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Abstract

There is a growing interest in testing circuits for stuck-open and delay
faults. Testing for these faults require two pattern tests. Built-in self-test
(BIST) schemes are attractive because typically long test sequences are
required. Conventional BIST test pattern generators (TPG) designed for
detection of stuck-at fault provide inadequate coverage of pattern pairs.
This paper develops the notion of two pattern pseudo-exhaustive testing.
Such testing guarantees coverage of all single and two pattern testable
faults. A number of methodologies for design of such TPGs have been
presented. The main design objective is to minimize the test sequence
length. Concepts particular to two pattern testing have been identified and
exploited to design entirely new and efficient TPGs. It has been proven
that the TPGs designed by using the new construction proposed in this
paper will guarantee shorter test sequences than the previously proposed
design.
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1 Introduction

Desire for higher quality levels in the semiconductor industry is causing an increasing ac-
ceptance of fault models such as CMOS stuck-open and delay faults. With need to develop
high speed circuitry, aggressive statistical clocking is being adopted by many designers. This
implies that a certain fraction of the manufactured chips, which have all the devices work-
ing within their worst case delays, may not perform at the design clock rate. Hence, delay

testing of chips that pass the logic tests, is necessary to identify and reject such chips.

Testing for stuck-open and delay faults require two pattern tests. The conventional
BIST schemes have emphasized the design of TPGs to maximize coverage of stuck-at faults
in combinational logic. Such TPGs do not guarantee high pattern pair coverage, necessary
for testing these faults which require two pattern tests. Hence, the main focus of this paper
is on the design of TPGs which ensure a high coverage of pattern pairs required to test the

various parts of the circuit under test (CUT).

Exhaustive testing is very time consuming if the number of inputs to the circuit is
large. Test time for two-pattern exhaustive testing is even higher. In [CG93] a technique
for design of test pattern generator (TPG) was proposed to reduce the test time (and
TPG hardware complexity) for two-pattern testing by a minimal reduction in pattern pair
coverage. This technique is the only recourse if any circuit output depends on all its inputs.
However, in most multi-output circuits all outputs depend only on subsets of inputs. For such
* circuits, it is possible to apply two-pattern exhaustive tests to each oulput and all the logic
feeding it, and still reduce the total test time. The focus of this paper is to develop efficient
techniques which minimize test sequence length by taking advantage of the dependence of

all circuit outputs on subsets of inputs only.

Note that, major advantages of two-pattern exhaustive testing — such as complete
coverage of all single and multiple stuck-at faults, complete coverage of all detectable delay
and stuck-open faults, etc. — still apply for two-pattern pseudo-exhaustive testing. However,
not all one and two pattern testable bridging faults may be tested. One can only guarantee

the coverage of all one and two pattern testable bridging faults between nodes within any
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cone.

Design of TPGs which guarantee two-pattern pseudo exhaustive testing in minimal
test sequence length is the main objective of this research. A range of TPG design method-
ologies are presented. These represent test time vs. TPG hardware complexity tradeoff. New
concepts related to two pattern pseudo-exhaustive testing have been identified and exploited
to develop a new TPG design procedure. It has been proven that TPGs designed using this

procedure generate shorter test sequences than other TPGs.

The paper is organized into four main sections. Section 2 covers the basic concepts in
pseudo-exhaustive and two pattern testing. If also includes a review of the previous results.
Section 3 discusses a number of techniques for design of efficient TPGs two pattern pseudo-
exhaustive testing. Experimental results and a comparison of different TPGs are in Section

4. Finally, the conclusions and directions for future research are presented in Section 5.

2 Basics and Review

2.1 Pseudo-Exhaustive Testing — Single Pattern

Most real life circuits have multiple outputs. An output y; of a circuit is said to depend on
an input z; if there exists a directed path (via gates and fan out branches) from z; to y;.
Typically each output of a circuit depends only on a subset of its inputs. Such circuits are
. called partial dependence (PD) circuits. Consider an circuit with n inputs {z;,z2,...,%.}
and m outputs {y1,y2,...,Ym}. Let the j-th output y; be a function of &; inputs, i.e.
¥5 = Filmy Tigses - ,:wkj). Let all the gates and inputs that are in the transitive fan-in of
y; be called the cone;. An input 2y is said to belong to conej, il y; depends on z;. Let
k = max? k;. Such a PD circuit is called an (n, k) circuit. The logic in cone; can be tested
exhaustively using a maximum of 2% test patterns. If each cone is tested exhaustively, then
the circuit under test (CUT) is said to be tested pseudo-exhaustively. Lel 7' be the test

sequence applied to the CUT. The length of tesl sequence required for pseudo-exhaustive



testing is bounded by

[T |> @3}(2’“ = 2k, (1)

Note that this is the minimum number of test patterns required to test the cone -with the

largest number of inputs (k) exhaustively. If the cones are tested one at a time, then

T | zv @

There are many problems with testing one cone at a time. Firstly, the TPG may have to be
reconfigured to test each cone. This increases the hardware complexity of the TPG as well
as the complexity of BIST controller. Also, longer test sequence may be required than for

testing all cones simultaneously.

A number of different approaches have been presented in the literature to design
TPGs which test the CUT pseudo-exhaustively. A detailed review of these methods can be
found in [ABF90].

2.1.1 Test Signals (Verification Testing)

In partial dependence circuits, two inputs z; and z; which do not belong to any coné together,
are said to be compatible. During testing, compatible inputs may be connected to the same
TPG output. Each group of compatible inputs is called a test signal. Minimum number
" of test signals can be obtained by using the procedure outlined in [McC84]. Once p test
signals, Sy, S,...,5,, are obtained, a p-stage LFSR with primitive feedback polynomial

may be used as TPG.

