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Abstract

We present a mid-level system for 2D object recognition, comprised of an adaptive feature
extractor and a dynamical link graph matcher. The system is robust to variations caused by
translation, scale, perspective, lighting, and partial occlusion. The feature extractor performs a
Morlet wavelet decomposition that results in a feature vector for each point in the image. The
feature vectors are quantized to a set of learned model vectors and labeled. Using a saliency
measure derived during the decomposition, an object graph is formed and compared to graphs
stored in the associative memory of the dynamical link graph matcher. The graph matcher that
has formed the basis for our work comes from [von der Malsburg and Bienenstock, 1987].
That system, not intended as a robust recognition system, was the first to use dynamical links
in graph matching and demonstrated a rudimentary invariant recognition capability. We have
improved on this graph matcher by providing the capacity for a richer (than binary) feature set
and by increasing the processing speed through improved dynamics and a reduction in the
number of nodes needed to represent an object. Our system uses a number of biologically
plausible mechanisms (Gabor filters, temporal correlations, neural networks) and is in other
ways guided by biological principles (local connections, saliency, internal focus of attention,
self-organizing topological maps, orientation column tuning). The approach is that of an
unstructured system, that is, a system in which no domain knowledge is initially embedded but
which the system may learn; consequently, the system may be applied to a variety of domains
with little or no alteration in architecture or dynamics. Modest extensions to the current system
may include multi-modal recognition (fusion), expectation-driven perception, and 3D object
recognition.

XIII



Chapter 1 - Introduction

1.1 Problem Statement

Consider a child in search of his favorite toy. He enters the nursery and surveys the scene,
easily recognizing each familiar object despite a multitude of distortions that affect those
objects. Each toy will almost certainly be translated, rotated, and scaled on his retinae with
respect to any previous exposure. In addition, the appearance of the objects are likely to be
different as a result of changes in perspective and lighting direction. If the toy is of the GI Joe
variety, it is likely that its configuration has changed. (Indeed, if the child is normal, there will
likely be several formerly rigid objects whose configurations have also been changed.) And
finally, if the room is in its normal state, the favorite toy may well be partially occluded.
Despite all these fundamental distortions (translation, rotation, scale, perspective, lighting,
configuration, and occlusion), the child is easily able to identify the object of his desire.

The ability to visually recognize an object given a variable image representation is a central
theme ofobject recognition. Another highly important aspect of the problem concerns domain.
Ten years later, the former child will be driving cars, shopping, writing checks, and scoping
babes. Objects must be recognized in these and in countless other domains using the same
machinery.

A variety ofcomputational mechanisms for these tasks have been proposed and span the
space from low-level iconic recognition to mid-level object recognition to high-level inference-
and reason-driven cognition. Indeed, the human visual system is strongly believed to use
numerous mechanisms over several levels [Treisman, 1986]. While the development of an
artificial vision system that is competitive with the human visual system is an unrealistic goal,
it is nonetheless feasible to develop a visual subsystem that performs recognition in a highly
invariant manner. It is the purpose of this dissertation to describe such a system.

1.2 Background

Computer vision may be characterized as being afflicted with numerous issues. As a group,
they have remained largely unsolved due to the ill-posed (i.e., under-specified) nature of the
vision problem and its resultant complexity. A major thrust of computer vision research,
therefore, has been to solve basic recognition problems such as translation, rotation, scale, and



occlusion distortions at a reduced computational complexity. The literature is thus replete with
indexing schemes based on extracted or derived image attributes that endeavor to pare down
the space of possible solutions. For example, [Lambdan and Wolfson, 1988] extract interest
points (e.g., lines of high curvature) for a geometric hashing type of indexing scheme. Non-
collinear triplets of these points are used as affine bases for computing the coordinates of all
other model interest points with the resulting coordinates stored in a hash table. [Kalvin et al.,
1986] extract boundary parts called footprints, also for a geometric hashing scheme. [Bolles
and Cain, 1982] extract three feature types, along with their sizes and orientations, from binary
images: round holes, convex 90° corners, and concave 90° corners. During model acquisition,
a unique topological arrangement of features is determined and a focus feature is selected.
During recognition, the object is searched for the focus feature of each model. When found,
the surrounding topology is verified and, if successful, the model is hypothesized to exist at
that location. Finally, hypothesized model templates are rotated and translated and matched to
the input object.

A multitude of computer vision taxonomies also exist. A system may be described by its
ability to handle objects of various complexities: objects representable by lines and vertices
(2D) or polygons (3D), objects representable by curves (2D) or curved surfaces (3D), and
objects representable only by higher order approximations such as fractals. A system capable
of performing recognition on rigid objects may well be found wanting when it comes to
flexible or articulate objects, thus another taxonomical dimension. Feature representations may
be global, local, or hierarchical and may vary in complexity from simple to complex (e.g.,
point, line, specific feature, complex feature, functional description). A system may be
classified in terms of its computation complexity and may therefore take on descriptors such as
exponential (indicating poor performance), polynomial, linear, and sublinear (indicating high
performance). Given the system complexity, additional description may be provided in terms
of the number of models that it can handle. Viewpoint invariance forms anothertaxonomy and
includes classifications such as translation, rotation, scale, occlusion, and perspective. Much of
the significance of our work, however, is not easily measured in the aforementioned terms and
so in this section we describe two additional taxonomies.

The first categorization deals with how (and how much) knowledge is embedded in the
system; it is a description of the degree of knowledge structure imposed by the designer. The
two ends of this spectrum are typified by rule-based systems at one extreme and self-
organizing systems at the other.

In highly structured systems, the knowledge structure is often in the form of a knowledge
base or heuristic that is explicitly programmed by the designer to solve a particular set of
problems. Partially because structured systems are often designed for specific applications,
their development tends to be easier and their performance better than many adaptive systems.
In addition, structured systems have a longer history with a greater level of man-effort involved
and so are better understood. The difficulty with structured systems is their tendency to show
limited performance outside their specific domains. The result is that new applications tend to
require the development of newly handcrafted structure.

Unstructured systems are generally defined by a simple architecture and set of dynamics
that, when applied to the architecture, facilitate learning. These adaptive systems, therefore,
are initialized with little or no knowledge, but with the ability to accumulate it. Once acquired,



the stored knowledge is a faithful understanding of the environment in which the system was
trained and is not subject to the biases and domain understanding of the designer.

The second taxonomy attempts to describe a recognition paradigm in terms of the level of
its involvement and relates to a flexibility hierarchy. Specifically, we may speak of low-level
iconic recognition, mid-level object recognition, and high-level cognition. Iconic recognition
is deemed a low-level process because it works close to the level of the original data and is
essentially a template-matching or single-feature-extracting process. It is an expensive, fast,
and rigid method that is particularly suited for recognizing objects that are viewed often. High-
level cognition is likely to be symbolic in nature and makes use ofcontextual cues, inference,
and reasoning. Cognition is a slow but highly flexible process that is useful when the lower
level approaches fail. In between iconic and cognitive recognition is object recognition which
is characterized by the aggregation of features resulting in a recognition. This approach is
slower than iconic but is more efficient in requiring fewer resources per stored object and
provides a good flexibility compromise between high- and low-level paradigms. A well-
balanced system might beexpected toutilize all three recognition levels.

1.3 Approach

The object recognition system described in this dissertation consists of an adaptive feature
extractor and a graph matcher. (Appendix B contains a flow diagram for the entire object
recognition system.) The function of the system is patterned after the "what" parvocellular
pathway found in humans and other primates [Davidoff, 1991] [Mishkin et al., 1983] and is not
concerned with object location or number.

The objective of the feature extractor is to reduce an input image to a limited number of
salient features. The features, hierarchically representing local image information, are formed
from wavelet decompositions oftraining images and are learned using aself-organizing vector
map. Input images, expressed in terms of these learned features, are transformed into object
graphs which are used to topologically represent the input object. Adynamical link graph
matcher acts as an associative memory and classifies the object graphs relative to a set of
graphs stored in its database. For these reasons, we characterize the system as a mid-level
recognition paradigm that was described in the preceding section.

The processes used throughout the system are highly non-specific and have no explicit
knowledge base designed into them, i.e., they are unstructured. Because the feature extractor is
adaptive and because the classifier operates on a common, well-defined representational
structure, the system is extremely flexible in terms ofobject domain. For these same reasons,
both the feature extractor and the classifier may be easily used as modular subsystems in other
artificial vision paradigms.

The design philosophy that underlies the system derives its inspiration from biology.
While the system is in no way abiological model, certain organizations and solutions found in
Nature were applied to the development of our system. Sometimes the applications were quite
direct, sometimes they were loosely analogous. An example of the former is our use of a



simple edge enhancement technique that mimics the center-surround function of retina
[Cornsweet, 1970]. Similarly, the optimal Gabor functions, used for primitive feature
extraction in our system, are found in Nature [Jones and Palmer, 1987] [Burr, Morrone, and
Spinelli, 1989] and are believed to perform a similar role there [Daugman, 1988]. The useof
dynamical links for binding in the graph matcher is also a plausible function of biological
nervous systems [von derMalsburg, 1981] [Crick, 1984], Oursystem makes useof a low-level
saliency measure to improve efficiency by processing features on a salience-priority basis. In
addition, saliency is used to both select features for inclusion in the representational graphs and
to guide the graph matching process in a micro-saccadic manner thereby causing shifts in the
internal focus of attention [Treisman and Gelade, 1980] [Crick, 1984]. The saliency measure
that is employed behaves in a manner consistent with the results of psychophysical
experimentation [Atteneave, 1954] and is also consistent with the information theoretic view of
salience [Gonzales and Wintz, 1987].

Perhaps the most obvious relationship between our system and the biological motivation is
the neural style of much of the architecture. In addition to the edge enhancement and Gabor
filtering, the system employs a self-organizing vector map, vector quantization, and dynamical
link graph matching. All of these are either neural paradigms or, at least, easily cast into a
neural framework. The use of neural networks in our system is not driven entirely by a sense
of aesthetics but more by the fact that the neural approach provides good engineering
alternatives to existing methods. These benefits are widely discussed in the literature and
include parallelism, eventual direct hardware implementation, fault tolerance, learning, and a
natural style of solution that often yields good answers, rather than best answers, at a
substantially improved algorithmic rate.

Our system is not put forth as the solution to the object recognition problem. It does,
however, provide apowerful method for doing mid-level object recognition in which the object
image may be subject to avariety of distortions. In particular, the system is robust with respect
to translation, scale, perspective, lighting direction, and occlusion. When compared with other
methodologies, our system shows deficits specific to its categorization as a mid-level
recognizer. In particular, low-level iconic recognition processes are considerably simpler and
faster whereas high-level cognition systems may make use of powerful contextual cues. We do
not view these methodologies as competing approaches but rather as complements. While our
system may function well as a stand-alone recognizer, it would be advantageous, in many
applications, to include it as apart of alarger system incorporating low-level iconic recognition
and high-level inference-driven cognition. As astand-alone recognizer, however, itprovides
an appropriate tradeoff between speed and flexibility and between simplicity and power.

1.4 Related Work

Object recognition systems abound with many possessing unique combinations of traits. One
common thread, however, is that they may be generally broken into two functions: feature
extraction and classification. Our system employs an adaptive feature extractor, consisting of
Morlet wavelet decomposition and adaptive vector quantization, and a classifier that performs



graph matching. In this section we discuss only recognition paradigms that have specific
commonality with ours.

2D Gabor functions for feature extraction have become increasingly popular of late. One
of the most prolific users of Gabor functions, though more for image compression than feature
extraction, is Daugman who has demonstrated their near orthogonality [Daugman, 1989] and
their superiority in compression tasks [Daugman, 1987]. It should be noted that orthogonality
is less of an issue in feature extraction than it is in data compression. The latter is concerned
with image reconstruction and the ease that orthogonality provides in that reconstruction.
Feature extraction is concerned with orthogonality only in the sense of redundancy and, thus,
the efficiency of feature encoding.

The use of Gabor functions for feature extraction has been demonstrated by [Buhmann,
Lange, and von der Malsburg, 1989]. In their system, 48 Gabor kernels of 6 orientations and 8
spatial frequencies (with half-octave separation) are convolved with an input image. The
resulting components are collected into feature vectors, a subset of which are selected for
object representation using a fixed sampling grid. The chosen feature vectors are then
compared to stored sets of feature vectors (where each set corresponds to a stored pattern) one
at a time using an energy minimizing diffusion algorithm. The pattern with the lowest
resulting energy is deemed to be the closest match. Using the same recognition scheme,
[Buhmann, Lades, and von der Malsburg, 1990] demonstrated that scale invariance may be
achieved by shifting the feature vector elements that correspond to spatial frequency, until a
low energy match is found.

Boundary detection on greyscale and texture images was demonstrated by [Manjunath and
Chellappa, 1991] using Gabor functions. Their approach was highly motivated by studies of
cat visual cortex and involved local scale and orientation interactions to produce hypercomplex
[Hubel and Wiesel, 1965] or end-stopping cells.

The second half of our system uses dynamical link graph matching to perform
classification. Because procedural graph matching algorithms are so plentiful and because they
are not particularly relevant to our work, we review here only neural graph matchers.

[Kuner, 1989] demonstrates that graph matching using a Hopfield network is a natural
outgrowth of Ullmann's definition of subgraph isomorphism [Ullmann, 1976]. Although
Kuner suggests that his graphs may be construed as image representations, the work is general
and successfully finds subgraph isomorphisms in randomly generated graphs.

Another application of Hopfield to graph matching is demonstrated by [Parvin and
Medioni, 1991] in which edge and region features of synthetic images are extracted. These
features comprise graph nodes that are connected by short and long range edges. The intent of
the system is to form complete boundaries with the aid of local (short range edges) and global
(long range edges) constraints.

Asystem for learning and matching 3D object graphs was demonstrated by [Reiser, 1991].
In that work, a 3D multiview fusion graph was learned by the system as an object was slowly
rotated in front of the camera. At each frame, surface features were extracted and added to the
forming graph. Features that were noisy or otherwise unreliable died off whereas stable fea
tures remained and became permanent. Graph matching employed feature and neighborhood



similarity measures as opposed to our use of correlated neural activity and employed a modi
fied Hopfield approach. The features used by Reiser were predominantly region-based in con
trast to our system which uses locally salient, Gabor-derived features.

It should be noted that the Hopfield approach differs significantly, and at a fundamental
level, from the dynamical link approach that we have used. In general terms, the objective of
both approaches is to bind subgraphs from an input plane to subgraphs of a model plane.
Connections of some kind must therefore exist between both planes. In the case of dynamical
link graph matchers, the connections take the form of variable strength links. Input to model
plane bindings occur by increasing dynamical link strengths as a function of the temporal
correlation of neural activity. In the Hopfield approach, an array of "binding" neurons takes
the place of the dynamical link matrix with each binding neuron requiring application-specific
connections to other binding neurons. The advantage of the Hopfield approach is in its
parallelism and increased degree of freedom. The advantage of the dynamical link approach is
in the simplicity of the architecture and its relatively reduced computational complexity.

The dynamical link graph matcher that has formed the basis for our work comes from [von
der Malsburg and Bienenstock, 1987] and [Bienenstock and von der Malsburg, 1987]. Its
architecture consists of two neural planes and has connections within and between the planes.
One plane is termed the input plane and contains the input graph that is to be matched. The
second plane is termed the object plane and contains a database of stored object graphs. The
link dynamics are implemented as two Hamiltonians that are minimized in a Monte Carlo style.
The system, not intended as a robust recognition system, was the first to use dynamical links in
graph matching and demonstrated a rudimentary invariant recognition capability. It was our
intention to improve on this graph matcher by providing the capacity for a richer (than binary)
feature set and to increase the processing speed by improving the dynamics and reducing the
number of nodes needed to represent an object. This dissertation will demonstrate that we have
done both.

1.5 Scope of Work

The main purpose of the work is to develop an unstructured object recognition system, i.e., a
mid-level system with little or no domain knowledge incorporated into it. Such a system
should be capable of learning the relevant features of a specific domain and thus be adaptive
over various environments and sensors.

The system should perform robust 2D object recognition. Distortions under which the
system should perform include translation, scale, perspective, lighting, and partial occlusion.

The system should be complete in the sense that, with minimal external processing, it
should be capable of acting as a stand-alone recognizer. At the same time the system should
form a solid foundation for extension and should be complemental to higher- and lower-level
vision processes. In particular, the system should be amenable to extension by data fusion
processes and top-down guidance. Finally, the system should find a natural placement in a
complex vision system comprising low-, mid-, and high-level paradigms.



1.6 Summary of Results

The system was tested with a database of nine objects derived from greyscalc images.
Undistorted objects and objects distorted by scale, perspective, rotation, partial occlusion, and
lighting aspects were presented to the system. All were correctly recognized except one. The
exception was the rotationally distorted object; in that case, the correct model came in second.
Enhancement of the storage capacity of the system, by the sharing of resources (nodes), was
also tested. Under the highest possible sharing criteria, undistorted object recognition
remained completely intact while distorted object recognition was significantly degraded.

1.7 Organization of the Dissertation

Chapters 2 through 4 contain the theory and description for each of the processing modules.
Chapter 2 covers the adaptive feature extraction that is composed of Morlet wavelet
decomposition and adaptive vector quantization. Chapter 3 describes the method by which an
array of features, produced by the feature extractor, is transformed into an object graph.
Chapter 4 describes the classifier, i.e., the dynamical link graph matcher. Chapter 5 shows the
computational results from two problem sets. The first set is derived from Stickville and
assorted real images and is intended to provide insight into the mechanisms involved in each
processing module. The second problem set consists of a nine-object greyscale gallery and
forms the proof of concept for the dissertation. The dissertation concludes with Chapter 6
which summarizes the system and the results and examines some limitations and their
solutions. Following Chapter 6 are a series of appendices that contain functional flowcharts for
each of the processing modules as well as information regarding the parametric options
available to each processing module.



Chapter 2 - Adaptive Feature Extraction

The purpose of feature extraction in artificial vision is the transformation of an input image into
a representational set of elements that facilitate classification or recognition. The definition of
that representational set, and therefore of the transform itself, is often highly dependent upon
such considerations as the object classes and their interrelationships, the nature of the clutter
and noise processes, the image modality, and the subsequent recognition processes.

A portion of our work has resulted in a feature extraction process that, when coupled with
the specific graphic processes described in Chapters 3 and 4 of this dissertation and applied to
greyscale imagery, provides a set of features that is robust with respect to changes in
translation, perspective, partial occlusion, scale, and lighting direction. Perhaps more
interesting is that the feature set is adaptive with respect to the objects and imagery with which
the system is expected to perform.

Adaptive feature extraction proceeds in two phases: learning (adaption) and extraction.
During the learning phase, the system generates a rich but discrete set of features that are later
used during the actual extraction process. The feature learning and extraction processes are
similar. (See the Algorithm FlowDiagram in Appendix B.) In both phases, processing begins
with edge enhancement and is followed by Morlet wavelet decomposition. In the adaptive
phase, the computational results from a large number of decompositions areused to train a self-
organizing vector map. In the extraction phase, the image decomposition results are compared
with the learned vectors and are transformed into features representing the specific input data.

This chapter discusses the mechanics of the adaptive feature extractor1 by its constituent
parts: edge enhancement, wavelet decomposition, and vector quantization (adaptive and
extractive).

2.1 Morlet Wavelet Decomposition

The purpose of theMorlet wavelet decomposition (MWD) module is to extract primitive image
features. It is accomplished by decomposing the image into a number of elements per pixel,
where each elementis a primitive feature describing the existence of discontinuities of specific
orientation and spatial frequency at or near the image pixel point. The MWD is a transform
based on 2D Gabor functions. Combining the primitive features into Morlet jets provides both

1 It is recommended that the reader review Appendix J for an introduction to data structures fundamental to
the feature extractor.



a powerful representational structure and a means to determine local saliency. The saliency
measure is used in later processing to improve efficiency and to guide the graph matching
process.

2.1.1 Gabor Functions

Gabor functions have a number of interesting and desirable properties including extended
spatial locality, directional preference, optimal joint uncertainty in space and frequency, and
biological plausibility.

(a) (b)

Figure 2.1 - 2D complex Gabor function;, (a) real (cosine) part, (b) imaginary (sine) part.

