Technology Decomposition and Mapping
Targeting Low Power Dissipation

Chi-Ying Tsui, Massoud Pedram, Alvin M. Despain

CENG Technical Report 92-16

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-6006

Technology Decomposition and Mapping Targeting Low
Power Dissipation

Chi-Ying Tsui, Massoud Pedram, Alvin M. Despain
23 October 1992

Abstract

In this paper, we address the problem of minimizing the average power dissipation during
the technology dependent phase of logic synthesis. Our approach consists of two steps.
In the first step, we generate a NAND decomposition of an optimized Boolean network
such that the sum of average switching rates for all nodes in the network is minimum.
Our power-efficient decomposition procedure is optimal for dynamic CMOS circuits with
uncorrelated input signals and produces very good results for static CMOS. In the second
step, we perform a power efficient technology mapping that finds an optimal power-delay
trade-off value (subject to the unknown load problem) for given timing constraints. We
obtain an average of 22% improvement in power at the expense of 13% increase in area
and without degradation in performance on a number of benchmarks.

Contents

1 Introduction 3
1.1 Problem Definition . - » « « cv « s v s s v v i v v s v v avos o 3

1.2 Our Power Dissipation Model 3

1.3 Prior Work i i e e 4

1.4 Calculation of the Switching and Correlation Probabilities 5

1.5 Organizationofthe Paper 6

2 Power-Efficient Technology Decomposition 6
2.1 MINPOWER Tree Decomposition 6
2.1.1 Domino Dynamic Logic 8

212 Sratic LOBIC s vuw s wimmn s v s 5 s 48 s s a6 s s a5 5 il s 9

2.2 BOUNDED-HEIGHT MINPOWER Tree Decomposition 10
2.3 NAND Decomposition o o« v v oo s 5 0 6 6 0 558 68 556656 shovo 12

3 Power-Efficient Technology Mapping 13
3.1 Terminology and Computational Models 13
3.2 TreeMapping i e e e b.o.. 16
3.2.1 Postorder Traversal 16

3.2.2 Preorder Traversal .+« oo« i 5 4 o o s 6 0 0 55 20 4808 afois 17

323 Timing Reealeculationi « . 2+ s 0 o 55 +5 5553555 ik sas 17

33 DAGMEpPIng . . v v v v vmwmuwoeenesosesssonsssssahaas 18

4 Experimental Results 19
5 Concluding Remarks 22

1 Introduction

1.1 Problem Definition

With the recent advances in microelectronic technology, more and more functions are
being put in an embedded microsystem. For many embedded systems such as notebook
computers, portable phones or other consumer electronics, long battery life and low heat
dissipation are important design objectives. To achieve these goals, designers are willing
to trade off area and/or performance for low average power dissipation.

The average power dissipation of a circuit may be improved by architectural or tech-
nological changes. Low power dissipation can also be achieved by lowering the supply
voltages on the chips. However, lowering the supply voltage may create other design
problems such as reduced noise margin, increased cross talk, etc.

In CMOS design, energy is dissipated during the charging and discharging of the gate
capacitances. To reduce the power dissipation, we can lower the internal load capac-
itances and/or the average switching activity of the internal nodes. Many researchers
have attempted to reduce the maximum power consumption by resizing the transistors
to reduce the load capacitance [7]. In today’s designs, reducing the average power con-
sumption which depends on the average switching activity is however more important.

In this paper, we present techniques to lower the average power dissipation of a circuit.
In particular, we address the problem of minimizing the average power dissipated in
the synthesized circuits during technology-dependent phase of combinational logic syn-
thesis (e.g. technology decomposition and mapping). The idea is to generate a NAND
decomposition of the Boolean network with minimum switching activity and later hide
the high switching nodes with large capacitive loads within complex gates during the
technology mapping.

1.2 Our Power Dissipation Model

The average power consumption for a single gate in a synchronous CMOS circuit is given
by

%7 "
Poyg = 0.5 X Cloaq X =24 x E(transitions) (1)
cycle

where Cioqeq is the load capacitance of the gate, Vyy is the supply voltage, :Tcyc(c is the
clock cycle time and E(fransitions) is the expected switching probability at the output
of the gate. |

The switching probability of a gate depends on the design style, its logic function in
terms of the circuit primary inputs, gate delays, and the switching probabilities of the
primary inputs. For domino logic designs, the switching probability of a node is equal
to probability of being 1 (for p-type circuit) or 0 (for n-type circuit) . For static designs,
the switching probability of a node is equal to the sum of probabilities of 0->1 and 1->0
transition.

The primary input switching probabilities are often assumed to be independent for data
path modules since their input data is often random. For some circuits such as finite state
machine or instruction decoder of a microprocessor, the input switching probabilities are
correlated and the correlations can be obtained from the opcode/state assignment or
the state transition diagram. We will consider both correlated and uncorrelated input
signals.

1.3 Prior Work

Previous work has mostly focused on the estimation of signal probabilities and the
average power consumption. Cirit [4] estimates the dynamic power dissipation at the
transistor level. The probability for the drain of a transistor to make a power consuming
transition is calculated by multiplying the source’s probability of being 1 or 0 with the
gate’s transition probability. This method assumes all signals are independent and thus
does not consider the reconvergent fanout and input correlation.

Burch et al, [2] introduce the concept of a probability waveform. Given such waveforms
at the primary input nodes, they derive the corresponding waveforms at the internal
circuit nodes. Then, with some convenient partitioning of the circuit, they examine
every sub-circuit and derive its expected current waveform based on the waveforms at
its inputs. The inputs to the subcircuits are assumed to be independent.

