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Abstract

Desire for higher quality tests is causing increasing interest in testing for
delay and CMOS stuck-open faults. These require two pattern tests and
tests sets are usually large. Built-in self-test (BIST) schemes are attractive
for such comprehensive testing. The BIST test pattern generators (TPGs)
should be designed to ensure high pattern pair coverage. In this paper,
necessary and sufficient conditions to ensure complete pattern pair coverage
for linear feedback shift register (LFSR) and cellular automata (CA) have
been studied. The TPGs designed by using these conditions guarantee
100% coverage of all single and two pattern testable faults. It is shown
that LFSRs with primitive feedback polynomials, with large number of
terms of the form 2%, are better for two pattern testing. CAs are good
TPGs for two pattern testing, independent of their feedback rules.

If the test sequence length is unacceptable, then there is a need to trade-
off pattern pair coverage to lower test sequence length. A procedure has
been developed which helps design TPGs which maximize pattern pair cov-
erage for a given test length constraint. Robust path delay fault coverage
on some benchmark circuits indicate the TPGs designed using the proce-
dures outlined in this paper provide much higher fault coverage than other
TPGs.

Keywords: BIST, test pattern generators, exhaustive testing, two pattern testing, LFSR,

cellular automata.
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1 Introduction

Traditional focus of VLSI testing in general, and BIST in particular, has been to maximize
the coverage of stuck-at faults. (Also, most BIST techniques design test pattern generators
for each combinational logic block separately. In this paper, the circuit under test (CUT)
will be assumed to be combinational.) Some techniques, such as pseudo-exhaustive testing,
go beyond single stuck-at faults and implicitly target all multiple stuck-at faults and some
bridging faults (those that do not convert the combinational circuit into a sequential one).
However, a large class of physical defects do not map into these categories. Some physical
defects, such as transistor stuck-open faults in CMOS, convert the combinational CUT into
a sequential one. This is due to the fact that, for a given vector, output of the faulty
circuit can take different values depending on the state of the circuit. (The stale of the
combinational circuit is determined by the charge stored at various parasitic, diffusion, and
gate capacitances in the circuit due to the previously applied vector.) Hence, stuck-open
faults require two pattern tests. Similarly, delay faults require two pattern tests since the

delays in the circuit depend on the previous state of the CUT.

There is growing interest in coverage of these faults. Firstly, increasing quality level
requirements constantly require better testing methodologies. Furthermore, increasing clock
rates and use of aggressive statistical timing can cause a circuit to malfunction even if each
device in a fabricated chip performs within its worst case delay tolerance limits. Hence, chip

manufacturers are starting to augment their testing methodologies to test for delay faults.

One important consideration in design of BIST TPGs for two-pattern testing is to
ensure that adequate number of pattern pairs are applied to the combinational CUT. This
is the main focus of this paper. Necessary and sufficient conditions for a TPG to achieve
complete pattern pair coverage have been derived. It has been shown that LFSRs with
primitive feedback polynomials which contain many terms of the form 2" are better for two
pattern testing. Cellular automata have been shown to have large number of ways in which
complete transition coverage can be achieved. A TPG design procedure which maximizes

transition coverage under a given test time constraint has been developed and validated with



robust path delay fault simulation on synthesis benchmark circuits.

The paper is organized into five main sections. Section 2 reviews the related research.
Rules for designing TPGs to achieve complete transition count are discussed in Section 3.
Section 4 provides a procedure to design TPG to maximize transition count for a given
test sequence length constraint. Robust path delay simulation results discussed in Section 5
show that TPGs designed using the procedures developed in this paper are superior to other

TPGs. Finally, concluding remarks and future research directions are presented in Section 6.

2 Review of Previous Results

Two-pattern exhaustive testing is defined as testing where the test sequence contains all
possible (V1, V3) pattern pairs (Vi # V). Advantages of two-pattern exhaustive testing are
many. Firstly, two-pattern exhaustive testing is very comprehensive. Such testing will test
for all faults detectable by one or two patterns. These include all detectable stuck-at, stuck-
open, delay, and bridging faults. In case of stuck-open and delay faults, all faults which
have robust tests are tested robustly. Those which are not robustly testable are tested
in all possible ways in which they can be tested. Besides, no elaborate fault-simulation,
estimation of fault coverage (for a given test length), or test length estimation (for desired
fault-coverage) is required. However, the biggest drawback of exhaustive testing is the high

test sequence length.

Two-pattern pseudo-exhaustive testing for an n-input circuit requires that all possible
2" vectors are applied as V], each followed by all possible 2" —1 V4(# 14). Hence the number
of vector pairs required is 2"(2™ — 1). As the pairs may be suitably ordered, the number of
vectors required is bounded by 27(2" — 1) = 2?" — 2™, Since 2?7~ < 22* — 2" a4 finite state
machine with 2n-states is necessary to generate these test patterns.