Gabor functions were originally introduced in the context of uncertainty theory for
information [Gabor, 1946]. Gabor showed thata signal has a theoretical lower limit for joint
uncertainty in time and frequency when the ID sampling functions have the form of complex
sinusoids with Gaussian envelopes. Later, the ID Gabor function was extended to two
dimensions in an attempt to capture the neurobiological variables of a neuron's orientation and
spatial frequency preference [Daugman, 1980]. Figure 2.1 shows the real and imaginary parts
of a 2D Gabor function. Gabor functions have recently reemerged in partial response to the
debate of whether early vision involves local space-domain feature detection or more global,
Fourier-like spatial-frequency decomposition. The Gabor formulation provides a suitable
compromise by virtue of its extended locality property2. In addition, it is a biologically

Extended locality refers to the fact that the Gabor function is non-global but at the same time may cover
extensive portions of the image.
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plausible feature extraction mechanism; it fits extremely well with empirical studies of visual
receptive fields in the cat striate cortex [Jones and Palmer, 1987] and is consistent with
psychophysical evidence of even- and odd-symmetric feature detectors in the human visual
system [Burr, Morrone, and Spinelli, 1989]. In addition, these functions are amenableto group
transformation operations (especially rotation and dilation) thereby making them candidates for
wavelet kernels.

The 2D Gabor function, ¥, consists of the product of Gaussian and sinusoid terms:

vFk(x) =exp_Wi+jxtk
\ 2L / (2.1)

where x is the (x,y) position, k is the two dimensional wave vector, andX= a / Ikl regulates the
size of the Gaussian window. Orientation and spatial resolution of the filter are determined by
k: a larger Ikl corresponds to a higher frequency whereas orientation is specified by therelative
values of thecomponents of k, that is, kx and kv. The spatial extentof the filter is governed by

X: a larger sigma increases the size of the Gaussian window. The Gabor filter, thus, has di
rectional specificity and extended locality.

In our system, Gabor functions are used for primitive feature extraction. The function is
used to generate a kernel of specific orientation and spatial frequency that is then convolved
with an input image. The computation yields complex Morlet wavelet components for each
point in the image. Each component corresponds to the existence of Gabor shaped features in
the image, i.e., an oriented line (real partof thekernel) and/or an oriented edge (imaginary part
of the kernel).

2.1.2 Wavelet Decomposition

A 2D wavelet transform may be described as one that changes a variable of two dimensions
(spatial) to one of four dimensions (two spatial and two frequency). The transform is
accomplished with a family of self-similar basis functions that are different from each other
only by group transformation, in our case, dilation and rotation. ForMorlet wavelets, the basis
functions are Gabor functions, that is, a family of Gabor functions of varying orientation and
spatial frequency form the convolution kernels of the transformation. Each Gabor function is
generated from an original by scale and rotation transformations and are self-similar. Theself-
similarity is preserved by maintaining the Gaussian window of the Gabor function as a function
of the spatial frequency; in ourcase, X= a / Ikl in Equation 2.1. TheMorlet wavelet transform
should not be confused with the Gabor transform in which the window has a fixed size over all

spatial frequencies, i.e. X is constant.

A Morlet wavelet transformation is accomplished by convolving a 2D Morlet wavelet,
parameterized by k, with the image:

WM(k,x0)= HMxo-x)- I(x)d2x =NKk*I
J J (2.2)
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where I(x) is the array of grey-level pixels representing the 2D image. A Morlet wavelet
decomposition (MWD) is a family of Morlet wavelet transformations (parameterized by k) of
an image. The computational results of the MWD are 2D arrays of components, one array for
each transform. Each element in an array may be viewed as the response of a Gabor filter to
the image from that image point.

A MWD imposes a hierarchy of resolutions. In our case, each resolution is separated from
the next by one octave. For each of S spatial resolutions there are O different orientations so
that a family of Morlet wavelet components (from the same point) is formed with of a total of
S*0 transforms. The hierarchical nature of the MWD facilitates the stacking of components
from a single image point into feature vectors called jets. See Figure A. la (Appendix A). A
jet, therefore, is the Gabor-filtered image from the perspective of the jet's position3. Figure 2.2
shows an original image and the reconstruction by [Buhmann, Lange, and von der Malsburg,
1989] of a jet taken from the center of an eye. Note the high resolution close to the center of
the region and the lower resolution farther out. This is due, in part, to the self-similar nature of

the kernels: as the spatial frequency, k, is reduced, X (and thus the Gaussian window) is
increased thereby preserving self-similarity. The result is that the lower spatial frequency
kernels have greater spatial extents.

(a) (b)

Figure 2.2 - Image representation using a jet. The jet selected from the left eye of (a) is inverse
transformed and shown in (b). Taken from [Buhmann,Lange, and von der Malsburg, 1989],

If a jet is formed for each pixel in the image, the resulting data structure is termed a Morlet
block4. See Figure 2.3b. A Morlet block, computed with S=4, 0=6, and an image size of
128x128, would require almost 800,000 elements. A more compact data structure involving
Gabor functions is the Morlet pyramid. See Figure 2.3a. As the spatial frequency of the Morlet

An outgrowth of the Gabor and Morlet definitions is that Gabor components and Gabor jets are similar to
Morlet wavelet components and Morlet jets (respectively) with the only difference being that of self-
similarity. This terminology is a departure from our previous writings in which Gabor components and
Gabor jets implied the self-similarity now attributed only to the Morlet definition.

Previous writings have used the terms Gabor blocks and Gabor pyramids for what we now call Morlet
blocks and Morlet pyramids. The reason for this change is in the evolving nature of the terminology and is
consistent with the terms detailed in the previous footnote.
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wavelet is decreased, its resolution is also decreased thereby allowing a reduced sampling rate
and the storage of a reduced number of elements at that resolution. That is the essence of the
Morlet pyramid: the highest resolution elements are sampled at the highest rate and stored at
the base while lower resolution elements are sampled at progressively lower rates and stored
progressively nearer the apex.

Low Resolution

Morlet Wavelet

Component

High Resolution
Morlet Wavelet

Components

(a)

T
4 spatial frequencies

x

6 orientations

i
(b)

Morlet Wavelet

Components:
Low Resolution to

High Resolution
(Jet)

Figure 2.3 - Alternate Gabor-filtered image representations (a) theMorlet pyramid contains a large
number of high resolution Morlet wavelet components at the base with progressivelyfewer and

progressively lower resolution components toward the apex, and (b) the Morlet block contains N2 jets.

There are, however, several disadvantages to the pyramid structure. The most serious
deficiency is that the components are not explicitly stored as jets. Since jets are required for
recognition, they must be constructed from the available information from within the pyramid.
A jet for a given point in the image can be formed by:

1) Using the components whosecenter is closest to the desired image point

2) Performing a linear interpolation between the closest components.

3) Performing a higher order interpolation (such as a cubic spline) of the components.

-,Vv"

Actual Jet

Component
Spatial Positions

vTrVvtv^M vV''tvV<rYvV«rt''T
X O

/ / //\ Desired Postion

Figure 2.4- Misalignment of Morlet wavelet components ina Morlet pyramid. Dueto the variable
sampling rates per spatial frequency, jets constructed from Morlet pyramids cannot be formed using the

natural components.
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The first option leads to an inaccurately reconstructed jet. See Figure 2.4. Performing
linear interpolation is time consuming and inadequate in estimating components. Performing
higher order interpolations on so many data points at so many levels is impractical from a
complexity standpoint. The point is that implicitly storing jets, as is done in pyramids, leads to
inaccurateor computationally expensive jet reconstruction. We have therefore rejected the use
of Morlet pyramids in favor of Morlet blocks.

In our work, we have chosen 0=6 orientations and S=4 spatial frequencies with separations
of one octave. The choice of S=4 was motivated by psychophysical evidence for four spatial
frequency detection bandsin the human visual system [Wilson andBergen, 1979]. In addition,
[Daugman, 1987] demonstrated that jets of such parametric configuration (0=6, S=4) contain
sufficient information to perform good data compression (100:1) and reconstruction.

2.1.3 Laplacian Preprocessing

It was shown by [Field, 1987] that in "natural images," the power spectrum is inversely
proportion to frequency squared, 1/lkl2. As a result, the wavelet decomposition (using the basis
functions of Equation 2.1) typically exhibits stronger response at lower frequencies than at
higher frequencies. This over-emphasis of low spatial frequencies produces undesirable
effects, especially with respect to illumination-induced intensity gradients that makes the
system sensitive to lighting direction. In addition, the structure of an object is best described
by its edges which are primarily expressed by high frequency components. It is therefore
desirable to flatten the processed power spectrum to de-emphasize illumination gradients and
accentuate edges.

Figure 2.5 - Laplacian mask shape. Thepeak corresponds toa single pixel with a value of 24; thebase is
comprised of24pixels with a value of -1. This approximation ofa Laplacian is used, inoursystem, for

edge enhancement

One solution is to modify the wavelets such that the energy for each kernel is proportional
to Ikl2 [Lades et al., 1991] thereby offsetting the frequency distribution of the image. Our
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approach is to use an edge enhancement process on the input image to attenuate lower spatial
frequencies and to amplify higher ones in rough approximation to Ikl2. The edge enhancement
process used is based on the 5x5 Laplacian operator shown in Figure 2.5 and is intended to
mimic the center-surround processing found in retina and lateral geniculate nucleus. This use
of a distinct preprocessing step also aids in system development and understanding in as much
as the effects of high frequency amplification and low frequency attenuation can beexplicitly
observed.

The result of the Laplacian filtering may be described as a frequency dependent gain
applied directly to the wavelets. In Fourier space, the Laplacian ofFigure 2.5 is anegative sine
function (due to the -1 pit) with a broad band component (contributed by the impulse).
Similarly, in Fourier space, the Morlet wavelets (exemplified by Figure 2.2) are Gaussians, the
centers of which are shifted from DC by spatial frequency, k. The spatial frequencies that we
use for our wavelets all fall within the mainlobe of the -sine function. As a result, each wavelet
is associated with a gain that is a function of its spatial frequency and derives from the
continuous portion of the -sine. Figure 2.6 shows the frequency dependent gain applied to each
wavelet as a result of the Laplacian filtering. The effect is an attenuation curve that roughly
approximates lk2l but which has more biological coincidence than direct modification of the
wavelets.

m
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Wavelet Wavelength (lambda)

35

Figure 2.6 - Wavelet gain resulting from Laplacian edge enhancement as a function ofspatial
wavelength. Wavelet wavelengths are at 4, 8,16, and 32 pixels. Calibration is such that a gain of0 dD is

applied at DC.

2.1.4 Real vs. Complex Decompositions

While all the theory and results discussed in this dissertation assume the use of the complex
Gabor function, much of our earlier work [Flaton and Toborg, 1989] [Flaton, 1991] used real
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Morlet wavelets, i.e., only the cosine portion of the Gabor function. As we were attempting to
develop higher level features from the primitive Morlet wavelet components and Morlet jets,
we discovered that certain types of image features were indistinguishable when filtered with
real Morlet wavelets. Figure 2.7 shows five such indistinguishable features under a real
wavelet decomposition as well as their jet image representations. Specifically, those features
are four 90° corners and a 90° cross. The reason for the feature ambiguity is simple: in the real
kernel, the feature extractors are simple line detectors. In each case, the Morlet wavelet
components corresponding to 0° and 90° lines are activated and although there may be a
magnitude difference in the component values, there is still insufficient information to
distinguish the features.

Q

0° 30° 60° 90° 120°150°

__—

o-

0
Figure 2.7 -Feature ambiguity problem using real wavelets. Each jet image shows the response ofthe
(real) Gabor filters for each of five features: four corners and a cross. Theresponses are approximately
the same inasmuch as the strongest responses consistently come from the 0 and 90 degree filters. Jets

were taken from the center of each vertex (circled area).

In our thesis proposal, we suggested the use of neighborhood information to resolve the
feature ambiguity problem noted above. Specifically, we were interested in using something
similar to the Neocognitron [Fukushima, 1988] (we called ourversion a Hierarchical Feature
Builder) which essentially template matched neighborhoods in a hierarchical fashion. Very
briefly, the idea was that the Hierarchical Feature Builder (HFB) would learn significant and
topological jet clusters and, when presented with similar clusters, would respond with the
closest stored cluster (represented by a high level feature label). It was expected (and
confirmed) that ajet at the vertex ofacorner-type image feature would show acrossing type of
feature while its neighbors would confirm the existence or absence of connecting collinear
lines.

After several months of intensive work with a Neocognitron-like network, we rejected the
concept of the Neocognitron/HFB in favor of using complex Morlet wavelets and adaptive
vector quantization. The reasons were:
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1) Learning, using the Neocognitron rules, is glacial [Hecht-Nielson, 1990] and is prone to
imprinting [Tacket and Lincoln, 1991].

2) The computational resources required are immense. For each sub-feature that the
system is designed to be able to detect, there must be one entire plane of detectors each
with enough synapses to cover its receptor field. In addition, the Neocognitron/HFB is
a multi-stage system requiring a number of such multi-plane groupings. We did not see
a realistic way of reducing this problem by implementing the network in dedicated
hardware.

Spatial
Frequency

0° 30° 60° 90° 120° 150°

I I I

-Ul- — I—- I—

I I
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— ,-
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Orientation

0° Gabor Filter

90° Gabor Filter

Figure 2.8- Nature of feature ambiguity problem with real (even-symmetric) Morlet wavelets.

In addition, complex jets detect endstopping which is a sufficient condition for solving the
feature ambiguity problem. In other words, a single jet located at the vertex of either the
corners or cross described above, contains sufficient information for a vector quantizer to
differentiate the features. The reasoning is as follows. SeeFigure 2.8. The real portion of the
kernel performs as before, that is, as an oriented line detector. In our example, itwill detect the
0° and 90° lines in each case. The imaginary portion performs the endstopping. See Figure
2.9. Since the imaginary kernel is odd-symmetric, the total contribution to these 0° and 90°
filters from thecross is zero due toequal amounts of positive and negative response. Foreach
of the corners, however, the odd-symmetric 0° and 90° filters will, in aggregate, respond
uniquely.

The description of the effects of the imaginary Morlet wavelet on Stickville imagery is
particularly appropriate to our application. Because the input greyscale image is edge
enhanced by a Laplacian operator, the image presented for wavelet decomposition
approximates a line drawing. While the lines are neither smooth nor perfectly aligned with the
directional Gabor filters, the use of one filter for every 30° provides sufficient angular
resolution to characterize the image features.
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Figure 2.9- Complex kernel solution to the feature ambiguity problem. Imaginary (odd-symmetric)
Morlet wavelets provide endstopping.

Finally, it was our feeling that the extension from real to complex Morlet wavelets was
systemically simple and more aesthetically pleasing than the inclusion of an additional
processing stage bearing the deficits associated with the Neocognitron.

2.1.5 Orientation Column Tuning

The volume of the vector space spanned by the Morlet jets formed in the above described
manner is generally quite small. Because ultimately we must be able to reliably classify these
jets (using adaptive vector quantization), we desire that the space spanned by the jets be as
great as possible. To accomplish this, we employ a method that we call orientation column
tuning that ismotivated by biological mechanisms described by [Hubel and Wiesel, 1974].

Quite simply, the idea is to create competition between neighboring orientation components
of the same spatial frequency for the purpose of tuning or peaking the responses of the
dominant orientations. In our case, the use of the word columns refers to the columnar
organization ofthe orientation components as shown in the jet image representation ofFigure
A. lb (Appendix A). The range of the competition is extremely local: the mask used is
{-1,2,-1}. Note that this is not a winner-take-all strategy as there is only a single convolution.
The intent is only to enhance orientation differences and not to cause one orientation to prevail.
Figure 2.10 shows a typical response for ajetand the result oforientation column tuning.

(A simple extension of this approach, and one that we have not tried, is to create
cooperation along the orientation columns, across spatial frequencies. We would expect the
results to improve response to noise in the spatial frequency domain; this has not been a
problem with our data sets and soisstill a matter ofconjecture for us at this point.)
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Figure 2.10 - Orientation column tuning byconvolution with {-1,2,-1}. (a)jet image of cross-feature jet
before tuning and, (b) after tuning. Note the increase indynamic range resulting from competition of

neighboring orientation components. Cross-section plots are taken at the lowest spatial frequency over all
orientations (dashed line).

2.1.6 Saliency and Jet Magnitudes

Both information theory and psychophysics indicate that image discontinuities are important,
i.e., lines and edges are salient image features. A visual processing system may make use of
image salience in a variety of ways including: saccades, shifts of internal focus of attention,
increased processing efficiency, and reduction in storage requirements.

The use of the MWD on edge enhanced images allows us to define a saliency measure that
demonstrates large values at points corresponding to discontinuities or features in the image.
The measure that we employ is simply the jet magnitude. Recall that a jet contains the
responses to a bank of edge and line filters of varying orientation and spatial frequency. One
would expect that such a vector would have large component values, and thus a large vector
magnitude, if some number offilters were responding to stimuli. The more filters responding,
the larger the vector magnitude. This is, indeed, a phenomenon that is observed in the data as
shown in Chapter 5 where vertices have larger jet magnitudes than lines which, in turn, have
larger magnitudes than background.

The jetmagnitude saliency measure is used in a number ofcapacities and is discussed in
the relevant sections. The use of saliency in our system includes: training jet selection, AVQ
update gain modification, and DyLink spotlight control (shifting ofinternal focus of attention).
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Jet magnitudes that form the saliency measure are not necessarily the magnitudes of the jets
that form the image representation. Briefly, it is a problem of resolution: we desire high
resolution for saliency and lower resolution for image representation. The jet magnitudes used
for saliency are typically magnitudes of jets containing responses one octave higher than the
jets used for image representation. This is discussed more fully in Chapter 3.

2.1.7 Algorithm Implementation

The program that we have written to perform MWD (which also performs vector quantization
and a number of other related functions) is known as GTVQ for Gabor Transform - Vector
Quantization. The general program flow for GTVQ, the MWD, and related processing is
shown in Appendix C. Macintosh dialog boxes (and therefore processing options and
parameters) for GTVQ are given in Appendix G.

The information provided in the aforementioned appendices is generally self-explanatory
with a single exception: the method by which the Morlet wavelet transforms are computed.
Convolution is normally an 0(n4) operation. However, under certain conditions, the
convolution can be performed using 2D FFTs in 0(n2log n) time. GTVQ performs both real
and complex MWDs using FFT convolution. (By way of anecdote, a brute force convolution
running on thecurrent platform, a Mac Ilfx, required more than two hours to perform twenty-
four 128x128 Morlet wavelet transforms. The FFT version runs in 6 minutes.) One caveat that
must be considered when using FFTs, however, is that the data sampling rate must be high
enough to prevent aliasing. GTVQ provides the option of zero-padding the arrays to prevent
this problem.

2.2 Adaptive Vector Quantization

A Morlet block contains N2 * S * O data elements and is thus quite memory expensive. It is
desirable to reduce this raw data to some set of elemental features such as oriented lines and
vertices or perhaps even to complex features such eyes and noses. One must consider also that
the final stage of processing (i.e., the graph matcher) prefers scalar labeled graphs. The
conversion ofjets to scalars may be accomplished by the vector quantization ofjets to known
model vectors.

By viewing the jet not as the vector ofFigure A. la (Appendix A), but as a two-dimensional
jet image as in Figures A.lb (Appendix A) and 2.10 it becomes obvious that certain types of
features can be extracted from those feature matrices. For example, Figure 2.11a shows the
real jet image representation of a 60° line; Figure 2.1 lb shows the real jet image representation
of 60° and 120° lines, i.e., an intersection.

Figure 2.12 shows some elemental features that can be and were extracted from jets using
vector quantization during early stages ofour research [Flaton, 1991]. At that time, we used
handcrafted real feature vectors, similar to those depicted in Figure 2.11, to represent the 21
oriented lines and intersections of Figure 2.12. The scheme worked quite well in Stickville
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and even showed relatively good results with simulated infrared imagery. What was obvious,
even at that point, was that the system needed to be able to learn its feature set thereby easing
the limitations inherent in any human autocratic design. The theme then became adaptive
vector quantization or AVQ.
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Figure 2.11 - Feature content of ajet. (a) matrix representation ofa 60°line, (b) matrix representation of
two intersecting lines.
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Figure 2.12 - Elemental features extractable by vector quantization ofMorlet jets.