Najm [12] describes an efficient technique to propagate the transition densities (average
switching rates) at the circuit primary inputs into the circuit to give the transition den-
sities at all internal and output nodes. His timing model assumes that the propagation
delay from an input to the output of a logic block is independent of values at other
inputs. The Boolean difference operator is used to express the output transition density
in terms of the input transition densities. Transition densities are propagated through
combinational logic without regard to its structure. Correlations between internal lines,
which are due to reconvergence, are ignored during the propagation.

Ghosh et al, [6] propose symbolic simulation to produce a set of Boolean functions
that represent the conditions for switching at each gate in the circuit. Given the input
switching rates, the switching probability at each gate is calculated by performing a
linear traversal of the Binary Decision Diagrams (BDDs) representation of the corre-
sponding Boolean function [12]. A general delay model which correctly computes the

Boolean conditions that cause glitchings is used and correlations due to the reconver-
gence of input signals are taken into account.

The above methods are primarily concerned with the estimation of signal probabilities
and analysis of the circuits. Shen et al, [14] present algorithms for reducing power
dissipation during technology independent phase of logic synthesis. At first an optimized
multi-level implementation of the circuit is obtained by the standard optimization script.
Each node is then simplified in such a way that reduces the output switching probability.
Logic transformations which realize each node in the network as a disjoint cover are
applied to further reduce the average power dissipation. Nodes that are not on the
critical paths are partially collapsed and re-implemented in two-levels of logic. The
rationale is that in general two-level sub-networks dissipate less power than their multi-
level counterparts.

Shen’s work focuses on the technology independent phase. In contrast, we present
methods that can optimize average power consumption during the technology dependent
phase, e.g. technology decomposition and mapping.

1.4 Calculation of the Switching and Correlation Probabilities

We calculate the signal probability at the output of a node by first building a BDD
corresponding to the global function of the node and then performing a linear traver-
sal of the BDD as follows [12]. For a function y = f(21,....2,) where the inputs are
independent, probability of y is given by

Wy=1 = Wy =1Wf, =1 T Wr=1Wf, =1 (2)

where f, and fz are the cofactors of f with respect to z; and z;. wy, =1 is calculated
in a similar manner and hence a depth-first-traversal of the BDD, with a post-order
evaluation of w at every node is all that is required to give wy—;.

In this paper, we assume the zero delay model where gate delays are assumed to be zero
[6] and ignore the signal transitions due to glitching. Primary inputs are assumed to
be uncorrelated. For static circuits, we assume that the present input signal value is
independent of the previous value. Hence, the transition probabilities are given by

Wiy s = Wi=pWi=1 (3)

Wis0—51)liz(0—51) = Wiz=0Jia=0Wiy=1]iz=1 (4)

respectively where w;—. is the probability of signal i assuming value x and w;, —p|i,=y 15
the probability that signal ¢; assumes x when signal 75 assumes y.

1.5 Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we discuss how a NAND-
decomposed network that has minimum total average switching activity is constructed.
Section 3 presents a power efficient technology mapping paradigm which exploits the
power/delay tradeoff curves to generate a mapped network with minimum total switch-
ing activity subject to given timing constraints. Experimental results and conclusion
remarks are presented in Sections 4 and 5. Proofs are omitted for sake of brevity.

2 Power-Efficient Technology Decomposition

Technology decomposition (the procedure for converting an optimized Boolean network
into a NAND-decomposed network) is the precursor to the technology mapping step.
It is an open problem to determine which of the possible NAND-decomposed networks
yields an optimum solution when an optimum covering algorithm is applied [1].

It is our belief and observation that a decomposition scheme which minimizes the sum
of the switching activities at the internal nodes of the network, is a good starting point
for power-efficient technology mapping. We illustrate the importance of decomposition
on the average switching rate with a simple example (Figure 1). A four-input AND gate
can be decomposed into a tree of three two-input AND gates in two ways. These two
decompositions have different total switching activities. In particular, configuration A
is better than Configuration B since the sum of the switching activities at the internal
nodes for configuration A is smaller.!

We denote the problem of generating a NAND-decomposed network with minimum
total switching activity as the MINPOWER decomposition. The performance-oriented
version of the above problem requires that the increase in the height of the decomposed
network (compared to the undecomposed network) be bounded. We refer to this problem
as the BOUNDED-HEIGHT MINPOWER decomposition.

2.1 MINPOWER Tree Decomposition

We describe algorithms for solving the MINPOWER. decomposition for a fanout-free
logic function (i.e. a function that has a tree realization).

'Indeed, if we assume that the cell library has 2-input and 3-input AND gates but not a 4-input
AND gate, the minimum power mapping with value 2.026 is obtained from configuration A and not
from configuration B.

a

4 — / b

b ¢

¢ d

- \ Configuration A
a

b

¢
d Configuration B

Assume p-type dynamic circuil is used and inputs are independent,

let P(i)= probability of node; being 1, P(@)=0.3, P(b)=0.4, P(c)=0.7

and P(d)=0.5. Total switching activities SR for A and B are

SR(A)=P(a)*P(b) + P(a)*P(0)*P(c)+P(2) *P(b)*P(c)*P(d) + P(a)+P(b}+P(c}+P(d) =2.146
SR(B)=P(a)*P(b) + P(c)*P(AHP()*P(b)*P(c)*P(d) + PQMP(D)+P(c)+P(d) =2412

Figure 1: Effect of technology decomposition on total switching activity

The basic algorithm is similar to the Huffman’s algorithm for constructing a binary tree
with minimum average weighted path length. We denote the leaves of a binary tree by
V1, U2y ..., Upn, the “path length” from the root to v; by l;, and the weight of leaf v; by
w;. Assuming that the root is at level zero (the highest level), leaf v; is at level [;. Given
a set of weights w;, there is a simple O(nlogn)-time algorithm due to Huffman [8] for
constructing a binary tree such that the cost function 37 ; w;l; is minimum.