2.1.2 Linear Sums

Given an n input circuit, the input zy, z9,..., 2, are assigned to a minimum number of test
signals Sy, Sa, - .., Sp, and their linear sums S; @ S2, 51 ® S3,..., 51 @52 @--- & Sp. This can

be viewed as a more general form of grouping than in verification testing. Ience, the test



length can be further reduced [Ake85]. The basic idea is that if {z, z1,, - .. %1, } belong to
cone;, then the signals (some may be linear combinations of Si), applied to z,, zy,, ..., Ty,
should be linearly independent. This method guarantees that if all possible 27 pattern are
applied to the p test signals, then each cone is tested exhaustively. This can be easily

achieved by connecting the outputs of a p-bit LFSR to the p test signals.

2.1.3 Cyeclic Code
A test set T" is a universal pseudo-exhaustive test set for (n, k) CUTs if and only if

1. It is a set of n-tuples (each row is an n-bit vector), and

2. Any k columns of T' have all possible 2% k-bit patterns occurring at least once.

It is clear that such test set applies exhaustive tests to all cones in any (n, k) CUT.

Let g(z) be a polynomial over GF(2). Then g(z) is said to be a generator of cyclic

code of block length N, minimum distance D, and number of information symbols K if

e g(z) has degree N — I

og(:r:)|:r:N+1

e any non-zero multiple of g(z) of degree > N — K and < N has at least D non zero

coefficients.

[t has been shown [LC83, WMS88] that if code generated by g(z) has a minimum distance D,

then the code generated by h(z) = Ig—h(’:)—l generates a set of vectors in which any I)—1 columns

are linearly independent. (This means that any D — 1 columns of the patterns generated
will have all possible 2P-1 distinct bit-patterns occurring at least once.) Hence, given an
(n, k) CUT, the coding theory methods select g(z) such that it generates an (N, K, D) code

where,
N >n
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Then A(z) is computed as

. 1
i g(z) (3)
The equation
f(z) = P(z)h(z) (4)

where P(z) is any primitive polynomial of degree N — K, is used as LFSR feedback poly-
nomial. The LFSR is initialized with any multiple of k(z) as seed. The patterns generated

by this LFSR form a pseudo-exhaustive test set for any (n, k) CUT.

2.2 Review of Two-Pattern Testing

Consider an n-input m-output (n,k) CUT, where {z1,23,...,2,} are the n inputs and

{v1,¥2,-..,ym} are the m outputs. The j-th output is
Y = fi(mfnzlm ceey mlkj)

assuming that the j-th output depends on k; inputs. Two-pattern exhaustive testing of cone;
requires that all possible V4 vectors (2% distinct ones) be applied. Also, each V; should be
followed by all possible V, vectors (2% — 1 distinct ones, Vo # V;). Hence, the number of

tests required to test cone; exhaustively with all pattern pairs is
| T |= 2% (2% —1). (5)

The lower bound for the (n, k) CUT (where k = max™, k;) is | 7' |> 2%(2* — 1). Also, if one

cone is tested al a time, then

| T |= iz*‘-‘(z*- -1).

=1

As has been noted above, the test sequence length required to test one cone at a

time may be large. Also, the TPG would have to be reconfigurable, and control complexity
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may be high. Hence, in the following, the emphasis is on testing cones together in one test

session.

In [Sta84], a 2n-stage shift-register is used as the basic test pattern generator for
stuck-open faults. Deterministic two-pattern tests are generated for the stuck-open faults
in the circuit under test. The feedback of the shift- register is designed to ensure that all
the deterministically generated two-pattern tests are embedded in the sequence generated
by the resulting test pattern generator. The complexity of the TPG design is hlgh — both

in terms of design effort and hardware requirements.

In [CK85], a test pattern generator design which combines verification testing and
adjacency testing concepts, is presented. In adjacency testing, instead of applying all (14, V3)
pairs, all (Vi,V3) pairs which differ in 1-bit are applied. The test time required for this
technique is lower than in two pattern pseudo-exhaustive testing. However, TPG hardware
complexity is high due to the special non-linear test pa,t‘tern generators required for adjacency
testing. Furthermore, the test patterns generated do not guarantee coverage of all two
pattern testable faults. (However, for some special circuits it guarantees coverage of all path
delay faults. For example, if all paths in a CUT are robustly testable, adjacency testing
guarantees 100% path delay fault coverage.)

Recently, a number of results have been reported on this topic. In [FM91] a metric
called transition count is defined to measure vector pair coverage. Also, an analytical tech-
nique to compute the transition count for a given linear test pattern generator is presented.
" A similar measure, called AC strength, is presented in [SB91]. This paper and its other
results are discussed in greater detail in the following section. In [ZBM92], LFSRs and
linear CAs, with permuted outputs, have been analyzed for transition coverage. Also, in a
companion paper [CG93], the authors have identified necessary and sufficient conditions for
obtaining complete transition coverage for any LFSR or CA (with Rules 90 and 150 and
null boundary conditions). Further, a procedure which identifies a large class of LEFSR/CA

TPGs which maximize transition coverage has been presented.
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2.2.1 Input Separation

In [SB91] a metric called AC strength is defined. AC strength is the fraction of all possible
vector pairs that may be applied to the CUT using a particular scan chain/TPG configura-

tion.

Consider an (n, k) CUT. If two inputs of the CUT, which belong to the same cone,
are connected to two consecutive stages of a scan chain, then some pattern pairs can never
be applied to the cone(s) which depend on both inputs. This is due to the fact that V vector
is obtained by one shift of vector V; in the chain. Hence, to guarantee a high coverage of
delay and stuck-open faults in each cone, the inputs belonging to the same cone should be

separated by at least one flip-flop in the scan chain.

This notion, called input separation has been formalized. A procedure to assign the n
CUT inputs to the stages of a v-bit shift-register, such that no two inputs belonging to any
cone are assigned to adjacent shift-register stages, has been presented. For some circuits,
the input separation cannot be achieve without adding extra (dummy) stages to the register

(i.e. v > n). In such cases the procedure minimizes v.