It has been shown in [Smi85] that, for path delay faults, all robustly detectable path
delay faults can be detected by using (V;, V2) vector pairs where V; and V; differ in only one
bit. This is called adjacency testing and it cuts down the number of (V;, V3) pairs required for

exhaustive testing. Design of circuits which generate such (V;, V4) pattern pairs exhaustively
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are presented in [CK85]. In [CK85], circuits for pseudo-exhaustive adjacent testing have also
been proposed. Note that there are many delay faults which are not robustly testa:ble. The
coverage of these faults is not guaranteed by adjacency testing. [Exhaustive two pattern
testing is studied in [Sta84]. It is shown that it is necessary and sufficient to have a 2n-bit

LFSR to test an n-input circuit two-pattern exhaustively.

The notion of AC strength is introduced in [SB91] to quantify the limiting pattern
coverage of a test pattern generator. (The notion is general and applies to scan chains as
well, where it represents the fraction of all possible two pattern tests which can be applied

via a given chain.) It is defined as

maximum two pattern count
n(2n — 1)

AC strength = (1)
The transition coverage of some autonomous linear pattern generators was studied
in [FM91]. The transfer function of an n-stage autonomous linear sequential TPG is repre-

sented by a transition matrix 7" given by

g1 G122 G13 - Gin
g21 922 g3 - G

T=1| 931 g32 Y33 -+ G3n (2)
9n1 Gn2 Gn3 " Gun

_ where g;; € {0,1} is the (4, 7)-entry of matrix 7. In general, the next state 2’ and current
state = of a TPG are related by
ol = Tz (3)

In [FM91], a metric called transition count has been proposed. It is a measure of pattern
pair coverage obtained by using test sequence generate by a TPG. Transition count for an
n input circuit is < 2°" — 1. I a test sequence contains all possible pattern pairs, then it is

said to have complete transition count (coverage).

Typically, the number of stages in TPG, m > n, the number of stages in the CUT.

Hence, only a subset of TPG stage oulputs are connected to the CUT inputs. Let v =



{v1,v2,...,vm} be the flip-flops whose outputs are connected to the CUT inputs. These
shall be called the tapped variables. Similarly, let u = {uy, uy, ..., Un—m } denote the untapped
variables. Let X, = {Zy,,Zuy,..., %0, } and Xy = {@u,, Zuy,. ., Zu,_, } be the states of the
tapped and untapped stages of the TPG, respectively. Then, the next state function of the

tapped variables can be represented by
X, =T.X, + TuX. (4)

where T, and T, are submatrices of T of the sizes m x m and m x (n —m). The submatrix

T., given by

Guiui Guiva  Guiws ° Juniaom
Jvouy  Juous  Guogug - Guaug,_my

Tu = Guauy Juauz  Guzuzs gug,u{ n—m) (5)
Gum uy gvmuz Gun uz 0 G U(n—m)

is constructed from the m rows {vy,v,,...,v,} of T, with the corresponding m columns
removed. It has been shown that if r is the rank of T}, then there are 2" distinct transitions
from each v-state. The rank of T, is important in determining the two-pattern transition
coverage of a TPG tap selection. To obtain maximum transition coverage, the submatrix

T, must have full rank, i.e. » = min{m,n — m}. The average transition coverage

all v-spaces

Y=g v X 7 (6)
()

1s then used as a metric of the two-pattern test capabilities of a TPG.

In the following transition count shall be used to evaluate the quality of a TPG. When
complete transition count is achievable, then detection of all single and two-pattern testable
faults is guaranteed. However, to reduce test length and TPG hardware cost, test sequences
with lower transition count might have to be used. In such cases, the TPG is designed to
maximize transition count with the notion that maximizing transition count would indeed

maximize fault coverage.
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Recently, in [ZBM92], further study on transition coverage has been reported. Linear
test pattern generators (Linear Feedback Shift Registers and Linear Hybrid Cellular Au-
tomata) are studied and the transition count has been computed. Two new test pattern
generators, XLFSRs and XLHCA, are defined. (An XLIFSR is an LFSR whose odd stage
outputs and even stage outputs are grouped together. XLHCA is obtained similarly using
LHCA.) This maximizes transition coverage if & CUT inputs are connected to k contiguous
outputs of these pattern generators. In the following, we shall show that there are a large

number of other TPGs with maximum f{ransition count.

3 Design of TPGs for Complete Transition Count

As has been seen above, for an n input CUT, a 2n stage TPG is required to achieve complete
transition count. In the following discussion, two types of TPGs shall be studied. These are

the common TPGs used in most BIST implementations.

Linear feedback shift register (LFSR): External XOR (Type 1) as well as internal
XOR (Type 2) LFSRs shall be studied.

Linear cellular automata (CA): Rule 90/150 CA with null boundary conditions [Bar90,
SSMMY0] are studied.

Necessary and sufficient conditions to obtain complete transition coverage for a CUT shall

. be derived.

3.1 Linear Feedback Shift Registers

LFSRs are a class of linear sequential logic network constructed from D flip-flops and modulo-
2 adders (XOR gates). An n-stage LFSR is characterized by its feedback polynomial given

by
P(z) =co+ 1z + ca® + -+ + 2" (7)



The value of ¢y and ¢, must always be 1 for an LFSR. If the feedback polynomial is primi-
tive [LC83], then the LFSR (initialized to any non-zero state) generates a sequence of length
2" — 1. Such LFSRs are called maximal length LFSRs.