Algorithm 2.1 (Huffman)

Among the n nonnegative weights wy,ws,...,wy, find the two smallest weights
wy, wy, say. Replace the two nodes by one node having the weight Wy = wy +
wy and two sons with weights wy,ws. Do this recursively for the n — 1 weights
Wi, ws, ..., w,. The final single node with weight W,,_; = w; + w9 +‘ oWy, i
then the root of the binary tree.

It is well known that the resulting binary tree minimizes » -, w;l; over binary trees
whose leaves have these weights. We denote this tree as the MINSUM tree.

In a more general setting, a weight combination function I is used to produce the
weight of internal nodes during tree construction. For each tree T', a tree cost function
G(Wy,Wa,...,W,_1) gives the cost.? Parker [9] characterized a wide class of weight
combination functions, quasi-linear functions, for which the Huffman’s algorithm pro-
duces optimal trees under corresponding tree cost functions.

?In Huffman’s original paper, F(z,y) = z+y and G = Z::; W;. It is easy to show that G =
o, wili.
A weight combination function F is quasilinear if F(z,y) = ¢~ (Aé(z)+Ad(y)) where A is a nonzero

It can be shown that F(z,y) = maz(z,y)+ 1 is a quasi-linear function and its corre-
sponding tree cost function is G = mam:-‘:_f W;. It is not hard to show that G is equal
to maz?_;(w; + [;) which is the weighted height measure of 7.

If F(z,y) is not a quasi-linear function, then the Huffman’s algorithm does not, in
general, produce the optimal solution. We propose the following O(n%logn) greedy algo-
rithm to solve the decomposition problem for the general weight combination functions.
(See Section 4 for experimental results of this algorithm.)

Algorithm 2.2 (Modified Huffman)

For every pair w; and w; of the n non-negative weights wy, ws, ..., w,, compute
Fij(w;,w;) and store in list L . Find the smallest Fj;, say Fj2. Replace the two
nodes by a single node having the weight W; = Fi; and two sons with weight w,
and wy. Eliminate all Fyy(wy, wy) and Foi(ws, wi) from L. Compute Fy;(Wy, w;)
and insert it into L. Do this recursively for the n — 1 weights W;,ws, ..., w,. The
final single node with weight W,,_; is then the root of the binary tree.

To solve the MINPOWER tree decomposition problem, we must use appropriate weight
combination and tree cost functions. We thus distinguish among two cases as follows.

2.1.1 Domino Dynamic Logic

For p logic block dynamic CMOS circuits (p circuits), the gate outputs are precharged
to zero and switching occurs when the output changes to 1 during the evaluation phase.
The switching probability for the output of a 2-input AND gate (without input signal
correlations) is given by

W, = wi wi, (5)

|

where W, and w;_ values are probabilities of the output and inputs assuming value
1. For n circuits since gates are precharged to 1 and transition occurs when output
evaluates to 0, the corresponding formula for the switching probability is given by

W,=1-(1-w;)(1-w;,) (6)

where the W, and w;, values are now probabilities of the output and inputs assuming
value 0.

The merging function F(w; ,w;,) = W, is used during the AND decomposition. The
corresponding tree cost function G is equal to 377! W;.

Lemma 2.1

constant and ¢ is an invertible function.

W,’s given in (5) and (6) above are quasi-linear functions.
Proof

For (5), since w; is within the range of [0,1] we can take ¢(z) = —log(z) which is a
convex decreasing function and A= 1. This shows that W, is quasilinear. Similar
proof can be derived for (6).

Theorem 2.2

MINPOWER tree decomposition for dynamic CMOS circuits with uncorrelated
input signals can be solved optimally by Huffman’s algorithm using the weight
combination functions (5) and (6).

If the input signals to the AND gates are correlated, (5) and (6) cannot be used as the
merging function. The switching probabilities are then given by

For p circuits :
W, = wiy wyy;, (7)

For n circuits :
Wo =1—(1—wi)(1—wi;) (8)

where w;,);, is the conditional probability of i3 given 7. (7) and (8) are not quasi-linear
functions. Hence, we must use the Modified Huffman’s algorithm. After merging nodes
t,J, the conditional probability between the newly formed node A and the remaining
nodes (say k) is heuristically calculated by

War = ((wk|,- + wkh-) X w,-j/2 -+ ('IL?:;”c + wﬂ,-) X wik/2 + (w,-]j 4 'w,-lk) X wjkI/Q)/& (9)

Alternatively, W4 can be calculated using BDDs and the procedure described in Section
1.4.

2.1.2 Static Logic

For static CMOS circuits, we need to minimize sum of the probabilities for output
switchings from 0 to 1 and 1 to 0. Thus, the merging function F for a 2-input AND
gate is equal to Wo,_,, + W, where

1—3>0

Wao_>1 — wt'lo_>| wi20_>1 + wi11_>1 w520_>| + wl'ln_>1 w'l.21_>1 (10)

and

Woy_so = Wity _5 Wiy _so + Wity _soWizg_sy + Wity _50Wizy_50 (11)

If input signals are correlated, conditional probabilities between the input signal tran-
sitions have to be used in order to calculate the output transition probability. W,,_.,

and W,,__, are then given by

Woo_si = Witg_s, Widg_sililomst T Wili_sy Wizg_syfily—sy T Wilo—sy Wi2y_s1ilo—s1 (12)
and

Wo,_so = Wity 51 Wizy _solili—s1 T Wili_soWi2y_syfiliose T Wila_soWi2y_solili—>0 (13)

Unfortunately, F is not quasi-linear and hence we must use the Modified Huffman’s
algorithm.