The notion of input separation can be easily applied to BIST. The following con-

struction utilizes the input separation notion to design_ a BIST TPG.
Construction 1 Given a (n,k) CUT.

1. Assign n CUT inputs to a v stage shift-register stages such that

e No two inputs which belong together in any cone are connected to conseculive

shift-register stages, and

e v s minimized.

to

If the inputs of CUT assigned to the first and lasl stages of the shift-register are in-

compatible, then add an extra dummy stage at the end of the shift-register.

3. Convert the shift-register to an LESI by addilion of feedback connections and exclusive-

or gates. Note that, primitive feedback polynomial may be used for the LIFSR.
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(b) TPG Using Input Separation

Figure 1: TPG Designed Using Construction 1 (Example 1)

Example 1 Consider an 8-input 5-output function [Ake85] defined by

ni = filz, 29,73, Ty)
y2 = [a(ze,27,78)

ys = fa(z3,24,25,26)
Yo = fa(z3,25,26,27)
Ys = f5($1,$4,$7,$s)

For this CUT, no ordering with v = n stages satisfies the input separation conditions. Only
one ordering of n-inputs with one dummy stage is possible as shown in Figure I (a). (Dummy
stages have the “*” marks at their outpuls.) Since, x3 and x4 (assigned to first and the last
stages of the SR) belong to cone; (and cones), an additional dummy stage is added to the end
of the shift-register. This 10-stage shift-register is converted to an LESR by using any degree
10-primitive feedback polynomial. One such TPG is shown in Figure 1 (b). The LFSR can

be initialized to any non-zero state. The TPG will apply two pattern pseudo-exhaustive tests

to the CUT and the test sequence length is 2'° — 1.

If the scan chains are ordered to ensure input separation, all two-pattern tests can

be applied to any cone. However, there are some considerations special to BIS'T.
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1. In scan, deterministically generated test patterns are applied to the CUT. However, in
BIST, LFSR/CA generated pseudo-random patterns are used. Hence, the test length

for BIST designs may be large. Reduction of test length is a major consideration for

BIST TPGs.

2. In scan, the scan chain is used to apply test patterns as well as to observe CUT
response for each test vector. This constrains the scan registers to form (one or more)
chain(s). However, in most BIST designs, TPG is not used simultaneously to generate
patterns and observe the circuit response. This provides the flexibility of connecting

the flip-flops in other configurations.

3. It can be shown that input separation is sufficient for LFSR/CA test pattern generators
to apply all pattern pairs to each circuit cone. However, two inputs to a cone may be
connected to consecutive CA stages and still guarantee application of all pattern pairs

to the cone.

Due to these differences, more efficient TPGs (lower test length) for two-pattern

pseudo-exhaustive testing can be designed and are discussed in the following.

3 Two-Pattern Pseudo-Exhaustive Testing

3.1 Basics

As has been shown above, pseudo-exhaustive testing has been well studied in the literature
for single pattern testing (i.e. for feéting all combinational faults in combinational circuits).
The focus of this paper is on development of pseudo-exhaustive TPG techniques for two-
pattern testing. In doing so, the emphasis is to take full advantage of all known results in
the single pattern pseudo-exhaustive testing. The TPG design problem is defined as:

Given an (n, k) CUT, design a TPG such that
e All possible vector pairs are applied to any cone, and

L0



o Test sequence length and TPG hardware complexity are minimized.

3.2 Test Signals

In this section it is shown that the test signals (verification testing) approach discussed

above (for single pattern testing) can be easily extended to two pattern testing.

Lemma 1 Given an (n,k) CUT and its cone informalion. Let p lest signals be determined
using method proposed in [McC84]. If all 2°(2" — 1) vector pairs are applied to the p test

stgnals, then the CUT is two-pattern pseudo-ezhaustively tested.

Proof: Let Vi,..., VL be the test pattern applied to the test signals. For a cone of size
k, when these are applied to the p test signals, then by construction 2% distinct pattern
O1, ..., 0Oy appear at the inputs of cone;. Note that in this case, L > 2*. Let VousVissn= s Vig
be the 2% patterns (where 0 < iy,4s,...,00¢ < L) be the 2% patterns that lead to the
application of O1,0;,...,04 to the cone being considered. If the TPG is redesigned to
generate all possible pattern pairs, then there will be pairs of vectors such that each pairs
(V;,4e), 0 < 5,k < L will occur. If V; = Vi, and V. = V., then the application of this pair
at test signals implies that (O, O,) pair is applied. Since all pairs (V;, Vi), 0 < j,k < L are
applied, all pairs at test signals (O,,0;), 0 < r,s < 2* are applied at the cone. Hence, the

CUT is two-pattern pseudo-exhaustively tested. Q.E.D.

The above Lemma suggests the following construction for design of two-pattern

pseudo-exhaustive test pattern generator.

Construction 2 Given (n,k) CUT,

1. Determine p test signals [McC84].

2. Use 2p-stage LFSR/CA (mazimal length) and connect p oul of ils 2p outpuls (as
oullined in [CGI93]) to the p-test signals.

11



Note that in [CG93], it has been shown that for complete transilion coverage, the p test
signals (or primary inputs) can be connected to all odd (or even) stages of the 2p-bit LFSR.
(All possible ways of selecting p out of 2p TPG outputs to the test signals are discussed
in [CGY3].) If a cellular automata is used, then the p test signals should be connected to
the 2p stages of the CA such that no two test signals are connected to any consecutive (odd,

even) pair of stages.

Example 2 Consider the (8,4) CUT in Ezample 1. Using the algorithm in [McC84], p=5
tests signals are sufficient to test this CUT.

