
of the loops [14, 15, 20, 21, 22]. The number of unrolled iterations or the number of pipeline
stages are both limited by the number of registers, by control dependencies (in the form of IF-
THEN-ELSE), and by data dependencies. These issues will be further discussed in Section 3.2.
But first we wish to compare the effectiveness of load pipelining and loop unrolling for the pur-
pose of increasing the dependency distances in compiled codes.

3.1 Loop Unrolling Versus Load Pipelining

Loop unrolling and load pipelining are simple transformations which can be incorporated
into a compiler. They differ slightly in the way they change the dependency distances in a loop. In
Fig. 1, portions of the execution flow graph of a one-stage load-pipelined loop and of a one-time
unrolled loop are compared with respect to the dependency distances they generate. In the case of
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Fig. 1: Execution Flow for (a) Load Pipelining (b) Loop Unrolling
where d,, represents a dependency distance of iteration k



load pipelining each additional stage increases the maximum dependency distance by an amount
equal to the execution time of one whole iteration. On the other hand, loop unrolling reduces the
execution time by deleting some of the branches that would normally have been executed in the
original loop; but, as only half of the iteration body is overlapped with loads, the average depen-
dency distance is half of what is achieved by load pipelining. For example, in Fig. 1 d;, = d; 4
for load pipelining whereas d, <d, , ; for loop unrolling since the length of the ‘load k+1" stage
is usually much less than the length of the ‘Execute k’ stage. Another drawback of loop unrolling
is the fact that dependency distances generated by loop unrolling are more variable because the
loads of the original loop are not hoisted by the same amount in the unrolled loop. Fig 2 illustrates
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Fig. 2. Histograms of dependency distances of Loop 9 (for 1-stage pipelined and 1-time unrolled codes)

this problem and displays the histograms of dependency distances of Loop 9 after applying load
pipelining and loop unrolling. Because of its advantages we have adopted load pipelining in our
study.

3.2 Effects of Dependencies in the Code

In a program, control and data dependencies greatly affect the applicability of code trans-
formations. The three types of data dependencies on memory locations are illustrated in Fig. 3. In
an anti-dependency (Write After Read) data is first read and then modified by a following instruc-
tion; since the writes can be easily buffered in the processor, the write access in the dependency
does not block the processor even if it misses in cache and therefore it does not need to be moved.
For the same reason, output dependencies (Write After Write) do not cause any problem. True
dependencies (Read After Write) are the most critical dependencies since the load instruction can-
not be moved up beyond the preceding write access in the dependency. This is especially a prob-

=X X=... X=...

X=,.. = =
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Fig. 3. Data Dependencies (a) WAR (b) WAW (¢) RAW
lem when the distance between the store and the load in the dependency is very short. In this
paper we simply move loads which are at the end of a RAW dependency right up to the store
(wherever possible) and do not attempt to move the store up.

A control dependency occurs when a conditional branch instruction tests the result of a



previous instruction. Conditional branch instructions® and their target instruction partition the

program into basic blocks. It is usually very difficult to move a load outside of a basic block or
across other basic blocks. However if a segment of the program contains an IF-THEN-ELSE
block with forward jumps, we can move loads up across it and out of it. This situation is illus-
trated in Fig.4: we can move the load W instruction across the IF-THEN-ELSE block. We could

......

if (X(i)>1) goto L1
load Z(k)
goto L2
LY ceens
load Y(j)
L2: ...
load W(l)
Fig. 4: An I[F-THEN-ELSE block with forward jump

move up the load Z or the load Y instructions or both. When loads are moved out of an IF-THEN-
ELSE, we call them speculative loads, because we may be executing them uselessly, depending
on the condition. In particular if we make both loads speculative one of them is useless at each
execution of the IF-THEN-ELSE block and the new code generates more loads than the original
code. In Fig.5, the IF-THEN-ELSE has a backward jump. In this case, we can also move the load

load X(i)
if (X(i)>1) goto L1
load W(i)

Fig. 5: An IF-THEN-ELSE block with a backward jump

W instruction across the block if it does not have a dependency with another access in the block.
Moving loads out of the block is more complex. If we move the ‘load X instruction above L1 it
may not be executed or will be executed only once. Therefore, we can only move the load up to
L1. Actually, loops can be generated by using IF-THEN-ELSE with backward jumps. If the com-
piler could detect loops generated by backwards goto’s it could apply load pipelining. This has not
been attempted for this paper.