AVQ consists of two parts: the learning or adaptive stage in which the system learns to
differentiate between different vector classes (features) and the quantization stage in which the
system determines to which class an arbitrary feature vector belongs. The methods that we use
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to perform AVQ are well discussed in the literature and we have made little modification to
those algorithms except where it was appropriate.

2.2.1 Learning

Two types of vector learning were explored: self-organizing vector maps [Willshaw and von
der Malsburg, 1976] [Kohonen, 1988] and complexity controlled vector quantization
[Buhmann and Kiihnel, preprint]. The latter, while showing a high degree of promise, was
determined to be algorithmically immature and so was rejected in favor of a
Malsburg/Kohonen-type of self-organizing vector map.

The idea behind using AVQ is that instead of hand-generating a model vector set as in
Figure 2.12, the system learns the different elemental feature types. Input jets from a Morlet
block can then be quantized with respect to the learned feature vectors (alternately called
model, representative, and codebook vectors) with the resulting feature image being passed to a
graph builder and ultimately to a graph matcher for recognition.

Self-organizing vector maps may be trained in two ways: through supervised or
unsupervised learning. In both methods, the first step is to determine which model vector is
closest to the inputvector. In unsupervised learning, thatmodel vector (i.e., the winning model
vector) and its neighborhood are updated in the direction of the input vector. In supervised
learning, the system is told to which model vector the inputvector should be assigned (i.e., the
true model vector). The true model vector and its neighborhood are updated in the direction of
the input vector. If the winning model vector is different from the true model vector then the
winning model vector (to which the input vector had been incorrectly assigned) and its
neighborhood are updated in the opposite direction of the input vector.

Because we have no priorknowledge as to what the distribution of the input vectors of the
model vector map should be (this is, in fact, what we are trying to determine), we have chosen
the unsupervised learning method. We begin the training by initializing a 2D vector map to
randomly oriented vectors. (Dimensionality of the map is not necessarily limited to two;
higher dimensions provide greater resolution and more degrees of freedom in discriminating
vectors. The cost is that of space and time.) Each element of the vector map is a d-di-
mensional model vector; in our case d = S*0 = 24. A vector (jet) J is input and compared to
each model vector rrij using the metric d(x,nij) given by:

d(J(t),mi(t)) =||mi(t)-J(t)||. (2.3)

The model vector mk, that is closest in a Euclidean sense to the input vector, and a defined
neighborhood ofmk, Nk, are updated. All other model vectors are left unchanged. That is,

k = argmin(d(J(t),mi(t)))
i ' (2.4)

mj(t+l) = mKt) + ct(t)[J(t) - mi(t)] V ie Nk , (Z5)

mi(t+l) = mi(t) VigNk. (2.6)
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Typically cc(t) is a Gaussian shaped neighborhood function whose peak magnitude
decreases linearly over iteration as suggested by [Kohonen, 1988]. That recommendation
assumes that all input vectors are of equal importance, which is clearly not the case in our
system. We have thus modified a such that it includes a gain term that is a function of the
input jet's saliency. The more salient the trainingjet, the greater its effect on the update:

a(t) =ak* PI *(l--U*eJdd
V tmax/ v2o"' (2.7)

where cck is the nominal gain, IIJII = [0,1] is the scaled input jet magnitude, tmax is the

maximum number of iterations, 8 is a displacement vector in the map space between mk and

mj, and a is the Gaussian roll-off parameter.

2.2.2 Quantization

After learning has been completed, i.e., after a number of sample vectors have been applied to
the system and the model vectors have stabilized, the learned model vectors may be used for
quantization. Quantization consists of a brute force application of Equation 2.4 for a given
input J. When the minimum d(J,mk) is found, J is replaced with the value of mk, i.e., it is
quantized:

V: J -> M (2.8)

where V is the vector quantization function defined by Equation 2.4, J is the set of jets, and
M is the set of model vectors. Each quantized jet is then assigned the label of its quantizing
vector (e.g., the value of the index k):

L: M -> L (2.9)

where L is the labeling function and L is the set of labels corresponding to M. A compound
quantization and labeling function is then defined as:

Q: J -> M -> L. (2.10)

The 2D array of labels resulting from the application of Q are passed as afeature image to
the next stage of processing ~ graph generation.

2.2.3 Algorithm Implementation

Being the two stage process that it is (learning and quantization), the AVQ function is
implemented as two separate programs. One program is responsible for the self-organization
of the vector map (learning) and the second program is responsible for quantization and the
generation of feature images. Appendix B shows the general algorithm flow and how the AVQ
implementations fit in.
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2.2.3.1 Learning&

The program that was written to perform the training of the model vector map is called AVQ
for Adaptive Vector Quantization. The general program flow for AVQ learning is shown in
Appendix D. Macintosh dialog boxes (and thus processing options and parameters) for AVQ
learning are given in Appendix H.

2.2.3.2 Quantization

The code that was written to perform the jet quantization is incorporated in program GTVQ.
The general program flow for GTVQ and related processing is shown in Appendix C. Because
the vector quantization algorithm is so trivial and is adequately described above, there are no
detailed flowcharts explicitly for that function. Macintosh dialog boxes (and thus processing
options and parameters) for GTVQ, quantization related processing, and other GTVQ related
processing are given in Appendix G.
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Chapter 3 - Graph Formation

Graphs are extremely powerful representational structures, especially when used in object
recognition. Feature sensitivity notwithstanding, they are inherently invariant to translation
and rotation and robust with respect to partial occlusion. By eliminating distance metrics from
the edges, we facilitate robustness to scale and other distortional variations. The challenge in
using graphs in visual recognition is in forming the graphs in a reliable and stable manner, both
in node and edge senses. In this chapter, we discuss the methods by which we are able to form
robust graphs that are stable over several forms of distortion.

We will use the term object-graph to describe a graph that, by itself, represents an object.
An input graph is an object-graph that serves as an input to the graph matcher. The term
model-subgraph is also used to describe a graph that represents a single object but is a
subgraph of a larger, multi-object model graph. The multi-object model graph forms a
database against which input graphs are compared by the graph matcher5. The manner in
which input and model graphs are generated is the same with the obviously necessary
difference being thequantity of represented objects contained by the graphs6.

This chapter discusses the graphs and their formation in terms of nodes and edges. It
should be noted that, relative to our system, graphs are only convenient representational
structures for what will later be interpreted as neural network topologies with the nodes
becoming active neurons and the edges becoming constraints on dynamically varying synaptic
links. The above caveat is intended to increase the reader's insight into the nature of our
system and not to imply a reduced scope of generality. Indeed, the use of graph theoretic
description is also intended to make our work more available to those who find only specific
portions of the system useful, either as a novel form of feature-extraction/object-representation
or as an interesting way of doing graph-matching/object-recognition.

3.1 Node Generation

The first step in the graph formation process is the selection of appropriate features
representing local multi-resolution edge data. The features are generated in the two preceding
processing modules and are the indices of model vectors to which Morlet jets have been

Use of the word model indicates that die graph is a stored representation.

As generated by Uiis module, model graphs aredisjunct combinations of object graphs. In the subsequent
graph matching module, the model graph may be reconfigured such diatnodes and edges are shared by
more that onepattern. Thisconcept concerning mixing ratio will bediscussed in Chapter 4.
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quantized. Once chosen, the selected features become the labels of nodes that comprise an
object-graph.

Selecting the appropriate features is crucial to the recognition task. The features chosen
must be salient, reliable, stable, and accurate. By selecting features with such attributes, we are
able to reduce the burden imposed on the recognition process.

A salient feature is one that possesses a sufficiently high degree of perceptual information
and may be used to minimize the number of nodes required to both adequately describe and
differentiate an object. For that purpose, we use the saliency measure discussed in Chapter 2,
i.e., jet magnitudes. Recall that large jet magnitudes indicate the existence of discontinuities in
the input image and that discontinuities, from both information theoretic and perceptual
standpoints, have high information content. Saliency is the primary selection criterion for
features.

Reliable features are those that are likely to be repeatedly selected despite subtle changes in
the input image. We have noted experimentally that large feature patches of homogeneous
type are fairly stable over input distortion. Features in the center of a patch tend to remain
stable with perturbed input when compared with features at the edges of the patch. One way,
then, of determining the reliability of a feature is to note its relationship to neighboring
features. In our scheme, if a feature is similar to its neighborhood then it is considered to be
reliable. Specifically, feature reliability may be judged by feature continuity which we defme
as

Cij =C7TT 2^ Jij*Jx
PWmMi (3.d

where Cm is the feature continuity for the feature at location (i,j), Jy is the jet that leads to the
feature at (i,j), and OMy is the set of neighborhood indices about (i,j). As can be seen from
Equation 3.1, continuity is the average dot product of the reference jet with respect to its
neighborhood. Qualitatively, it is the measure of how similar the reference jet is to its
surround.

Feature accuracy refers to thedegree towhich the feature label characterizes the underlying
image information. Recall from Chapter 2 that a Morlet wavelet decomposition forms jets that
are subsequently quantized to learned model vectors. The quantization process produces a
value called quantization error that is a measure of how well a particular jet fits the model
vector to which it has been quantized. Specifically,

Eij=|mk-Jij| (32)

where Ey is the quantization error of the feature at (i,j), Jy is the jet that gave rise to the feature
at (i,j), and mk is the model vector to which Jy is quantized (Equation 2.8) and whose label is
the feature at (i,j) (Equation 2.9).

Ultimately we want the selection process to be stable, that is, we want to choose features
that do not vary greatly in type over distortion. The first effects of distortion occur in the fine
detail of an image and are therefore most detectable in the high spatial frequency components
ofa jet. In other words, high spatial frequencies are more susceptible to image distortion than
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low spatial frequencies. At the same time, high spatial frequency filter responses provide finer
spatial accuracy on the position of image features and saliency than do low spatial frequency
filter responses. It is for this reason that we generate features using lower bands of spatial
frequencies than those we use for the saliency measure. The result is that we have both
spatially accurate saliency information and stable features.

In addition to the desired node attributes discussed above, we impose one other constraint
on feature selection: minimum spacing. Because the features have the property of extended
locality (i.e., the features contain information about the image that is relatively distant from the
feature location), neighboring features often carry approximately the same feature information.
Requiring a minimum spacing between features helps reduce the redundant coding of features.

The first selection criterion for a node label is that it exists near a point of locally maximum
salience. Because the saliency array is formed using the highest possible spatial frequency
(k=4 pixels) and because of the discrete sampling function implicit in the digital processing,
there is a tendency for the jet magnitudes to have spurious local maxima. Our solution to this
has been to median filter the saliency array such that the spurious local maxima (which look
like uncorrelated noise) are removed while the correct spatial locations of the true local
maxima are retained (i.e., no signal smearing).

We define here, for convenience of explanation, a data structure called a sampling array.
At this point in the processing, the sampling array consists of the local maxima of the saliency
array. In the next processing step, the location of the sample points are adjusted using a
combination of feature reliability (continuity) and feature accuracy (quantization error).
Specifically, a continuity/accuracy array (ora r-array) is computed using

rij=pCij-(l-p)Ey (33)

where Ey are defined by Equations 3.1 and 3.2, respectively. Next, the sampling array points
are spatially adjusted by relocating them to the largest T-value within a specified radius. The
desired (and obtained) effect is to select a sampling point in a highly salient region that is also
maximally reliable and accurate.

Finally, the features whose indices coincide with active sampling points become labels for
the newly created nodes.

3.2 Edge Generation

In our graphs, edges are directional, unlabeled, and represent a degree of locality between
nodes.7 Edge generation begins with the arbitrary selection ofa destination node. Other nodes
are then considered for connection to the destination node beginning with the spatially closest

This description ofan edge is valid only for this processing module. In the initialization of die subsequent
graph matching process, edges take on a refined meaning and valuation that relates to the similarity of
feature types.
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node8 and ending when either all nodes have been exhausted or a constraint requires the
termination of the process for the current destination node. In addition to the minimum
distance constraint imposed by the node selection process, the edge constraints have the
following priority:

0) Minimum Distance Between Nodes (node selection constraint)

1) Minimum Number of Inbound Connections

2) Maximum Distance Between Nodes

3) Maximum Number of Inbound Connections

Because we wish to be robust with respect to scale, the distance constraints must be made
flexible so that different sized views of the same object generate similar graphs. That
flexibility is achieved by allowing the distance constraints to vary with the size of the object
which is measured by a bounding rectangle. The distance constraint values correspond to a
defined "standard size" object. Objects that differ in size from the standard have their distance
constraints scaled accordingly. Thus, a larger object will have larger minimum and maximum
distances and the nodes will be correspondingly farther apart.

3.3 Implementation

The program that we have written to form input and model graphs is called SGMaker for
Sparse Graph Maker. The general program flow for SGMaker is shown in Appendix E.
Macintosh dialog boxes (and thus processing options and parameters) for SGMaker are given
in Appendix I.

Although there is no distance metric explicit on the edges of our graphs, graph formation may be
considered a transition process that, in part, takes a data set with a distance topology and converts to one
with only a connection topology. It is during this transition mat attributes from bom topologies may be
used and it is in this way mat we may discuss spatial proximity of features/nodes with respect to a non-
distance topological system.
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Chapter 4 - Dynamical Link Graph Matcher

The previous processing stages of our system translate input greyscale imagery into labeled,
directed graphs of two types: single-object input graphs and multi-object model graphs. The
model graph comprises the database of stored graphs against which the input graph is to be
matched. In what follows, the terms node and neuron will be considered interchangeable. In
addition, all references to neurons should be taken in the figurative sense and refer to the
artificial variety.

The mechanism used in the graph matching process has its foundation in the Dynamical
Link Architecture (DLA) [von der Malsburg, 1981] and is patterned closely after the graph
matcher introduced by [von der Malsburg and Bienenstock, 1987] [Bienenstock and von der
Malsburg, 1987]. These latter two papers, taken together, will henceforth be referred to as the
Europhysics papers. Neural networks based upon DLA are significantly different from
classical neural networks. In classical neural nets, neurons are connected by links or synapses
that remain fixed in value during classification and vary only during learning. In DLA
systems, the links vary in strength during recall (or classification) as a function of the temporal
correlation of the connected neurons.

Our work with the DyLink9 graph matcher is concerned primarily with the recognition or
matching process. Unlike many neural paradigms, our neural graph matcher does not learn its
representations in a Hebbian sense. Its database of stored models is formed by the preceding
graph formation module and is effectively imprinted into the associative memory of the graph
matcher.

To provide the reader with a general understanding of the system architecture and
dynamics, the first section of this chapter presents only a brief overview of the graph matcher
with greater detail to be found in the two following sections. The section ends with an
explanation of mixing factors and their effects, and the differences between our implementation
and that of the originating authors.

4.1 Overview

Figure 4.1 provides a schematic representation of the DyLink graph matcher. Note that in what
follows, graphs are implemented as neural networks with nodes as neurons and edges as
synapses.

9 The terms dynamical linkandDyLink areused interchangeably throughout.
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Figure 4.1 - Schematic representation of theDyLink graph matcher.

Architecturally, the graph matcher consists of three neural planes: an input plane that holds
the object-graph to bematched, a model plane that holds the model graph (or database ofstored
objects), and a grandmother plane containing g-cells (or grandmother cells) that measure the
degree of match achieved by each stored pattern.

Connections within the input plane are fixed by the object that it represents. Connections
within the model plane are made in a similar fashion except that the links are dynamic, that is,
the links vary in strength during recall as a function of the temporal correlation of the nodes
that they connect: the greater the correlation, the stronger the link becomes. Connections from
the model plane to the grandmother plane are fixed by the architecture: each g-cell is assigned
one model-subgraph and receives connections from each of nodes of that subgraph.

Dynamically, the system operates on an iterative-time basis. Each system iteration consists
oftwo phases: an activation and binding phase and a readout phase. See Figure 4.2.

Graph matching begins by loading the input plane with an input graph. See Figure 4.3.
Connections are formed between input plane neurons and model plane neurons such that only
neurons with similar type are connected. During recognition, a connected ensemble of nodes
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in the input plane is activated which, by way of connections from the input plane to the model
plane, activates nodes of similar feature types in the model plane. After a short time, activation
of the input plane nodes is changed to a neighboring and overlapping ensemble (i.e. attention is
shifted) and the activation dynamics are repeated: the input-to-model-plane connections
transmit this new set of activations to the model plane and a new set of model nodes is
stimulated.

Enter System
Dynamics

4
J

Phase 1 - Activate and Bind:

Move and activate spoUight;
Update model neurons -

Iterate until convergence;
Update dynamical links;

Phase 2 - Readout:

Floodlight input plane;
Update model neurons -

Iterate until convergence;
Remove floodlight;
Update model neurons -

Iterate until convergence;
Update g-cells;

Figure 42 - Main system dynamics. One execution of the loop constitutes a single system cycle or
iteration.

The shifting of excitation of nodes in the input plane may be thought of as a scanning
spotlight [Triesman and Gelade, 1980] [Crick, 1984] passing over that plane: the spotlight
activates the ensemble which it lights. The neuron at the "center" of the spotlightis termed the
hot neuron while the other neurons in the spotlight are called warm neurons.
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Thefundamental idea is that simultaneityofactivation in the model plane corresponds to
locality of activation in the input plane. In other words, if two neurons are simultaneously
active in the model plane, then there must be, correspondingly, two neighboring neurons in the
input plane with similar feature types. That is, in fact, the essence of how graph
disambiguation in the model plane occurs.

The above described dynamics specify how a model subgraph may be activated. What is
needed is a way of stabilizing those activations; this is the function of the dynamical links. As
ensembles of model plane nodes become active, their correlated firings cause their connecting
dynamical links to become stronger thereby binding those ensembles together more tightly.
Nodes that are not a part of these ensembles become disconnected by reduced dynamical link
strengths and disassociate themselves with the congealing model-subgraphs.

Input Plane

Model Plane

(a) Initial State (b) Inter-plane Connections

Input Plane

Model Plane

(c) SpoUightActivations (d) Dynamical Link Binding

Figure 4.3 - Overview of the matching process, (a) The initial state for recall isone in which the
connections within the model plane form anassociative memory ofstored subgraphs and in which the

input plane is a locally-connected graph, (b) Inter-plane connections are made between similarly labeled
nodes, (c) Recall begins with the activation ofan ensemble ofinput plane nodes (bold circles), (d)

Active input nodes activate similarly labeled model nodes. Network dynamics modify dynamical
connections, or J-links (bold line), to bind temporally correlated model nodes. Q^or easeof depiction,

some inter-plane connections and the entire g-cell plane are notshown.)

At the end ofeach cycle of the system recall dynamics, the dynamical link strengths of the
model plane are "read out" to the respective g-cells. The g-cells respond with activity levels
that are commensurate with the magnitude of the dynamical links of their specific model-
subgraphs, that is, they measure the degree of match between their assigned patterns and the
input graph. Pattern convergence is said to have occurred when the output of the strongest g-
cell is stable for some specified number of iterations. Chapter 6 discusses the effects of gallery
size and graph ambiguity on the convergence rate.
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4.2 Architecture

Figure 4.1 presents a schematic description of the dynamical link graph matcher.

4.2.1 Neural Planes

4.2.1.1 Input and Model Plane Neurons

Input and model plane nodes are labeled by features as determined by preceding processing
stages. While the graph matcher itself is not restricted to any domain of features, the feature
set that we use are derived from our adaptive feature extractor (discussed in Chapter 2). Those
features represent line and edge data of varying orientation and spatial frequency. Each
neuron, therefore, while identical in function, is abstractly assigned a label whose value
directly influences only the connection topology.

More formally, B1 and BM are the set of nodes (or neurons) in the input and model planes,
respectively. Additionally,

B* =(i =(i,a) | i=l..Nxa, a=1..f} xe (I,M) (U)
where I is a neuron, a is an index on the label or feature type, i is an index on the neurons of

feature index a, F is the number of feature types, and Nxais the number of neurons of feature
index a in plane x.