S] - {.’L';,.’II5}

Sz = {x2, 26}
S3 = {a3,s}
S = {=4}
S5 = {z7}

The number of patterns required for single pattern pseudo-exhaustive testing is 2° — 1 = 31
using 5-stage LESR/CA with primitive feedback polynomial. Instead, if 10-stage LFSR is
used and the § circuit inputs are connected to all the odd (even) stages of the LFSR, then
210 _1 = 1023 patterns (which are a superset of the 2°(2°—1) = 992 ezhaustive lwo patterns)
are applied to the CUT and the circuil is lested two-pattern pseudo-ezhaustively. In this case,
_ the test sequence length is the same as in Erample 1 which uses Construction 1. Figure 2
shows a TPG design. Note that T, and zs are both connected to flip-flops which have the
same input. Only one of these flip-flop’s output is connected to the next stage input. Hence,
in a scan design, the flip-flops will have to be reconfigured into a chain if the CUT response

captured at the stage feeding x5 is to be observed at the scan-out pin. A 10-stage CA may be

used as well.

It can be shown that for a large class of CUTs, Construction 2 using the notion of test
signals, will provide TPG designs which will ensure that the CUT can be tested pseudo-

exhaustively with fewer (or as many) tests than the TPGs designed using Construction 1.
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Figure 2: TPG Designed Using Construction 2 (Example 2)

The following theorem is presented without proof. (The proof of this theorem is involved

and lengthy.)

Theorem 1 Guwven an (n,k) CUT. Let the number of stages in the TPG1, designed using
Construction 1, be v. If

I. v =n and n s even, or

2. v>n,

then TPG2, obtained by using Construction 2, is guaranteed to apply two pattern pseudo-
ezhaustive tests to the CUT using fewer (or as many) tests than TPGI.

Hence, the concept of test signals yields TPG designs which generate shorter test
_ sequences. For most (n, k) CUTs, the reduction in test length can be large, as illustrated by
the experimental results (Section 4). This reduction in test length, for pseudo-exhaustive
two-pattern testing, may be at the expense of increased TPG hardware complexity. However,
small increase in TPG complexity may be acceptable in applications which require extremely

high fault coverage, for substantial reduction in test sequence length.

3.3 Linear Sums

As has been discussed in Section 2.1.2, linear sum method provides a more general and hence

more efficient TPG design. Hence, the next step is to study methods for two-pattern PET
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using the linear sum method.

Lemma 2 Given an (n,k) CUT. Let Sy, S,,. . -, Sp be the p test signals determined by the
linear sum method. If all possible pattern pairs are applied to the p lest signals, then all

cones of the CUT are two-pattern pseudo-exhaustively tested.

Proof: Let m be the number of outputs and k;, 1 < j < m, be the number of inputs that
feed cone;. In linear sum method, the test signals and their linear sums are assigned to
inputs the CUT such that no subset of these test signals, assigned to inputs to any cone,
sums to zero. As the TPG generates 27 test patterns, each of the 2% patterns are applied

to the cone; (at least once).

For two-pattern testing, every possible pattern pair (V4,Vs) appears at the p test
signals. Since no subset of inputs of each cone is dependent, exhaustive 2% patterns for
cone; occur when all 27 V| patterns occur. For each Vi, there are 27 corresponding V5’s.
Hence, cone; must have exhaustive 25 V; patterns for each V; (except for all zero V; which
may only have 2% — 1 V4, excluding all zero V;). The number of pattern pairs appeared at

inputs of cone; is > 4% — 1, and is an exhaustive two-patterns test set for cone;. Q.E.D.

The above result leads to the following construction:

Construction 3 Given an (n,k) CUT,

1. Use linear sum method to determining Si,...,S, and their linear sums and assign

them the CUT inputs [Ake85].
2. Use a 2p-stage LFSR/CA and connect the p test signals to the TPG as shown in [CG93].
Example 3 For the circuit in Example 2, the S circuil inputs can be assigned to 4 test
signals and their linear sums, as [AkeS83]

Ty =35 = 9

Ta=Zg = Sa
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Figure 3: TPG Designed Using Construction 3 (Example 3)

I3 =Tg = 53
Ty = .54
T = S:@ S,

An 8-stage LFSR can be used to lest the circuil two-patiern pseudo-czhaustively. The 4 test
signals are connected to all the even (odd) stage outputs. Any degree-8 feedback polynomial
and non zero seed may be used. Figure 3 shows the TPG. Note that the test length is 28 — 1

which is less than in Examples 1 and 2.

Construction 3 uses the concept of linear sums to reduce the number of test signals
required to test a CUT pseudo-exhaustively. Since, linear sums is a generalization of the
test signal concept, the number of test patterns required by a TPG designed by the above
Construction is less than (or equal to) that for the TPG designed using Construction 2.
Furthermore, by Theorem 1, a TPG designed using the above construction will ’generate
. shorter test sequences than those required by the TPGs designed using Construction L.
Hence, the linear sum method can be used to design TPGs which reduce test length for two-

pattern pseudo-exhaustive testing over those designed using the input separation approach.

3.4 Cyclic Codes

The test signals and linear sum methods discussed above are efficient in terms of test time
since they exploit not only the parameters (n, k) of the CUT but also the exact dependencies
of various cones in the CUT. However, the TPG circuitry may be large. The cyclic code

method is useful because:



L. It replaces the complex optimization problems required in determining test signals by

look up of the table of known codes.
2. Produces relatively area-efficient TPQ design.

3. Produces universal TPGs suitable for any (n, k) CUT.

The extension of the cyclic code from single pattern testing to two-pattern testing is
not as straightforward as in the cases of test signal and linear sum methods. In the following,
new concepts in TPG design using cyclic codes have been developed. These new ideas have
provided a procedure for design of TPGs which have been proven to require shorter test

length than the previously known scheme.