The transition matrices Trrsp; and Trrspo of type 1 and type 2 LFSRs are given by

(cl €2 €3 -+ Cuop 1) 000 --- 0 1 Y\
1 0 0 -~ 0 0 1 0 -+ 0 ¢
r 0 -~ 0 0 010 - 0 e
Tersm=| . . . . . . |Tesm=|. . . . . (8)
0O 0 0 --- 0 0 000 -+ 0 cpg
L0 0 0 - 1 0) 000 1 el

As has been shown above, at least 2n-stage LFSR/CA TPGs are required for gen-
erating exhaustive pattern pairs for an n input circuit. It has been shown in [Sta84] that
2n-stage external XOR LFSR can generate two-pattern exhaustive test set for any n-input
circuit. The n circuit inputs can be connected to all odd/even stage outputs of the LFSR.
The following results shows that this is true even for internal XOR LFSRs. First, we present

a Lemma used in the Theorem.
Lemma 1 Given a 2n-stage LFSR and an n-input CUT, if any lwo consecutive stages i
andi+1, for1 <i < 2n—1, are (not) connected to CUT inputs for a type 1 (type 2) LFSR,

then the LFSR can not generate ezhaustive two-pattern tests.

Proof: The transition matrices Trrspi and Ty rspe with stage i and 1 + 1 highlighted are

given
& dagy]ee oo woo wxall 0
Tersm=| -+ 1[0 0 [--- 0 |Tppspa=| -~ 1[0 0|--- ¢l (9)
U R e 0|1 0 g
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Type 1 LFSR: If stage ¢ and 7 4 1 are selected, then rows i and 7 + 1 (with columns 7
and 7 4 1 removed) are included in 7). Since 9(i+1)i is the only non-zero entry in row i + 1,

the row in 7}, that corresponds to row i + 1 in TLrsp must be zero.

Type 2 LFSR: If stage ¢ and i +1 are not selected, then the n taps must be selected from
the remaining 2n — 2 stages. Since g(i+1)i 1s the only non-zero entry in column ¢, no matter

how the n taps are selected, T, always has a zero column.

In both cases, the rank of T}, is less than n and the LFSR will not generate exhaustive

two-pattern tests. Q.E.D.

Lemma 2 Any 2n-stage LFSR (external or internal XOR) generates exhaustive two-pattern

tests for an n-input CUT, whose inputs are connected to all its odd or even stage outputs.

Proof: As discussed in previous section, for a TPG with the transition matrix 7', the rank
of the submatrix T}, of T for a given choice of tapped variables determines the two-pattern
transition coverage of the TPG. For a 2n-stage LFSR with n outputs connected to the n
inputs of a CUT, the rank of T, must be n to achieve exhaustive two-pattern transition
coverage. Using the construction in Eq. (5), the submatrices T,’s of the transition Trrsr:
(Trrsre) for a type 1 (type 2) LFSR with its odd or even stages connected to the inputs of
the CUT are

( Ci €C3 C; - Cop—3 1 \ 0 00 --- 0 1 \
1 00 - 0 O 100 -0 ¢
1 0 - 0 0 ) 01O -0 g
Tf%dsm = ST . . TLf-*dSRz = P 3§ te, 8 . (10)
0 0 0 0 00 0 0 0
\0 0 0 I 000 1 conz )
(100 - 00 \ 1 0 0 0
01000 010 0 0
e 001 --00¢( 0 1 -+ 00
Tivsm=| . . . . . . |TiFsm=1| . . . | (11)
000 - 1 000 -~ 10
000 0 1) 000 --- 01




The submatrices Tfy8g, and Tfy,, are simply the n x n identity matrix which has rank
n. By moving the last column of T4, or TPk, to the first column, an upper or lower
triangular matrix with unity diagonal elements is formed. The triangular matrices also have
rank n. In all cases, the rank of T, has the value n. Hence, an 2n-stage LFSR with its
odd/even outputs connected to the n inputs of a CUT will generate 2"(2" — 1) exhaustive

pattern pairs irrespective of the LFSR types and feedback polynomials. Q.E.D.

Theorem 1 Given an n-input CUT and 2n-stage LFSR with feedback polynomial P(z) =
co+ 1z + cax + - + a2, n out-of 2n TPG stale outpuls must be selected by using one

of the following rules to achieve exhaustive two pattern testing.

Type 1 LFSR:

Rule 1: Select all odd (or all even) stage outputs, or

Rule 2a: Select stages
L.y 20=1,2i42,...,2n

e

odd cevern

for any i such that cq; = 1.

Type 2 LFSR:

Rule 1: Select all odd (or all even) stage outputs, or

Rule 2b: Select stages

S

i v 5oty 28 A+ Ly e — 1
S — N e
even odd

for any i such that cy; = 1.

Proof: Rule (1) has been shown to be sufficient in the Lemma 2.
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Type 1 LFSR: If CUT is not connected to all odd (or all even) stages, then two consec-
utive stages must be selected. From Lemma 1 no two consecutive stages (i,7 + 1) can be
selected for any 0 < ¢ < 2n — 1. Hence, any other choice of stages (which are not all even
or all odd), to obtain complete transition count, must include selecting stages 1 and 2n. If
both stage 1 and stage 2n are chosen, there exist two consecutive stages k and k + 1, for

1 < k <2n — 1, which are untapped.