Speculative loads can always be extracted from an IF-THEN-ELSE block with forward
jumps. One reminder is that speculative loads may degrade performance and should be used only
for high memory latencies. If the user can give hints to the compiler about the probabilities of exe-
cuting the THEN or ELSE parts, the compiler may limit load hoisting to the part with higher prob-
ability.

2. Computed goto’s should also been included in this discussion, but since there was none in the LL Loops
we do not discuss them.



4 LAWRENCE LIVERMORE LOOPS

4.1 General Features of Lawrence Livermore Loops

Most of the Loops have only one nested DO-loop. Nearly all of the loops are generated by
FORTRAN DO-loops. Only Loop 17 and outer loops of Loop 2 and Loop 16 use IF-THEN-ELSE
blocks with backward jumps to generate loops. In Loops 13, 14 and 24 the indexes of array ele-
ments depend on variables that are calculated within the iteration body. Therefore, for these array
elements, code transformations are hard to apply.

4.2 Classification of Lawrence Livermore Loops

After examining the features of the LL Loops in the context of non-blocking caches and
applicability of code transformations, we have classified the LL Loops into 6 classes. In classes 1
to 4 the indexes of array variables are function of the loop indexes only. In class 5, the indexes
depend on computed values. In class 6 there is no DO-loop, but rather a loop generated by IF-
THEN-ELSE with backward jump. Because of the complexity associated with load hoisting for
loops in class 5 (i.e., Loops 13, 14 and 24) and class 6 (Loop 17) we have not pursued them in this
study. Distinctions between loop classes 1 to 4 are as follows:

1- Loops with no true dependency and no IF-THEN-ELSE block within iteration body.

2- Loops with no true dependency and at least one IF-THEN-ELSE block (which has no
backward jump) within iteration body.
3- Loops with true dependencies either within or across iterations (No IF-THEN-ELSE block
within iteration body)
4- Loops with both true dependencies and IF-THEN-ELSE blocks.
Table 2 shows the classification of the Loops. Note that only 4 Loops out of the 24 are considered
too complex for our basic code motion strategy. Loop 2 and 16 have IF-THEN-ELSE with
backward jumps but they also have regular DO-loops inside it, which can be. pipelined.

Table 1: Classification of Lawrence Livermore Loops
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4.3 Selected Lawrence Livermore Loops

From the above five classes the following five Loops are selected and used in our perfor-
mance study (see Appendix for the codes of these Loops). From the first class Loop 1 and Loop 9
are selected. While Loop 1 has a small number of memory accesses within its iteration body,
Loop 9 has a considerable amount of memory accesses. These two loops show the effect of regis-
ter consumption, and the memory access stride. Four pipeline stages can be applied to Loop 1
whereas only one pipeline stage can be applied to Loop 9. From the second class, Loop 15 is
selected. This Loop has a very large iteration body and uses a large number of integer and float-
ing-point registers. From the third class we have selected Loop 11. This is a very small loop with
true dependencies across iterations. This Loop shows the performance degradation due to true
dependencies. Loop 20 is selected in the fourth class as its iteration size is larger than Loop 22 and
as it has true dependencies both across and within iterations. Table 2 summarizes the characteris-
tics of the chosen Loops (all entries except miss rates are per each iteration of the Loop before
code transformation.) The average number of load misses is obtained for an 8§ Kbyte direct-
mapped cache with 32-byte blocks.