Recalling that the model graph contains multiple object-subgraphs, we define the set of
nodes of a model-subgraph to be

IU=:{i|i-^PK, ieBM) (4.2)

in which n is the index on the set of patterns IP. In other words, tn cz BM is the set of nodes
belonging to pattern n.

We define F as the set of features:

W=[f(a)\a =l..F) (43)

where /(a) may be a specific color, vertex type, line direction, etc. For future notational
convenience, we also define a function CF that operates on a node and returns the label of that
node:

3-(i)=/(oc)eF. (4.4)
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The nodes act as binary neurons that fire or are silent according to the strength of their
inputs:

tfi =Cx(Xjij<*j-G>i] xe{I,M)
Vj I (4.5)

where a, is the output of neuron i, J« are fast modulated synaptic weights (as discussed below),

0} is the threshold value for neuron i, and

(l ifq>>0, , t
C*(q>) = xeftM}.

| 0 otherwise; (4 6)

Although our experiments employed primarily binary neurons, the use of graded neurons
should be just as effective.

4.2.1.2 Grandmother Plane Neurons

BG is the set of nodes (or neurons) in the g-cell plane. Each g-cell is connected to a model-
subgraph and corresponds to that model. G-cells, then, are essentially readout neurons whose
activity level corresponds to the amount of match incurred by the respective pattern.
Specifically,

BG ={9=rcU=l..n) (4.7)

where 9 is a neuron indexed by pattern number %and where II is the number of patterns
contained by the model graph. Unlike the neurons ofB1 and BM, BG neurons are graded. That
is, Equation 4.6 for g-cells is

U®) = * x=G
1+e-w (4.8)

where yis the sigmoidal gain.

4.2.2 Links

In artificial neural networks, neurons are connected to each other by links or weighted
synapses. It is the nature of the links in a DLA system that separates it taxonomically from
other artificial neural paradigms. In this section, we describe thelinks in an architectural sense;
a later section will deal with the dynamics. We begin by describing the basic links much as
they are given in the Europhysics papers. The second subsection deals with modifications that
we have made to the basic link constructs and is the description of the actual links in our
system.
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4.2.2.1 Basic Link Constructs

Two types of "connection" matrices are used. The first type is contained in the J matrix, the
elements of which are called J-links. J-links are signal carrying connections of variable
synaptic weight and are the so-called Dynamical Links. More specifically, they are fast
modulated connections that vary with the temporal signal correlations and are the secondary
dynamic variables during recognition (with neural activations being the primary dynamic
variables). Their purpose is two-fold: 1) to carry information between the connected neurons
and 2) to bind or isolate the connected neurons depending upon the correlation of the neural
activity.

The second variety of "connection" matrix is contained in the T matrix, the elements of
which are called T-links. J matrices and T matrices are coherent: for every J-link there is a T-
link and vice versa. T-links are, in fact, not true connections at all but provide an upper bound
on the variation of the associated J-link, i.e.,

0£ h * T* . (4.9)
The Tj: connections vary with learning (over a long time scale) and remain fixed during
recognition10. (As noted earlier, our system does not learn its graphs in the usual sense; T
matrices are created by the graph formation module of Chapter 3 and are imprinted onto the
model plane.) The purpose of the T matrices is to define the network topology.

For ease of description, we refer to the combined J and T matrices as C matrices. There are
separate C matrices for each network topology. Specifically, the C1, CM, and CG matrices
contain links for connections only within the input, model, and g-cell planes, respectively. In
addition, C matrices define topology between planes. The CMI matrix contains elements that
represent connections that join B1 with BM. Similarly, the CGM matrix contains elements that
represent connections that join BM with BG. In our formulation, there areno connections from
g-cells to model neurons or between the g-cells, themselves. However, advantages may be had
if certain of these connections are actually established. These possibilities are discussed in
Chapter 6.

The T1 and TM matrices define the topology of the input and model graphs, respectively.
Their non-zero elements represent a spatial proximity11 of the nodes that they connect.
Formally,

_ ( 1 ifij and Jt\ are spatially proximate,
17j={ xe(I,M).

\ 0 otherwise; (4.10)

In other words, the existence of a T1 or TM link between two nodes indicates that the features
that it connects were spatially close in the original image domain. For the moment, we assume

10 In the Europhysics version ofthe graph matcher, Tj: g {0,1}. In our modified architecture, Tjj =[0,1].

11 See Chapter 3.2, footnote 4.
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that there is no pattern overlap in the model graph, i.e., all model-subgraphs are disjunct. Note
that Equation 4.10 leads to symmetric T1 and T^ matrices.

Connections between B1 and BM are established only between identically labeled nodes.
That is,

MI_|l if3-(i) =ff(j),
Mj ~

0 otherwise. (4.11)

The nodes of each model-subgraph are connected to a single g-cell and are normalized to
unity:

[4- ifij€lU
tGM_/ 1N*

0 otherwise,
\ (4.12)

where NK is the number of nodes in TLK. Nominally, this is a many-to-one mapping: many
model nodes to one g-cell. In the event that some model neurons are used by more than one
pattern, the mapping becomes many-to-many.

4.2.2.2 Feature-Correlation Based Links

The architecture described above assumes that the features used to label the nodes can be
extracted with high reliability and are never confused. Our system, however, makes use of
features that are closely and naturally related, i.e. they are highly feature-correlated. The
system must therefore allow for confusion between features, such confusion being caused by
small variations in the input image. In addition, our architecture uses grandmother cells to
readout the level of pattern match. This scheme can be adversely affected by multiple,
neighboring instantiations of the same feature type in a given model-subgraph. We term the
first problem the Feature Confusion Problem and the second the Repetitive Labeling Problem.
In this subsection, we discuss these problems and our solutions to them.

4.2.2.2.1 Soft Feature Matching

If the feature set was distinct, such that it was unlikely for one feature to be mistaken for
another (e.g., a feature set consisting of only black and white pixels), then the carrying out
Equation 4.11 for TMI would be easy and would make sense: neurons with black feature labels
in the input plane would be connected to all neurons with black feature labels in the model
plane and vice versa for white pixels. However, when the features are of high similarity, as in
our case, it is no longer reasonable to allow connections only between identically labeled
nodes. For instance, in Figure 4.4, the circled feature in the inputobject may be very close in
feature space to the circled features in the model objects. The architecture, as described by
Equation 4.11, however, prohibits these connections.
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Input Object

Model Object

Figure 4.4 - Feature label confusion. The circled features (vertices) are similar but not identical. The
original architectureprohibitsany connections like those shownlabeled by "?". Flexibility in feature

matching is improved by providing TMI connections between similar features.

Flexibility is introduced by modifying Equation 4.11 such that nodes of nonidentical, yet
similar, feature type may also be connected, albeit with lower strengths indicating the lack of
confidence in the correctness of the feature match. Specifically, the feature-correlation based
TMI connection rule is:

tmi =[Cf(mml (4.13)

where o"mi is a scaling constant and Cj is a feature-correlation function that computes the
normalized dot product of the two model vectors represented by the feature labels 7 (i) and
XQ). That is,

where L_1 is the inverse of the labeling function defined by Equation 2.9 and returns a model

vector when given the corresponding feature label. Because CffofyffQj) lies between zero
and one and typically 0"mi >> 10, TMI elements connecting similarly labeled nodes have
substantial values whereas TMI elements connecting dissimilar nodes have zero or
inconsequential values. The result is that the image extraction system need not be perfect and
that, if necessary, the graph matching architecture can accommodate small discrepancies in
feature definition.
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4.2.2.2.2 Repetitive Labeling

Upon further consideration of our architecture it may be observed that there can be many
instances in which nodes of identical (or highly similar) feature types are neighbors within a
single-object graph. The scenario for this Repetitive Labeling Problem is graphically
illustrated in Figure 4.5. When this situation occurs, it is possible (or even likely) that a single
activation of an input graph node will lead to simultaneous activations of the neighboring
connected model nodes through JMI connections. (For more detail on the dynamics, see
Section 4.3.) Such activation causes the JM link connecting the two neighboring model nodes
to be increased in value. The erroneously strengthened JM links incorrectly stabilize model-
subgraphs and extend their activity to dissimilar neighboring nodes. See Figure 4.6. In other
words, small subgraphs of identically labeled nodes can become activation self-sustaining and
their spatially extended presence can cause other nodes to become erroneously active through
JM links.

Input Object

Model Object

= labeled node

Figure 4.5 -Repetitive Labeling Problem scenario. Neighboring BM neurons may be ofidentical or
highly similar feature types. In this figure, the feature type isa horizontal line. Activation of a single
horizontal-line B1 neuron will lead to activation oftwo neighboring horizontal-line BM neurons. The

result isan inappropriate strengthening ofthe JM-link.

In addition, during subsequent linkreadouts, the simultaneous activations of a large number
of nodes in a highly feature-correlated cluster contribute to an inordinately high level of
stimulus to the pattern's g-cell as may be inferred from Figure4.6. The result is that the match
valuefor the offending model-subgraph is inordinately high thereby leading to false indications
regarding match results. To summarize, the Repetitive Labeling Problem manifests itself in
three ways in our architecture: incorrect stabilization of model-subgraphs, inappropriate
extension of activation to other neurons, and an inordinately high contribution to g-cells.

Though the Repetitive Labeling Problem existed in the work described in the Europhysics
papers, it was not explicitly identified by the authors, perhaps partially because the symptom in
which the problem manifested itself was caused by the confluence of several architectural
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assumptions. The aforementioned symptom was an extremely slow convergence rate of the
original DyLink graph matcher. Because our graph matcher uses a different architecture and
incorporates different dynamics, we cannot count on a brute force application of time to solve
our Repetitive Labeling Problem.

Input Plane

Model Plane

Model Plane

Grandmother Plane

# Active Neuron

Figure 4.6 - Repetitive Labeling Problem. The activation of B1 neuron Aleads to simultaneous
activations of BM neurons a, a', anda". These BM activations, in turn, lead to the incorrect activation of

BM neuron band perhaps later, neuron c. JM links a-a', a-a" become strengthened. In addition, JM links
a-b, a'-b, and a"-b, becomeerroneously strengthened. Finally, activation of a, a', and a" lead to

inordinately strong activation of g-cell g.

We have, instead, used an approach similar to that employed as a solution to the Feature
Confusion Problem: feature-correlation based links. The symptoms of the Repetitive Labeling
Problem are approached as two separate sub-problems: 1) incorrect stabilization of model-
subgraphs and extended activation to inappropriate neurons, and 2) inordinately high
contribution to g-cells.

4.2.2.2.2.1 Solution to Incorrect Model Sub-Graph Stabilization and Activity Extension

The first two symptoms of the Repetitive Labeling Problem (incorrect stabilization of model-
subgraphs and extended activation to inappropriate neurons) may be solved together by fixing
TM connections such that they are a function of the average feature-correlation of a local
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subgraph. The idea is to reduce the effect that a large number of nodes in a highly feature-
correlated subgraph hason other nodes connected to thatsubgraph. In general, themore highly
feature-correlated a neighboring subgraph is, the lower the values of the TM links from that
subgraph should be. To be more accurate,

Ttf=l-[c/(y(i),yQ))]aM i,jeBM
(4.15)

where aM is a scaling constant and C/ is a function that computes the average feature-
correlation of a neighboring subgraphusing Equation 4.14. Specifically,

kkefiM (4.16)
where j is any node connected to node i, k is a node connected to both nodes i and j, and Nk is
the number of nodes in the neighboring subgraph12. Because the value of Cffe(i),&(])) lies
between zero and one and typically aM > 1, TM links connecting heterogeneous clusters of
nodes to nodes exterior of the cluster have near unity values. Conversely, TM elements
connecting homogeneous clusters to nodes external to those clusters have low values. The
result is that repetitively labeled node clusters do not unduly affect neighboring nodes through
a single B1 node activation because their connections to those neighboring nodes are
attenuated.

4.2.2.2.2.2 Solution to Inordinately High Contribution to G-Cell Activity

The last symptom ofthe Repetitive Labeling Problem, inordinately high contribution to g-cells,
is solved by fixing T™ connections such that the contribution ofa BM node to a specific g-
cell is a function of its and its neighbors' feature types. The more similar the feature ofa BM
node is to those ofits neighbors, the weaker its TGM link and vice versa. Specifically,

T§M =l-[c/(ff(4ffG)aCflM WB*J€BM (4.17)

where GGM is a scaling constant and Cf is the same average feature-correlation function
defined by Equation 4.16. Because Cffo(n),&(j)) lies between zero and one and typically
GGM > 1, 1GM links to g-cells from highly feature-correlated BM clusters have near zero
values whereas T°M links connecting poorly feature-correlated BM clusters to g-cells have
near unity values. The effect, then, is to make stimuli coming from individual nodes of high
feature-correlation subgraphs less important to the degree-of-match measurement and to make
information coming from nodes with unique feature types (with respect to their neighborhood)
more important to that measurement.

12 The neighboring subgraph isconsidered to consist ofneuron j and ofall other neurons connected to neurons
i andj.
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4.3 Dynamics

The execution of the graph matcher, or its dynamics, may be described at three levels: neural,
link, and system. Neural dynamics deal with activity at the lowest and most active level and
give rise to dynamical link activity. Link dynamics occur at an intermediate level and are
responsible for binding neurons together and stabilizing sub-networks (i.e., model-subgraphs).
System dynamics entail the repeated application of neural and link dynamics in defined phases
of activity and the shifting of the internal focus of attention.

4.3.1 Neural Dynamics

In Section 4.2 we briefly described our neurons in terms of synaptic connections and transfer
functions. In this section, we expand upon those definitions by exploring the temporal
dynamics of those neurons. Because our system uses common artificial neurons and because
those neurons are described throughout the literature, our discussion of the neural dynamics is
brief.

The graph matcheruses two types of neurons: binary neurons in the input and model planes
and graded neurons for the g-cells. The function of both types of neurons is approximately the
same: the signal on each dendritic synapse is multiplied by the strength of the synapse, the
resulting products are summed together, the sum is reduced by a threshold value, and the result
passed through a nonlinear transfer function. See Equation 4.5. In the case of the binary
neuron, the transfer function is a unit step (Equation 4.6); for the graded neuron it is a sigmoid
(Equation 4.8).

The available temporal dynamics are discrete- and continuous-time. We have used
discrete-time dynamics throughout, which is an approximation to the continuous update
equation:

(Pi(t) =-occpi(t) +X Jij ^jCO
j (4.18)

where (pj(t) is the neural potential,

9iW=XjijtfjW,
j (4.19)

a is a decay constant, and <jj is the output of neuron j as defined by Equation 4.5. (The
dynamical links, J«, are expressed as being independent of time in the preceding equations.
This is not exactly true, as we will discuss in later sections, but the dynamical links vary on
such a slow time scale with respect to the neural activity that for our purposes here, they are
considered time-independent.)
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By the Euler method, the time-iterative solution for Equation 4.18 is:

<Pi(t+l) =/-a<Pi(t) +XJij *l W) At +cpi(t)
V j I (4.20)

with At as the discrete-time step size.

The special case of Equation 4.20 thatwe have used and which also gives rise to discrete
time dynamics is to simply set At = 1 and a = 1 so that

<Pi(t+l) =Xjij<*j(t).
j (4.21)

We note that the neural dynamics of our system is not limited to the use of the discrete-time
formulation, only thatwe have chosen to use it because of itsease of implementation.

4.3.2 Link Dynamics

The primary purpose of links or synapses in any neural system is to carry information between
neurons. In systems based on Dynamical Link Architecture, the links serve an additional
purpose which is to bind (or disconnect) neural ensembles. That function is accomplished
through link dynamics: a stronger link (i.e., greater synaptic weight) binds neurons together
whereas a weaker link separates them.

We use the term "binding" in an activation sense. If one neuron is easily excited by a
second neuron, we say that the first neuron is tightly bound to the second. If the activation of
any neuron in a cluster activates all the neurons in the cluster, wesay that the cluster is tightly
bound. We also limit the specificity of the term "binding" to the steady-state type of neural
dynamics described above and do not include, in this discussion, the possibility of phase
binding of oscillatory neural systems.

Recall thatour architecture uses the input and model planes of the Europhysics papers and
that the model plane consists of a large network (or graph) containing numerous neuron
clusters (or subgraphs) where each neural cluster is a topological representation of a stored
object. Recall also that the input plane contains a single neural cluster representing an object
that the system must try to recognize. The recognition, in general terms, is accomplished by
finding the bestmatch between the input neural cluster and the model neural clusters.

The increase of dynamical link strengths within the model plane permits the binding
together of neural ensembles that correspond to good matches with input ensembles.
Conversely, decreases in dynamical link strengths within the model plane force the decoupling
of neural ensembles that correspond to poor matches with input ensembles. In the end, the
model-subgraph that has been most tightly and completely bound is considered to be the
closest match.

The underlying assumption in DLA is that correlation of activity is significant. If two
things are happening simultaneously, then it is probably not accidental and those events are
somehow related. The events may, for example, represent different aspects of the same
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thought or different features of the same object. In either case, a DLA system attempts to bind
those different aspects together by increasing the link strength that connects them. The effect
is to stabilize the temporal correlation: future activation of either component results in an
increased likelihood of activation of the other bound components. Conversely, events that are
temporally uncorrelated are assumed to have no relative relationship and so are disconnected
from each other. Dynamical LinkArchitecture, therefore, is a very powerful mechanism that is
a direct solution to the binding problem with applications wherever binding is an issue.

The variable that drives the link dynamics is the temporal correlation of the neural activity.
In our scheme, two neurons that are simultaneously active are considered temporally
correlated. Conversely, if two neurons are of opposite polarity, they are anti-correlated.
Intermediately, if two neurons are both inactive, then they are considered uncorrelated.

Correlation Neural Pair Activation Link Dynamic

Correlated (On,On) Increase Strength

Uncorrelated (Off,Off) No Change

Anti-correlated (On,Off), (Off.On) Decreased Strength

Table 4.1 - General relationship between neuralcorrelationand link dynamics.

The general relationship between temporal correlation and link dynamics for our system is
shown in Table 4.1. We define the temporal-correlation function as

1 if i,j correlated,
Q (i,j) = / 0 if i,j uncorrelated,

1-1 if i,j anti-correlated, (4.22)

where i and j are neurons.

There are other possible definitions of temporal correlation. The most obvious is the use of
longer term measurements which form a more reliable measure of the correlation. Our view,
however, is that not only is our method adequate for our application, but it is also faster,
requiring only one iteration to determine the degree ofcorrelation. The assumption that allows
this to work, of course, is that there is little activation noise.

The remaining task is to define the actual link dynamic. We haveexperimented with two
sets of link dynamics. The link dynamic that is the easiest and perhaps most obvious wecall
the Update-Constant Dynamic and is defined as

Jij = kC,(i,j)
(4.23)

where k is a constant. In other words, changes in the dynamical link are simply in steps of size
k, the direction of which is dependent upon the temporal-correlation of the neurons.

The beauty of Equation 4.23 is its simplicity and that it performs the basic required
function. Unfortunately, those are also the causes of its problems. Usage of the Update-
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Constant Dynamic results in system instability partially due to a shifting input plane activation
and partially due to the symmetry of Equation 4.23. By symmetry, it is meant that the rate of
increase is the same as the rate of decrease which isconstant no matter what the value of Jy or
T«. The result is that gains made in one direction (binding or disconnection) can be erased as
quickly as they are achieved. This is a problem for a system, suchas ours, in whichinputplane
activations are externallyshifted. We refer to this as the Spotlight HaloProblem. The spotlight
refers to the active ensemble of input plane neurons; the halo refers to neurons just outside the
spotlight. See Figure 4.7. Specifically, only the model plane counterparts of input neurons in
the spotlight have their links increased; links with one neuron in the spotlight and one outside it
are subject to incorrect but inevitable attenuation. Because nodes are more often peripheral to
the spotiight than in it, the dynamical linksconnecting them areeventually driven to zero.

Another problem associated with the Update-Constant Dynamic is that a J-link with a high
T value is at a disadvantage when compared to a J-link with a low T value; more correlations
are needed for the former J-link to saturate than the latter. The necessary use of feature-
correlation based connections, discussed in Section 4.2, then becomes debilitating. We refer to
this as the Unfair Bias Problem.