If the number £ is odd, then all even stages before stage & and all odd stages after
stage k + 1 must be selected. This implies that stage 2 and stage 2n — 1 are tapped. Since
both stage 1 and 2 and stage 2n — 1 and 2n are selected, Lemma 1 is violated. Hence, the
number £ must be even. As shown earlier, two consecutive untapped stages k and k + 1
will void the non-zero entry g(k+1)k in column k of the transition matrix T pspi. In order
that the matrix in Eq. (4) still has full rank, the feedback coefficient ¢, must be 1 (i.e. there
exists a feedback XOR gate between stage k and k+1). If ¢, = 1, then the resulting T}, can
be shown to have rank n. Since ¢ and ¢y, are 1 for LFSR, they account for the all-odd and
all-even tap selections. Therefore, the number of possible tap selection to achieve exhaustive

two pattern tests is simply the number of nonzero coefficients ¢y, for 0 <2 < n.

Type 2 LFSR: Similar arguments can be used to show that, the only ways to connect n

input to CUT to 2n stage type 2 LFSR are given by Rules 1 and 2b, above. Q.E.D.

Corollary 1 Given an n-input CUT and a 2n-stage LFSR with feedback polynomial P(z) =
co+ 1z + 2% + -+ + con2™, the number of possible ways to connect the n inputs of CUT

to n outputs of LFSR for two-pattern exhaustive testing is given by 3", coi, for 0 < i < n.
Proof: Proof follows directly from the above theorem.

Example 1 Consider a 5 input CUT. As described earlier, a 10-stage LFSI is necessary
to test the circuit ezhaustively with all two-pattern vector pairs. Two possible connections
(independent of the feedback polynomial) from LEFSR outpuls to CUT inputs are shown in
Figure 1.

10
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Figure 1: LI'SR for 5 input CUT

Example 2 Consider a 5 input CUT and a 10 stage LFSR with gencrator polynomial given
by P(z) =1+ 224 2>+ 2% + 28. Since the coefficient ¢y, ca, cs, and cs are 1, the number of
possible tap selections to achieve mazimal transition coverage is 4. For type 1 LFSR they
are (1,3,5,7), (2,4,6,8), (1,4,6,8), and (1,3,6,8). For type 2 LI"SRs, the four selections
are (1,3,5,7), (2,4,6,8), (2,3,5,7), and (2,4,5,7).

If the feedback polynomial is primitive, then the LIFFSR generates maximal length
sequence and 2°® — 1 distinct vector pairs are applied to the CUT. On the other hand, the
test generation is more involved for LFSRs with non-primitive polynomials. The LFSR is
initialized to a non-zero state. Since the feedback polynomial is not primitive, the LFSR
state repeats in less than 22® — 1 clock cycles. When the initial state repeats, the LFSR
- is reinitialized to a non-zero state that has not been previously covered. If this reseeding
process is repeated till all states have been covered, then the CUT is tested two-pattern
exhaustively. Hence, the control of LESRs with non-primitive feedback is much harder and
LFSRs with primitive feedback polynomials are recommended. Further, the above results
show that LFSRs with feedback polynomials with large number of even powers of z, provide
larger number of ways of connecting n CUT inputs to the TPG stages for complete transition
coverage. If, in a multi-output circuit, each output function depends on a subset of the
inputs, then, logic feeding many of the outputs may be two pattern exhaustively tested.

Hence, LFSRs with primitive feedback polynomials with large number of even powers of x
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should be used as TPGs for two pattern testing.

3.2 Cellular Automata

The cellular automata considered in the following are linear, rule 90/150 with null boundary
conditions [Bar90, SSMM90]. The property of the state transition matrix of a 90/150 CA is
that the value at stage-i is always a function of the outputs of the (i — 1)-th and (¢ + 1)-th
stages. The only exceptions are the first and last stages which are both connected to only

one neighbor (null boundary condition).

The transition matrix Tc4 of a CA with null boundary conditions is given by

(cl 1 0 --- 0 0
1 Cy I -- 0 0
0 1 ¢ -~ 0 0
Loy = L : - (12)
0 0 0 -+ ¢y 1
\0 0 0 -+ 1 ¢

where ¢; = 1(0) if stage ¢ is rule 150(90).

Theorem 2 Given any 2n-stage rule 90/150 linear CA with null boundary conditions. Let
n CA outputs be selected (tapped) by using the following construction.

1. Pair successive (odd, even) stages together.
2. Select one output from each pair.

The n input CUT is two-pattern exhaustively tested, if and only if, the n CUT inputs are

connected to the n outputls of CA selected by using the above construction.

Proof: Before starting, several rules which are essential in the proof of the theorem are

given. These rules must be satisfied by the desired tap selection.

Rule 1: Either stage 1 or stage 2, but not both, must be included.

12



Rule 2: Either stage (2n — 1) or stage 2n, but not both, must be included

Rule 3: No three consecutive stages should be all selected or unselected.

