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Abstract

In this paper, cell arrivals from integrated voice and data sources are modeled as a
two-state Markov Modulated Poisson Process with batch arrivals (MMPPX)), A
voice/data ATM multiplexer is modeled as an MMPPX)/D/1 queue. Inaccuracy and high
computation overhead of existing similar approaches are overcome by introducing a new
set of parameters for the MMPP. Simulation is used to verify the accuracy of the
approximation. Comparisons to a recently proposed method by other authors are included
in the numerical results.



1 Introduction

Numerous studies that characterize packetized voice source, e.g., [1], [3], [4], [7], [8], [10],
[13], [20], [21] and [22], have been made. Among these studies, Brady’s ON-OFF process [4] has
been widely adopted as the model for the arrival process corresponding to a single voice source.
In the ON-OFF process model, the voice source alternates between exponentially distributed (or
geometrically distributed if we use a discrete time scale) ON periods and exponentially distributed
OFF periods. The ON periods correspond to talkspurts while the OFF periods represent silence
durations. Packets are created with a constant interarrival time during the ON periods and no
packets are generated during the OFF periods. The transition rates (or transition probabilities for
the discrete time case), from ON-to-OFF (o) and from OFF-to-ON (B), are determined by the
expected length of the talkspurts and the expected length of the silence periods (see Fig. 1).

Fig. 1. An ON-OFF process.

The superposition of N such ON-OFF processes forms a finite-state birth-death process with
the states representing the number of voice sources in talkspurt (in the ON-state) as shown in Fig. 2
[21].
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Fig. 2. The birth-death process for the number of voice sources in talkspurt.

The difficulty in generating useful analytical results from a queueing system based on this the
birth-death process to determine the arrivals has forced researchers to look for approximations.
Two main approaches have been proposed. The first approach uses a fluid flow approximation [5],
[14], [21], which somewhat overlooks the randomness (or, in other words, the short-term
variation) of the arrivals. The second approach carefully matches the parameters of the process to
a simpler one, e.g., the two-state Markov Modulated Poisson Process (MMPP) used in [1], [7]
and [14], and the renewal process used in [14]. The later approach suffers from its inaccuracy and
high computational overhead.



In this paper, cells from superposed voice sources are approximated by means of a two-state
MMPP as in [1] but the procedure for parameter matching is different. Data packets are assumed
to from a Poisson process, i.e., data cells form a Poisson process with batch arrivals. The arrivals
from the integrated data and voice sources are then modeled as a two-state MMPP with batch
arrivals (denoted MMPPX! in this paper). The new matching procedure results in better accuracy
and much lower computational overhead then existing techniques.

The paper is organized as follows. First, the approximation technique is discussed in section 2.
Numerical results and some discussions are presented in section 3. Finally, some conclusions are
drawn in section 4.

2 The Approximation Technique

In this section, we present the model using MMPPX! as an approximation for integrated voice
and data traffic. Some similar models are discussed first.

2.1 Using two-state MMPP as an approximation

Heffes and Lucantoni, in their work [7], use the following two-state MMPP statistical
characteristics to match with that of the superimposed process:

i.  the expected arrival rate;
ii. the variance-to-mean ratio of the number of arrivals in some time interval;
iii. the long-term variance-to-mean ratio of the number of arrivals;

iv.  the third moment of the number of arrivals in some time interval.

Upon observing the strong role of the overload' period in determining the performance of the
multiplexer, Nagarajan et al., in their matching procedure [14], replace the last step in [7] by “the
variance of the number of arrivals in some time interval giving that the system is in overload
state,” and display an improvement on predicting packet loss in a finite-buffered system. In [1],
Baiocchi er al. attack the problem from a different angle. They use a theorem proved in [15]
(theorem 2.3.1, p. 62) and present an “asymptotic matching procedure” which leads to more
accurate results than those of [7] and [21] (see the reference for details).

MMPP’s have been used in the research mentioned above to approximate aggregation of
several ON-OFF processes. We extend this model to specifically include both voice and data
sources in the same model. We then propose a new way to match parameters that improves the
accuracy of the approximation for the performance prediction of an ATM multiplexer.

