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CSG : Control Path Synthesis in the ADAM System

Abstract

CSG (Control Signal Generator) automatically synthesizes controllers for both
pipelined and non-pipelined data path designs with conditional branches which are
produced by high-level synthesis tools in the ADAM system. The ability to synthesize
controllers for pipelined designs with conditional branches contributes to the problem
complexity. CSG has the ability to synthesize controllers with or without status regis-
ters. The purpose of introducing status registers into a controller design is to store the
condition state in a design with conditional branches. Because of partially-specified
values in the status registers, a multiple-code state encoding may be obtained in a
controller using status registers. Using a multiple-code state encoding instead of a
unicode state encoding enables Espresso to produce a better minimization. We exper-
imented with nine non-pipelined designs and fourteen pipelined designs using a robot
arm controller example. The experimental results are quite encouraging, especially in

the experiments involving non-pipelined designs.

This work was supported by the Semiconductor Research Corporation under contract 92-DJ-075.



1 Introduction

Many design problems of practical interest exhibit conditional branching behavior. However,
pipelined designs which contained conditional branches were not given serious thought by
high-level synthesis researchers until the mid ’80’s, when such pipelined data paths were first
synthesized [9]. The control of such data paths was only recently addressed [5].

The synthesis program described in this paper generates a controller specification from a
description of system behavior and the respective data path logic. The purpose of the control
unit is to issue control signals to the synthesized data path logic. These control signals select
the operations to be performed at specific time steps and route the data through the appro-
priate functional units. Here, we are particularly interested in automatically synthesizing
controllers for both pipelined and non-pipelined data path designs produced by high-level
synthesis tools such as Sehwa, MAHA and MABAL with and without conditional branches.

The control path synthesis program CSG described in this report is part of the ADAM sys-
tem. The DDS [6], the internal representation in the ADAM synthesis subsystem, maintains
separate representations of data flow and control/timing information. Data path scheduling,
module allocation and module binding are assumed to have been performed before control
path synthesis to provide precise information on timing and values of all data path control
signals. This information is incorporated into the control/timing behavior and condition
values! to obtain correct controller specifications.

To retain flexibility in choosing the controller implementation style, only the behavior
of the finite state machine is produced by CSG. Flexibility is important because we wish
to synthesize digital circuits that have proper functionality and also meet the performance
and area constraints. To accomplish this, the controller implementation style may vary from
problem to problem. In this paper, we will focus on controllers characterized by a state
transition diagram of a finite state machine. The controller is assumed to be implemented
by a PLA circuit. However, if a microprogrammed implementation is preferred, the finite

state machine can also be implemented with a microprogrammed controller.

1Condition values are values which affect system control flow by controlling branches in the execution.
A condition value can be either input externally or created by the data path. In a two-way branch, the
condition value typically takes the value 0 or 1 (false or true).



Due to the limited length of this paper, we will briefly introduce algorithms we used in
our approach. A complete report of controller implementation procedures and experimental
results will be found in [13]. In the next section, we present the related research work first.
We then introduce the assumptions made in our approach and the controller implementation
algorithms. Following the presentation of experiments performed by our system, conclusions

are given.

2 Related Research

In the area of automated controller synthesis, most existing high-level synthesis systems only
synthesize controllers for non-pipelined designs. A widely applied controller style in many
existing synthesis systems is the ROM-based microprogrammed controller model. Exam-
ples include the control allocator for the CMU-DA system [8] and the ATOMICS system
for Cathedral-II [4] [2]. The control allocator for the CMU-DA system assumes a canon-
ical microprogrammed model, and performs optimizations based on the microcode format
constraints. The ATOMICS system takes an RT-level description as input, and performs
microprogram scheduling in order to minimizes the global machine cycle count.

Some systems map the control/data flow graph representing the hardware behavior into
a corresponding state transition diagram, which can be implemented by either a PLA or
random logic. For example, the Yorktown Silicon compiler [3] implements the controller as
a hierarchy of finite state machines, where an FSM is associated with each routine. Control
state splitting allows the delay through the combinational part of the data path to be reduced
to satisfy clock cycle constraints. AT&T’s Bridge system [11] [12] first creates a symbolic
control table once the data path is allocated. The symbolic control table basically identifies
all the modules which need to be activated in each cycle. The detailed implementation of
the controller will be decided by the module generator. In the Hyper synthesis system [1], a
state transition diagram is derived from a control/data flow graph based on the scheduling
information. It is a recursive procedure due to the hierarchical nature of the control/data
flow graph. The transition diagram is then optimized by removing the dummy states.