Strengthened
DyLink

# Active Neuron

Spotlight

Input Plane

Model Plane

Weakened

DyLinks

Pseudo-Spotlight

Figure 4.7 - Spotlight Halo Problem. Spotlight activation ofinput plane nodes inevitably causes some
links to be weakened that shouldnotbe. Because inputplane nodes Aand B areactive, model plane

nodes a and b are also active and theDyLink between them isstrengthened. Node c, however, is inactive
and the DyLinks between it and nodes a and barc weakened despite the fact that we wish this model-

subgraph tobe completely bound. Ifdie spotlight were to shift to cover Aand C, then DyLinks a-b and
c-b are weakened whilea-c is increased. If, assuming Equation 4.23, thespotlight is continuously

scanned overtheinputplane, then all theDyLinks of the model graph areeventually reduced to zero.

We have solved both of the problems associated with the Update-Constant Dynamic of
Equation 4.23 with what we call the Rail Capture Dynamic. Our objective in designing the
new dynamic was to produce link stability, to eliminate the Spotlight Halo Problem, and to
allow a J-link to grow or recede naturally according to its potential value (thereby solving the
Unfair Bias Problem). The update equation for the Rail Capture Dynamic is
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Jij =Cr (i,j) *^(Jij^Ty) *//(Cr (i,j)) (424)
where Q(i,j) is defined by Equation 4.22, P(Jij,Tjj) is an inverted parabolic function defined by
Equation 4.25 and graphically illustrated in Figure 4.8, and //(Cr(i,j)) is an asymmetric anti-
haloing function defined by Equation 4.26 and graphically illustrated in Figure 4.9.

i-ISl-i"JP(Jy,Tlj) = P

aJijJjj)

Figure 4.8 - Graphicdepictionof Equation 4.25, InverseParabolicFunction.

di ifC,(i,j)>0,
0 ifC,(i,j) = 0,
d2 ifC,(i,j)<0;

H(ctm=<

H(Cf(i,j))

d2

di>d2,

Cf(i,j)

(4.25)

(4.26)

- o +

Figure 4.9 - Graphicdepiction of Equation4.26, Asymmetric Anti-Halo Function.

The first term of Equation 4.24 sets the direction of the change in DyLink strength
according to the temporal correlation of the nodes that the link connects. The second term
provides the rail grabbing characteristic of the equation: a J-linknear its mid-range experiences
large deviations whereas a J-link near either extreme sees very little change. The effect is that
the J-link tends to be driven to a rail and is reluctant to move off it. Empirical study of the
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stability of the Rail Capture Dynamic (Chapter 5) shows it to be of high stability and that the
rail that captures the link corresponds well to the correlation statistics. In addition, the
normalization of Ja by Tm allows each DyLink to move in accordance with its potential,
thereby solving the Unfair Bias Problem and permitting use of feature-correlation based T-
links.

The third term inEquation 4.24 is theAsymmetric Anti-Halo function and is the solution to
the Spotlight Halo Problem described above. It works by forcing the increments in J-links to
be larger than the decrements. The problem, again, is that a DyLink ismore often on the fringe
ofa pseudo-spotlight (see Figure 4.7) than in it and is therefore subject to more iterations of
weakening than to strengthening. The asymmetry of Equation 4.26 makes up for that
imbalance. Typically di/d2 is approximately the average number of links per neuron.
Experimental results show that with dj/d2 approximately one, the Spotlight Haloing Problem is
present and most links tend to disintegrate to zero. Elimination of the Spotlight Haloing
Problem is observed as dj/d2 approaches the average number of links per neuron.

4.3.3 System Dynamics

This section discusses dynamics thatoccur at the system level of the graph matcher. The first
section describes how (and when) lower level dynamics are applied to the architecture. The
second section explains how the internal focus of attention is shifted.

4.3.3.1 Bind and Latch

During matching, the results of the disambiguation process are evidenced by the strengths of
the DyLinks in the model planes: matched subgraphs "congeal" where the links are strong and
the nodes are bound together. In some circumstances, this distributed and indirect effect may
be considered useful (e.g., in motor control or some other direct action-oriented perception
scheme) but in our case we want explicitly to know the results of the graph matching process.
There is a need therefore to "read-out" the links and in a way that is not totally artificial.

We do that by allowing the model plane nodes to drive each other (or latch up), which they
will do only if they receive and supply enough stimulus to and from their neighboring nodes.
Since the amount of stimulus transferred between nodes is a direct function of the link strength,
measuring the sum activation of nodes in a model-subgraph is the most direct method of
reading out the link strengths13. This is, in fact, the current purpose of the g-cells: to
accumulate latched model-subgraph activation in a single neuron.

Latching, however, interferes with the disambiguation process in the sense that latched
pairs of neurons are always temporally correlated and so their DyLinks are always kept strong

13 The assumption made here (that "the amount of stimulus transferred between nodes isa direct function of
the link strength") isderived from the facts that 1) the neurons are binary, not graded, so there areno shades
of activation that need to be distinguished, and2) the Rail Capture Dynamics tend to force theDyLinks to
their extremes, allowing us to ignore their shades of value.
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regardless of any new contradicting input. Additionally, the activation of any BM nodes
peripheral to latched nodes are immediately taken to be correlated to the latched nodes and
their connecting links are increased in strength; this occurs regardless of whether both node
types are active in the input plane or not. Conversely, inactive BM nodes adjoining latched
nodes, are take to be anti-correlated and are incorrecdy disconnected. One solution is a
complex and explicit system of inhibitory synapses and auxiliary neurons that latch specifically
for g-cell readout. We have taken that approach but modified it in the direction of simplicity:
we do allow model plane latching but only during link readout and do not use explicit
inhibitory synapses or auxiliary neurons. The tradeoff, here, was one of simplicity versus
biological plausibility and we went with simplicity.

Specifically, we use a bi-phase Bind and Latch program. See Appendix F. In the first
phase the spotlight is moved and activated. B1 neurons transmit their activations to BM
neurons through the JMI matrix. JM transmissions are blocked; BM neurons become active
based only on inputs from B1 neurons. Activity correlations in the model plane are then
measured and the dynamical links are updated. Note that because the BM neurons are not
allowed to interfere with each other (due to the blocked JM-links), model plane activity is an
accurate reflection of what is occurring in the input plane.

In the second phase, the JM-links are unblocked. Afloodlight replaces the spotlight in the
input plane, that is, all neurons in the input plane are activated. BM neurons now become
active based on both input and model plane activations. The floodlight in the input plane is
turned off and model plane activity decays to only mutually-driven BM neurons; the model
plane is thus latched. BM activations are passed to grandmother cells (BG) which quantify
pattern activation.

The bi-phase process is repeated until patternconvergence is attained. Pattern convergence
is declared when the output from the strongest g-cell remains stable for some number of
iterations. Typically, the stability activation window is approximately zero (that is, the g-cell
must maintain exactly its value through the entire stability time window) and the stability time
window is 20 iterations (where the number of iterations required for convergence is typically
less than 100).

4.3.3.2 Attention Spotlight

Recall that the fundamental idea of the DyLink graph matcher is that simultaneity of
activation in the model plane corresponds to locality of activation in the input plane. From this
precept, it becomes obvious that simultaneous activation of all neurons in the input plane
presents a highly ambiguous situation to the model plane. Rather, a so-called "spotlight of
activity" is swept across the input plane and neurons that "fall within the spotlight" are
activated while those "outside" the spotlight remain inactive14. See Figure 4.7. The purpose of
the spotlight is to activate a localized ensemble of input plane neurons whose activations are

14 Thespotlight terminology is nothing more than a metaphor foranexternally activated cluster of input plane
neurons and provides an appropriate analogy for the mechanisms involved.
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passed, by way of the JMI connection matrix, to the model plane where graph disambiguation
can occur.

Thesize of the spotlight is givenby the number of inputplaneneurons that it activates. For
our purposes, the size of the spotlight is fixed throughout the graph matching process though
this need not be the case. We have used a spotlight size of 2 or 3 neurons for most of our
experiments.

A key element to spotlight control is to determine how it will move. It is desirable,
especially in a system with a neural memory (<x<l, At<l in Equation 4.20), for thespotlight to
move from one ensemble of neurons to a neighboring and overlapping ensemble. The reason
for this requirement comes again from the maxim thatsimultaneity of activation in the model
plane corresponds to locality of activation in the input plane. Were the spotlight to jump from
one area of the input graph to a disjunct, non-neighboring area, two unrelated input plane
ensembles would be active: the newly lit ensemble and the previously lit, still decaying
ensemble. Such a situation would erroneously indicate to the model plane that the two
ensembles are neighbors when clearly that is not the case; graph disambiguation would become
problematic.

At the same time, it is also desirable that the most salient neurons be given priority in their
activation, both in terms of order and dwell. Saliency, here, refers to the relative contribution a
node might make to graph disambiguation. Forexample, if the input graph contained a feature
that no stored model subgraph possessed, save the matching model subgraph, then the
subgraphs could be disambiguated solely on the basis of that feature and that feature would
therefore be considered highly salient. It would be reasonable, from a system standpoint, to
make the activation of that input neuron a priority, and perhaps to dwell on it for an extended
period.

While we have not attempted, in this work, to develop a saliency measure in the terms just
described, we have developed a mechanism that allows the spotlight to scan smoothly from
highly salient nodes to less salientnodes. The saliency measure that we use here is the same as
is defined in Section 2.1: high frequency jet magnitudes. We emphasize, however, that our
scanning mechanism is independent of the actual saliency definition; it only uses saliency
values as a guide.

The spotlight dynamics begin with a dwell on the most salient node in the input graph
which is designated the hot neuron and forms the "center of the spotlight". Included in the
spotlight are some number of neurons (i.e., thespotlight size minus one) connected to the hot
neuron which are called warmneurons. In addition to the requirement that they be connected
to the hot neuron, warm neurons are chosen as a result of having the highest available
saliencies. The spotlight remains in place for the duration of the dwell, which in our case, has
been a single system iteration (during which time activation dynamics, link dynamics, and
system dynamics are performed). At the beginning of the next system iteration, the saliency
for all active input plane neurons is reduced and the saliency for all inactive input plane
neurons is increased. The reduction in saliency of active input plane neurons is justified with
theclaim that, having been stared at for some period, those neurons are no longer as interesting
as they were. Likewise, the inactive neurons are increased in salient value because, in relative
terms, they are now more interesting. The decrease and increase in saliency of active and
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inactive neurons enforces a round-robin type of schedule in which no neuron starves for
attention.

The hot neuron remains hot until all of its neighbors have been activated (i.e., have been
made warm neurons). When each of the neighbors of the hot neuron has been activated, a
destination neuron is selected which corresponds to the new, most salient neuron in the input
graph. However, instead of immediately making the destination neuron the new hot neuron
and jumping directly to it, the shortest and most salient path between the current hot neuron
and the destination neuron is found (using a pruned tree search). The first neuron along this
path is designated as the new hot neuron and the spotlight covers it and its selected warm
neuron neighbors for one dwell period (i.e., a system iteration). Since thecurrent hot neuron is
not the highest-saliency destination neuron, the dwell is limited to only one iteration after
which the shortest, most salient path to the destination neuron is recomputed and the process
resumes. In this manner, the spotlight scans along salient paths from one highest-saliency node
to the next, stopping for long dwells at each destination. This behavior was intended to
roughly mimicanecdotal information regarding the action of eye saccades.

Finally, we admit that in its implementation, this is not a neural paradigm. However, we
gratefully acknowledge Biology for providing the approach and the example for us to follow.

4.4 Other Considerations

4.4.1 Mixing Factors

Much of the description in this chapter assumed that each model or pattern stored in the model
plane was a disjunct subgraph. This does, ofcourse, lead to optimal matching results due to
the minimal amount of ambiguity. In a real system, however, we would be concerned with
how much information can be stored in a given set of resources (neurons) and how the denser
packing might affect the matching results. In this section we define some terms and concepts
that are useful in evaluating that tradeoff.

We define a pattern mixing factor as

Z(S(i)-l)
MK =^—( r fel*

Nk- (n-l) (4.27)
where N^ is the number of nodes in pattern 7C, n is the number of patterns stored in the model
plane, and S(i) is an inverse assignment function that returns the number ofpatterns assigned to
node i:
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S(i)=Xs*(i) ieBM
*=1 (4.28)

in which sn(i) is a membership function that returns 1 if node i is an elementof pattern %and0
otherwise. Formally,

Mi) J1 i6L". i.BM
10 otherwise; (4.29)

where TLK is defined by Equation 4.2 and is the set of model plane nodes for pattern n.

Values of M^ range from 0, for no ambiguity, to 1.0 for total ambiguity, i.e., all nodes
shared byallpatterns. An MK of zero is achievable only with zero overlap. Note that an M^ of
1.0 is not likely to be achieved given that some patterns are likely to have nodes with labels
that do not exist in other patterns. That is, it is likely that each pattern will have uniquely
labeled nodes so that a completely overlapping assignment is not possible. It then becomes
reasonable to refer to absolute and relative mixing ratios where the former is defined by
Equation 4.27 above and is computed on a pattern by pattern basis. We informally define a
relative mixing factor as the number ofshared nodes in ratio to the number of shareable nodes.

4.4.2 Uniqueness

Asufficient degree of similarity exists between the graph matcher described in the Europhysics
papers and ours such that we feel the need to itemize the significant differences between the
two. We begin by noting that C. von der Malsburg and E. Bienenstock provided the
framework around which we have built: the pairfor their work on DyLink graph matchers, and
vonder Malsburg for his developmentof Dynamical Link Architecture.

The first observable difference between the graph matchers is in the implementation: the
Europhysics papers used a Monte Carlo minimization of a compound Hamiltonian whereas we
have implemented the algorithm directly as a neural network requiring substantially higher
levels of detail. The earlier work used densely labeled graphs with a binary feature set whereas
we have used sparsely labeled graphs with a rich feature set.

Architectural differences may be found in our use of feature-correlation based links, a
grandmother cell plane, and the use of DyLinks only within the model plane.

Differences in dynamics include our use of Rail Capture Dynamics, a smooth scanning
saliency driven spotlight, and link readout with bi-phase iterations.

Finally, Chapter 5 will show that we have demonstrated the viability of our system using
greyscale imagery under numerous distortions and have explored theimpact of node sharing.

50



4.5 Implementation

The program that we have written to perform the graph matching is called DyLink GM for
Dynamical Link Graph Matcher. The general program flow for DyLink GM is shown in
Appendix F. Macintosh dialog boxes (and therefore processing options and parameters) for
DyLink GM are given in Appendix J.
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Chapter 5 - Results

This chapter presents the data with which we validate Chapters 2 through 4. We begin by
presenting results for each of the processing modules. The second section provides results of
end-to-end recognition tasks involving a 9-object greyscale gallery. Inputs to the recognition
tasks are distorted by scale, perspective, in-plane rotation, lighting direction, and occlusion.
Outputs from each module are provided as are overall recognition results. We end the chapter
with a brief summary of the results contained herein.

5.1 Processing Module Results

This section provides results obtained from the individual processing modules. The data sets
shown here arethesame as those employed during the early phases of development. They are
presented because the use of simple data sets often result in abetter understanding of complex
processing methods.

5.1.1 Morlet Wavelet Decomposition

The theory for the Morlet wavelet decomposition (MWD) is given in Chapter 2. Flowcharts
for the actual code can be found in Appendix A and the Macintosh dialog boxes, with their
various parametric options, are in Appendix E.

In this section we use three types of images: Stickville, infrared, and greyscale. Stickville
images are used to show the basic effects of the processing; infrared and greyscale examples
are provided to show the effects of processing on more complex imagery. In all of the
processed images (i.e., the images that are not input images), black is high and white is low.
All images are 128 pixels x 128 pixels x 8 bits.

Figure 5.1 shows the result of a complex MWD on a Stickville polygon and is the
"standard" MWD that we have employed throughout our work. That standard MWD consists
of 30 filters of six orientations (one every 30°) and five spatial frequencies (each separated
from the other by one octave). The highest spatial frequency has awavelength of 4pixels, c is
set to %I2. Recall from Chapter 2 that the four highest spatial frequencies are used in the
computation of the jet magnitude saliency function while the four lower spatial frequencies are
used in the construction of the jets.
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Figures 5.2 and 5.3 show the results of frequency selection in the generation of jet
magnitudes. Recall that jet magnitudes serve as our saliency function and should theoretically
peak where complex features occur in theimage. This may be observed, to some degree in the
jet magnitude images of Figures 5.2 and 5.3 butis more obvious in the3D waterfall plots. The
polygon waterfall plot shows high jet magnitude along straight lines and peaksin magnitude at
the line intersections. The face waterfall plot shows the highest jet magnitudes at the contours
of the face and at the eyes, nose, and mouth, all of which are considered salient in face
recognition. Jet magnitudes, composed of lower spatial frequency jets, show the effects of the
lower pass filtering as blurring.
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Low Spatial Frequency High

Figure 5.1 - Standard MWD ofStickville polygon: 6orientations, 5spatial frequencies, hjgfa = 4 pixels,
a = tc/2. Note the effects of increasing spatial frequency and response to filter orientation.
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(a)

(d) (e) (0

Figure 5.2 - Jetmagnitudes (saliency) for Stickville cross and polygon, (a) and (d) are inputs, (b) and (e)
are high frequency jet magnitudes, and (c) and (f) are low frequency jetmagnitudes. (Black ishigh,

white is low.) Note the loss of resolution in the low frequency magnitudes, (g) shows a 3Dplotof (e).
Note the strength of the jet magnitudes along the straight lines and thepeaks at theline intersections.
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Figure 5.3 - Jetmagnitudes (saliency) for infrared truck and greyscale face, (a) and (d) arcinput images,
(b)and (e)are the result of 5x5Laplacian filtering, and (c)and(f)are the high frequency jet magnitudes.
Note that the saliency function corresponds well with areas ofhigh feature importance, (g) shows a 3D
plot of(0- The strength of the jet magnitudes are especially high around the contours of the face and at

the eyes, nose, and mouth.
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Figure 5.4 shows the response of varying a on the jet magnitudes. Recall that Z in
Equation 2.1 controls the width of the Gaussian window. Inorder to maintain self-similarity of
the wavelets, X is made a function of spatial frequency: X = c / Ikl. For a given spatial
frequency, then, increasing a will increase the Gaussian window and allow more ringing of the
sinusoid. Conversely, decreasing o~ causes the outer oscillations to be reduced and dampens
the ringing. We have found that a = %I 2 provides a good trade-off between ringing and
maintaining a good Gabor shape.

&

(a) (b) (c)

(d) (c) (0

Figure 5.4 - Response of varying a onjet magnitudes, (a) and(d)are inputimages, (b) and (e) are jet
magnitudes resulting from a = 7t / 2, and (c) and(0 arejet magnitudes resulting froma = n. Note the

ringing in (c) and (f): closeexamination shows ringing at eachspatial frequency of the MWD.

Figure 5.5 shows the results of FFT convolution with and without zero padding. Although
zero padding takes approximately four times longer and requires four times as much space, it
eliminates the aliasing problems associated with insufficient sampling rates. (Unless otherwise
noted, all results given have been obtained with zero padding.)

Figure 5.6 shows jet images for five different jets taken from five different features: four
right angle corners and one right angle cross. Each jet was taken from a point at a vertex.
Each block in the jet images is a Morlet wavelet component; the representation is identical to
that of Figure A.lb (Appendix A) with filter orientation along the horizontal axis and spatial
frequency along the vertical axis. The upper four rows correspond to real components while
the lower four rows correspond to imaginary components. From examining the jet images, it
becomes evident that the discrimination of the feature based solely on the real components is
unlikely to be reliable or even possible. By introducing the complex components, the task of
discriminating these features is cased.
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(a) (b) (c)
Figure 5.5 - Results of FFT convolution with and without zero padding, (a) is die input image, (b) is die jet
magnitude image from a MWD using FFT convolution in which there was no zero padding, and (c) is die jet

magnitude image from a MWD using FFT convolution in which there was zero padding. Note that the
aliasing in (b) manifests itself as vertical wrap around. Horizontal wrap around also occurs, however due to

zero-valued vertical edges, it is not apparent.

Figure 5.6 - Jet images for five features: four corners and a cross. The use ofreal components is insufficient
for the discrimination of these features. Complementing die real components with imaginary components

(thus forming a complex jet) makes the features discriminable.