Table 2: Characteristics of selected loops (all numbers except miss rates are per iteration of the loop)

o 1 Teopl L 1aép9 1 Tbopld  Loopl5 || Loop20

© Constant: | 121Int,3 Flt. 13 Int., 8 Flt. 7 Int., 1 Flt. 24 Int., 10 Flt. | 18 Int., 1 Flt.

Register
: Conshmption Each Pipeline 1 Int., 3 Flt. 1 Int., 10 Flt. 1Int., 1 Flt. 1 Int., 11 Fit. 1 Int., 9 Flt.
: 1§ Stage
No 3 10 1 6 7
P ek Deperidenee
- Numberof [
Toaad s True 1 5
Accosses Dependence:
| WithinIE- 5 1
- | THEN-ELSE
© Average Number of Load Misses 0.25 236 0.14 0.70 1.04
Execution Time in cycles 38.02 101.55 15.83 495.48 123.14

(miss penalty =0)

~ Miss Rate : 0.095 0.228 0.056 0.007 0.047

5 PERFORMANCE EVALUATION

5.1 General Definitions

We first define some of the terms used in the following sections. The execution time of a
loop is the total number of processor cycles between the start of the execution till the end. This
time includes both computation time and blocking time due to cache misses. The speedup is
defined as the execution time on a system with a blocking cache divided by the execution time on
a system with a non-blocking cache. The miss overlap factor is the average number of primary
load misses pending whenever the processor is blocked. |



5.2 Simulations

Trace-driven simulation is used in this study to evaluate the performance enhancement
provided by code motion. Traces are obtained by running the selected Lawrence Livermore Loops
on an instruction-level simulator of a SPARC processor with 32 registers and an 8kbyte direct-
mapped cache with 32 byte blocks. The small data set of the LLLs forced us to choose a smaller
than usual cache size in order to get meaningful results. To be able to make performance compar-
ison of non-blocking caches with blocking caches we simulate two different systems. The system
with blocking cache is shown in Fig. 6. The first level write-through cache and the second level

STORE BUFFER
PROCESSOR zm ouid level
Ist level CACHE CACHE
(W.T.) LOAD (W.B.)
MISSES

Fig. 6. Processor with caches and store buffer (W.T.: Write-Through; W.B.: Write-Back)

write-back cache have the same size, 8§ KBytes, and are both direct-mapped. The processor has an
infinite-size write buffer and therefore never blocks on a write. The only penalties come from load
misses, which are blocking. This system can process loads that hit in the cache while there is a
pending write miss. In the non-blocking cache system we have simulated the system described in
Section 2 with one 8 Kbyte non-blocking direct-mapped cache; stores are buffered in an infinite-
size store buffer so that their penalty is negligible, leaving only load miss penalties. Additionally,
we assume an infinite number of interleaved memory banks (no bank conflicts). Even though a
system with infinite number of interleaved memory banks is unrealistic, it helps us to focus on the
effect of the software transformations to the dependency distances and the execution times.

The trace is made of two types of records. For each data access a record of the access is
added to the trace and, for each load access, a record for the first following instruction using the
value loaded is inserted in the trace.

In the SPARC simulator integer instructions are executed in one cycle, as well as load and
store instructions provided they hit in cache. We assume that all instruction accesses hit in a sepa-
rate instruction cache. This assumption removes the need to trace instructions and is justified by
the high locality of instruction accesses in the Loops. Floating-point instructions may take 3 to 5
cycles and are not executed concurrently with integer instructions.

5.3 A Simple Model for Lockup-free Cache Performance

Without load hoisting, a lockup free cache is ineffective. When loads are hoisted and more
pipeline stages are applied to the loop, the execution time is reduced and the speedup increases as
shown in Fig. 7 for the case of Loop 1. For low memory latencies, the execution time curve is
almost flat and the speedup increases roughly linearly; the reason is that the memory latency is
less than the dependency distance of most loads. For memory latencies larger than the maximum
dependency distance, the program still benefits from load hoisting but the execution time
increases linearly with the latency. Loop 1 has no feature hampering load hoisting and therefore