3.4.1 Cyclic Codes in GF(4)

In two-pattern testing, exhaustive coverage of pattern-pairs is required. Each pattern-pair
can be viewed as a pair of bits applied to each input of CUT. Two bits can take four
values (00,01,10,11) and may be viewed as symbols over GF(4). Hence, for two-pattern
pseudo-exhaustive testing, it is necessary and sufficient to apply all the 4* possible symbol
combinations at any k inputs of a CUT. A two-pattern pseudo-exhaustive test set for an

(n,k) CUT is defined as

1. A set of n tuples with symbols in GF(4)

2. Such that any k columns have all the 4% symbol combinations.

Under this framework, the TPG design problem based on the theory of cyclic codes over

GF(4) is:

1. Design an n-stage GLFSR [PG91] with primitive feedback polynomial f(a) over GF(4),

such that test length is minimized, and
2. Find an initial seed over GI'(4).
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Procedures for constructing the TPG is given by

Construction 4 Given an (n,k) CUT,

L. Find a (N, K, D) cyclic code over GF(4) where

(a) N > n is the code length
(b) D > k+1 s the minimum distance over GF()

2. Compute h(z) = E;T';l')—l

3. Find P(z), a primitive polynomial of degree N — deg(h(z)) over GF(4)
4. Let f(z) = P(z)h(z) be the feedback polynomial over GF(4)

5. Let any multiple of h(z) be the seed

Theorem 2 The TPG designed using Construction 4 generates two- pattern pseudo-ezhaustive
tests for (n,k) CUT.

The above construction is a direct extension of the cyclic code method from single-
pattern pseudo-exhaustive testing to two-pattern pseudo-exhaustive testing. However, the
major disadvantage is that it requires a table of codes over GF(4). Though GF(4) codes
- are a natural extensions of binary codes, tables of GF(4) codes and lists of minimal and
primitive polynomials over GF(4) are not available. So, even though this may be a direct
method, it is practically infeasible. Hence, the proof of theorem has been omitted. In the

following, two new approaches using tables for GF(2) codes are presented.

3.4.2 Design of Two-Pattern PET TPG Over GF(2)

In this case, the TPG design problem can be stated as:



1. Design a 2n-stage LFSR with feedback polynomial f(z) over GI'(2), such that all 4% —1
vector pairs are applied to all possible cones of size k, in minimum number of clock

cycles, and

2. Find an initial seed.

In the following, two new constructions shall be discussed which achieve these objectives.

In the following constructions, assume that a 2n-stage LI'SR is used and only the even
stage outputs of the LFSR are connected to the CUT. (The CUT inputs may be connected
to the odd stages of the LF'SR as well. The following construction is still applicable.) It is
required that any k inputs to the CUT be independent. Also; since complete two-pattern
coverage is required, it is necessary that even stages 27, which are connected to CUT inputs,
are independent of the set of odd stages adjacent to them. Hence, for two-pattern pseudo-
exhaustive testing, it is sufficient to design a 2n-stage LISR such that any 2k columns of

binary pattern generated are independent. This leads to the following construction:

Construction 5 Given an (n,k) CUT,

1. Find a (N, K, D) binary cyclic code where
(a) N > 2n is the code length

(b) D > 2k + 1 is the minimum distance

2. Compute h(z) = ng(’_;)ﬁ
3. Find P(z), any primitive polynomial of degree N — deg(h(z)) over GF(2).
4. Let f(z) = P(z)h(z) be the feedback polynomial over GF(2)

5. Let any multiple of h(z) be the seed

6. Connect the n CUT inputs to the odd {or even) stages of the LIFSR



Theorem 3 The TPG designed using Construction 5 applies two-paltern pseudo-ezhaustive
tests to any (n, k) CUT.

Proof: The TPG designed for an (n,k) CUT using above construction has at least 2n
stages and generates the codewords of the dual code of that generated by g(z) [WMS8S|.
This implies that any 2k stage outputs of the TPG (since the minimum distance of g(z) is
2k + 1) generate all possible 2 — 1 patterns. Hence, 22* — ] vector pairs are applied to any
k even (odd) stages connected to the CUT. This implies that all cones in the CUT of size

< k are tested two-pattern exhaustively. Q.E.D

Example 4 Given a (6,3) CUT,

1. Need a code with

(a) Code length = N > 2n = 12

(b) Minimum distance = D > 2k+1=71
2. Code C(15,5,7) has generator g(z) = (1 + = + 2?)(1 + z + 2% + 23 + 2)(1 + = + z%)
3. ha) = (% + 1)/g(z) = (1 2)(1 4 2+ 2

4. P(z)=14+23+2'°

e

flz)=h(z)P(z)=1+zc+2 + 25+ 20+ 2B 4+ 210 4 g1 4 213 4 15

[

. Test length = 21° — 1

This construction provides the design of a 2n stage LI'SR which generales two-pattern
pseudo-exhaustive tests of any (n, k) CUT. As shall be seen below, this procedure guarantees
that the sequences generated at any 2k LIFSR stages are independent. However, the only real
requirement is that the sequences generated at any k even stages and at the k& odd stages
(left neighbors of the & even stages selected) be independent. TIPGs designed by using

above construction may require more test patterns than may be necessary. The following
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construction for design of TPG accounts for the above observations. It designs a TPG such

that sequences generated at

1. All odd and even stage outputs are totally independent.

2. Any k odd (or even) stage outputs are independent of each olher.

Note that the above requirements are particular to the two paltern testing problem at hand.
No known TPG design methodology exists which can meet these goals in an efficient way.
The following construction provides a new TPG design methodology developed to exploit

the special characteristics of two pattern testing.

Construction 6 Given an (n,k) CUT,

1. Find a (N, K, D) binary cyclic code where

(a) N > n is the code length

(b) D > k+1 is the minimum distance
2. Compute h(z) = (zV +1)/g(z)
3. Find P(z), a primitive polynomial of degree 2N — 2deg(h(z)) over GF(2)
4. Let f(z) = P(z)(h(z))? be the feedback polynomial over GF(2)

Let any multiple of (h(x))? be the seed

=

6. Connect the n CUT inputs to the odd (or cven) stages of the LFSR

Two Lemmas, essential to the proof of the following theorem, are outlined first.