T Defined to be when the number of active sources exceeds the capacity of the system.



‘2.2 The new approach

Consider N independent voice sources modeled by ON-OFF processes with the following
parameters:

i. I, the constant arrival rate in the ON-state;

ii. o, the transition rate from the OFF-state to the ON-state;

iii. P, the transition rate from the ON-state to the OFF-state.

Let C denote the capacity of the multiplexer; M = | C/T" | be the maximum number of active
voice sources which the multiplexer can support; , defined by:
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be the steady state probability that k£ out of N voice source are in the ON-state; and ¥;, Ay, Y, A, be
the four parameters for the two-state MMPP (see appendix for details). The states of the arrival
process are divided into two disjoint subsets: those states in overload situation,
{M+1,M+2,...,N}, and the others, {0, 1,2, ..., M}. These two sets of states are mapped
into the state-II (the overload-state) and the state-I (the underload-state) of a two-state MMPP
respectively (see Fig. 3).

Underload Overload
State State

Fig. 3. State mapping between the arrival process and the two-state MMPP for
integrated voice and data traffic.



We then have the following recurrence relation for T, the expected time until the process visits
state i-1 for the first time starting from state i

1 (N-ia
I = (N—l)a+lB+(N z)a+zB(T

i1 tT), 1<isN-1 2)

with the boundary condition, Ty, = 1/ (NB) . Note that, in (2), the first term on the right-hand
side gives the expected sojourn time in state i. The first part of the second term on the right-hand
side specifies the probability that the process will make a transition to state i + 1 given that it is
currently in state i. It can be easily proved by successive substitution, for example, that Ty ;
satisfies the following equation:
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Thus, Ty.; has the following explicit closed-form expression:

i i~k
P ;= z( ) , 0<isN-1 3)

Ty

Using (3), we can find the expected time until the system load drops below the system
capacity, Ty, once the load exceeds the system limit, M. We then propose the following
approach to match the parameters (Note that, ii-iv are basically the same as those used in [1D:
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As one might expect, the arrival stream from the superposed process is burstier than that from
the corresponding MMPP especially when the MMPP is in the overload-state, which implies a
relatively larger number of voice sources in talkspurt. This can be visualized by observing the
“smoothing” effect introduced by the Poisson processes, since when the MMPP is in any
particular state the arrival process is just an ordinary Poisson process. Otherwise, each active
source would emit cells to the system at its peak rate. Meanwhile, an under-estimation on the
burstiness of the arrival process of a queueing system will convert to an under-estimation on the
average system time. Since on the average, a longer queue is expected by each new arrival for a
burstier arrival process due to a shorter interarrival time within the same burst. Hence, the
approximation is expected to perform worse and worse as the system load increases, i.e, the
number of active sources increases. The same problem will also exist for the asymptotic matching
procedure proposed in [1].

2.3 Improve the accuracy of the approximation

In order to improve the accuracy of our model, let us observe that if we over-estimate Ty, |,
we may, in fact, improve the model’s accuracy. This is because the arrival rate in the overload-
state is higher than that in the underload-state (see step ii and iii of the matching procedure). Also,
increasing the average overload time causes a decrease on the average underload time (see step iv
of the matching procedure). Therefore, overestimating the average overload time, Ty, will
increase the burstiness of the MMPP. Note also that (for the same number of voice calls) the
number of states which are mapped into the overload-state of the MMPP increases, ie., M
decreases, as the channel capacity decreases. This corresponds to the MMPP staying a longer time
in the overload-state on the average. And, the longer the average overload time is, the severer the
under-estimation on the burstiness is. Thus, we need a higher over-estimation for Ty, to offset

the increasingly severe under-estimation of the burstiness.