11
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Fig. 8. Histogram of dependency distances of Loop 1 for various degrees of load hoisting/pipelining

all loads can be moved by the same amount. The histogram of dependency distances for Loop 1 is
shown in Fig. 8 for various degrees of load pipelining. As can be seen, the dependency distances
are clustered around one value, which increases with the number of pipeline stages. The break-
point in Fig. 7 occurs for a value of memory latencies equal to the center of this cluster. In general,
however, besides loads that can be moved without restrictions, a Loop contains loads that cannot
be moved or that can be moved by a limited amount. This is reflected in the histograms of depen-
dency distances of other Loops (Fig. 14, 16, 17, and 18).

The histograms show that the dependency distances are grouped in a few clusters. Based
on this observation, the curves for the execution time and the speed up can be explained by the

12



following simple model.

Let T be the miss latency and T, be the average dependency distance. We distinguish
between T<T Toisn €T =T and T>T where T and T correspond to the

min? max? < max? min max
minimum and maximum dependency distances.

Case1: T<T,;,

In this case, the dependency distances are long enough that all load misses are overlapped with
execution. If T',, is the execution time of the program when all loads hit in the cache and if M is
the total number of load misses, the execution times are 7, +M X T and T,,, for the blocking and
the non-blocking caches, respectively. Therefore the speedup is:

T +MXT
s

ex

Sp = 1+MxT with T =T/T,,

Case 2:T

min

< T S Tnmx
Let’s assume that there are L clusters of dependency distances in the code where each cluster j
contains R; number of elements, so that the total number of load misses M is M = 3 R i
j=1

In this case the load misses with dependency distances larger than T are covered by execution and
do not block the processor. Assuming that there is no overlap among the loads the load misses with
dependency distances less than T block the processor for a period of (7 —T;) where T; is the
average dependency distance of the cluster j. However, because of the overlap among load misses,
the actual blocking time due to loads in cluster j is o.R; (T —T,) where o, is less than one. There
may be more than one cluster with dependency distance less than 7. Therefore, the blocking time
due to all of these clustersis  a.R; (T —T))

i=1
For each memory latency T, i is the number of clusters with dependency distances less than T.
Then the speedup for this region becomes

T..tMxT 1+MxT°

Sp = ; .
T ¥ AT ot TORAT-T)  1+AT,, + 3 R (T°~T))
j=1 i=1

where, Tf = T;/T,e, and 0<o,<1. AT, is the increase in the execution time due to the
execution of speculative loads. ATY, = AT, /T, is the normalized execution overhead

resulting from speculative loads.
Case3: T>T,,

In this case, all dependency distances are too short to cover the miss latency and the average
penalty of the non-blocking cache is T — T, if we assume that one single load miss can be pending
at any one time. However, this penalty is further reduced because of the overlap among multiple



load misses. We denote the miss overlap factor by f. The average penalty of a load miss in the
lockup-free cache is (T —T,) /f and the execution time is T,,+M x (T —T,) /f; therefore, the
speedup is

o o T+ MXT _ 1+MxT
D T A RT A MX (T-TD /] 14AT. +Mx (P -T) /f

exe

As T becomes very large (with respect to T;) the speedup goes to f, the miss overlap fac-
tor.

In the case of Loop 1 (Fig. 8) and Loop 9 (Fig. 16), which both have a single cluster of
dependency distances, cases 1 and 3 above apply. The latency equal to T, clearly divides the plots
of Fig. 7 and Fig. 10 into two regions corresponding to cases 1 and 3 above.We call it the crifical
latency. In Loop 11, there are two clusters (the one at 0 corresponds to the load with a RAW
dependency) in the histogram (see Fig. 14) and the division of the speedup plots in the two
regions is visible if not as sharp as in Fig. 11. The same applies to all execution time and speedup
curves for the other Loops. In general, a critical latency can be observed beyond which the shape
of the speedup curve is dictated by the miss overlap factor.
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5.4 Discussion of Simulation Results

The results discussed in this section are obtained by manually applying code motion to the
optimized assembly code generated by the compiler for the five selected Loops. All loads are
moved up in the code, irrespective of whether they hit or not. When a store instruction blocks the
motion of a load (RAW dependency), we stop the movement of that load just after the store and
do not attempt to move the store. When moving a load its address calculation is also moved up.
Finally, in order to be able to pipeline the codes further we changed all double precision floating-
point variables and operations to single precision.