Lemma 3 If g(z) is a generator polynomial of an (n, k) cyclic code, then g*(2) is a generator

polynomial of a (2n,2k) cyclic code.



Proof: Since g(z) is the generator of (n,k) code, the degree of g(z) is n—k and g(z) divides
z" + 1 [LC83]. Hence, the degree of 9*() is 2(n — k). Also, it can be shown that g*(z)
divides 2" 4+ 1(= (2" + 1)2). Hence, 9(z) generates a (2n,2k) cyclic code. Q.E.D.

Lemma 4 If the code generated by 9(z) = goz + g1z + - + gn_rzx has minimum distance

D, then the code generated ¢*(z) has the same minimum distance.

Proof: The generator matrix G of the (n, k) cyclic code generated by g(z) is given by

[0 91 92 - Gu 0 - 0 0
0 0 91 " Gn—k-1  Gun-k - 0 0
0 0 0 - Gn—k-2 Gn—k-1 --° 0 0
G=| . . 7. ) . : : (6)
n—1k 0
| 855 GO% 5EE 3ar e e aer ok Gnek

and the generator matrix G of the (2n,2k) cyclic code generated by g2(z) is given by

(5’0 0 o« 0 ¢ - Guosk 0 -~ 0 0
0 9 0 ¢ 0 -~ 0  guyp -+ 0O 0
Gp=| . » B Y B e & - B ()
ook 0
| ror mee e me e s e see sss 0 gap f

Let r;, 0 <1 < 2n — 1, represent row vector of G5. Then the code word v, where v € row

" space of (4, is given by

v = wgrg+ U171 + UaTa + - Va1 Ton— (8)
= Yorg + V2rz + - -+ Vap—2Ton—2 + V1T Va3 4+ - + Van—1T2n-1 (9)
deven=D d3dd=P

where v; € {0,1}, 0 < ¢ < 2n — 1, is the component with respects to r;, and deveﬂ(dodd) is
the minimum distance of the even (odd) subspace of (5. Since even and odd vectors of G
span disjoint subspace of G, the minimum distance of the row space of G4 is determined

by the minimum of deven and d 44, which is D. Q.E.D.

D 1
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Theorem 4 The LFSR designed using Construction 6 applies two-pattern pseudo-ezhaustive
tests to any (n, k) CUT.

Proof: Let h(z) = ho+hyz + hoz?+-- - + hiz*. Then the generator matrix /1, of generator

polynomial h%(z) is given by

(hg 0 h] 0 }I.g sale h,k 0 i 0 0 \
0 ho O hy 0 -+ 0 hy --- 0 0
0 0 Ay O hy --- hyp_
my=| L e e 00 (10)

Since the minimum distance of the code generated by g(z) has the value D, any D—1 or less
columns of A/ must be linearly independent. By Lemma 3, h*(z) generates a (2N, 2N —2K)
cyclic code and by Lemma 4, any D — 1 or less columns of [ are also linearly independent.
Let R" denote the column space spanned by any D — 1 columns. Particularly, if we choose
any D —1 odd columns or D —1 even column, then each of them will span R”. As shown in
Lemma 4 and Eq. (10), odd and even column vectors of H, spans disjoint column subspace
of Hy. If D—1 odd columns and D —1 even columns are chosen, then the resulting 2(D-1)
columns span R*" space. Therefore, the CUT with inputs connected to the taps of (D —1)

odd or even stages is tested two-pattern pseudo-exhaustively. Q.E.D.

" Example 5 Given a (6,3) CUT,

1. Need a code with

(a) Code length = N >n =6

(b) Minimum distance = D > k+1 =4
2. Code C(7,3,4) has generator g(z) = (1 + 2* + z°)(1 + z)

3. h(z) = (2" +1)/g(z) = | + 2% + 2*

52
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4. Plz)=14z+22+2" 4+ 28
5. f(z) = h*(z)P(z) =1 trztet ot p S gl 12 g 18 1

6. Test length = 28 — 1

This construction does not overspecify the two-pattern pseudo-exhaustively testing
problem. Hence, the length of the test sequence generate by a TPG designed using this
method is lower than for the previous case. In Table 1, details of TPGs designed using
Construction 5 and Construction 6 have been shown for five circuits. FFor each circuit, row
marked C5 shows the details of TPGs designed using Construction 5 and the row labeled
C6 corresponds to Construction 6. These results clearly illustrate how the TPGs designed
using Construction 6 require shorter test sequence than those designed using Construction 5.
Also, note that in the Constructions 5 and 6, the number of stages in LFSR can be greater

than 2n. However, it can be shown that this can be reduced to a 2n bit LFSR in all cases.

Note that, no cone specific information has been used, hence the test times required
are large. These TPGs are universal TPGs for the corresponding (n,k) circuit, for two
pattern pseudo-exhaustive testing. In the following, a method of utilizing circuit specific
information to design TPGs which generate shorter two-pattern pseudo-exhaustive test se-
quences shall be studied. Since, the test length for TPG designed using Construction 6
can be shown to be always lower than that for TPG designed using Construction 5, in the
following discussion only the former construction shall be used along with the circuit specific

" test signal approach.

Note that the test signal and coding theory concepts may be combined to obtain
shorter test sequences. The original circuit inputs may be combined into test signals. TPG
can then be designed for the resulting circuit using Construction 6 above. Note that in some
cases, this may lead to the same TPG design as given by using Construction 2. However, in
general, this will reduce test length for pseudo-exhaustive testing. The following construction

combines the test signal and coding theory approaches.