Kim’s controller synthesis research at UC-Irvine [5] is the only reported work we know of



which synthesizes controllers for pipelined designs. The controller is modeled as a Moore-style
finite state machine. The control states are determined by the possible execution modes in a
scheduled control/data flow graph using a coloring scheme described by Park [9]. The state
transitions for each control state are then determined by the compatibility of two possible
execution modes between two consequent groups of states. A condition value needs to be
produced at least two clock cycles before the conditional execution is performed, because of

the Moore-style controller.

3 Problem Assumptions

We assume that the register-transfer-level structure is divided along functional boundaries
into two parts — the data path and the control path. The data path consists of a network
of functional units, registers, multiplexers and buses. The control path generates the control
signals required by registers, multiplexers and buses for sequencing of events in the data
path, as well as the signals required by the control path itself?>. In synchronous systems, the
only kind we consider in this paper, a controller can be specified by a finite state machine
which can be implemented by PLA profiles, random logic or microprograms.

Memory elements in the synthesized circuits are classified into three categories — state
registers, output registers and status registers. State registers are used to keep track of the
current state and partially decide the next state. Qutput registers are designed to hold the
control signals to avoid possible race conditions between the data path and control path
during the data path execution. Status registers are used to maintain the condition values,
if the status-register controller implementation style is assumed.

A conservative two-phase non-overlapped clocking scheme has been assumed in our ap-
proach. A data path clock, Clockpp, is always followed by a control path clock, Clockcp.
Positive edge-triggered D-type flip flops are proposed to implement all the memory elements,
in both data path and control path, in this clocking scheme. All the values in the registers of
a controller can only be changed at the rising edges of control-path clocks, and all the values

generated by the data path can be stored into data-path registers only at the rising edges

2ALU control signals are not supported in the current CSG. However, they are similar to control signals
for multiplexers and can be handled with a simple extension of the current CSG.



of data-path clocks. If each clock has a sufficiently long period then the correct execution
of both control path and data path can be ensured and the possibilities of race conditions
can be avoided. Note that the clocking scheme we defined above implicitly requires the
condition values to be created at least one clock cycle before they can be used to determine
which conditional execution paths are executed.

The controller is modeled as a Mealy finite state machine®. The state memory of the
controller holds the present state, and a combinational circuit decides the next state and
output signals. Once a condition value is produced, the controller will maintain it until no
more operation executions depend on it. This approach simplifies the register allocation and
binding subtasks of data path synthesis. Depending on the selected implementation style,
status registers may or may not be used in the controller. The purpose of introducing status
registers into a controller design is to store the condition state in a design with conditional
branches. If status registers are not allowed in a controller design, the condition state will
be stored in the state memory, which implies more state memory is required.

Because of partially-specified values in the status registers, an efficient multiple-code state
encoding may be obtained in a controller using status registers. Using a multiple-code state
encoding instead of a unicode state encoding usually enables Espresso to produce a better
minimization. We experimented with 9 non-pipelined designs and 14 pipelined designs using
the robot arm controller example. The experimental results show that 15% to 20% less area
is required for the PLA/controller on the average when status registers are used, especially

in the experiments involving non-pipelined designs.

4 Implementation of Controllers

Three parameters need to be fixed when designing a controller, namely the number of states
needed for the controller, the next-state transitions for the current state and the control
signals output for each state. In this section, we start with the determination of the possible
control signals. The implementation of controllers for designs without conditional branches

is then given. We discuss the implementation of controllers for designs with conditional

3The outputs of a Mealy finite state machine depend on inputs as well as the current state. The outputs
of a Moore finite state machine depend on the current state only.
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branches last. Controllers for both pipelined and non-pipelined designs are discussed.