These rules can be easily verified by the reduced transition matrix for the selected variables

in Eq. (4). In order to generate exhaustive two-pattern tests, 7} in Eq. (4) must be of full

rank n.
[ 1]0 0 0 0
1 e 1 0 0 0
0 | Cy - 0 0 0
Tod = 3 I : : (13)
0 0 0 --. Con—2 1 0
0 010 - 1 [egga 1
\ 0 0]0 0 1 can )

Rule 1: If both stage 1 and 2 are selected, then the submatrix 7%, must include row 1 and
2 of Tea with column 1 and 2 removed. There are n — 2 other taps to be selected. Once a
tapped stage i is determined, row i of T4 is added to T, and the entries in column 7 of T,
are removed. Since row 1 of T}, is all 0’s after tapping stage 1 and 2, no matter what the
other n — 2 taps are, the submatrix 7, always have a row with all 0 entries and the rank
of T, must be less than n. A CA that generates two-patterns exhaustive can not have both

stage 1 and 2 tapped.

If both stage 1 and 2 are not selected, then the n taps must be selected from the
remaining 2n — 2 rows of T¢4 with column 1 and 2 included in T,,. However, column 1 of T,
is all 0’s if both stage 1 and 2 are not tapped. No matter how the n taps are selected, column
1 of T, must be all 0’s. Therefore, the tap selection that generates two-pattern exhaustive

tests must choose one of stage 1 or 2, but not both.

Rule 2: Symmetrically, the same argument applies if none or both stage n — 1 and n are

selected. In these cases, column n or row n of 7, will be null respectively.
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1 Ci—1 1 0 0
Tou = 01 & 1]0 (14)
0 0 1 Cit1 |
0 0 0 1 Ciq2
\ . . . .

Rule 3: Let (¢ — 1), ¢, and (2 4 1) be three consecutive stages of a CA. If all or none of
the three stages are selected, then the row or column in 7}, that corresponds to stage i will

be all 0’s as shown in Eq. (14).

The necessity of the above construction is now proven by contradiction. Consider n

pairs of a CA states,

(3?1, fﬂz), (333, 334), sy (-’132;'—3, -'Bzi-'z), (225—1, fﬂzi), ceey (fb"zn—l, l‘zn) (15)

Since half of the 2n stages must be tapped, if there is an (odd, even) pair with both stages
tapped, then there exists another pair with both stages untapped. Therefore, if the theorem
is false, it is always possible to find a pair ¢ with both stages tapped (untapped) and every

pair either to the left or right of the i-th pair has one and only one tapped stage.

. Case 1: Both stages in the i-th pair are tapped Without loss of generality, assume
every pair to the left of the i-th pair has one and only one tapped stage, then x9;_3 in the
(z—1)-th pair must be selected. Otherwise, three consecutive stages are selected and Rule 3
is violated. If z2;_4 is selected in the (i —2)-th pair, then rows in T}, that corresponds to zg;_;
and x3;_3 are equivalent. The dependency in rows of T, occurs whenever two consecutive
stages are selected in the first 27 — 2 stages if both x9;_; and wy; are chosen. Hence, choosing

both stages in the z-th pair requires choosing all odd stages in the first ¢ — 1 pairs. From the

14



transition matrix T

(cl 1 di e aia W i W @ % yia S i ...\

0 0 Coios 1 0 0 0 0
0 0 1 egieq 1 0 0 0 .-
£ = !
0 0 0 1 ez 1 0 0 - (16)
0 0 0 0 1 Coi_9 1 0
0 0 0 0 0 1 e 1
0 0 0 0 0 0 1 Ca;
the n x n submatrix T}, is derived
[1 0
1 1

(17)

I o T = S S = S
P e B R == T
B <= I e T e Wl RO

., §

The first 2 rows of T}, sum up to 0. Therefore, selecting both stages of the i-th pair is illegal.

Similarly, choosing none of the stages in the i-th pair requires choosing even stages
in the first ¢ — 1 pairs, in which case the first z columns of T, sum up to 0. Selecting none of
the two stages in the ¢-th pair also leads to contradiction. Hence, only one of the two stages

in the ¢-th pair must be included in the selections.

To prove that the conditions of the construction are sufficient to ensure complete

transition count, consider the i-th pair (z4i_1,2) in Eq. (15). Define

(18)

~_J 0 if stage 2i — 1 is selected
71 1 if stage 27 is selected



It can be shown that the matrix T, has the following form

( 1 S189 0 0 0 0 \
3_13_2 1 8983 0 0 0
0 535 1 8384 0 0
0 0 3335 1 8485 0
T, = 0 0 S3sp 1 848 (19)
0 0 0 0 35135 1
L33 . 1 Sn_15n

The entries g;_1); and g;;—1) cannot both be 1 for any selection outlined in the Theorem. If
the entry gi(;—1) is 1, then row i—1is added to row i. By doing series of fundamental operation
on T, starting from row 1, it is always possible to change T}, into an upper triangular matrix
with unity diagonal elements. The rank of T, is n. Hence, the tap selection according to

the theorem guarantees that exhaustive two-pattern tests are generated for a CA. Q.E.D.

Corollary 2 The 2n stage CA can be connected to the n inputs of a CUT in 2% possible

ways.