2.2 BOUNDED-HEIGHT MINPOWER Tree Decomposition

Here, the objective is to construct a MINPOWER. binary tree for a given list of weights
(signal switching probabilities) with the restriction that its height (defined as maz; [;)
does not exceed a given integer L. The best known algorithm for solving BOUNDED-
HEIGHT MINSUM problem is an O(nL) algorithm due to Larmore and Hirschberg
[13].

Algorithm 2.3 (Larmore)

Let n be the number of leaf nodes and L be the height bound. Define a node to be
an ordered pair(i,!) such that 7 € [1, n],which is called the index of the node and
I € [1, L], which is called the level of the node. Define width(i,l) = 27\ If T is a
tree, define node_set(T") = {(i,1)|1 =< I =< I;} where [; is the depth of ith leaf of
T. Let T; be the tree we want to decompose with depth no more than L and let each
node in the node_set be an item which has width less than 1. For each [€ [1, L],
the list of nodes with width 27 is initialized as ((n,!),(n — 1,1),...,(1,1)). The
optimal Huffman tree with height bound L is thus equivalent to finding a minimal
weight node_set of width n — 1 which can then be reduced to an instance of the
Coin Collector’s problem of size nL. An instance(I, X) of the Coin Collector’s
problem is defined as given a set I of m items each of which has a width and
weight, find a subset of § of I whose widths sum to X and has minimum total
weight. The problem is solved by Package-Merge algorithm which is described by
the following pseudo-code.

10 |

Package-Merge Algorithm(7, X)
S§=0
for all d, Ly = list of items having width 2¢, sorted by weight
while X > 0 loop
minwidth = the smallest term in the diadic expansion of X
if I = 0 then
return No solution
else d = the minimum such that Ly is not empty
r=2¢
if » = minwidth then
return No solution
else if » > minwidth then
Delete the minimum weight item from Ly and insert into S
X = X — minwidth
end if
Pyy1 = PACKAGE(Ly)
(PACKAGE merge items in consecutive pairs in Ly to form a new item in Lg41)
discard Ly
Ld+1 — MERGE(Pd+1, Ld+1)
end if
end loop

This algorithm is optimal for trees with quasi-linear weight combination functions.

Theorem 2.3

The BOUNDED-HEIGHT MINPOWER tree decomposition problem for dynamic
circuits with uncorrelated input signals can be solved optimally in time O(nL) by
Larmore-Hirschberg’s algorithm using the weight combination functions (5) and

(6).

For the general merging functions, the Larmore-Hirschberg’s algorithm has to be modi-
fied as follows. We replace the PACKAGE step with an algorithm similar to Algorithm
2.2. An item at level ¢ is obtained by merging the pair of items at level 7—1 which has the
minimum weight combination value. The MERGE step is unchanged. We therefore per-
form n? weight calculations during the PACKAGE step and the run time is increased to
O(n®L). Using the modified Larmore-Hirschberg’s algorithm, the BOUNDED-HEIGHT
MINPOWER tree decomposition can be solved heuristically for the general w?ight com-
bination functions.

11

2.3 NAND Decomposition

The pseudo-code for power-efficient technology decomposition of a Boolean network
I', given a vector of arrival times a at the network primary inputs and a vector of
required times A at the networks primary outputs, is shown below.? Note that during
the technology-decomposition step, we use the unit-delay model instead of more accurate
timing models such as the library delay model. The reason is that the size and depth of
the network after mapping will be quite different from that of the NAND-decomposed
network and a rough timing model such as the unit-delay model is all we need (and is
indeed more sensible than the library delay model).

function power_efficient_network_decomp (T, a,)
I’ is a technology-independent, optimized Boolean network
o is a vector of arrival times at the primary inputs
B is a vector of required times at the primary outputs
begin
calculate_switching_and_correlation_probabilities (I")
I'" = network_duplicate(T")
for each node n € I' (in postorder) do
MINPOWER node_decomp (n)
update_switching_and_correlation_probabilities (I")
end
o = calculatenodeslacks(I”, T',a, 3)
while delay requirement not satisfied and some nodes
have not yet be redecomposed do
n = the node having the most negative g, value
BOUNDED_-HEIGHT -MINPOWER _node_decomp (n,0,)
update.slack (T')
end
end

In order to use the (Modified) Larmore-Hirschberg’s algorithm, we must calculate the L
values for nodes being decomposed as follows. First, we duplicate network I' to obtain
I and do an unrestricted MINPOWER. decomposition of IV. We then calculate the
arrival times for all nodes in I' using the NAND-decomposition of I' as an estimate.
Given the required times § at the primary outputs, we calculate the slacks for all paths

*We assume that as a result of technology-independent logic optimization, all nodes in the network
are simplified and have tree functions. Otherwise, a preprocessing AND-OR decomposition of complex
nodes is used.

12

in the network.® The slacks are then distributed to nodes along the path as follows. Let
depth_surplus, of node n in I' denote the difference between the height of the power-
efficient NAND decomposition of node n and H,,, the height of a balanced decomposition
of n. The height bound for n is estimated as L, = H,+M inpepaths(n)fp where paths(n)
denotes the signal paths which go through n and

p depth_surplus,

Sp= Sp X

f;l depth_surplus;

for a path with total slack S, and K nodes. After the slack assignment step, the
node that has the most negative S'p is NAND-decomposed. In case of a tie, the node
that is shared by a maximum number of paths is processed first. After the node is
redecomposed, slacks of all nodes in I" are updated and the above procedure is repeated
until the delay requirements are satisfied or no further node re-decomposition can be
carried out.