4.1 Control Signal Generation

Before a controller can be realized, we first need to determine all the possible control signals
which are required during the execution. Control signals are represented as tuples. A tuple
has several attributes, such as activated device name, activated time step and activating
condition values*. For a multiplexer control signal, an extra attribute — activated port
number — is used.

In order to determine the condition value requirements for the execution of operations
along the conditional branches, an analysis of the control/data flow graph mutually exclusive
conditions is necessary. We analyze the mutually exclusive conditions of a control/data flow
graph using an algorithm similar to the one proposed by Park [9]. The algorithm assigns to
every node a color consisting of a sequence of one or more integer codes. Using these colors,
we can test the possible mutual exclusion between any pair of nodes (operations) and obtain
the condition values for activating the operations.

Two types of binding information are used in our approach. An operation binding binds
an operation to an operator, and a value binding binds a data value to a register. For
an operation binding, the input data values of this operation are expected to come from
external inputs or register outputs; the input of a register should come from external inputs
or an operation’s output. Three types of control signals may be produced, namely register
write signals, multiplezer port select signals and tri-state-driver enable signals. Those control
signals are obtained by combining the binding information and the respective register-transfer
level network. A set of control signals is issued by a controller to achieve the activities

specified in the binding information under the proper timing sequence.

4.2 Controllers Without Conditional Branches

The controller specification in this class of designs is simple and its state transition diagram

is a ring.. The time steps are a continuous sequence of numbers for a scheduled control/data

4The activating condition values are a set of condition values which is required by the execution of an
operation.



StateS1 : StateS2 : StateSn :

State = StateS2 State = StateS3 State = StateS1

Figure 1: A Ring State Transition Diagram

flow graph. In our approach, the vertices of a scheduled n-time-step control/data flow graph,
Gn, can be clustered into a set of ezecutions € = {&1,&,,...,&,}. An ezecution &; is then
defined as a set of the control/data flow graph operations which are scheduled to be executed
in time step ¢ for : = 1...n. Note that, the set of vertices of a control/data flow graph is
the union of the execution set and set of distribute/join nodes®; and the ezecutions, &; and
&;, are disjoint for ¢,7 = 1...n,2 # j. Thus, the task of a controller is to generate a set
of control signals to ensure that all the operations in &; are to be executed according to
specified behavior in time step ¢ for: =1...n.

A state transition diagram 7, is a graph with the states S = {S51,82,...,8,} as its
vertices and the transition arcs as its edges. A state consists of a set of control signals which
will be activated when the state is being visited. A ring state transition diagram, R, is a
state transition diagram, 7,,whose vertex set is V = {&1,Ss,...,S,} and whose edges are
{81,82},{852,S83}, -+, {Sn-1,Sn}, {Sn,S1}. A ring state transition diagram, R, is necessary
and sufficient for a non-pipelined design without conditional branches.

The controller is realized by defining a bijective function, F : £ — S; forz =1...n. The
control signal generating function F produces a set of control signals which are activated
during execution of operations within the ezecution &;; and the set of control signals is
assigned to state S;. By assigning the first state to state S;, and so on the controller
specification for a non-pipelined design is completed.

Designing the controller for a pipelined design is similar to the procedure for a non-
pipelined design. The basic idea is to “fold” the scheduled control/data flow graph every
initiation-interval®. The number of total time steps of this new control/data flow graph is
equal to the length of the initiation interval; and each operation in the control/data flow

graph will be executed every initiation interval time step. The formal model of a folded

5The distribute/join nodes in a control/data flow graph are not assumed to be assigned to any time step
in the current ADAM system.
6 An initiation interval is the number of time steps between introductions of new data into a pipeline.



' b) A Control/Data Flow Graph with
a) A Control/Data Flow Graph with Conditional branch after Being Folded
Conditional branch before Being Folded  with Initiation Interval 2 Time Steps

Figure 2: A Folded Control/Data Flow Graph
control/data flow graph for the pipelined design is given as follows. The vertices of a folded
scheduled n-time-step control/data flow graph, G,,, for a pipelined design with initiation
interval I can be represent by a set of p-ezecutions, €, = {Ep1,Epa,---,Epr}. A p-execution
Epi 1s defined as the union of executions {&;, &;11, Eitar, -« -y Eipmr} for all i+ mI < n. The p-
executions, £, and &,,, are disjoint for u,v =1...1,u # v. A ring state transition diagram,
R1, is necessary and sufficient in this case.