Construction 7 Given (n, k) CUT



Table 1: Comparison of TPGs Designed Using Constructions 5 and 6

I. (4, 2) circuit

N K D  g(x)or yzf.t) h(z) or J‘|2(:) P(x) ‘Test length (=)
cs. 8 1 8 Z.‘gu 14x 142 4 27 27 14427428 4274 28
ce. 4 1 4 (Z?zo )2 (1 + z)? 142425 26

1+:‘1».1':?-|-:3-|-;-G+:r:sl

IL. (8, 4) circuit

N K D g(z)org®(z) hiz)orhi(z) P(z) Test length (=)
135

.L_D:.‘ 14 = ]+x+=”’ 2”’ l+:.-2+z]5+x”;
c6. 8 1 8 (zi—o x.,)'J (1 +.r)2 1+I'2 +x3 +113+ M o4 ,_I_Iz 4 24 +x5+:13 4 14 +:15+:]G

I1L. (5, 3) circuit

N K D g(z)org®(z) h(x)erh¥(z) P(z) Test length f(=x)
Cs. 10 1 10 Z?_ozl- 1= 142t 450 e L4x4zt 2% 429 4210
ce. 5 1 s (Z:—n"’)? (1 +z2)? 14 z422 427 458 28 Vx4 ad gt ol 428 429 4510

IV. (7, 4) circuit

N _ K D glz)org®(z) h=z)orh*(z) P(z)

Test length f(=x)
€5, 14 1 14 21_30:,- 14x 142422 4212 4,13 213 1425 4 2124 214
1=
ce. T 1 7 (E?—o")2 (1 + z)? 142420 4284212 212

14422428 g5 427 4284530 22 14

V. (6, 3) circuit

N K D a(z) or 9°(z) h{x) or h3(x) P(z) Test leagth f(z)
Cs. 15 T (4xz+2)1+x+z  +0 + 1)1+ z+a21) (142 +2° +23) 14 25 4 210 2‘50 P(z)fiz(:)
Ce6. T 3 4 [t + )1 + x4 =32 (14 22 4 2%)2 l4ax+x? 42 428 2 P(x)h2 (=)
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Figure 4: TPG Designed Using Construction 7 (Example 6)

1. Combine n CUT inputs into p tests signals. This will yicld a (p, q) circuit (where g = k

is the mazimum number of test signals any circuit output depends on).

2. Use Construction 6 to design TPG for the (p,q) circuit.

Example 6 Consider the (8,4) circuit used in Ezamples 1, 2, and 3. The test signal ap-
proach (see Ezample 2) combines the inputs of the CUT into p = 5 test signals. The resulting
circuit can be viewed as a (5,4) circuil in the Step 2 of the Construction 7. This yields a

10-stage LFSR with feedback polynomial (see Figure 4)
fly=1+z+s*+a' + 27 +2° +2° +2"°

and a test sequence length of 28 — 1. Note that this is the shortest test sequence that can be

. generated to test an (8,4) CUT two pattern pseudo-ezhaustively.

TPG designed using the above construction can be shown to generate shorter test

sequence than TPG designed using Construction 2. The following Theorem states the result.

Theorem 5 If p > q in Construction 7, then TPG designed using Construction 7 will

always generate a test sequence of length no more than a quarter of the length of test sequence

generated by any TPG designed using Construction 2.

S
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Proof: Ifp > ¢, then a cyclic code with code length N = p, and minimum distance D = P,
can be always found. Note that since P > ¢, this implies that this code can be used to
design a 2p stage LFSR. to generate test sequences which guarantee application of all vector
pairs to any g out of p test signals. The generator polynomial of such a code is given by
g(z)=14+z+--- 4 2P, Hence, h(z) = 1 4+ 2. This means that the feedback polynomial
of the 2p stage LFSR is given by

J(z) = (14 2)* Pyos(2)

where P,_5(z) is any degree p — 2 primitive polynomial. This LFSR, with the p test signal
connected to all odd (or all even) stages, generates a test sequence of length 22=2 — 1. This
is approximately 1/4 of the length of test sequence generated if the TPG was designed using

Construction 2 alone (test length in that case is 22 — 1). Q.E.D.

Note that, if p = ¢ in Construction 7, then the test sequence length generated by
the TPG designed using Construction 2 is already minimum achievable. Also note that, if
p > g + 1, then even larger reduction in test sequence length may be possible. Using the

above Theorem and Theorem 1, the following corollary can be proven.

Corollary 1 TPG designed using the proposed Construction 7 will always generate a two
pattern pseudo-ezhaustive test sequence for a circuit which will, either be shorter than a test

sequence generate by Construction I, or be of minimal length.

" The details of the TPGs designed and the lengths of test sequences generated by them are

discussed in the following.

4 Experimental Results

Test pattern generators were designed for a number of example circuits studied in earlier
(single pattern) pseudo-exhaustive testing publications [Ake85, WMS88]. Table 2 shows the
(n, k) parameters of these circuit. It also shows the cone dependencies and the test signals

required for the test signal (verification testing) and the linear sum approaches.
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TPGs are designed for these circuit using Constructions 1-3, and Construction 7. All
these constructions, unlike Constructions 5 and G, exploit the information about the circuit
cones to design more efficient TPGs. These are called C' 1,C2,C3, and C7, respectively in
Table 3. In Table 3, N denotes the number of stages in the LFSR, and P;(z) indicates
any degree-z primitive polynomial. The tap selection for the various schemes is given. The
assignment of the CUT inputs to the LFSR stages is shown explicitly for C1 (input sepa-
ration). For the rest of the methods, O/ E indicates that all odd (or all even) taps should
be connected to the test signals for the corresponding schemes (see Table 2). Note that the
test time for all other constructions is less than or equal to the test time required by the
input separation approach. It can be seen that, in all the cases the test length for C, is less
than or equal to the test length for C'1. Also, the test length for C'7 is almost one-quarter
the test length for C2, as suggested by Theorem 5. Note that for the (7,4) CUT (circuit
number IV), the test length reduction for C7 over C2 is even more marked. Also, for all

circuits, test length is considerably lower for C7 than for C1.