One possible way to over-estimate Ty, is to replace (3) by its upper-bound. After several
trials, we found that the following upper-bound for (3) leads to very good results:
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By applying Stirling’s formula [6] to (), we have:
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The problem now reduces to determining which value of k provides the largest exponent in (5).
So, let us replace k/N by x and rewrite the exponent of (5) as:

N[(x—l)log(l—x) _xlogx+ (%—x)log(%)] ©)

After taking the derivative of (6) and equating to zero, we get:
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From (7), it can be easily verified that (6) is maximized at k = o+p Thus, we conclude that if
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Theorem 1. For any stable system, i.e., utilization p = (Nal')/[C(a+B)] <1,
N-M-1<N[B/(a+B)] always holds.

Proof. Assume the theorem is not true, i.e., for some «, 3, and N:
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which contradicts the assumption. Therefore, the theorem is always true. O

Theorem 1 implies that for the systems of interest, (8) always holds for i = N—M —1. The
upper-bound that we found for Ty _ (y_pr-1)» denoted f"M+ 1, is then given by:

= N-M N-M
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Note that, in the extreme case, i.e., when M +1 = N, Ty is equal to Ty. Furthermore, for the
same number of voice calls, as the value of M+1 decreases, i.e., the channel capacity decreases,

the value of Tys4 1 — Ty, ; increases. This is precisely how we want Ty 1 t0 behave, as pointed
out before.

2.4 Including data traffic to the model

We can now refine our matching procedure using the result of (9) as the following:
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We now have a two-state MMPP representing the arrival process from a number of voice
sources. To include data sources into the model, let us assume that data sources generate data
packets according to a Poisson process with rate |.. The packet length has an arbitrary probability
mass function P, the probability that a data packet has a size of k cells. If we combine the data
sources with the MMPP, we have a two-state MMPP with batch arrivals. The transition rates, 7,
and y,, are determined by the matching procedure. The arrival rates are A, + 1 and A, + . for the

underload state and the overload state respectively. The probability that a batch has a size of &
cells is:
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if the process is in the state-II, where:

1, if k=1
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k-1
0, otherwise

3 Numerical Results and Discussions

In this section we present some numerical results followed by some discussions.

3.1 Numerical results

We model a voice/data ATM multiplexer as an MMPPXJ/D/1 queue and the procedure
described in appendix are applied to get the expected system time. Each voice call is characterized
by I' = 1/6 cells/msec (assume 64 Kbps PCM coding with speech activity detector and standard
48-octet payload size), o = 1.538 and B = 2.778 (according to the conclusions drawn by [3]).
Aggregated data traffic is assumed to have an arrival rate of 20N,/3 packets per second and
average packet size of 5 cells per packet, where N, is the number of data calls. Fig. 4 and Fig. 5
assume a fixed number of voice and data calls (20 voice calls plus 20 data calls for Fig. 4 and 200
voice calls plus 200 data calls for Fig. 5), i.e., fixed system load, and plot average system time
versus channel utilization. Fig. 6 shows the relationship between average system time and channel
capacity with the system utilization kept unchanged at 0.8 and a fixed ratio of voice traffic to data
traffic. In these figures, MMPP-1 is the model suggested by [1] extended to include data sources
and MMPP-2 is the model presented in this study.
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Fig.4. The expected system time versus channel utilization for 20 voice calls
and 20 data calls.
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Fig. 5. The expected system time versus channel utilization for 200 voice calls
and 200 data calls.
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Fig. 6. The expected system time versus channel capacity for p = 0.8.
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3.2 Discussions

Several advantages of our model can be identified. First, a lower computation overhead is
involved. In [1], solving an (M+1)-dimensional eigen-system is required in order to find the
parameters for the MMPP, which can be a significant effort for a large M. Whereas in our model,
the computation overhead is negligible. Second, a real-time traffic control algorithm can be
developed. Note that if the system is in an overload situation, the queue size is expected to build-

up until the system returns to an underload status. Hence T, 1 can be used as an indicator for the

seriousness of the overload, once the system is in the overload-state. Using our results Ty, 1 can
be computed very quickly for any given number of voice and data calls and used as a criterion for
traffic control. Third and more importantly, it provides better performance predictions. As the

results indicated by Fig. 4 through Fig. 6, our model constantly out-performs the one proposed in
[1] and agrees very well with simulation.