To realize this type of controller for a pipelined design, we also define a bijective function,
Fp: & — Sifor i =1...1. The control signal generating function F, produces a set of
control signals associated with p-ezecution &, which is the union of the control signals
activated in time steps 7,2+ I,2+21,...,1+ml for : +ml < n. The set of control signals is
then assigned to the state ;. By assigning the state transition diagram to be started from

the state &1, the controller specification for the pipelined design is done.

4.3 Controllers Using Status Registers

For a design with conditional branches, either each conditional branch is represented by a

separate set of states or the condition values are “remembered” by the controller until no



more conditional execution paths are dependent on those condition values. A controller which
uses separate status registers to keep track of condition values is now presented. In general,
a controller using status registers has a simpler state transition diagram than a controller
without status registers. Qur experimental results show the status-register implementation
style also provides a potential way to reduce controller area cost.

The first time step a condition value, V., is created and stored into a register is defined
as B, where B, > 1, and V. is said to be born in time step B,. The last time step that
the executions of operations are dependent on the condition value V. is defined as D, where
D, > B,, and V, is said to be dead in time step D,. The lifetime of the condition value V.
is thus defined as a span from time step B, + 1 to time step D,. The condition value V, is
said to be alive within the lifetime. The reserved period of the condition value V. is defined
as a span from time step B, + 2 to time step D, if (B, + 1) < D,. Otherwise, the reserved
period of the condition value V, is defined to be NIL. The condition value V, is said to be
reserved within the reserved period. |

The death of a condition value is not only decided by the schedule but also by the module
bindings and allocations. The death of condition values can be obtained from condition-value
lifetime analysis. The condition-value lifetime analysis inspects all the control signal tuples;
and the death of condition value V. is determined by the last time step that the activation of
a control signal is dependent on the condition value V.. It is obvious that a condition value
must be “remembered” by a controller during the reserved period and the number of status
registers required to implement the controller is the maximum number of condition values
reserved for any cycle during the execution.

For an n-time-step non-pipelined design controller using status registers, a ring state
transition diagram R, is necessary and sufficient to specify the control behavior because
the status registers are used to “remember” the propagated condition values. The control
specification for a state in which no condition value is alive is the same as the control
specification in a design without conditional branches; i.e. a set of activated control actions
is followed by a next-state assignment. For the state with only one condition value alive,
an if-then-else statement is used to specify the conditional branches. Otherwise, a case

statement will be used to specify a state with more than one condition value alive.
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StateSx : StateSy : StateSz :
: if ( predicate ) { case ( pred; ... predp) {
) < Activated Cntrol Signals> (00..0):
< Activated Cntrol Signals> }else { < Activated_Cntrol Signals>
< Activated Cntrol Signals>
: } }
State = StateSx + 1 State = StateSy + 1 State = StateSz + 1
a) No Condiiton Value Reserved b) Single Condition Value Reserved  c¢) Multiple Condition Values Reserved

Figure 3: Control Specifications Using Status Registers

We now decide which condition value reserved is assigned to which status register. The
Left Edge algorithm [7], which was proposed by Kurdahi to solve register allocation in data
path synthesis, is used to assign each condition value reserved to a status register based
on the results of condition-value lifetime analysis. A controller for a non-pipelined design
with conditional branches can therefore be constructed similar to a controller for a design
without conditional branches. The activated control actions for each state are specified by
the templates shown in Figure 3. The reserved condition values are propagated according
to the pre-determined status register assignments. A ring state transition diagram R, is
necessary and sufficient to specify the controller for an n-time-step non-pipelined design.
The first state of the state transition diagram is the state of time step 1.

A controller for a pipelined design using status registers can resemble a non-pipelined
design using status registers. The idea of a folded scheduled control/data flow graph is used to
model the pipelined designs as above. We start by viewing the folded control/data flow graph
as a set of p-erecutions. The purpose of an initiation-interval-I pipelined design controller is
to issue the respective control signals, which are necessary to execute the operations in the
p-ezecution &, for + = 1,...,I, and for any cycle t = mI + :. Because status registers are
used to save the condition value reserved, a controller approach similar to a pipelined design
without conditional branches can be used here.