The execution time and speedup curves of all selected Loops (see Figs. 7, 10, 11,12, and
13) exhibit two different behaviors for low and high memory access latencies. For low latencies
the speedup increases linearly with increasing latency and the execution time remains nearly
constant. For high latencies the speedup curve flattens and reaches a constant value and the execu-
tion time starts increasing linearly.As demonstrated by the model the gain in the low latency
region is mainly due to the overlap of loads withexecution.In contrast, the gain in the high latency
region is due to the overlap of multiple loads and the speedup tends to the average miss overlap
factor. In all cases, a critical latency separating the two regions can be identified in th:e graphs. The
critical latencies and miss overlap factors for all cases are shown in Table 3.
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Among all examined Loops, Loop 1 and Loop 9, which are in the same class, exhibit the
best behavior. In these Loops each additional pipeline stage increases the dependency distances
by a constant amount of cycles as a whole iteration body is inserted with each additional pipeline
stage between the load of a value and the instruction which uses that value For Loop9 the number
of registers prevents us from pipelining more than one stage.The miss overlap factor,.which is

Table 3: Critical latencies and miss overlap factor for various degrees of load hoisting/pipelining
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15 5 20 1.017 1.208

20 || 2 14 131 244 10176 | 1246 | 1538 | 1.538

important at very large latencies, increases with the degree of pipelining. However this increase is
gradual and slow. This can be explained from Table 2 by the average number of misses in each
iteration of the loop. It takes four iterations of Loop 1 per additional miss, while Loop 9 suffers
two misses at each iteration. We can therefore expect that the miss overlap factor increases by one
for every four additional pipeline stages in Loop 1 and that it increases by two for each additional
pipeline stage of Loop 9.

Loop 11 gains very little from pipelining the loads. One reason is the short execution time
of the Loop iteration, which provides only 15 cycles of overlap per pipeline stage; Loop 11 uses
few registers and more pipelining would be possible and useful. Another reason is the RAW
dependency which limits load hoisting to one of the two loads. It will take about nine stages of
load pipelining to raise the miss overlap factor to two.

Loop 15 is in class 2 and has IF-THEN-ELSE blocks with forward jumps. This loop has a
large loop body, and it uses nearly half of the floating-point registers per iteration, which pre-
vented us from pipelining; loads are simply hoisted in the loop body. For this reason the critical
latency is limited to 20 cycles, which is very small. From the miss overlap factor we can also state
that the speedup will reach 1.25 for very large latencies. Many loads are hoisted out of the IF-
THEN-ELSE blocks and become speculative loads. The curves show that these extra loads do not
degrade performance in the case of this Loop. The only way to obtain better results for Loop 15 is
to utilize registers better and only pipeline loads that miss.

The last loop that we have examined is from class 4. Loop 20 has true dependencies across
and within iterations. Within its body Loop 20 also has an IF-THEN-ELSE with forward branches

and there is an array access in the THEN part. In order to compare the performancei of the codes
with and without speculative loads we have developed two versions of Loop 20.Thc~3I first version
has no speculative loads; all loads which are not in an IF-THEN-ELSE block are moved and pipe-



lined. The speedup and execution time curves show that even a one-stage pipeline has a large crit-
ical latency of 150 cycles (and of 244 cycles in the case of a two-stage pipeline). For very high
latencies the speedups of both one-stage and two-stage pipelined loops tends to two. In the second
version of the code we have hoisted the loads in the THEN part of the IF-THEN-ELSE block. The
curves show that the performance of the two-stage pipelined code with speculative loads is better
than the one with no speculative loads for latencies higher than 20 cycles (see Fig. 19). For very
low latencies the overhead of these extra loads (i.e., execution of extra instructions for address
calculation and of the load itself) degrades the performance of the loop.