Figure 5.7 shows the results ofcontinuity processing. Recall that continuity is a measure of
homogeneity of a jet with respect to its surround and is used in selecting reliable features
during graph formation. Specifically, the continuity value ofajet is the average dot product of
thejet with respect to its neighborhood. See Equation 3.1.
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(a) (b)

(0 (0

Figure 5.7 - Jetcontinuity images, (a) through (c) are input images, (d) through (0 arecontinuity images.
(Black is high, white is low.) The continuity of a jet is defined as the average inner product between the

jet and its surround, (d) and (e) use 1.42 pixel radius for the surround; (0 uses a 3 pixel radius.

5.1.2 Adaptive Vector Quantization

This section presents some of the results obtained during the development of the AVQ module.
Because AVQ proceeds in two phases, learning and quantization, we provide results separately
for the corresponding phases.

The theory for the AVQ portion of our system is given in Chapter 2. Flowcharts for the
actual code can be found in Appendix B and the Macintosh dialog boxes, with their various
parametric options, are in Appendix F.

We begin by showing the results oflearning on a self-organizing vector map given a simple
(and now familiar) training set: the four corners and a cross. Figure 5.8 uses the jet array
representation ofFigure A. 1(Appendix A) to show the original random vectors before training,
the training jets, and the resulting learned vector map. Five of the nine training jets had the
largest magnitudes of their image and correspond to points at the center of each vertex. Tlie
other four training vectors also had high jet magnitudes and were selected somewhat
arbitrarily. The map was assumed to have a wraparound topology, i.e., the left side connects to
the right and the top connects to the bottom. The update gain was set at 0.2 and was
independent of iteration or jet magnitude. The neighborhood update radius was 3 pixels.
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Figure5.9showstheprogressionofthequantizationerrorduringtraininganddemonstratesa
logarithmicallyasymptoticconvergence.Learningwasterminatedafter2000iterations.

RandomVectorMap
(10x10)

TrainedVectorMap
(10x10)

TrainingVectors
(Jets)

Figure5.8-Self-organizationofavectormap.A10x10randomvectormapself-organizes,usingthe
AVQalgorithmdescribedinChapter2,toproducethevectormapshownontheright.Fiveofthenine
trainingjetsrepresentvertices:fourcornersandacross.Theremainingfourtrainingjetswereselected

somewhatrandomlyfromthefour-corners-and-a-crossdataset.

.0000

15002000

LearningIteration

Figure5.9-QuantizationerrorversusiterationforvectormapshowninFigure5.8.Notedie
logarithmicallyasymptoticconvergence.
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Figure 5.10 shows the results of quantizing the original training vectors after learning.
Note the regular placement of the training vectors in tlie vector map with the exception of the
two neighboring mappings on the right side of the map. Upon further inspection, however, one
will note that two of the training vectors are very similar in appearance; it is therefore
reasonable to expect that their mappings in the topological feature space would be proximate.
Other points of interest include a relatively untouched vector in the top row of the trained
vector map and what looks like phase transitions in the map (i.e., sections of the map in which
there are large differences between vectors). These phase transitions, or map cracks, are
caused by the mapping of high dimensional features into a lower dimensional (2D) space. By
high dimensional features we refer not to the dimensionality of the vector but to the
dimensionality inherent to the feature. Map cracking raises the lower bound on minimum
quantization error and can be eliminated by determining the dimensionality of the features and
using vector maps of that (or greater) dimension. We have not been concerned with map
cracking in our work because our quantization error after training has been acceptably low.

Trained Vector Map
(10x10)

Training Vectors
(Jets)

Quantized Vector Mapping

Recovered Model Vectors

Figure 5.10 - Quandzation results using trained vector map (from Figure 5.8) and the original training
vectors. Shown at right isa mapping of die training vectors mapped to the trained vector map. Below is
the set of model vectors (i.e., vectors taken from die vectormap) that result from the quantizationof die

training vectors. Visual inspecdon indicates (and numerical analysis confirms) that the model vectors are
almost idendcal to the training vectors.
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Figure 5.11 shows two feature images: the results of a vector quantization operation on die
jets of a Stickville cross and an infrared truck. Each color in the feature image represents a
different feature. (For presentation purposes, the feature images are 2x larger than the input
images.) The model vectors, against which this data was quantized, were not learned, but were
hand generated from the features shown in Figure 2.11, i.e., six oriented lines and pairwise
intersections of those lines. In addition, both the model vectors and jets in this data set are real.
The vertical red patches in the cross feature image correspond to patches of vertical line
features (label 3 in Figure 2.11); the horizontal blue patches correspond to patches of horizontal
line features (label 0 in Figure 2.11). In the center of the cross feature image is a lighter blue
square that represents a right angle cross feature (label 8 in Figure 2.11). The second feature
image, that of an infrared truck, is quantized using the same model vectors designed for
Stickville and shows a patchwork of features. Nonetheless, it may be observed that two
familiar features (horizontal and vertical lines) are present in the truck feature image and in
appropriate locations. The fragmentation of the truck feature image leads to a lack of
reliability in the selection of features for nodes in the ensuing graph formation process and is
substantially reduced by learning the proper model vectors, reducing the jet spatial frequency,
and by using complex jets.

I
+

Figure 5.11 - Feature images using model vectors from Stickville. (a) isan input Stickville cross, (b) is
an input infrared truck, (c) is the feature image for the cross, and (d) isdie feature image for truck. The
model vectors against which the jets for (a) and (b) were quantized were handcrafted and represent the

features in Figure 2.11.
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5.1.3 Graph Formation

This section presents examples of processing used in the generation of stable object graphs.
The theory for the graph formation portion of our system is given in Chapter 3. Flowcharts for
the actual code can be found in Appendix C and the Macintosh dialog boxes, with their various
parametric options, are in Appendix G.

(a)

(d)

(b) (c)

»

•

•

i

«

©

•
• •

•

•

.- «•

• Jet Mag. Local Maxima
•

• • Final Sampling Array

9 • And mCoincident

(e)

Figure 5.12 -The node selection process combines quantization error with jetcontinuity (Equation 3.3) to
modify an initial sampling array based onsaliency. The computed sampling array selects feature labels
from the feature image and assigns them tonodes in the graph being formed, (a) shows theinput object,
(b) the quantization error image, (c) the continuity image, and (d) the computed r-array. Black ishigh;

whiteis low. (e) showsthe initial sampling array in blackand the final sampling array in grey.

Figure 5.12 graphically illustrates the process by which nodes are selected for inclusion in
object graphs. Recall from Chapter 3 that a feature image forms the substrate for all node
labels and that the saliency measure is used to initialize the sampling array (i.e., saliency is the
primary selection criterion). Recall also that a combined function of label accuracy and
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reliability is used to adjust the sampling array to obtain salient and stable features. Figure 5.12
shows the error associated with the vector quantization for the toy biplane and is a measure of
label accuracy, i.e., how close each jet is to the model vector to which it was quantized. Also
shown in Figure 5.12 is the continuity image which gives the degree similarity each jet has
with its neighborhood. In this data set, the neighborhood is defined with a radius of 1.42
pixels. The two arrays, combined using Equation 3.3, form the r-array, also shown in Figure

5.12. In this particular computation, p = 0.7. The final frame of Figure 5.12 shows the initial
sampling array (i.e., the local maxima of the saliency function) in black and the final sampling
array in grey. In one case, the circled black pixel, the initial sampling point remained

unmodified by the r-array.

(b)

(0,131)

(3,102)

(6,20_9)

9,25)

(10,169)

(C)

Figure 5.13 - The nodes ofa labeled, locally connected graph are formed bysampling a feature image
with a sampling array, assigning the selected feature labels to nodes, and connecting the nodes, (a)

shows the feature image forthe object inFigure 5.12a, (b) shows the sampling array, and (c) shows the
resulting graph.

65



The final results of the graph formation process are illustrated in Figure 5.13. The feature
image is sampled by the sampling array with the selected features being assigned to nodes in
the graph. The edge constraints, imposed parametrically and by the relative size of the object,
are used to generate connections between the nodes. The parenthesized text near each node in
the graph of Figure 5.13 provides the index number and the feature label of the node. For
example, (2,117) indicates node number 2 with feature label 117. The feature set used in this
example comes from a 15 x 15 vector map and was generated using jets from a large number of
similar objects. Topologically proximate features are therefore labeled consecutively or
consecutively on modulo 15.

5.1.4 Dynamical Link Graph Matching

This section presents an initial demonstration of DyLink graph matching in which seven
handcrafted graphs of Stickville objects are used. The theory for the graph matching portion of
our system is given in Chapter 4. Flowcharts for the actual code can be found in Appendix D
and the Macintosh dialog boxes, with their various parametricoptions, are in Appendix H.

We begin this section by considering the behavior and stability of the Rail Capture
dynamics. We define a Rail Capture function that, when given a correlation-input (i.e.,
correlated, uncorrelated, or anti-correlated), responds with the Rail Capture dynamic of
Equation 4.24. We define a trial to besome number ofiterations where a different correlation-
input is applied to the Rail Capture function at each iteration. Let the correlation-inputs to the
Rail Capture function be random and specified by probability (e.g. 20% correlated firings, 20%
anti-correlated firings, 60% uncorrelated firings).

Recall that a characteristic of the dynamic is that it drives the link value to a rail and, once
there, tends to stabilize it. If we take a large number of trials for a given correlation
distribution and measure (at the end of each trial) the number of times the link is driven to
which rail, we get an idea as to its behavior. What we find is that the rail to which the link is
driven is closely associated with the input distribution, i.e., a high ratio of correlated/anti-
correlated firings leads to a predominance of high-rail latchings and vice versa. Ratios near
one lead to a lack of rail latchings entirely.

The Rail Capture dynamic is insensitive to P (the peak value of the inverted parabola) but
looks best in the neighborhood of 0.15 to 0.25. Figure 5.14 gives an example of the output
from one set of trials for P=0.10 and should be interpreted in the following manner. The axes
of the figures represent the amount ofcorrelated or anti-correlated input that is applied to the
function. Uncorrelated input is implied by

%uncorrelated = 100- (%correlation + %anti-correlation). (5.1)

Apoint in the upper-left triangle of any figure gives the relative amount of rail latchings that
occur given the pixel's location with respect to the axes (i.e., the correlation-input to the
function). For example, a 50% correlated input combined with a 10% anti-correlated input
(implying a 40% uncorrelated input) shows that the function will almost always latch to the
high rail (i.e., the relevant pixel in the High Rail Latching figure is high while the
corresponding pixel in the other figures is low). Conversely, for a 0% correlated input
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combined with a 0% anti-correlated input (implying a 100% uncorrelated input), the first two
figures show few, if any, rail latchings while the third shows a strong tendency to no latchings.
This is, of course, the desired behavior. Note that the lower-right triangle is, and should be,
zero. That area represents points at which

% correlated + % anti-correlated £ 100. (5.2)

% correlation % correlation % correlation

% anti-correlation

Hiah Rail Latching Low Rail Latching No Latching

Figure 5.14 - Behavior ofthe Rail Capture dynamic with respect todifferent correlation-inputs. White is
high and black is low. The horizontal axes represent the relative amount ofcorrelated input provided to
thefunction whereas vertical axes represent the relative amount ofanti-correlated input. Uncorrelated

input is impliedby Equation 5.1.

Trials 1000

Iterations/Trial 100

J(t=0) 0.500000

P 0.100000

dl 1.000000

d2 1.000000

Table 5.1 - Parameters used to generateFigure 5.14.
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Figure 5.15 shows seven objects segmented into their features. Graphs are formed by
generating edges between nearest neighbor, collinear features. Saliency values are arbitrarily
assigned in a connected sequential manner.

i i - + - / \

A r-n i 1

/_\ / / I I i—i—i
i \ L-J I I

i r-i

I i I

i i

Figure 5.15 - Stickville objectsmanually segmented into theirfeatures. The objects are referred to as
Polygon, Cross, Triangle, Letter A, Rhombus, Square,and Window.

The first thing to notice about the data set is that the similarity between objects varies from
unrelated to very similar. ThePolygon, for example, is completely unlike any other object. As
a result, the graph matcher easily recalls the Polygon which has no competition from the other
objects. See Figure 5.16. (In Figures 5.16 through 5.21, no feature-correlation based links are
used. Due to the sigmoidal gain, g-cell activity is at a minimum at 0.438 and at a maximum at
0.562. Theconvergence time window is 20 iterations.) TheTriangle and the Letter A objects
are similar, consequently the graph matcher recalls both when either is input but recalls the
correct graph more strongly. See Figures 5.17 and 5.18. While the Square and the Cross have
little in common, both are used to form the Window. Figures5.19 and 5.20 show the responses
of the graph matcher to the Square and the Cross, respectively. Note that both activate the
Window, which has some features of both.

Figure 5.21 shows the response to the Window. The system incorrectly determines that the
input is the Cross. The reason for this is the way in which the system measures the degree of
match. The Cross graph contains 5 nodes whereas the Window graph contains 21. Because
the Cross graph is a subgraph of the Window graph and because it consists of only three
features, it becomes fully active long before the entire Window graph. A fully active Cross
graph will be fully bound and will maximally activate its g-cell. The Window graph,
containing more nodes and more features takes longer to fully bind and therefore activates its
g-cell to some value less than the maximum. We note here that this problem is highly
pathological and is only easily developed by using the simple Stickville features employed in
this example.
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Figure 5.16 - Graph matching results when the Polygon is theinput. Theonly active g-cell corresponds
to the Polygon; all others are at their base values.
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Figure 5.17 - Graph matching results when die Letter Aisthe input. The only active g-cells correspond
to the Letter A and die Triangle; all othersare at their base values.
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Figure 5.18 - Graph matching results when the Triangle is the input. Theonly active g-cells correspond
to theTriangle, LetterA, and Rhombus; all others are at theirbase values.
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Figure 5.19 - Graph matching results when the Cross is the input. The only active g-cells correspond to
the Cross and the Window; all others are at their base values.
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Figure 5.20 - Graph matching results when the Square is the input The only active g-cells correspond to
the Square and the Window; all others are at their base values.
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Figure 5.21 - Graph matching results when the Window is the input. The only active g-cell corresponds
to the Window, the Cross, and the Square; all othersare at theirbase values. See die text for an

explanationof the incorrectassociation.
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5.2 Recognition in Toyland

This section shows processing results on a module by module basis for an end-to-end
recognition task. Figure 5.22 shows the objects that make up the database: a toy biplane
viewed head-on (0°), a toy biplane viewed from the side (90°), a toy boat, a toy car, a toy
helicopter, a toy elephant, a toy football (USC), a real phone, and a real shoe. Although the toy
biplanes at 0° and 90° are the same physical object, the orthogonal views are dissimilar enough
to store as separate data objects and are so treated. For completeness, Figure 5.23 shows the
Laplacian of the objects of Figure 5.22.

^^r '* " - 5
~^^» jfl*^^w.^^H

IS i' t \wB
g ::

Figure 5.22 - Model objects used to form graph matcher database. Insequence, the objects are a toy
biplane viewed head-on (0°), a toy biplane viewed from the side (90°), a toy boat, a toy car,a toy

helicopter, a toy elephant, a toy football (USC), a phone, and a shoe. All images are 128 pixels x 128
pixels x 8 bits.
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Figure 5.23 - 5x5Laplacian of themodel objects from Figure 5.22.
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Figure 5.24 - Jetmagnitudes of the model objects from Figure 5.22.

The jet magnitudes of the model objects are shown in Figure 5.24 and represent the
saliency for each object. They were generated from complex jets using the MWD processing
described in Chapter 2 with 0=6, S=4, A,min=4 pixels, a=7r/2, and with orientation column
tuning on. The jets used for feature vectors employed the same parameters except were one
octavedown, i.e., ^min^ pixels.

Approximately 1100 jets were arbitrarily selected15 from Morlet blocks16 for use as
training vectors for a self-organizing vector map. The AVQ processing described in Chapter 2

15 Selection of jets was subject to die constraint diat their magnitudes exceed a direshold of 50% of the
difference between the maximum and minimum jet values for a given Morlet block. Thevalue of 50% was
a somewhat arbitrary selection in itself asdie system isextremely robust with respect to tliis direshold and
typically functions well at values from 30% to 70%.

16 The jets were taken from Morlet blocks Qiat were formed from the model objects images ofFigure 5.22 as
well as 30 similar images.
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was used to train the 15x15 vector map shown in Figure 5.25. A neighborhood radius of 3.0
and a peak update gain constant of 0.3 were used. The update gain was made to be a function
of jet saliency and decreased linearly with iteration. Map wraparound was enabled so that the
left side of the map was connected to the right and the top was connected to the bottom.
Training occurred for 40000 iterations. Figure5.26 shows the running average of quantization
error over iteration. Figure 5.27 shows a 2D histogram of the trained vector map with respect
to the training jets; a large value in the histogram (black) indicates a large number of training
jets mapping to that model vector in the vector map.

Figure 5.25- 15x15 vector maptrained using 1080 jets from 39 images.
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Figure 5.26 - Running average of quantization error over iteration for the vector map inFigure 5.25. A
totalof 40000 iterationswere used to train the map; for presentationpurposes,only 25000 iterationsare
shown. Also forpresentation purposes, theinitial quantization error of 0.320 at iteration 0 is eliminated.

Each data point is determinedat the end of 100 iterations.

Figure 5.27 -2D histogram oftrained vector map (Figure 5.25) with respect to die 1080 training jets.
Black is high, white is low.

After the model vectors have been learned, jets from the Morlet blocks of the model objects
are quantized. Figure 5.28 shows the feature images for each of the model objects. Because
there are a possible 225 features and only 32 available colors, there are several features mapped
to each color. This makes it a little difficult, but not impossible, to get an idea of the feature
distribution for each model object.
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Figure 5.28 - Feature images ofthe model objects. Because there are 225 possible features and only 32
colors available, several features are mapped to each color.

The processing described in Chapter 3 was used to generate graphs for subsequent
matching; a subset of these graphs is shown in Figures 5.29 and 5.30. The minimum distance
between nodes was set at 5 pixels and the maximum distance was 30 pixels. The minimum
number of inbound neighbors was 3 while the maximum was 8. Candidate nodes were
required to have a corresponding saliency value of greater than 50% of the maximum minus
minimum values. As was the case earlier, the value of the saliency threshold was not critical;
values between 30% and 70% work quite well, p, used in the compulation of the the T-array,
was set to 0.70. The r-array was filtered twice with a 3x3 median filter to eliminate spurious
local maxima.
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Figure5.29-Objectgraphsofbiplaneat0°,biplaneat90°,andcar.Eachnodeislabeledinthe
followingmanner(nodeID,featurelabel).

78



(0,63)

3,78)

CM!?

(9,165)

(13.1781

(1,65)
(0,48)

Figure5.30-Objectgraphsofdieboatandthehelicopter.Eachnodeislabeledinthefollowingmanner.
(nodeID,featurelabel).

Thefirsttestofthesysteminanend-to-endrecognitionmodewaswiththemodelimages
(Figure5.22)usedasinput.Thesystemwaseasilyabletorecognizeeachoftheninemodels.
Figures5.31through5.35showtheg-cellactivityoveriterationforeachofthemodelinput
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cases. (Recall that g-cell activity is a measureof the degree of graph matching with respect to
each model object.) From those figures it may be noted that recall for this test was perfect
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The next system test demonstrated the ability of the system to recognize an object at
varying aspect angle. The object chosen was the biplane which had 0° and 90° aspect models
already stored in the database. The system was presented with 19 views of the biplane from 0°
to 90° in steps of 5°. Figure 5.36 shows the 19 biplane images and Figure 5.37 shows the
response ofthe system to those inputs. Note that the system correctly recognizes the input as
biplane 0° for aspects 0° through 25° and as biplane 90° for aspects 60° through 90°. Between
aspects of 25° and 60°, the system is no longer consistently accurate although responses of
biplane 0° and biplane 90° dominate.



Figure 5.36 - Aspect test inputs: toy biplanes from 0° to 90° in increments of5C
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Figure 5.37 - System response to aspect inputs ofFigure 5.36. The system correctly recognizes the
inputs for 25-30° aspect variances and misses only occasionally elsewhere in the 90° interval.