The Left Edge algorithm assigns the reserved condition values of a folded control/data
flow graph to status registers in a similar way as above. However, a condition value may
have several instances reserved during a single time step in a folded control/data flow graph

due to the overlapped execution characteristic of pipelined designs. In that case, a condition



value instance is moved between status registers according to the execution of the pipeline.
A ring state transition diagram R; is necessary and sufficient to specify a controller for a
pipelined design with initiation interval I. The set of activated control signals in state S;
is the union of the control signals activated in time step ¢,¢ + I,7 + 21I,...,% + m,which
is similar to pipelined designs without conditional branches. The first state of the state

transition diagram is determined by assigning the state of time step 1.

4.4 Controllers Without Status Registers

For designs with conditional branches, we now present a controller implementation using
a state variable to store the reserved condition values. As compared to a controller using
status registers, a controller without status registers usually has a more complicated state
transition diagram. To construct a state transition diagram, we first determine the number
of states which are required to represent the control behavior. From our experiences with
controllers using status registers, a condition state should be saved by a controller during
the reserved period. Obviously, there are at most 2F states required to specify the controller
for time step z if k£ condition values are reserved in time step 7, where 1 < 7 < n for an
n-time-step non-pipelined design. In practice, a design usually does not need so many states
to completely specify the control behavior.

The determination of the next-state transitions of a current state is based on the results
of condition-value lifetime analysis. In order to store reserved condition values in the state
memory, we obtain the following. A state S;, in time step ¢ has exactly oné possible state
transition, Sit1,4, in time step 2 + 1 if there is no condition value born in time step i, or the
condition values born in time step ¢ are also dead in time step z. Also, a state S;; in time
step ¢ has 2 possible state transitions, S;t1, and Siy1,4, in time step ¢+ 1 if and only if there
is one condition value V, which is born in time step ¢ and reserved in time step 7 + 1, where
1 <z < n for an n-time-step non-pipelined design. The conditions of two states transiting
to one state can be derived in a similar manner. Notice that one state is sufficient to specify
the controller in time step 1 for an n-time-step non-pipelined design.

The procedure to construct the state transition diagram for a non-pipelined design starts

by determining a set of states which is sufficient to represent control behavior for each time
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step. Each state is then assigned a unique condition value combination which indicates the
executing conditions of that state, i.e. the state will be visited as long as all the condition
values specified in the associated condition value combination are satisfied. The set of states
is obtained either by color labels [5] or by assigning to 2 states, whichever is smaller, where
k is the number of condition values reserved in time step 3.

Once the set of states is determined, the next state transitions for each generated state
are decided by the results of condition-value lifetime analysis as mentioned above. The
activated control signals are obtained based on the associated condition value combination
in each state. Finally, we assign the first state to the state for time step 1 (note that only
one state is generated for time step 1) and the construction of a state transition diagram for
a non-pipeline design is completed.

The approach of controller design for a pipelined design is analogous to the controller de-
sign for a non-pipelined design. To clarify the resemblance, the folded scheduled control/data
flow graph is used to show the overlapped executions of a pipelined design. Also because of
the overlapped execution characteristics of a pipelined design, a condition value is treated as
different condition value instances in each time step and should be stored separately by the
controller, i.e. a condition value instance is actually a function of the condition value itself
as well as its working time step.

To determine a set of states which is sufficient to represent the control behavior of a
pipelined design, we start by generating a set of states which is sufficient to represent the
control behavior for each time step without considering the overlapped execution character-
istics of a pipelined design. Each state is associated with a condition value combination.
This step is the same as we did for a non-pipelined design. Because a condition value is a
function of the condition value itself and its working time step, each set of states before the
control/data flow graph is folded, is mutually exclusive. The set of states, which is sufficient
to represent a time step in the folded control/data flow graph, is obtained by the Cartesian
Product of all the sets of states which are folded into this time step.