~ x1D80p20: Version 0 vs Version 1

1.8 g
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Fig. 19. Effect of speculative loads on Loop 20 (2 stage pipelined)
Solid Line: No speculative load Dashed line: One speculative load

6 POSSIBLE IMPROVEMENTS

In this Section we propose solutions to the problems we met in applying a simple code
motion transformation to the FORTRAN LL Loops. The first problem was the limit set by the
number of registers. Each load pipeline stage consumes a number of registers equal to the number
of load instructions in the iteration body (assuming single precision operations). An/obvious hard-
ware solution is to increase the number of registers, which requires to change instruction formats.
A second solution is to find compiler methods which reduce register consumption. For example,
presently, all loads are moved up in the code whether they hit or miss. The compiler should first
detect the loads which are most likely to miss (Porterfield’s Overflow Iteration in [10] is such a
technique; simpler approaches may also be very effective) and apply load pipelining to these
loads only. As there will always be a limit on the number of registers we may not be able to create
enough pipeline stages for very high latencies. In this case, the execution time becomes negligible
compared to the miss latency and the compiler should issue in-cache loads instead of in-register
loads.

The second problem we encountered is the true dependencies in the code. The problem
caused by RAW dependencies can be solved in hardware by wrife posting. With write posting the
cache controller allocates a block on a write miss, stores the value in the block, marks the modi-
fied word as full and sends a block request to memory. Any word marked full in a pending block
can be read. However a read access to an empty word of a pending block causes a secondary miss.
Write posting makes the cache more complex but is very effective for RAW dependencies. A
method requiring only the compiler support is keeping the value in the register which is the source
of the store until the instruction that reads the value is executed (this effectively eliminates the
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read in the RAW dependency); if the load is very far from the store the miss started by the store
may be completed by the time the load is issued. Removing the load and keeping the value in the
register live is effective for short loops since the load is removed, which saves its execution plus
its address computation; for longer loops, reserving one extra register for this purpose may pre-
vent some useful compiler transformations and therefore it may be better to release the register
and hoist the load. The trade off must be determined by the compiler. Finally, the last and the most
difficult compiler solution is to move up the store instruction along with the load instruction and/
or to push the instructions which use the loaded data value down in the code.

The third problem is the control dependencies due to IF-THEN-ELSE. Loads moved out
of IF-THEN-ELSE blocks are speculative. We have not moved loads out of IF-THEN-ELSE
blocks with backward jumps. At this point this problem seems to be the most challenging one.
Note however that only Loop 17 makes exclusive use of such constructs to implement DO-loops.

The fourth problem concerns loads whose address cannot be known at compile time
because it is a function of the variables computed in the loop. Loops 13, 14, and 24 have such
loads. Pipelining these loads would require to apply software pipelining at the source code level
first before the code hoisting procedure.

As a final point consider the limitations of the load pipelining technique. We may not be
able to apply it directly if the loop size is very large; or its effect may not be sufficient in the case
of a loop with a short body. In these cases, other code transformation techniques at the source
code level can be combined with load pipelining. For example, if the loop body is too large, loop
distribution can be applied to the loop to divide one big loop into two smaller loops. If the loop
size is too small, loop fusion, in which two small loops with the same index values are combined
to generate a bigger loop, can be first applied to two successive loops. Loop fusion also increases
the total number of pending memory accesses which in turn increases the speedup in system with
a high miss latency.

7 CONCLUSION

Lockup-free caches aim to solve the speed gap problem of current (and future) computer
systems. In this paper we proposed a combined non-blocking cache/processor architecture which
eliminates the complexity of lockup-free caches. To be effective, lockup-free caches need sub-
stantial compiler support. Current compilers generate code for systems with blocking loads.
Therefore, generated codes have very small dependency distances. To increase the dependency
distances compilers for non-blocking cache/processor architectures must apply some program
transformations, such as load pipelining and hoisting. The performance improvements that can be
obtained by means of code transformations and non-blocking loads are limited by the total num-
ber of floating-point and integer registers. As it is difficult to increase the number of registers of a
system, the compiler transformation must use registers sparingly.