3 Power-Efficient Technology Mapping

Given a Boolean network representing a combinational logic circuit optimized by technol-
ogy independent synthesis procedures and a target library, we bind nodes in the network
to gates in the library such that average power consumption of the final implementation
is minimized and timing constraints are satisfied.

Our power-efficient technology mapper follows a procedure similar to [3], with the dif-
ference that our objective is to minimize the sum over all gates of the average power
dissipated in the mapped network subject to given required time constraints. First a
postorder traversal is used to determine a set of possible arrival times at the root of the
tree. Next, a preorder traversal is performed to determine the mapping solution that
minimizes the average power subject to the require time constraints.

3.1 Terminology and Computational Models

Consider a match g at node n of a NAND-decomposed tree. The inputs to node n
consist of nodes n; which fanout to node n (that is, n = n} + n4 if n has two inputs or
n = n} if n has a single input). The nodes which are covered by match g are denoted
by merged(n,g). The nodes which are not in merged(n,g) but fanin to merged(n, g)
are denoted by inputs(n,g). The mapped-pareni(n;) is some node n for which there
exists a matching gate g such that n; € inputs(n,g). Note that given node n and gate

®Slack for a path may be positive (indicating early arriving signal at the path endpoint) or negative
(indicating late arriving signal).

13

P1 Inferor

merged(n,g) = (n,ef)
inputs(n,g) = {ab,c.d}
mapped-parent(c) = {np)

Figure 2: Terminology

g matching at n,inputs(n,g) are uniquely determined. However, n; may have many
distinct mapped-parents (Figure 2).

With each node in the network we store a power-delay curve. A point on the curve
represents the arrival time at the oufput of the node and the average power dissipated
in its mapped transitive fanin cone (up to but excluding the node). The node itself
is excluded for this calculation since the output load has yet to be decided by a later
mapping. In addition to the power and delay values, the matching gate and input
bindings for the match are also stored with each point on the curve. Points on the curve
represent various mapping solutions with different tradeoffs between average power and
speed. We are interested in a mapping with minimum average power satisfying delay
requirements. Consequently, we can drop point Py on the curve if there exists another
point P, on the curve with lower average power but equal or lower delay. This is possible
because the solution associated with P is superior to the solution associated with Py
in terms of average power, delay or both. By dropping points, the power-delay curve
can always be made monotonically non-increasing without loss of optimality. We would
refer to Py as an inferior point. Point P* = (t*, p*) is a non-inferior point if and only if
there does not exist a point P = (f,p) such that either ¢t < t*,p < p* or t < t*,p < p*.

Lemma 3.1 The power-delay function for a node contains the set of all non-inferior
points and is monotonically non-increasing.

In addition, if the difference in delay among two points is small (according to some
user-specified parameter ¢), we drop the point with higher average power without any

14

noticeable impact on the quality of the result. Similarly, points which are close in terms
of their average power are merged together.

The power-delay function is therefore represented by a set of ordered pairs of real positive
numbers (%,p), where a piecewise linear function p = f(t) can be constructed which
describes the set of all possible accumulated average power dissipations. This function
describes all possible arrival time-average power tradeoffs at a given node. The power-
delay function at an input node of the NAND-decomposed tree consists of ordered pairs
(t,p) where t and p have been specified by the user (in case of primary inputs of the
network) or have been previously computed (in case that inputs to this tree are outputs
of other trees).

We have adopted the pin-dependent SIS library delay model as follows. Suppose that
gate g has matched at node n, then the output arrival time at n is given by

arrival(n, g,Cp) = My, cinputs(n,g)(Ti,g + RigCn + arrival(ni, i, Ci)) (14)

where 7, is the intrinsic gate delay from input i to output of g, R;, is the drive
resistance of g corresponding to a signal transition at input i, Cj, is the load capacitance
seen at n, arrival(n;, g;,C;) is the arrival time at input i corresponding to load C; seen
at that input, and g; is the best match found at input 1.

There are two methods to calculate the dynamic value of the average power dissipation
at some intermediate node during the mapping process.

Method 1
Vdd?
power(n,g) = > (0.5Cn; 77— Eq; + power(n;, g;)) (15)

i T "
niEinputs(n,g) eyee

where E,; is the average switching activity at the output of gate n;, Cy; is the output
load capacitance seen at node n;, Teyele is the cycle time, V'dd is the power supply voltage
and power(n;, g;) is the average power dissipated at input 2.

Method 2

)= 0.5C. idzE + Z ower(n;, g;) (16)
powelr(n)g - * nT n p i!gl

cycle n;Einputs(n,g)

where C, is the output load capacitance seen at n.
When calculating the average power dissipation at node n, Method 1 does not include

the power contribution from n while Method 2 includes its contribution by assuming a
default load capacitance C,°. In the zero-delay model, E, is calculated based on the

5This is usually referred to as the “unknown load problem”.

15

global function of n and not its particular implementation. Hence, E, is independent
of the gate matching at n. For this reason, it is possible (and indeed desirable) to use
Method 1 to calculate the dynamic power dissipation since it produces more accurate
results compared to Method 2.