After the set of states for each folded time step is determined, the next state transitions
of a state are decided similarly, except that a condition value is distinguished by the value

itself as well as the working time step. The activated control signals are obtained by taking
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1.2pum Technology Delay (ns) | Area (um?)
16-bit Comparator (>) 36 142087
16-bit Adder (+) 34 68825
16-bit Subtractor (—) 36 93646
16-bit Multiplier (x) 48 1838537

Table 1: Design Library Set Obtained from Cascade Design Automation ChipCrafter

Figure 4: The Control/Data Flow Graph for a Robot Arm Controller
the union all the control signals activated in this folded time step. By assigning any one of
the states in the folded time step 1 to be the first state, the state transition diagram of a

pipelined design is completed.

5 Experiments and Results

The algorithms described in this paper have been implemented in a program called CSG using
the C language. A portion of the robot arm controller example obtained from UC-Berkeley
served as our example. The robot arm controller was originally written in the C language.
The C code was translated into a VHDL description to obtain an internal control/data flow
graph representation as shown in Figure 4. In this example, there are 46 operations/nodes
including 4 distribute-join pairs. The module library used in our experiments is shown in

Table 1.
Nine non-pipelined designs, as shown in Table 2, were created using the MAHA and MA-
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Figure 5: A PLA-Based Controller Synthesized by Finesse

Non-Pipelined Functional Units Interconnection Units
Design Name” | Cmp | Add | Sub | Mul | Register | Multiplezers
MAHA.11 2 3 2 3 34 25
MAHA.12 2 2 4 2 34 21
MAHA.13 1 2 3 2 34 20
MAHA .1}, 1 1 3 2 34 15
MAHA.15 1 2 1 2 34 19
MAHA.19 2 1 3 1 34 14
MAHA.20 2 1 2 1 34 15
MAHA.21 1 1 2 1 34 12
MAHA.22 1 1 1 1 34 12

Table 2: Non-Pipelined Robot Arm Controller Examples by MAHA and MABAL
BAL programs to produce register-transfer level data paths. CSG then takes the schedule,
bindings and register-transfer level data paths to generate the controller specifications. For
each design, both types (with/without status registers) of controller specifications are pro-

duced and are shown in Tables 3 and 4, respectively. These designs are further synthesized

by Cascade Design Automation ChipCrafter to obtain the layouts.

Figure 5 shows a typical controller layout produced by ChipCrafter which includes a PLA
component and a set of D-type flip flops. It can be seen from this layout example that the
area of the DFF's is almost the same as the PLA area. Wiring area also takes a substantial

amount of area in a controller. Therefore, in order to estimate the area of a PLA-type

controller accurately, the area of DFFs and wiring cannot be ignored.
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Design Name | States | S. Reg.s | Rows | Ipts | Opts | M. Opis | DFFs
MAHA.11 12 2 17 10 39 45 42
MAHA.12 13 2 19 10 37 41 38
MAHA.13 14 1 18 9 44 36 52
MAHA.1} 15 2 22 10 47 29 53
MAHA.15 16 2 24 10 48 32 50
MAHA.19 20 2 25 11 44 26 45
MAHA.20 21 2 26 11 49 24 50
MAHA.21 22 2 31 11 49 22 49
MAHA.22 23 2 30 11 47 23 48

Table 3: Controllers Using Status Registers for Non-Pipelined Examples

In those experiments, the size of PLAs in non-pipelined design controllers increased as the
number of time steps increased (Figure 6). This behavior is consistent with our prediction.
However, the area of the controllers increased in the beginning, but then fluctuated with less
than 10% variation. This phenomenon may be explained as follows.

From Tables 3 and 4, the number of output signals decreased as the number of time steps
increased in the controller specifications. Nevertheless, the number of merged outputs is
reduced when the number of time steps is increased. This is probably because more output
bits of a multiplexer are encoded into a select word for more serialized non-pipelined designs.
For example, two 3-to-1 multiplexers (4 control bits) may be substituted for one 6-to-1
multiplexer (3 control bits) in a more serialized design. Even though the number of controller
outputs (after removing the merged outputs), which is similar to the number of PLA outputs,
is not increased in the designs with more than 12 time steps, the areas of the PLAs still
increase. This is probably due to the fact that the number of PLA product terms(rows) and
state encoding bits(columns) is increased as the number of time steps increases.