(Responses for five ofthe model objects are not shown here asnone ofthose five showed significant
acdvity in this test.)

The third system test involved various distortions on the input objects: scale, in-plane
rotation, lighting direction, partial occlusion, and additional aspect changes. Figure 5.38 shows
scale, rotation, lighting, and aspect variations on the biplane 90° model and aspect variations,
only, on the car model. Figures 5.39 through 5.42 show the system responses to those inputs.
In each instance, with one exception, the system recalls the correct model. The failure of the
rotation case was expected and is due to the poor rotational invariance of the features. It
should also be noted that the failure was not a spectacular one: the second strongest response
for the rotated input corresponds to the correct model. Figures 5.43 through 5.45 show four
partially occluded helicopters and the corresponding system responses. In each occluded case,
the system easilyrecalls the model helicopter.
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Figure 5.38 -Test inputs distorted by (a) elevadon aspect of15°, (b) elevation aspect of30°, (c)
scale reducdon of25%, (d) lighting direcdon shift of 15°, (c) lighting direcdon shift of30°, (f) in-

plane rotadon of 17°, (g) azimudi aspect of 80° (-10° relative), and (h) azimuth aspect of 100°
(+10° reladvc).
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Figure 5.43 - Test inputs of helicopters distorted by partial occlusion.
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The final system test looked at the effects of non-zero mixing ratios. The relative mixing
factor for the model plane was set to 1.0, i.e., all shareable nodes are shared by all graphs that
can share them. Because not all graphs contain the same exact sets of features, the absolute
pattern mixing factors are expected to be less than 100%. This is borne out in Table 5.2 which
shows the absolute pattern mixing factor for each model subgraph.

Model

Absolute

Pattern Mixing
Factor

Boat 0.13

Biplane 0° 0.07

Biplane 90° 0.03

Car 0.10

Helicopter 0.09

Elephant 0.12

Football 0.08

Phone 0.04

Shoe 0.10

Avg 0.09

Table 5.2 - Absolute pattern mixing factors for the test database when the relative muting factor issetto 1.0.

The effect of a non-zero mixing factor on the recognition process was noticeable though
not catastrophic. All undistorted models, when input to the system, were correctly and easily
recognized. When the system was presented with the distorted versions of the models, it
usually failed to correctly recognize the input although the correct model subgraph was usually
oneof the top threecandidates for correctrecognition.

5.3 Summary of Results

We have demonstrated the efficacy of our system in the role of 2D object recognition.
Specifically, the system was provided with nine greyscale objects from which a database was
formed. When provided as input, the system was able to correctly classify each model object.

In addition, the system was shown to be robust with respect to a variety ofdistortions and
variances. The system demonstrated robustness to perspective by correctly recognizing a test
object over at least 25° of aspect angle both in azimuth and elevation. Scale robustness was
shown when the system recognized a test object reduced 25% in size. The system correctly
recognized four cases of a test object occluded in four different ways, including one in which
the obscuration was over 50%. The system performed well under variable illumination
conditions recognizing the test object under shifts in lighting direction of 15° and 30°. The
system failed to recognize a test object with approximately 17° of in-plane rotation; in this
case, the response corresponding to the correct object was the second strongest.

The effect of non-zero mixing factors was explored by forcing the model graph to a 100%
relative mixing factor which corresponded to an average absolute pattern mixing factor of 9%.
Performance at 100% relative mixing was degraded: the system correctly recognized the
undistorted model objects but failed in most distortions.
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Chapter 6 - Conclusion

6.1 Summary

Wehave developed and demonstrated a system that performs object recognition using adaptive
feature extraction and dynamical link graph matching. The system was tested with a database
of nine objects derived from greyscale images. Undistorted objects and objects distorted by
scale, perspective, rotation, partial occlusion, and lighting direction were presented to the
system. All were correctly recognized except one. The exception was the rotationally
distorted object; in that case, the second strongest response came from the correct model. The
system was also tested using a relative mixing factor of 100%. Undistorted object recognition
remained completely intactwhiledistorted object recognition was degraded.

The adaptive feature extractor consists of an edge enhancer, a Morlet wavelet
decomposition (MWD) module, and an adaptive vector quantization (AVQ) module. The edge
enhancer uses a 5x5 Laplacian to bring out edges and reduce variable lighting effects. The
MWD uses Gabor functions as (Morlet) wavelets to decompose an input image into N2
components per kernel. Each Morlet wavelet has a characteristic orientation and spatial
frequency; our MWD uses six orientations and five spatial frequencies. Jets (feature vectors of
Morlet wavelet components) are used to characterize the image from the perspective of the jet's
position. Jet magnitudes are used as a saliency measure where the larger magnitudes indicate
greater salience.

The AVQ module operates in two modes: learning and quantization. In the learning mode,
a large number ofjets are passed to the AVQ module which learns their distribution with a self-
organizing vector map. The learning need take place only once or whenever the distribution of
the jets has significantly changed. After learning is complete (i.e., after the vector map has
stabilized), the second mode, quantization, may be invoked. Invector quantization, the goal is
to find the model vector from thevector map that will best represent an input jet. If thesystem
has learned the distribution of the jets and if the input jet fits the distribution, then the selected
model vector will bea good approximation of the input jet. Because there are a finite number
of model vectors, it is possible to represent the input jet with only a scalar label that
corresponds to the best fit model jet. In our system, N2 jets are passed from the MWD to the
vector quantizer which, in turn, creates a feature image of N2 model vector labels. The feature
image is passed to the next processing module which generates a graph.

Two types of graphs are employed: single-object input graphs and multi-object model
graphs. The former is used as input to the graph matcher whereas the latter forms the database.
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Non-zero mixing factors may be applied to model graphs (i.e., single-object model subgraphs
may have shared nodes) and while they result in increased storage capacity, they also lead to a
degradation of the recall process.

The graph formation module converts a feature image into a labeled and locally connected
graph. Features from the feature image are selected as node labels based on their saliency,
their label accuracy (quantization error), and their continuity (similarity to neighbors). In
addition, a minimum distance constraint is applied that requires a minimum separation between
candidate nodes. After the node labels have been selected, they are connected according to
maximum distance, minimum number of neighbors, and maximum number of neighbors
constraints. Because the graphs must possess some degree of robustness to scale, the distance
constraints are made a function of the size of the object. Completed graphs are passed to the
graph matcher for comparison with model subgraphs and thus recognition may occur.

The graph matcher is based on Dynamical Link Architecture and consists of three neural
planes with various intra- and inter-connections. Graphs are implemented as neural networks
in which the labeled nodes are artificial neurons and the edges are synapses. The input plane
holds the input graph, the model plane holds the model (database) graph, and the grandmother
plane holds grandmother cells. Grandmother cells, or g-cells, signal the degree of match for
each stored pattern. Two types of links are employed. J-links are the signal carrying
connections commonly associated with the synaptic function but are variable during non-
learning operations, i.e., J-links are dynamical links. For each J-link, there is a T-link. T-links
provide an upper bound on their respective J-links. In our system, only the connections within
the model plane are dynamic; all other links are fixed at the T-link value.

The input plane neurons are connected to model plane neurons such that only those neurons
with identical or highlysimilar labels are joined. Model plane neurons are connected to g-cells
such that all the nodes of a single-object model subgraph are joined to a unique g-cell; each g-
cell, therefore, signals the combined activation of a single model pattern.

The recall procedure is a two phase operation: activation and readout. The activation phase
begins with the external activation of a small ensemble of input plane nodes. These nodes
transmit theiractivations to similarly labeled nodes in themodel plane. Connected nodes in the
model plane that are simultaneously active have their J-links strengthened thereby binding
them together more tightly. Conversely, connected model plane nodes that are of opposite
polarity (i.e., one active and one inactive) have their dynamical links weakened thereby
disconnecting them. This is the essence of the graph matching solution: subgraphs of model
plane nodes that match subgraphs of input plane nodes are bound together whereas nodes that
do not fit the active input plane ensembles are disconnected.

The second phase, the readout phase, occurs immediately after each activation phase. The
objective of this phase is to measure the degree of binding that has taken place in each model
subgraph and thus provide information as to the degree of the match. The readout phasebegins
with the full activation of the input plane and hencea substantial activation of the model plane.
After activity in the model planehas stabilized, the inputplane is deactivated. Because model
plane interconnections are symmetric, there is the possibility of model plane nodes exciting
each other in a stable manner. This possibility is only a reality if the J-links have reached a
sufficient strength so as to allow input activations to exceed the neural threshold. After
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activations have stabilized again (without input plane activation), those model plane nodes that
are active provide indications as to the degree of binding that has occurred. The model plane
nodes transmit their activations to their respective pattern g-cells which respond as a
continuous function of their inputs. Monitoring g-cell activity, then, provides an indication as
to the degree of match for each pattern.

The next cycle begins by restarting the activation phase; a new input plane ensemble is
activated and the dynamics are repeated. The process continues in this cyclic fashion until g-
cell activity is determined to have converged at which point the g-cells may be read and the
winner declared.

The entire system may be implemented neurally. Neural edge enhancers currently exist in
the form of regularization nets [Poggio,Torre, and Koch, 1985] and boundary contour systems
[Grossberg and Mingolla, 1987]. The Morlet wavelet decomposition may be implemented
with neurons possessing Gabor-shaped receptor fields, similar in manner to Nature's
implementation [Jones and Palmer, 1987]. Orientation column tuning, fashioned after the
description by [Hubel and Wiesel, 1974] may be implemented by competitive connections.
Self-organizing vectors maps have been described in neural terms by [Willshaw and von der
Malsburg, 1976] and [Kohonen, 1988]. Neural-based graph generation has been described by
[Reiser, 1991]. The DyLink graph matcher is currently implemented as a neural network.

6.2 Observations, Limitations, and Extensions

It is probably the case that, for most systems developed for degree purposes, there are more
limitations and possible extensions than there are accomplishments. It is often the purpose of
such systems to provide proofs-of-concept rather than to function in ambitious real world
environments. It is our belief that we have developed a system of the former variety and that
further development would be necessary for it to be categorized as one of the latter. It is with
that in mind that we itemize some of the current limitations and possible solutions.

6.2.1 Multiview Recognition

Perhaps the most obvious requirement for a more generalized visual recognition system is that
it be able to recognize objects from a wide range ofaspects. We have demonstrated an ability
along those lines by using multiple stored views of the same object and showing robustness to
perspective. While the demonstration was not intended to prove 3D object recognition, it
points to the ability of the system to achieve that goal given certain improvements. There are
two ways in which the system can be made responsive to 3D. The first is as was demonstrated
in Chapter 5, i.e., by using multiple object graphs for the same object. This approach is,
however, highly wasteful ofcomputational resources in that object graphs from similar views
will contain similar subgraphs thereby requiring duplication of those subgraphs for each object
graph. This brute force approach may work well in limited domains with small numbers of
objects but is not expected to scale well. The preferred method would be to use a single 3D
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aspect graph for each object. Of specific value to the system would be the methodology
employed by [Reiser, 1991] in which 3D graph representations are built by incorporating only
those features that remain stable over perspective. Such a methodology would be a welcomed
replacement of the current graph generation process which uses only indirect measures of
stability and is non-neural. The use of 3D aspect model graphs would, unfortunately, require
modifications to the readout architecture and dynamics of the current graph matcher. These
modifications are expected to be minor. Their purpose would be to require readout values to be
based on contiguous subgraph activation and not multiple disjunct activations throughout the
graph.

6.2.2 Negative Recognition

Another observation regarding the system is that it does not explicitly supply a negative
recognition response. Instead, the system indicates the strength of the matching process and
provides relative information regarding the ordering of candidates. We do not consider this
behavior to be a limitation; indeed, it shows a measure of flexibility. Simple implementations
of the system may threshold g-cell outputs thus providing a capacity for negative recognition
results. More complex systems may use our system as a lower-level element in which results
from several g-cells are combined to produce an inferred decision.

6.2.3 Expectation Driven Perception

As currently implemented, the g-cells function only in a feedforward capacity, monitoring the
strength of the JM-links. The originally proposed architecture, however, provided for the
existence of connections from g-cells back to model plane neurons, i.e., JMG-links. Such
connections were actually implemented early in the research but weresubsequently disabled to
reduce the scope of the analysis. The JMG-links, augmented with weak winner-take-all JG-
links, were designed to improve the speed of recognition. The idea is that as one model-
subgraph became dominant, its g-cell would become stronger than the others. The stronger g-
cellwould inhibit other g-cells while, at the same time, feeding its excitation back to its model-
subgraph. (Early experiments did, in fact, bear this dynamic out.) If the g-cell's were properly
biased, the losing g-cells would feedback inhibition to their model-subgraphs and the system
would declare, rather quickly, a winner.

One very powerful side-effect ofsuch ascheme (sans competitive JG-links) is that it allows
top-down input to guide the matching dynamics. Top-down control would function in the
following manner. An input object is applied to the system. Based on other, perhaps
contextual, information a higher level process determines that there is some likelihood of the
object being a widget. Thathigher level process activates the g-cell (corresponding to widget)
commensurate with the degree oflikelihood. The g-cell, through the JMG-links, provides some
degree of activation to its model graph thereby biasing the system in the direction of
recognizing a widget. With such a top-down influence, the system would demonstrate
expectation-driven perception [Arbib, 1989], that is, the system would tend to recognize what it
expected to see.
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6.2.4 Implementation Issues

Our work is implemented on a Macintosh Hfx. The processing rate is currently limited by the
Morlet wavelet decomposition which takes approximately 30 minutes per image at six
orientations, five spatial frequencies, and with zero-padding enabled. All other processing is
on the order of seconds. (AVQ training is performed off-line and is effectively accomplished
in less than 20,000 iterations taking approximately 30 minutes.) Obviously, such an
implementation for a real-world application is unacceptable. One of the benefits of the neural
approach, however, lies in its parallelism and thus in its implied speed. MWD has been
demonstrated at approximately frame-rate speeds by [Anderson, 1990] using a DataCube. In
addition, optical implementations of Morlet wavelet transforms are feasible [Hughes, 1989];
such computations are limited only by the speed of the detectorarray readout device and is on
the order of microseconds. As noted earlier, the self-organizing vector map is inherently a
neural network: each vector in the vector map is represented by the synaptic weights of a single
neuron. Such a system, therefore, performs vector quantization in parallel. We have used a
15x15 vector map in our system; off-the-shelf hardware necessary to efficiently implement that
approach currently exists. The graph generation module, while not a neural paradigm, is highly
amenable to both parallel and distributed processing. The graph matcher, being a neural
paradigm, is also highly parallelizable and amenable to distributed processing. We therefore
conclude that a fast, perhaps real-time implementation of our systemis feasible.

6.2.5 Scale and Rotation Robustness

Chapter 5 demonstrated a wide variety of robustness to distorted input. Lacking, both in
theoretic and empirical terms, however, is robustness to rotation. In addition, we emphasize
here that the system only possesses a certain degree of robustness to scale and is not
invariant17. Both of these limitations are due exclusively to the fact that the low-level features,
i.e., the Morlet jets, are intentionally sensitive to rotation and spatial frequency. In the case of
scale, because each wavelet has a finite bandwidth, a feature will move in and out of a filter's
frequency range as its size changes [Buhmann, Lades, and von der Malsburg, 1990]. Consider
the jet image representation of Figure A.lb (Appendix A). Buhmann et al. showed that a
variation in scale results in a shiftof component values along the spatial frequency axis. Thus,
size shifted features may be represented by similar jets with the only difference being a shift in
spatial frequency. Similarly, achange in rotadon results in a shift along the orientation axis. A
jet representing a rotated feature, then, contains the same information but ina lexicographically
different arrangement.

The system need not suffer from scale and rotational dysfunction. A modification to the
system would employ multiple recognition iterations after the MWD using mutated vector
arrangements to determine the best rotational and spatial frequency positionings. Such a
scheme would demonstrate the same lincar-Ume de-rotation effects found in the human visual

17 Indeed, the system lias demonstrated failure in the case ofa 50% scale reducdon of the Biplane 90° object
of Figure 5.22.
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system [Shepard and Metzler, 1971]. A faster alternative would be to employ parallel
implementations of the post-MWD system in a genetic-algorithm sort of approach.

6.2.6 Computational Complexity

6.2.6.1 Space Complexity

Data densities vary in our system from high density in the earliest processing stages to lower
densities in the final stages. See Figure6.1. Specifically, if the input image is nxn(x 8 bits) the
Morlet wavelet decomposition returns a data structure that is nxnxSxOx2 (x b bits) where S and
O are the number of spatial frequencies and orientations used by the decomposition (4 and 6,
respectively) and the factorof two is due to the use of complex numbers. For our work, n=128
and b=32 which corresponds to 4-byte floating point values. ([Anderson, 1990] has
demonstrated 8-bit integer operation in his system but it is unclear to us at this point whether
that result is relevant to our application.)

Input Image Morlet Block Feature Array Object Graph

\ \ V ^*2
s*o ^1/

X^£>\
n

nxn

<Rn k \
i4U U i5

nxn

n

nxnxS xO dxd

Figure 6.1 - Datadensides for the system as implemented. TheMorlet blockandthe feature array scale
as a constant function on the image size. Thehighest complexity data structure for the graph

representation is the connection matrix which scales 0(d2) where dis the number of nodes in the graph.

The vector quantization stage uses an mxm (15x15) model vector map to quantize the
SxOx2 dimensional jets produced by the MWD. The resulting data array of nxn feature labels
is currently implemented using 2-byte integers, however, two compatible data reduction
schemes are possible. In the first scheme we may take advantage of the previously computed
feature saliencies and form features only as specified by the saliency-driven portion of the
graph generation module. If that processing module typically produces ontheorder of d nodes
per graph and has a r-array radius of rr, then the AVQ module may be expected to produce
only d*7C*rr2 feature labels instead of n2. For our work, d was typically 15 and rr was
arbitrarily set to 5 thus the system, using this scheme, would typically produce 1178 labels
instead of 16384.

The second scheme would losslessly compress the feature labels using Huffman or a
similar method. As results in Chapter 5 indicate, specifically Figure 5.27, thejet distributions
are not smooth, i.e., they have high entropy; the system would therefore benefit from such a
compaction approach.



The final object representation is a graph consisting of typically d labeled nodes each with
approximately e edges. Our implementation of a graph uses a d dimensional vector of labels, a
d dimensional vector of relative saliencies, and a dxd connection matrix. The model plane
connection matrix, which grows as more models are added as 0(d2) on the number of nodes, is
sparsely populated and might benefit from more compact representations (e.g., linked lists). It
is not clear to us at what point the space-time tradeoff would make such compactions viable but
it is expected to be a function of the computational platform as well as the implementation.

6.2.6.2 Time Complexity

Characterizing the early processing modules in terms of their computational complexity is
relatively straightforward. As noted in Chapter 2, the wavelet decomposition occurs with the
use of a fast Fourier transform that is 0(n2 log2n) on the image size. Jet saliency requires
0(n2*S*0) operations per image. Vector quantization requires that an inner product be
computed between an input vector and each of m2 model vectors where all vectors are of
dimension S*0; the number of operations for vector quantization is thus bounded by
0(n2*m2*S*0). Section 6.2.4 describes ways in which these algorithms may be parallelized,
thereby reducing the temporal complexity at theexpenseof increased processing requirements.

The graph generation module computes feature stability and uses computations already
made in earlier processing stages for jet saliency and feature accuracy. Feature stability
(Equation 3.1) is measured by jet continuity and requires, at most, 0(n2*rc2*S*0) operations
per image where rc is the small circular radius of the neighborhood, OMy. As suggested by
Section 6.2.6.1, it is possible to reduce the complexity of this operation by computing Equation
3.1 only in the neighborhood of salient features. The resulting complexity is
0(d*rp2*rc2*S*0) operations where d*rr^ « n2.

While subgraph isomorphism (SI) is known to be in the class of NP-complete, the graph
matching module of our system is not a solution to that problem18. Although we have not
attempted to explicitly ascertain the computational complexity of the graph matcher, our
experience is that it does not exhibit non-polynomial behavior. The discussion that follows
does not contain a rigorous proof of convergence19 but generally describes our experience in
that area and how effects such as gallery scaling and graph mixing may affect convergence.