Proof: Since there are two choices for each of the n pairs in a 2n stage CA, the number of

possible connection to achieve exhaustive two-pattern tests is 2". Q.E.D.

Note that the above result is independent of the exact rules used in the CA. However,
" if the CA generates maximal sequence, then single seeding is required for exhaustive testing.

Tables of maximal length 90/150 CA can be obtained from [SS90].

The number of ways in which n-out-of-2n CA outputs can be selected is in agreement
with observation made in [FM91]. Note that a CA provides many more ways (2") of selecting
n-out-of-2n stages compared to an LFSR. This makes CA more suitable TPGs for two

pattern testing.

Example 3 Consider a 10 stage CA (hybrid 90/150, null boundary condition) with the

Jollowing configuration. Figure 2 shows two different ways of choosing n-out-of-2n stages

|
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Figure 2: CA for 5 input CUT

for exhaustive testing. Nole that there are 30 other ways in which taps may be selected to

achieve complete transition coverage.

Table 1 shows some examples LFSRs and tap selections suitable for two-pattern
exhaustive testing. In Table 1 (a), P(z) is the feedback polynomial for the LFSR. Note that
the all-odd and all-even taps guarantee complete transition coverage for both type 1 and
type 2 LFSRs. On the other hand, there are some taps particular to the type 1 and type 2
LFSRs, if any even power of « (other than 1 and 2?") is present in P(z). In Table 1 (b), P(z)
is the characteristic polynomial of the CA. Note that there are a large number of choices in
case of CAs.

4 General Tap Selection

Constraints on test application time or TPG hardware may force one to reduce the number
of stages in the TPGs. This implies that reduction in test length (or in TPG hardware
complexity) is achieved at the cost of reducing pattern coverage (transition count). If the
CUT outputs do not depend on all the inputs, then pseudo-exhaustive testing may be
used to reduce test time without reducing possible fault coverage. This is the subject of a
companion paper [GC93]. However, if the CUT has even one output which depends on all
the inputs, then pseudo-exhaustive testing cannot reduce the number of tests required. For
such circuits, one has to trade-off transition count (and maybe fault-coverage) to reduce test

\
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Table 1: Examples of Tap Selections for Achieving Complete Transition Coverage

| Number of PI's | P(z) | Taps Selected |

4 1+z+ 2t 1,3

2,4

6 14+z+42° 1,3,5

24,6

8 1+22 427428 1.3.5.7
2,4,6,8

1,4,6,8 (type 1 only)

2,3,5,7 (type 2 only)

(a) Linear Feedback Shift-Registers (LFSRs)

| Number of PD’s | P(z) | Taps Selected |
4 142"+ 2* 1,3
2.4
1.4
2,3
6 1424 2° 1,3,5
2.4.6
2,3,5
14,5

8 l+z+4+2°+2"+2° 1,357
2,4,6,8
2,3,6,7
14.6.8

(b) Cellular Automata (CA)



time. In the following, an algorithm shall be presented which will help achieve maximum
pattern-pair coverage for a given test length. That is, given the number of stages in the
TPG (which determines the test length as well), the following provides a way to connect the

n CUT inputs to the TPG in manner that maximizes pattern coverage (transition count).

Lemma 3 Given an m-stage (n < m < 2n) LFSR/CA and an n-input CUT. The mazimum

achievable transition count is 2™ — 1.

Proof: For an m-stage linear sequential circuit (of which LFSR/CA is an example), the

maximum sequence length is 2™ — 1. Hence, the maximum achievable transition count is
om 1, Q.E.D.

As has been discussed above, maximal length LFSR/CA are useful because they need
only one seed. Also, it has been shown above that LFSRs with feedback polynomials which
contain many even powers of z are more suitable for two pattern testing. CAs are, in general,
better suited for two pattern testing, independent of the rules. Hence, the next question to
be answered for TPG design, for two pattern testing, is to determine which of its outputs
should be connected to the CUT inputs. This problem of choosing appropriate TPG stage

outputs to connect to CUT inputs is called tap selection problem.

Theorem 3 Consider an n-input CUT and an m-stage linear TPG, where n < m < 2n.
The following tap selection guarantees that the mazimum achievable transition count given

* by Lemma 3 is achieved.

1. Select [F] taps using an algorithm which generates optimal transition count for &

input CUT.
2. Select remaining n — [%] taps arbitrarily.

Proof: Let m' = [Z]. Since the m’ selected taps in Step 1 have optimal transition count,

the submatrix 7%, for the tapped stages in Eq. (4) must be of full rank. If m is even, the

m' x m’ submatrix T\, must have rank r = m’. By arbitrarily selecting the next tap, the size
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and the rank of T, become (m’+1) x (m'—1) and m’ — 1, respectively. After increasing the
number of taps to n, the size and rank of T}, become n x (m — n) and n — m, respectively.
There are a total of 2" states, each with 2™" transitions (except the all-zero staée, which
has only 2™~ — 1 transitions). The transition count is 2™ — 1, which is optimal for an
m-stage linear TPG. If n is odd, the matrix T, has size m’ x (m’ — 1) and rank m’ — 1. By
arbitrarily selecting the next tap, the size and rank of 7}, become (m’ + 1) x (m' — 2) and
m' —2, respectively. After all n taps are selected, the size and the rank of 7, are n x (n—m)

and n — m, respectively. Again, the transition count is 2™ — 1, which is optimal. Q.E.D.