Figure 6 uses bar charts to show the area comparisons of PLAs and control paths for
non-pipelined designs with/without status registers. It is interesting to note that a controller
specified using status registers usually creates a smaller PLA area as well as smaller total
controller area for non-pipelined designs, although it uses more state encoding bits® than
one without status registers. In order to find out the reasons for this result, we examine

the state transition diagrams for MAHA.12 with/without status registers after Finesse®

“The naming convention for the non-pipelined designs is MAHA.[time steps].
8The state encoding bits here include the bit to represent states and the bits used by status registers.
®Finesse is a finite state machine synthesis program in Cascade Design Automation ChipCrafter.
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Figure 6: PLA and Controller Area Comparison of the Non-Pipelined Designs

Design Name | States | Rows | Ipts | Opts | M. Opis | DFFs
MAHA.11 21 21 9 40 44 40
MAHA.12 25 25 9 36 41 37
MAHA.18 19 19 9 47 34 50
MAHA.1} 25 25 9 48 27 50
MAHA.15 30 29 9 50 29 51
MAHA.19 40 40 10 42 27 43
MAHA.20 41 39 10 46 26 49
MAHA.21 41 39 10 47 23 48
MAHA.22 42 41 10 46 23 47

Table 4: Controllers w/o Using Status Register for Non-Pipelined Examples

synthesis. Notice that a twelve-time-step design needs thirteen clock cycles to complete the
task because one extra clock cycle is used to latch input values.

Figure 7 depicts the state transition diagrams for MAHA.12 without/with status reg-
isters. The two state transition diagrams look different, however, they represent exactly
the same controller behavior. By comparing these two state transition diagrams, we found
that some of the states in the state transition diagram without status registers split into
several states in the state transition diagram with status registers. All the split states are
shown by bold face and cross hatch patterns in Figure 7. The splits of those states indeed
indicate that a multiple-code state encoding is produced in the controller using status reg-
isters. Apparently, Espresso is able to exploit the don’t care bits in state codes in order to
minimize the size of the binary encoded cover. For example, no status register is used in
State( for the controller using status registers, so, in Finesse, the two don’t care bits and

“0100” are assigned by the unicode state encoding algorithm. To reduce the product terms,
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State13 (11110)
State17 (11001

Note: The first four bits are
state encoding bits; the rest
are status register bits.

State0 (0100 00) { State0 (0100 01)

Figure 7: MAHA.12 State Transition Diagram without/with Status Registers
FEspresso assigned two don’t care bits to “00” and “01” and the state encodings of Statel
became “0100 00” and “0100 01” (a multiple-code state encoding). Note that most current
state encoding algorithms can produce only unicode encodings. Our heuristic functionally
separates the encoding task between the states and the condition values, which make the
unicode state encoding algorithm produce a multiple-code state encoding.

Fourteen pipelined designs with different initiation interval and/or pipeline length were
created by Sehwa and MABAL, as shown in Table 5. Both the controller styles were gen-
erated for all the designs, as shown in Tables 6 and 7. To compare the two implementation
styles, the bar charts for PLA area and controller area are depicted in Figure 8. The results
are slightly different from the non-pipelined designs. In pipelined designs, some of the de-
signs using status registers are larger than the ones without status registers. This may be
due to the high utilization of status registers which leaves Espresso with no or little freedom
to assign the don’t care bits in status registers. However, the number of improved cases is

still more than the number of worse cases in our experiments. Notice that the percentages

10The naming convention for pipelined designs is SEHWA.[pipeline length].[initiation interval].
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Pipelined Functional Units Interconnection Units