From Figure 4.2 it may be noted that the graph matcher is operated by a sequence of
parallel operations in which the system is perturbed and then allowed to settle to equilibrium.
Two types of convergence may be noted: neural and pattern. Neural convergence is observed
when the system equilibrates after a perturbation such as a spotlight or floodlight activation.

18 The SIproblem, among odier things, assumes the use ofunlabeled graphs and finds allmatching subgraphs,
i.e., the best solution. Our graph matcher uses labeled graphs (which significandy reduces ambiguity) and
finds only good solutions.

19 Indeed, it is likely that to obtain such a proof, the system would have to be so simplified as to preclude its
proper functioning.
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Experimental results indicate that the neural convergence time is generally quite small and
invariant: the system typically reaches a neural equilibrium in about 2 or 3 iterations20.

The second level of convergence, pattern convergence, is a higher level process that is
determined to have occurred when the output from the strongest g-cell remains fixed for some
specified number of system iterations. Pattern convergence signifies that one pattern has
dominated the recall process for a "long" time. In all of our work, the pattern convergence
window is 20 iterations. Perusing the recognition results in Chapter 5, it may be observed that,
on average, pattern convergence occurs in about 20 system iterations (excluding the 20
iteration convergence window) and is roughly independent of distortion. See Table 6.1.
Distortion manifests itself in the second moment such that increased distortion leads to a

greater standard deviation of pattern convergence time about the average. These results, in
conjunction with the fact that the patterns are disjunct, suggest that the convergence rate will be
unaffected by gallery size. This is because, as implemented, the recall process for each pattern
is separate, i.e., it is unaffected by the recall of other patterns. In other words, g-cell activation
for a specific pattern is not influenced by the existence or activity of any other pattern and so
convergence rate may be independent of inter-graph ambiguity.

Object class Mean Std Dev

Undistorted 18 5

Distorted 22 15

High Mixing Ratio 70 48

Table 6.1 - Observed convergence behavior of the graph matcher for different types of objects. It is
noted that convergence rate is relatively unaffected by object distortion and is adversely affected by a

high mixing ratio.

Such is not the case, however, when the model graphs overlap and so a significant increase
in convergence time is noted when the mixing factor (Equation 4.27) is increased. Specifically,
Table 6.1 shows the effect on convergence time with the relative mixing factor set to 1.0. That
result, combined with the observation in Chapter 5 that a high mixing ratio leads to extremely
poor distortion performance, suggests that the system be operated in a low or zero mixing
factor mode.

6.2.7 Gallery Scaling Issues

In Chapter 5, we demonstrated good recognition results using a 9-object greyscale gallery.
While the use of a limited size model base may be adequate for proof of concept and certain
restricted applications, nine objects is approximately an order of magnitude below what is
useful for general recognition applications. In scaling upward the size of the gallery, the

20 In the vast majority of instances, convergence is to a stable attractor. In exceedingly rare circumstances,
the system converges to a (binary) periodic attractor.



critical issue is ambiguity, specifically, ambiguity as seen from the viewpoint of the graph
matcher: a model base ofunambiguous graphs will result in good recognition results regardless
of the size of the gallery. The difficulty, ofcourse, is tomaintain discriminability in the face of
numerous or similarly appearing objects. Ultimately, the problem becomes one of selecting
distinct and specific features while at thesame time providing theability to generalize features
and thereby remain robust to distortion.

The approach to feature extraction described in Chapter 2, along with the feature
generalizing attributes of the graph matcher, provide the necessary combination of feature
distinction and generalization. In particular, the feature extractor learns perceptually salient
features that are derived from Morlet wavelet decomposition while the similarity based
connections of the graph matcher provide the ability to generalize. [Lades et al., 1991] have
demonstrated the efficacy of using Morlet jets as features through their ability to allow
recognition of individual faces from a gallery of 88 faces. That system, in contrast to ours,
uses jets in their raw, unquantized form and so may more accurately represent features for a
specific image. It is thus observed that a limiting factor for our features may be due to the error
introduced in the quantization process. Fortunately, this limitation can be controlled by
allowing the learned model vector map to expand in size and/or dimension as a function of the
convergent quantization error. In other words, as the gallery size is increased and more
demands are placed on the feature extractor to provide distinguishable features, a model vector
map of larger size and/or dimension may be used. The larger map allows the quantized features
to span a larger feature space with the same accuracy (as specified by quantization error) or,
alternatively, to span the same feature space with increased accuracy. Using this approach, we
expect our system to scale as well as the face recognition system noted above.

6.2.8 Dealing with Complex Presentations

The function of our system was inspired by the "what" visual process that exists in the primate
brain. That process, said to occur in humans in visual cortex (VI through V4) and
inferotemporal cortex, is principally responsible for object specification or recognition. This is
as opposed to the "where" visual process the terminus of which is in posterior parietal cortex
and is responsive to object location and motion [Mishkin et al., 1983] [Sagi and Julesz, 1985].
Certain advantages are had by such a what/where scheme and include robustness to translation,
rotation, and scale without the combinatoric explosion described by [Tsotsos, 1990].

A fundamental architectural assumption made by our system is that good object
segmentation has occurred before presentation of the object to the recognition system. The
segmentation could be presumed to include the various methods attributed to the human visual
system: color, motion, stereo, texture, etc. The input to the object recognizer, therefore, is
expected to contain little clutter and cases to the contrary could be described as camouflaging
(i.e., a breakdown of the visual segmentation process such that inadequate information is
supplied to the recognition units).

A special case of the camouflage problem is one in which the segmenter is unable to
resolve multiple objects that are overlapping and thus presents the mixture to the recognizer.
Although we have not carried out experiments to explicitly determine the response of our
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system to such input, itis reasonable to expect that the system outputs would correspond to the
presented objects and their degree of uniqueness. In other words, because a local feature
extractor is used and because the graph matcher detects and builds upon binary subgraphs of
those local features, patterns of object features that are not inherently corrupted by the
occlusions will cause responses by appropriate model patterns. Presentation of apartial object,
therefore, still allows the graph matcher to recognize the object based on the revealed parts.

If, for example, the toy biplane and the toy elephant were overlapped and simultaneously
presented to the system, we would expect the system to respond primarily with the biplane and
elephant models. It is left up to a "where" system to determine the relative position ofeach.
As the amount of overlap is reduced, i.e., as the objects become more distinguishable, we
accordingly expect stronger responses from the biplane and elephant models. In another
example, we assume that the two input objects are ofthe same type, say, biplanes. In this case,
the system will respond with a single, strong biplane response; it is again left up to a "where"
system to determine the number and locations of the objects.

6.2.9 Fusion

The final extension deals with a limitation specific not only to our system, but to the majority
of visual recognition systems developed to date: the exclusive use of uni-modal data in feature
extraction and classification. Natural visual systems of sufficient complexity to perform the
generalized recognition tasks that the artificial vision community is interested in solving,
invariably process data in a variety of visual modalities. It is unrealistic to believe that
computer vision systems will be in any way competitive with these biological systems as long
as they restrict themselves to a single visual mode. Our system was initially developed for the
purpose of visual recognition using fusion where the fusion was to occur at the feature-level.
Indeed, the entire design ofthe system is predicated on its extension to multi-modal processing.
Details of that extension are too numerous to expound upon here and may be found in the
thesis proposal. The main idea, however, is that from the standpoint of the graph matcher
(which performs the actual classification), a graph is merely a collection of topologically
related features. There is no bias as to the origin or meaning of the features, only to similarity
relationships between labels. The fusion, per se, occurs during graph formation where features
from several modalities that are known to bespatially proximate are linked together by edges
(or T-links). The resulting structure is a multi-modal object graph and represents the object in
the modalities from which is was constructed. The graph matcher, containing now a multi
modal model graph, matches the inputmulti-modal graph to subgraphs in the database entirely
without modification to the graph matcher.

In this dissertation, we have described and demonstrated a mid-level objectrecognition system.
Although limited in its present form, it introduces a powerful approach to object recognition
that is built on adaptive feature extraction and dynamical link graph matching. The current
system, complemented by various modifications (some of which having been presented in the
preceding paragraphs), provides a significant alternative to existing artificial recognition
systems.
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Appendix A - Data Structures for the Feature Extractor

This Appendix introduces data structures fundamental to the feature extractor. It should be
noted that this paper did not originate many of the terms described here. They are included,
however, to provide a common basis for unambiguous explanation.

We define the image class as the class of 2D arrays where each array element is scalar. The
size of images are arbitrary for the purposes of this paper but are typically 128x128. There are
many instantiations of the image class and they are generally defined as they are introduced.
Examples of image instantiations are greyscale images, jet magnitude images, and feature
images.

A Morletjet (or jet) is defined as a vector of Morlet wavelet components. See Figure A. la.
A Morlet wavelet component is the computational result of filtering the input image with a
Gabor filter that is centered at a specific point in the image. In our system, the Gabor kernels
used in the convolution are self-similar (i.e., they are Morlet wavelets) and are unique in
orientation and spatial frequency.

A 2D array of Morlet jets is called a Morlet block (or block). See Figure 2.3b. Each jet in a
Morlet block corresponds to a pixel in the originating image.

A feature vector is typically considered to be a vector of elements where each element
contains a numeric description of the feature assigned to that place in the vector. We also use
that definition of feature vector but restrict the feature types to be Morlet wavelet components.
At some point in the processing, specifically during adaptive vector quantization, the terms
feature vector and jet may appear to be synonymous. There is, however, a subtle difference in
that we restrict the definition of a jet to be the direct computational results of a (Morlet
wavelet) decomposition of an image about a single point whereas a feature vector may be
either a jet or a vector derived from a jet.

We define a vector map to be an array of feature vectors (similar to the feature maps of
[Kohonen, 1988]). Our specific definition of a vector map requires the dimension of the map to
be two and square and that a neighborhood topology based on Euclidean distance be employed.
We use vector maps to discretize the vector space that represents our feature set which is
accomplished with adaptive vector quantization.

Ajet image is less a data structure than a graphic representation of one. Specifically, it is a
Morlet jet rearranged into a 2D depiction with filter orientation running vertically and spatial
frequency running horizontally. See Figure A.l. Jet images are useful in their ability to
graphically represent the contents of a jet. A larger data representation, called a jet image
array, is a 2D array of jet images and is used to graphically depict Morlet blocks and vector
maps.
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contains a numeric description of the feature assigned to that place in the vector. We also use
that definition of feature vector but restrict the feature types to be Morlet wavelet components.
At some point in the processing, specifically during adaptive vector quantization, the terms
feature vector and jet may appear to be synonymous. There is, however, a subtle difference in
that we restrict the definition of a jet to be the direct computational results of a (Morlet
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frequency running horizontally. See Figure A.l. Jet images are useful in their ability to
graphically represent the contents of a jet. A larger data representation, called a jet image
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Appendix B - System Flowchart
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Appendix C - Program Flowcharts for GTVQ
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Appendix D - Program Flowcharts for AVQ
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Appendix E - Program Flowcharts for SGMaker
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Appendix F - Program Flowcharts for DyLink GM
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Appendix G - Dialog Boxes for GTVQ

This Appendix contains the Macintosh dialog boxes for the program GTVQ as well as a
description of some of the parameters and options. GTVQ performs Morlet wavelet
decompositions and vector quantizations. When the programs were originally written, use of
the term "Gabor" for describing Gabor derived data structures was dominant. Since then, as
noted in Chapter2, the terminology has evolved such that these structures are now refered to as
"Morlet" or "Morlet wavelet" structures. Because the dialog boxes still contain the word
"Gabor", our descriptions of them here use both Gaborand Morlet terms to remind the reader
of the correct terminology.

Upon entering GTVQ, the first dialog box encountered is General Parameters. It is from
this box that major I/O and processing options are selected thereby introducing other dialog
boxes. Below, we describe the parameters of each dialog box.

General Parameters

Input Data Selection

This setof radio buttons specifies the type ofinput: TIFF image, unnormalized Gabor (Morlet)
block, normalized Gabor (Morlet) block, or none of the above. Selecting TIFF image forces
the program to perform a Morlet wavelet decomposition. Selection ofeither type of Gabor
(Morlet) block as input bypasses wavelet decomposition. The "None" option is used for
debugging.

Output Data Selection

This setofcheckboxes specifies the format in which the wavelet-decomposed image is output.
An unnormalized Gabor (Morlet) block is the standard data structure described inChapter 2. If
each jet in the block is normalized to unity, it is called anormalized Gabor (Morlet) block. A
mini-block contains an array of normalized jets, the positions of which have no significance.
Mini-blocks are typically used to contain a set of select jets chosen on the basis of jet
magnitude.
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Other Processing

Jet Continuity - compute and output a jet continuity image.

Jet Magnitude Output - output a jet magnitude image.

Orientation Tuning - perform orientation column tuning. Available only if the input data
type was Image.

Vector Quantization - perform vector quantization on the Gabor (Morlet) block. The
program will later ask for the mini-block containing the model vectors.

Component Histogram - analyzes the Gabor (Morlet) block and presents a histogram of
Gabor (Morlet) components.

Misc. Parameters

Continuity Radius - radius of neighborhood in jet continuity processing.

Wavelet Decomposition Parameters

Convolution Method - Complex or Real FFT.

Orientations - number of filter orientations in the decomposition.

Spatial Frequencies - number of filter spatial frequencies in the decomposition.
Highest SF Wavelength - wavelength (in pixels) ofhighest spatial frequency filter in the
decomposition.

Dist between SFs - multiplicitive spatial frequency increment. E.g., a value of 2.0 causes
the frequency to double (one octave) at each successively higher spatial frequency.

Sigma - frequency independent Gaussian rolloff (a), a = rc/x where user enters x.

Zero-Pad FFT - when enabled, prevents aliasing by doubling the effective sampling rate.

Output Magnitude Convolution Image - output the complex magnitude results of each
filter.

Output Real Convolution Image - output the real part of the results ofeach filter.
Output Imaginary Convolution Image - output the imaginary part of the results of each
filter.
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Gabor (Morlet) Block Output Options

These parameters determine the spatial frequency indices used in jet construction and jet
magnitude computation. The box is otherwise self-explanatory.

Mini-Block Parameters

These options and parameters are used in the selection of jets for inclusion in a mini-block.
Typically, the mini-blocks so formed are used as training vectors in Adaptive Vector
Quantization.

Threshold - percent of difference between largest and smallest jet magnitude, over which
each jet is considered as a candidate for selection.

Selection Window Radius - radius about the image center outside of which all jets are
excluded from selection. -1 selects the entire Gabor (Morlet) block.

Jet Selection - methods by which jets may be selected.

Thresholded Values - selects all jets whose magnitude exceeds threshold described
above.

Local Maxima - selects only those jets whose magnitudes are local maxima.
Sparseness is imposed by requiring a minimum distance between selected jets.

Global Maximum - selects only the jet with tlielargestjet magnitude.

VQ Options and Parameters

Thisbox contains parameters that affectvector quantization.

SNR Threshold - percent of difference between largest and smallest jet magnitude, over
which each jet is quantized.

Output Feature Map - output an image in which the value of each pixel corresponds to the
label of the model vector to which the respective jet was quantized.

Output Error Map - output an image in which the value of each pixel corresponds to the
error associated with the quantization of the respective jet to the closest model vector.
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Appendix H - Dialog Boxes for AVQ

This Appendix contains the Macintosh dialog boxes for the program AVQ as well as a
description of some of the parameters and options.

Upon entering Program AVQ, the first dialog box encountered is General Parameters. It is
there that the user selects the 2D vector map leaning (Kohonen 2D Learning) discussed in
Chapter 2. All other options in the General Parameters box are for analysis purposes and are
unimportant to the dissertation. Then second box encountered is the 2D Kohonen Parameters
box which contains all of the parameters for the 2D vector map learning. Those parameters
and options are described below:

Vector Map Rows & Cols - Dimensions of the vector map.

Quantization Threshold - Threshold over which training jets are allowed to affect the
vectormap during learning. Threshold is percent of maximum training jet magnitude.

Alpha - Nominal gain, a^ in Equation 2.7.

Neighborhood Radius - Radius of area effected by neighborhood updates. 3a point of
Gaussian. See Equation 2.7.

Wrap Around - When enabled, creates a seamless vector map such that the left and right
columns are neighbors as are the top and bottom rows.

Gain fn(JMag) - When enabled, multiplies the update gain by a term that is a function of
the training jet magnitude. See Equation 2.7.

Initialize with Existing Map - When enabled, initializes vector map with a stored vector
map. When disabled, initializes vector map with random vectors.

Linearly Decreasing Gain - When enabled, multiplies the update gain by a term that
decreases linearly over iteration. SeeEquation 2.7.

Convergence Threshold - Number of iterations for learning. tmax inEquation 2.7.

Averaging Window Length - Window length on quantization running average. Used for
display purposes only; has noeffecton learning.
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Appendix I - Dialog Box for SGMaker

This Appendix contains the only Macintosh dialog box for the program SGMaker (Sparse
Graph Maker) as well as a description of some of the parameters and options. SGMaker is
responsible for converting feature maps into sparse graphs. Parameters and options relating to
SGMaker are herewith described:

Selection Function - Chooses the Selection Function that specifies the most salient, reliable,
and accurate nodes. Selection Functions 1 and 2 are obsolete and Selection Function 4 is a
spare. The algorithm and results described in the dissertation are due to Selection Fn3.

Minimum Distance - Specifies the minimum distance allowed between two nodes. The
node with the greater selection value survives.

Saliency Fn Threshold - Only features pixels with saliency in excess of this threshold are
considered as candidates for nodes. Expressed as a percent of saliency maximum minus
minimum. Increases processing efficiency by reducing the number ofelements processed.

Selection Fn Lambda - p in Equation 3.3. Governs emphasis of continuity with respect to
accuracy.

Median Filter Size - Size of the 2D median filter mask (on a side) used on the saliency
array.

Filter Applications - Number of applications ofthe 2D median filter to the saliency array.

Max Distance Between Nodes - Obvious.

Min Number of Neighbors - Obvious.

Max Number of Neighbors - Obvious.

TextDataOutput - Incurs a textual description of the graph; output as a Word file.

Graph Matcher Files (DLGM) Output - Creates graph data file directly useable by the
graph matching program, DyLinkGM.

BI Graph(s) - Indicates that thegraph(s) to becreated are single-object input graphs.

BOGraph - Indicates that the graph to becreated is a multiple-object model graph.
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Labeled Graph Graphic Output - Output a TIFF file that is a graphic image of the graph,
with IDs and feature labels for nodes.

Unlabeled Graph Graphic Output - Output a TIFF file that has a graphic image of the
graph, without IDs or feature labels for nodes.

No Graph Graphic Output - Obvious.

Staccuracy Image Graphic Output - Output a TIFF file of the r-array.

Sample ArrayGraphic Output - Output a TIFF file of the Sampling Array.

JMag Local Graphic Output - Output a TIFFfile of the saliency local maxima.

Batch Input - Process all feature maps in a given folder (subdirectory).

Log Output - Dump console to a log file.

Graph Maker

Nodes

(•) Selection Fn 1 O Selection Fn 2 O Selection Fn 3 O Selection Fn 4

Minimum Distance: 1 | Median Filter Size:
Saliency Fn Threshold (%): | | Filter Applications:
Selection Fn Lambda (<=1.0):

Edges

Max Distance between Nodes:

Min Number of Neighbors:

Max Number of Neighbors:

Data Output
DText (UJord)
• Graph Matcher Files (DLGM)

®BI Graph(s) O BO Graph

Graphic Output

(5) Labeled Graph

O Unlabeled Graph
ONo Graph

• Staccuracy Image
• Sample Array
• JMag Local Max

1-2

Other

• Batch Input

• Multi-Batch

• Log output

L_Run_J Abort
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DyLink Update Algorithm 1 Configuration

fls implemented, this algorithm is for use
only with BINARY neurons. Use with
graded neurons ujill not cause a crash but
Luill also not prouide the desired results.

Update Constant: |1.0

OK

DyLink Update Algorithm 2 Configuration

<x: |1.0

k: 1.0

Y- 1.0

Decay term coefficient.
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Normalization term coefficient.
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•. j

GO

DyLink Update Algorithm 3 Configuration (T)
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