5 Conclusion

Two pattern pseudo-exhaustive testing guarantees detection of all one and two pattern
testable faults. This includes a large class of faults such as single and multiple stuck-at
faults, delay faults, and CMOS stuck-open faults. The main issues in pseudo-exhaustive

testing are reduction of test sequence length and TPG hardware complexity.

A number of techniques for design of efficient TPGs for two pattern pseudo-exhaustive
testing have been developed. It has been shown that the techniques described here will gen-
erate shorter test sequences than previously known techniques. A number of techniques have
been obtained by combining the results in transition coverage [I'M91], tap selection [CG93],
and single pattern pseudo-exhaustive testing [Ake85, McC84]. Also, some principles unique
to the two pattern testing problem have been identified and exploited to develop new tech-
niques (Constructions 6 and 7) for the design of efficient TPGs. TIGs designed by using

new constructions have been proven to require shorter test sequences for two pattern pseudo-

o
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Table 2: Details of Circuit Dependencies

| (n,k)CUT | Cone dependency |

Test signal

l

Linear sum —l

(432) = (371;-733) S = (331,3:4) S = (3:1,:3.[)
s = (-171;1'2) 52 = I9 Sg = Iy
ys = (29, 23) S3 =3 S51® Sy =24
ya = (23, 24)

(8,4) Y1 = (Z1,%0,23,24) | S = (z1,z5) S1 = (z1,25)

Ya = ($G,$7, 3:3) 52 = (321 mﬁ) 52 = ($2, Ig
Yz = (:53;374,1‘5: :L'G) 53 = (1133,3.‘5) 53 = (3:3,553)
Ys = (23, s, Tg, 27) 4 = iy Sy = @y
Hs = (fhi"-hir?,ﬂ:s) S5 = z7 S:@ Sy =2,
(5:3) h = (551,1'2,1'3) 51 =3 51 = @y
Y2 = (-‘Iz,.’ﬂg,ﬂ:d) 52 =T 52 = I
Ys = (3313:4’3;5) S3 = 23 Sa=1z3
Ya = (-"31, md:-'ﬂs) S1=24 51 @ 53 = ay
ys = (2, Ts) 55 = x5 S10 85 =25

(7,4) V1= ($1,$2,3«‘3) 51 =m Si=z

Y2 = (21,23, T4, 27) | S = (22, 24) Sy = (22,24)
ya = (2, x5, T, T7) S3 =3 S3 = z3

Yqa = (3.71,333, Is, 235) 54 = 1Ts 51 &%) Sz =I5

Ys = (z4, Ts, Tg) Ss =z S3 @ Sy = w6
S(; =7 54 =Ty
(6:3) Y1 = (1'1,272,-‘1»‘3) S1=1 S1=1y
Y2 = (552, $3=3¢4) Sy = 23 Sy = 2y

Y3 = (z1, T4, Ts) 53 = (3'3,335, zg) | S3 = (333,%, 1‘6)
Ya = (z1, 24, 26) Sy =24 51 @ S3 =24




Table 3: Comparison of TPGs Designed

1. (4,2) cuT
[ Comnstruction [ N Feedback palynomial [ Taps [ Testlength | Seed ]
C1: Input separation 6 Fg(x) 3-142- 2% =i non — zero
C2: Test signal [ Pg(=x) OfE 25 —3 non — rero
C3: Linear sum 4 Py(x) O/E 24 non — zero
C7: Cyclic code 6 | 14x+x2 423454426 o/ 24 101000
IL (8,4) CUT
[ Censtruction [ N Feedback polynomial I Taps | Test length | Seed ]
C1: Input separation | 10 Pio(=) 4-7261583- g+ = g non — zero
C2: Test signal 10 Pyop(=) O/E 210 3 non — rero
C3: Linear sum 8 Pg(x) Of/E 28 nen — zere
CT: Cyclic cade 10 | 14 x4 2% 428 427 428 4 2% 4 210 OJE 28 1010000000
IL (5,3) CUT
[ Construction [ &7 Feedback polynomial [ Taps | Test length | Sced ]
C1: Input separation | 10 Pyg(=) 1-2-3-4-5- 2104 non — xero
C2: Test signal 10 Pip(=) O/E 2103 non — zero
C3: Linear sum 6 FPg(=x) OJE i non — zero
C7: Cyelic code 10 | 14 x4z 42t 427428 4,9 410 O/E 28 1 1010000000
IV.(7,4) CUT
Construction [ N Feedback polynomial | Taps | TestTength J Seed
C1: Input separation | 13 Pya(=z) 1-24-3-5-6-7- 213 non — zero
C2: Test signal 12 Pra(=) O/E 212 .4 non — zero
C3: Linear sum 8 Pg(x) ofE 28 .3 non — zero
C7: Cyclic code 12 [ 142422420 $28 4 2% 427 429 4 210 4 212 o/E 28 101000000000
V. (6,3) CUT
[ Construction [N Feedback polynomial Taps [ Test length | Seed ]
C1: Input separation | 13 Pya(x) 1-2-4-356- 2]_0 -1 non — rero
C2: Test signal 8 Pg(x) OJE 28 3 non — xero
C3: Linear sum 6 Pg(z) O/E 25 4 non — zero
C7: Cyclic code 8 |1 4+x4x2 420420448 0/E 26 —1 10100000

o)
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exhaustive testing compared to all the previously known TPG designs. Experimental results
show that these techniques help design TPGs which achieve minimal test sequence length
for the example circuits studied in previous (single pattern) pseudo-exhaustive testing re-
search. The design methodology described can be easily used to design efficient TPGs for

real circuits.

A number of issues are currently being investigated. Firstly, there is a need to further
reduce the test sequence length for two pattern testing. There is an ongoing effort to reduce
test time by the use of two-pattern pseudo-random testing using the basic framework pre-
sented here. An interesting spin-off of this work is design of efficient test pattern generators

for single pattern testing. A number of such techniques are being currently investigated.
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