In Method 1, the average power contribution of the n’s output will be included at mapped-
parent(n). When the mapping reaches a primary output, every point on the power-delay
curve has a power value equal to the total average power dissipation of the mapped
tree minus the power dissipation at the primary output. The power dissipation at the
primary output depends on F, at that output and the load capacitance connected to it
which are both independent of the mapping configuration. Hence, it only causes a fixed
shift of the curve along the power axis. It does not affect the selection of the optimal
point from the power-delay curve’. In Method 2, the average power dissipation at a
node is a function of the load it is driving. It thus has to be recalculated (similar to the
timing recalculation procedure described in Subsection 3.2) in order to account for the
difference between the estimated and actual loads.

Furthermore during the DAG mapping, the dynamic power at node n is divided by its
fanout count (see Subsection 3.3). Method I will not reduce the power contribution due
to the fanout edges of n while Method 2 will do that. Method Iis better in modeling the
multiple fanout situation for the following reason. Preserving n after mapping will not
create logic duplication in the transitive fanin of n and hence will reduce their power
contribution. On the other hand it cannot reduce the power dissipation at the fanout
of n and hence that component should not be divided by the fanout count of n.

We have therefore adopted Method I to calculate the dynamic power dissipation at the
intermediate nodes.

3.2 Tree Mapping

In this section, we focus on tree mapping. Later, we shall describe extensions to DAG
mapping. In particular, we describe two tree-traversal operations which are applied
to a NAND-decomposed tree in order to obtain a technology mapping solution which
minimizes the average power dissipation while satisfying the timing constraints.

3.2.1 Postorder Traversal

On the first traversal, we begin at the leaf nodes of the NAND-decomposed tree. Since
each leaf node possesses a set of possible arrival time - average power points which are

"Note that this argument will not hold for arrival time calculation since the shift along delay axis
will not be a constant due to R; 4 in (14). ‘

16

reflected in its power-delay function, the power-delay function at any mapped-parent(n)
must also reflect these possible arrival time - average power tradeoffs. A postorder
traversal of the NAND-decomposed tree is performed, where for each node n and for each
gate g matching at n, a new power-delay function is produced by appropriately merging
the power-delay functions at the inputs(n,g). Merging must occur in the common
region in order to ensure that the resulting function reflects feasible matches at the
inputs(n,g). The power-delay functions for successive gates g matching at n are then
merged by applying a lower-bound merge operation on the corresponding power-delay
functions (see [3] for details). At a given node n, the resulting power-delay function will
describe the arrival time - average power tradeoffs in propagating a signal from the tree
inputs to the output of n.

3.2.2 Preorder Traversal

The user is allowed to select the arrival time - average power tradeoff which is most
suitable for his application. Given the required time £ at the root of the tree, a suit-
able (,p) point on the power-delay function for the root node is chosen. The gate
g matching at the root which corresponds to this point and inputs(root,g) are, thus,
identified. The required times ¢; at inputs(root, g) are computed from ¢, g, and the ob-
servation that inputs(root, g) must now drive gate g. The preorder traversal resumes at
inputs(root, g) where t; is the constraining factor and a matching gate g; with minimum
power dissipation satisfying ¢; is sought.

3.2.3 Timing Recalculation

The gate delay is a function of the load it is driving. During the postorder tree traversal,
the output of current node n;, is not mapped hence the load capacitance is unknown
(unless, all the gates in the library have identical pin capacitances). At this time the
load value is assumed to be that offered by the smallest two-input NAND gate in the
library. When we come to a node n =mapped-parent(n;) with matching gate g, we know
the exact load seen by m;. This load is equal to the input capacitance of g and is,
in general, different from the default load. Therefore, in order to calculate the arrival
time at node =, the output arrival times for all nodes in inputs(n, g) must be adjusted
to account for the change in the load capacitance. Similarly, during the preorder tree
traversal, when a gate g is selected to match at n, the load seen by inputs(n,g) must
be recalculated. (See [3] for more details.)

In order to account for this load change (A;), the delay curves at the inputs have to be
appropriately shifted. In particular, since the drive resistance of gate matching at n;
and giving rise to a point p; on delay-curve of n; is stored with that point, the delay
shift is computed as A; x p;.gate.drive. (See [3] for more details.)

17

function power_efficient_technology map(7)
7 is a NAND-decomposed Boolean network
begin
for each node n € 7 (in postorder) do
if n is a primary output then
assign_best_gate(n, required,)
endif
compute_power_delay_curve(n)
end
end

3.3 DAG Mapping

Most of the real circuits are not trees, but general DAGs. The problem of mapping a
DAG even for the constant load model is NP-hard [1]. Therefore, we resort to heuristics.
One heuristic is to decompose the DAG into a number of trees such that the inputs for
each tree come from other tree outputs or the primary inputs. During the power-delay
curve computation step, entire trees are processed in postorder and power-delay curves
are computed for each primary output of the DAG. During the gate assignment step,
entire trees are mapped in preorder. This heuristic which does not allow mapping across
tree boundaries is similar to that used by DAGON [10].

Alternatively, we could avoid decomposing the DAG into trees as follows. During the
power-delay curve computation step, nodes are visited in postorder. For each node, we
compute the power-delay curve as in case of trees. However, if the input for a candidate
match at the node is coming from a multiple fanout node, we divide the average power
contribution of that input by the fanout count of the input node . By reducing the
average power contribution we tend to favor a solution in which multiple fanout nodes
are preserved after mapping, which reduces logic duplication and improves the final
mapped average power. This heuristic which permits tree boundary crossing only for
nodes with relatively few fanouts was also adopted by the MIS mapper [5]. During the
gate selection step, if we come to a node which has already been mapped, we check if
the mapped solution at the node satisfies the timing requirement. If so, we keep the
mapping; otherwise, we replace it with another solution from the power-delay curve
which satisfies the current timing requirement and has minimum average power. The
new solution may have higher average power compared to the previous solution.