Design Name'® [ Cmp | Add | Sub | Mul | Register | Multiplezers
SEHWA.15.3 2 4 2 6 110 40
SEHWA.17.3 2 4 2 6 110 36
SEHWA.13.4 1 3 2 5 84 28
SEHWA.15.4 1 3 2 5 76 35
SEHWA.11.5 1 3 2 4 55 26
SEHWA.12.5 1 3 2 4 60 29
SEHWA.19.6 1 2 1 3 71 20
SEHWA.24.6 1 2 1 3 92 26
SEHWA.15.9 1 2 1 2 42 22
SEHWA.16.9 i 2 1 2 45 22
SEHWA.14.11 1 1 1 2 35 19
SEHWA.20.11 1 1 1 2 41 20
SEHWA.20.17 1 1 1 1 36 15
SEHWA.27.17 1 1 1 1 42 16

Table 5: Pipelined Robot Arm Controller Examples by SEHWA and MABAL

Design Name States | S. Reg.s | Rows | Ipis | Opts | M. Opts | DFF's
SEHWA.15.83 3 4 11 10 13 163 21
SEHWA.17.83 3 2 6 6 11 159 14
SEHWA.13.4 4 3 10 8 14 120 24
SEHWA.15.4 4 1 8 T 14 125 26
SEHWA.11.5 5 1 9 8 26 79 33
SEHWA.12.5 5 2 11 9 22 92 29
SEHWA.19.6 6 1 11 7 31 87 39
SEHWA.24.6 6 4 22 10 40 111 42
SEHWA.15.9 9 1 13 9 45 48 48
SEHWA.16.9 9 2 17 10 50 46 57
SEHWA.14.11 11 i 18 10 51 30 53
SEHWA.20.11 11 2 19 9 48 44 54
SEHWA.20.17 17 2 23 11 47 29 50
SEHWA.27.17 17 2 23 il 49 35 51

Table 6: Controllers Using Status Registers for Pipelined Examples
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Design Name | States | Rows | Ipts | Opts | M. Opts | DFFs
SEHWA.15.3 36 30 10 19 157 26
SEHWA.17.3 9 6 6 7 163 10
SEHWA.13.4 18 19 9 25 111 32
SEHWA.15.4 8 8 7 14 125 26
SEHWA.11.5 9 11 8 24 81 32
SEHWA.12.5 14 13 8 26 87 32
SEHWA.19.6 10 9 7 32 86 38
SEHWA.24.6 52 48 10 45 106 51
SEHWA.15.9 14 13 8 47 45 50
SEHWA.16.9 23 23 9 49 46 53
SEHWA.14.11 19 20 9 50 31 51
SEHWA.20.11 16 15 8 52 39 54
SEHWA.20.17 25 24 9 48 29 49
SEHWA.27.17 28 28 9 49 33 50

Table 7: Controllers w/o Using Status Register for Pipelined Examples
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Figure 8: PLA and Controller Area Comparison of the Pipelined Designs
of area improvement of both PLA area and controller area are more dramatic than the ones
for non-pipelined designs, and the percentage of area increase by the controllers using status

registers is much less than the ones without status registers.

6 Conclusions and Future Work

In this paper, the control path synthesis problem is addressed. Two possible controller
implementation strategies are proposed: controllers with status registers and without status
registers. Intuitively, controllers without status registers would seem better, because less
state encoding bits are needed. However, the experimental results contradict our initial
guess (expectation): the controllers implemented using status registers are better results

in all non-pipelined design cases and most pipelined design cases. After we traced one
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of non-pipelined design cases, we found out the improvement is caused by the result of a
multiple-code state encoding instead of a conventional unicode state encoding. Therefore,
the controllers implemented using status registers are able to produce better designs after
logic simplification.

In general, a multiple-code state encoding, if done intelligently, is expected to produce
better results then a unicode state encoding. However, to the best of our knowledge, there is
no reported work on multiple-code state encoding algorithms among current state encoding
research. One possible reason is the high complexity of computing optimal multiple-code
state encodings. The controller implementation which uses status registers does provide an
effective heuristic for producing multiple-code state encodings using a unicode state encoding
algorithm.

There is still much work to be done here. More research on controller implementations
with status registers versus without status registers may lead to more concrete results which
may help us choose a better controller implementation style in the early stage of control
path synthesis. This research will also help us develop more powerful multiple-code state
encoding algorithms by giving hints to unicode state encoding algorithms. We believe that
with further research on multiple-code state encodings we may be able to derive a more

powerful and efficient heuristic for the state encoding problem.
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