Note that the above theorem is applicable to any linear TPG not just LFSR and CA.
The main difficulty in using the above theorem to design a general linear TPG for maximal
transition count is in the Step 1 of the construction outlined above. That is, a method
for selecting [%3] out of m taps for maximum transition count (if CUT had [2] inputs) is
required. If m is even, then the results presented in Theorems 1 and 2 can be used to select
[%1 = m/2 taps to achieve maximum transition count. The remaining n — m/2, taps can

then be randomly selected, as shown in Theorem 3 above.

If m is odd, then the selection of the initial [2] taps for maximum transition count
may be performe& as follows. In case of type 2 LFSR, Rule 1 or Rule 2b in Theorem 1
can be used to select || taps. The last tap (stage m of the LFSR), can then be selected.
These [%] taps can be shown to achieve maximum transition coverage. Similarly, for CA,
it can be shown that |Z| taps can be selected from the first m — 1 stages of CA using rules
* presented in Theorem 2. The last tap (stage m of the CA), can then be selected. These
[%] taps can be shown to achieve maximum transition coverage. A number of other ways of

selecting [Z] out of m (m odd) taps have been found and are currently being investigated.

Example 4 Consider a 5 input CUT and an 8 stage LI'SR. The tap selection in Figure 3
achieves the mazimum transition count 2° — 1. Note that the odd stage outputs are selected
Jirst. Then the output of stage-8 is selecled randomly (according to the the above Theorem)

to connect to the CUT inpuls.



Figure 4: 8-stage CA for 5 input CUT

Example 5 Consider a 5 input CUT and an 8 stage CA. The tap selection in Figure 4
" achieves the mazimum transition count 2% — 1. In this case, either (1,3,6,7) or (1,3,6,8)
can be viewed as initial tap selection for complete transition count. The last tap is then

selected randomly.

The results presented above provide a way of determining the best ways of connecting
the n-inputs of the CUT to the m-outputs of an m-stage LFSR/CA (n < m < 2n). For

simplicity, let us assume m to be even in the following discussion.



LFSR: Theorems 1 and 3 provide us with the following strategy lor selecting n-out-of-m

taps.

1. Select m/2 taps out of m using one of the rules provided in Theorem 1.

2. If n > m/2, then select the remaining n —m/2 taps arbitrarily.

This construction guarantees maximal transition coverage (2 — 1).

For an XLFSR, there are m ways of selecting n contiguous outputs of the XLFSR
to connect the CUT inputs. It can be shown that the above construction generates a large
number of tap selections which maximize transition count. The number of ways of selecting

n-out-of-m taps by the above procedure has the lower bound (n < m < 2n, m even)

o)
\n—-m/2/)

The number of distinct tap selections identified by the above procedure is upper bounded

‘ ( Tﬁ/fz)

where ¢ = 712 ¢g; is the number of non-zero even coefficients of the feedback polynomial of

by

the TPG. For most values of m > n, the number of choices identified by the above procedure

. are much larger than the number of choices offered by the XLFSR.

CA: Theorems 2 and 3 provide the following tap selection procedure.

1. Group consecutive (odd, even) stages of the CA, and select one stage from each (odd,

even) stage pair.

2. If (n > m/2) select the remaining taps randomly.

o
S



It can be shown that, by the above construction, there are

o m/'Z
2 (n - m/2) '

different ways of selecting n-out-of-m stage outputs of the CA (n < m < 2n, m even).

Hence, it can be seen that the results presented here identify a very large number of

ways to select n-out-of-m LFSR/CA stages to connect to n CUT mputs.

5 Experimental Results

The results presented above can be used to design TPGs which maximize transition count
for given hardware constraints. If 2n-stage LFSR/CA is available then the TPGs can be
designed to ensure complete transition count for an n input CUT. This guarantees detection

of 100% of all two pattern detectable faults.

However, if the number of stages in the TPG, n < m < 2n, then n TPG stage
outputs can be selected to connect to the n CUT inputs, to maximize transition count. This
construction allows a BIST designer to design the TPG to maximize transition count while
meeting the hardware and test sequence length constraints. Since maximizingl transition
count means maximizing pattern-pair coverage, the TPG designed by using the above results
should maximize coverage of faults detectable by pattern pairs. (Note that a TPG which
" does not provide maximum transition count, will have transition count which is no more than
half of the maximum. This substantial reduction in transition count will almost certainly
reduce the fault coverage.) A number of PLA benchmarks [BHMSV84] were used in the
following experiments. These were synthesized such that 100% of the path delay faults in
these circuits were robustly testable [PR91]. Since, the main emphasis of this paper is on
exhaustive testing, selected output cones of these circuits were studied one at a time. The
outputs which depended on 6-8 inputs and had a large number of paths were sclected. This
permitted extensive experimentations with a large number of TPG tap selections. Table 2

summarizes some details of the circuit outputs studied.
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Table 2: Example Circuits Used to Study TPGs