More work is needed to refine the cache architecture and compiler transformations. How-
ever, the performance results introduced in this paper show that lockup-free caches can be very
effective in systems with large miss latencies.
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9 APPENDIX

The following are the codes of the selected LLLs:

subroutine Loop1(990,Q.R,T,X,Y.Z)
integer n,k
double precision Q,R,T,X(1001),Y(1001),Z(1001)
do1k=1,990

1 X(k)=Q+ (Y(k) * (R * Z(k+10)) + (T * Z(k+11))))
return
end

Fig. A1. Fortran code for Loop 1

subroutine Loop9(101,CO,DM22,DM23,DM24,DM25,DM26,DM27,DM28,PX)
integer i,n
double precision CO,DM22,DM23,DM24,DM25,DM26,DM27,DM28,PX(25,101)
do9i=1,101
PX(1,1) = PX(3,1) + (CO * (PX(5,1) + PX(6,i))) +

(DM28 * PX(13,1)) + (DM27 * PX(12,i)) +

(DM26 * PX(11.1)) + (DM25 * PX(10,1)) +

(DM24 * PX(9.1)) + (DM23 * PX(8.1)) +

(DM22 * PX(7.1))

9 continue

return

Fig. A2, Fortran code for Loop 9

subroutine Loop11(128,X,Y)
integer k,n
double precision X(1001),Y(1001)
X(H=Y()
dollk=2n
11 X(k) = X(k-1) + Y(k)
return
end

Fig. A3. Fortran code for Loop 11

subroutine Loop20(100,DK,S,T.G,U,V,VX, W X XX, Y,Z)
integer k,n
double precision DK,DI,DN,S,T,G(1001),U(1001),V(1001),
VX(1001),W(1001),X(1001),XX(1001),Y(1001),Z(1001)
do20k=1n
DI = Y(k) - (G(k) / (XX(k) + DK))
DN =0.2d0
if (DI .NE. 0.0d0) DN = max(S, min(Z(k)/DI, T))
X(k) = (W(k) + V(k) * DN) * XX(k) + U(k)) /VX(k) + V(k) * DN)
XX(k+1) = (X(k) - XX(k)) * DN + XX(k)
20 continue
return
end

Fig. A4, Fortran code for Loop 20
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subroutine Loop15(101,VEVG,VH,VS,VY)
integer j.k
double precision R,S,T,VF(101,7),VG(101,7),VH(101,7),VS(101,7),VY(101,25)
do 1500 =27
do 1500 k=2,
if (-7) 1502,1501,1501
1501 VY(k,j) =0.0d0
goto 1500
1502 if (VH(k,j+1) - VH(k,j)) 1504,1504,1503
1503 T =0.053d0
goto 1505
1504 T =0.073d0
1505 if (VF(k,j) - VF(k-1,j)) 1506,1507,1507
1506 R = max(VH(k-1,j), VH(k-1,j+1))
S = VE(k-1,j)
goto 1508
1507 R = max(VH(k,j), VH(k,j+1))
S = VF(k.j)
1508 VY(k,j) =dsqrt(VG(kj)**2+R *R)*T/S§S
1509 if (k-n) 1511,1510,1510
1510 VS(k.j) = 0.0d0
goto 1500
1511 if (VF(k.j) - VF(k,j-1)) 1512,1513,1513
1512 R = max(VG(k,j-1), VG(k+1,j-1))
S = VF(k,j-1)
T =0.073d0
goto 1514
1513 R =max(VG(k,j), VG(k+1,}))
S =VFE(k,j)
T =0.053d0
1514 VS(k,j) = dsqrt(VH(kj)**2 + R *R)* T /8§
1500 continue
return
end

Fig. AS5. Fortran code for Loop 15
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