The solution for circuits with multiple outputs also depends on the order in which the
output cones are processed. During the power-delay curve generation step, when we
are computing the signal arrival time for a match g at node n, we need to recalculate

\
18

numbers of input | % of getting optimal result
3 100
4 96
5 93
6 88

Table 1: Simulation result for the modified Huffman’s algorithm

the load seen at inputs(n,g). For n; € inputs(n,g), some of the fanouts of node n;
(other than g) may have already been mapped (because they are part of a logic cone
which has been processed), and hence, the contribution of these fanouts to the load can
be calculated exactly. This incremental load recalculation will result in more accurate
arrival time calculation at the output of n. Similar incremental load recalculation is
applied during the gate assignment step.

4 Experimental Results

To evaluate the effectiveness of the Modified Huffman’s algorithm, we performed simu-
lations on static AND gate decomposition of a complex node with different number of
inputs and assuming uncorrelated, random input probabilities. For each simulation, 500
input patterns were generated. For each pattern, all possible AND decompositions were
enumerated to find the minimum power decomposition tree. The results are presented
in Table 1. The Modified Huffman’s algorithm generated optimal trees for average 94%
of the trials.

To evaluate the effectiveness of the power-efficient technology decomposition and map-
ping, we applied our algorithms on subsets of the ISCAS-89 and the MCNC-91 bench-
mark sets. Static CMOS circuits were used in the experiments and all primary inputs
were assumed to be independent. Power estimation was performed by the power estima-
tion tool described in [6]. 20MHz clock frequency is assumed and all power estimates are
in micro-Watts. The delays and loads for circuits were obtained using the pin-dependent
SIS library delay model for [7b2.genlib.

Tables 2 and 3 contain our experimental results using different technology decomposition
and mapping combinations. All methods have the same starting point that is the circuits
optimized by the SIS rugged script [13]. Methods I to III use area-delay mapping
(ad-map) algorithm of [3] and Methods IV to VI use power-delay mapping (pd-map).
Methods I and IV take in a NAND-decomposed network generated by the conventional
tree decomposition algorithm. Methods II and V use the MINPOWER technology
decomposition (minpower_t-decomp) while Methods III and VI use the BOUNDED-

HEIGHT MINPOWER. decomposition(bh-minpower_t_decomp). |

19

circuit I II 111

gate | delay | average | gate | delay | average | gate | delay | average
area power | area power | area power
s208 77| 9.92 38.1| 701 10.02 352 | 66| 9.96 31.0
s344 156 | 11.35 110.4 | 153 | 12.41 105.1 | 153 | 12.41 107.1
5382 147 | 11.80 131.2 | 161 | 11.53 135.0 | 160 | 11.05 136.3
s444 161 | 13.36 | 141.35 | 153 | 14.44 130.3 | 153 | 14.44 130.2
s510 271 | 14.85 229.8 | 277 | 16.40 222.5 | 251 | 15.53 196.6
$526 182 | 10.81 139.5 | 180 | 10.12 144.9 | 185 | 10.03 142.0
5641 214 | 15.34 149.7 | 203 | 16.67 132.5 | 204 | 16.61 132.3
s713 204 | 16.13 145.1 | 191 | 18.15 131.7 | 197 | 17.84 130.4
s820 285 | 11.54 168.4 | 283 | 11.64 180.3 | 278 | 11.16 170.0
cm42a | 27 | 3.01 28.75 | 27| 2.67 30.0 27 | 2.67 30.0

x1 277 | 9.03 179.8 | 271 | 9.52 159.9 | 274 | 9.25 170.6
x2 55 | 5.40 39.1 51 | 5.04 30.2 51 | 4.22 28.5
x3 683 | 17.56 574.4 | 698 | 18.11 548.7 | 663 | 18.03 524.6

tit2 210 | 11.30 173.0 | 205 | 11.37 165.7 | 206 | 11.36 168.3
apex7 | 228 | 9.83 139.0 | 235 | 11.60 151.3 | 241 | 10.74 138.4
alu2 311 | 33.26 277.9 | 343 | 31.62 293.8 | 341 | 33.61 282.3
ex2 308 | 12.37 132.2 | 307 | 12.59 127.7 | 301 | 12.42 130.5

Table 2: I : area-delay mapping with conventional decomposition , II : area-delay map-
ping with minpower_t_decomp , III : area-delay mapping with bh.minpower_t_decomp

To illustrate the impact of the (minpower_t_decomp) on the average power dissipation,
we should compare the results of method pairs of I and II, and IV and V. The power
dissipation is improved by an average 3.7% at the expense of 1.4We believe the small
gain of minpower_t_decomp is due to the fact that most nodes in the optimized network
are relatively simple due to the fast-extract and quick decomposition operations per-
formed before the technology decomposition step. Thus, the minpower_t_decomp does
not have much freedom to improve the power efficiency through NAND decomposition.
From II and III, and V and VI, we see that bh_minpower_t_decomp improves the circuit
performance and power dissipation by an average of 1.6% and 1.6% respectively.

To see the impact of the pd-map on the average power dissipation, we should compare
the results of method pairs I and IV, II and V, and III and VI It is seen that with
pd-map, the power dissipation is improved by an average of 22% over ad-map. The
active cell area is increased by an average of 12.4% while the performance is improved
by an average of 1.1%.