Circuit | Number | Number Cone Used No. of I/ps No. of
Name | of Inputs | of Outputs | in Experiment in Cone Physical Paths
add6 12 7 3 G 68
adr4 8 5 2 8 184
alu2 10 8 3 8 3T
alu3 10 8 3 8 39
myadrd_1 8 1 1 8 64
radd 8 5 4 8 184
z4 T 4 1 7 56

LI'SRs with primitive feedback polynomials were used in the experiments. For an
n-input circuit, LFSRs with, m € {2n,2n —2,...} stages were used. For each value of m,
n out of m TPG taps were selected in many different ways. Firstly, the taps were selected
such that they satisfied the conditions derived in the paper to maximize transition count.
Taps were also selected in alternate ways which did not maximize transition count. It was
observed that (see Tables 3 and 4) the TPGs whose taps were selected by using the results
presented (the boldface entries in these tables) produced sequences with maximum transition
counts. The vectors generated by all the TPGs were then used to perform robust path
delay fault simulation on the circuits. It was found that the TPGs designed using the results
~ derived provided substantially higher coverage of path delay faults for all circuits and TPG
sizes (m). Tables 3 and 4 show some representative results. (Note that for each physical
path there are two logical paths, rising and falling.) As mentioned above, a tap selection
which does not provide maximum transition count, has transition count at most half of the
maximum. Hence, in most cases, there is a substantial drop in fault coverage if the tap
selection does not guarantee maximum transition count. However, it can also be seen that,
in many cases, different tap selections with the same transition count have very different
fault coverages. There is a need to study this problem further and incorporate circuit specific

information into the TPG design process.



Table 3: Experimental Data on Different TPGs for add6 (op no. 3)

m # of Stages | Taps Selected | Transition | # of Logical
in LFSR Count Paths Tested
12| (1,3,5,7,9,11) 4095 136
(2,4,6,8,10,12) 4095 136

(1,2,5,7,9,11) 92048 94

(1,3,6,7,9,11) 92048 84

(1,3,5,7,10,11) 2048 87

(1,2,6,7,9,11) 1024 57

(1,2,5,7,10,11) 1024 63

(1,3,6,7,10,11) 1024 53

(1,4,5,6,7,10) 512 38

1,2,3.4,7,8) 756 71

(1,2,6,7,3,9) 256 26

10| (1,3,5,7,9,10) 1023 59
(2,4,6,8,9,10) 1023 57

(1,2,3,5,6,7) 956 26

(1,2,4,5,6,7) 256 26

(1,2,3,4,5,6) 128 15

B2
n




Table 4: Experimental Data on Different TPGs for adr/ (op no. 2)

m # of Stages Taps Selected Transition | # of Logical
in LFSR Count Paths Tested
16 | (1,3,5,7,9,11,13,15) 65535 368
(2,4,6,8,10,12,14,16) 65535 368
(1,4,5,7,9,11,13,15) 32768 270
(1,3,5,7,10,11,13,15) 32768 200
(1,2,5,7,10,11,13,15) 16384 108
(1,3,4,7,9,11,12,15) 16384 188

14| (1,3,5,7,9,10,11,13) 16383 151
(2,4,6,8,10,11,12,14) 16383 151
(1,2,3,5,8,9,11,13) 8192 83
(1,2,5,6,7,10,11,13) 4096 94
(1,3,4,5,8,10,11,12) 4096 128
(1,2,3,8,9,10,11,12) 1024 35
(1,6,7,8,9,10,11,12) 1024 56

12| (1,2,3,5,7,9,10,11) 4095 92
(2,4,5,6,8,10,11,12) 4095 128
(1,2,3,5,6,7,9,11) 4095 63

(1,2,3,6,7,8,9,10) 1024 35

(2,3,4,5,6,9,10,11) 1024 60




6 Conclusion

Design of LFSR/CA test pattern generators, suitable for two pattern exhaustive testing, is
the main subject of this paper. Conditions for TPG tap selection which guarantee maximal
transition count have been derived. LIFSRs with primitive feedback polynomials, which
have many even powers of z, have been shown to be more suitable as TPGs for two pattern
testing. Cellular automata make good TPGs for two pattern testing, independent of their

feedback rules.

A large class of TPGs that maximize transition count have been identified. Exper-
imental results on some benchmark circuits show that for a given constraint on the TPG
size, the TPGs designed by using the results derived in this paper, generate test patterns

which provide much higher fault coverages than other TPGs.

A number of issues still remain unaddressed. Firstly, more real circuits have multiple
outputs and, in many cases, none of the outputs depend on all the circuit inputs. In such
cases, two pattern pseudo-exhaustive testing concepts can help reduce the test sequence
length and TPG hardware complexity, without reducing fault coverage. This is the subject
of a companion paper [GC93]. Also, the focus of this work has been on designing TPGs
to maximize transition count or pattern coverage. However, there is a need to study test
application methodologies essential for detection for some of the two pattern testable faults
(e.g. robust path delay tests require that test patterns be applied using a combination of
. slow and fast clocks). These and other such practical issues pertaining to test application
need to be studied. Since, the test sequence lengths for two pattern testing are high, there
is a need to study efficient pseudo-random test techniques for two pattern testing. This is a

subject of ongoing research.
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