4 Conclusions

In this paper, we have studied the performance of an ATM multiplexer loaded with voice and
data traffic. The actual arrival process has been approximated by an two-state Markov modulated
Poisson process with batch arrivals; and the multiplexer has been modeled as an MMPPX/D/1
queue.

The modeling technique developed here leads to very accurate results and has very low
computational overhead; hence it is useful for real-time traffic control.

More studies are necessary to draw conclusions on corresponding loss model (limited buffer
space). Some studies on the higher moments of the measurements may be of use in order to
understand the impact of highly variable arrival process.
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Appendix

This appendix summarizes some analytical results on two-state MMPP and two-state
MMPPX)/D/1 queue. We begin with the definition of MMPP followed by a procedure to calculate
the expected waiting time. A detailed analysis and more general cases can be found in [11] and
[12].

An MMPP, a special case of the Neuts’ versatile Markovian process (the N—processdf), is a
doubly stochastic Poisson process where the arrival rate is determined by the state (called the
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“ phase) of the underlying finite-state Markov chain. For example, a two-state MMPP has the
following four parameters:

i.  the transition rate from phase one to phase two, y;;
ii.  the transition rate from phase two to phase one, Ys;
iii. the arrival rate at phase one, A;;

iv. the arrival rate at phase two, A,.

In performance modeling, an MMPP is of interest due to its analytical tractability and
versatility. Because detail analysis for an MMPP can be worked out, see later in this appendix,
and the arrivals created by an MMPP are highly correlated.

Some results related to Markov modulated queueing systems are available in the literature.
Knessl and Mathkowsky study the stationary distribution of the unfinished work for a two-state
MMPP/G/1 queue [9]. Prabhu and Zhu complete a detailed analysis, including the waiting time,
the idle time and the busy period, of an MMPP/G/1 queue [17]. Recently, Zhu, in his work [23],
includes new results for an MMPP/M/1 queue with bulk arrivals. In [19], Ramaswami details the
analysis of an N/G/1 queue, a more general case of MMPP/G/1 queue, including the arrival
process, the stationary queue length at departures, and the waiting time. In the rest of this
appendix, we summarize the results for a single server queueing system in which the arrival
process is a two-state MMPP with batch arrivals and the service times are constant. We denote
such a system as a two-state MMPPX!/D/1 queueing system.

We define the following notation for a two-state MMPPXI:

° T, the steady state probability of the system being in phase ;
o A\ the arrival rate for the system at phase i;
7 the transition rate for the system at phase i;

« gi(k) Prob{bulk size is k given that the system is at phase i};

Throughout this appendix, 72) represents the Z-transform of a discrete probability

distribution function f,, e.g., éj(z) means the Z-transform of g(k). We use boldfaced uppercase

characters as the notation for matrixes and the corresponding lowercase characters with subscripts
being the notation for the elements. A character representing a vector will be arrow-headed, like

T = (n,7,).

Let S(t) = u(t — ) be the service time distribution where u(’) is the unit step function and 1is

A detail analysis for N-process, which is called Batch Markov Arrival Process later by Lucantoni in [11],
can be found in [16]. [11] and [19] detail the N/G/1 queueing system; and [2] extends the results to finite-
buffered case.
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the constant service time. The following is a procedure to calculate the expected waiting time, w,
for a two-state MMPPXX!/D/1 queueing system:

IL.

iii.

.

Vi.

Vii.

Viii.

0 A8,k T —A*%h
D = ZDk = {—‘Yl Y1:|;
k=0 T, Y,

d =Y kD2, where & = ( i );
k=1

A, g (k 0 _
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~ k

T c M x > -ox (0 k G
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er

where I = E)(l)il and 0 = max,(-D(G);) (note that: starting with G = eT, the
algorithm suggested by [11] can be used to solve G);

compute g using §G = g and y = (1 —p) g where p is the system utilization;

V, = —i'(1) and V, = P (D' () + D"(1));

v, = V€ and ¥, = V,8;

1 A S & =X —la A
w =——_[20+2(F -7V, (en+D) V;+TVy];
v 2(1_p)[ p (y 1)( ) 1 2]
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