20

circuit IV A% VI

gate | delay | average | gate | delay | average | gate | delay | average
area power | area power | area power
5208 81| 9.93 32.6 68 | 10.99 29.4 71 | 10.26 27.0
s344 167 | 11.76 101.4 | 165 | 11.43 84.9 | 166 | 11.43 83.6
5382 172 | 12.03 113.7 | 174 | 11.55 110.6 | 176 | 10.31 109.4
s444 171 | 13.69 102.0 | 174 | 14.44 103.9 | 167 | 13.58 97.7
s510 304 | 15.55 212.0 | 315 | 16.29 198.2 | 273 | 16.11 178.9
$526 218 | 9.88 112.5 | 206 [9.79 100.7 | 215 | 11.17 102.3
s641 208 | 17.52 131.2 | 232 | 16.26 133.2 | 233 | 16.48 137.9
s713 207 | 16.57 118.5 | 237 | 19.03 140.4 | 236 | 18.45 145.2
s820 329 | 11.66 154.3 | 320 | 11.39 149.8 | 316 | 11.89 153.7
cmd2a | 26.5 | 3.05 15.3 29 | 2.68 10.3 | 27.8 | 2.93 12.5

x1 307 | 8.82 134.6 | 317 | 8.04 134.6 | 311 | 8.40 131.9
x2 54 [4.85 30.9 54 | 4.77 24.3 50 | 4.29 24.0
x3 833 | 17.20 375.3 | 848 | 17.35 375.1 | 844 | 15.34 364.4

ttt2 227 | 11.71 137.3 | 231 | 12.08 127.5 | 227 | 11.91 139.1
apex7 | 275 | 10.64 129.3 | 282 | 11.32 120.7 | 276 | 10.60 131.2
alu2 403 | 30.44 221.8 | 438 | 30.52 260.2 | 414 | 27.96 236.2
ex2 355 | 11.83 100.3 | 365 | 11.01 107.8 | 354 | 11.68 | | 97.7

Table 3: IV : power-efficient mapping with conventional decomposition , V :
power-efficient mapping with minpower_t_decomp , VI : power-efficient mapping with
bh_minpower_t_decomp

21

5 Concluding Remarks

We have presented algorithms for low power technology decomposition and mapping. In
particular, we generate networks with minimum total switching activity and feed them
to a delay constrainted power efficient technology mapper that hides the highly active
nodes inside the mapped gates. Experimental results show that significant reduction in
power dissipation is achieved with little or no performance degradation.

The idea of generating nodes with minimum switching activity can be extended to the
technology independent phase of logic synthesis. Shen et al.[14] have already addressed
some aspects of this problem. However, more work in node simplification, common
sub-expression extraction and node decomposition is still needed. The average power
dissipation also depends on the correlation among primary inputs. For finite state
machines and instruction decoder, the correlation probabilities depend on the state and
input encoding. Further research needs to be done to address these issues.

Acknowledgement — |

The authors would like to thank Prof. Srinivas Devadas and Dr. Abhijit Ghosh who
provided us with their power estimation tool. This work was supported in part by
the National Science Foundation’s Research Initiation Award under contract No. MIP-
9211668 and the Defence Advanced Research Projects Agency under contract No. J-
FBI-91-194.

References

[1] R.K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic synthesis.
In Proceedings of the IEEE, volume T8, pages 264-300, February 1990.

[2] A. R. Burch, F. Najm, P. Yang, and D. Hocevar. Pattern independent current estimation
for reliability analysis of CMOS circuits. In Proceedings of the 25th Design Automation
Conference, pages 294-299, June 1988.

[3] K. Chaudhary and M. Pedram. A near-optimal algorithm for technology mapping minimiz-
ing area under delay constraints. In Proceedings of the 29th Design Automation Conference,
pages 492-498, June 1992.

[4] M. A. Cirit. Estimating dynamic power consumption of CMOS circuits. In Proceedings of
the IEEE International Conference on Computer Aided Design, pages 534-537, November
1987.

[5] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Technology
mapping in MIS. In Proceedings of the IEEE International Conference on Computer Aided
Design, pages 116-119, November 1987.

22

(6]

[7]

(8]
[9]
(10]
(11]
(12]
[13]

[14]

A. A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of average switching activity
in combinational and sequential circuits. In Proceedings of the 29th Design Automation
Conference, pages 253-259, June 1992.

B. Hoppe, G. Neuendorf, D. Schmit-Landsiedel, and W. Specks. Optimization of high-
speed CMOS logic circuits with analytical models for signal delay, chip area, and dynamic
power dissipation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 9 No. 3:236-247, March 1990.

D. A. Huffman. A method for the construction of minimum redundancy codes. In Proceed-
ings of the IRE, volume 40, pages 1098-1101, September 1952,

D. S. Parker Jr. Conditions for optimality of the Huffman algorithm. SIAM Journal of
Computing, 9(3):470-489, August 1980. |

K. Keutzer. DAGON: Technology mapping and local optimization. In Proceedings of the
Design Automation Conference, pages 341-347, June 1987.

L. Larmore and D. S. Hirschberg. A fast algorithm for optimal length-limited Huffman
codes. Journal of the Association for Compuling Machinery, V 37 No. 3:464-473, 1990.

F. Najm. Transition density, a stochastic measure of activity in digital circuits. In Proceed-
ings of the 28th Design Automation Conference, pages 644-649, June 1991.

H. Savoj and H. Y. Wang. Improved scripts in MIS-II for logic minimization of combinational
circuits. In Proceedings of the International Workshop on Logic Synthesis, May 1991.

A. A. Shen, A. Ghosh, S. Devadas, and K. Keutzer. On average power dissipation and
random pattern testability of CMOS combinational logic networks. In Proceedings of the
IEEE International Conference on Computer Aided Design, November 1992.

23

