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ABSTRACT

Processing logic programs in parallel is much more complex than for conven-
tional applications. Indeed, the inference mechanism, particularly the environment
stacking and the runtime traversal of a search tree, cannot be easily implemented
on distributed memory machines. The USC Research Team has therefore designed
a parallel execution model for logic programming by applying the principle of
data-driven execution to the inference mechanism of PROLOG. This model is
highly adaptable to fundamentally different parallel architectural platforms, such
as distributed memory multiprocessors, multi-threaded and data-flow architec-
tures.

In order to efficiently target the environment to a range of parallel machines, a
parallel compiler has been implemented. It compiles the operational semantics of
PROLOG and produces an intermediate graphical form independent of any partic-
ular architecture. This design may then be translated by appropriate translators into
the machine codes needed to run the application on specific architectures.

This paper introduces the parallel execution model with particular emphasis its
low level part: the binding environment. Unlike other previously tested binding
schemes often geared toward single address space machines, this one is highly
optimized for execution on non-single address space architectures.

Another purpose of this research is the implementation of high level interprocess
communication primitives, which will facilitate communication between processes
within a single uni-processor machine, and also within several ones linked by net-
work. In the future, these primitives will be imperative to the function of a transla-
tor designed specifically for Sparc stations.
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1 INTRODUCTION

Logic programming based on universally quantified Horn clauses is becoming an accepted pro-
gramming paradigm for symbolic computation. Thus, Prolog is one of the most popular logic pro-

gramming language because of its many advantages in terms of ease of programming and
declarative semantics.

Often, applications in symbolic computing are complex and demand enormous computation.
The parallel processing is a promising answer to such requirements. Indeed, massively parallel
architectures are becoming commercially available, and logic languages present intrinsic features
for parallel execution, e.g., Or-parallelism, And-parallelism, Stream-And-parallelism and Unifi-
cation-parallelism. However, the expected scale-up in performance has not materialized due to
the inherent difficulty in programming these parallel applications. Indeed, much effort is still
needed in developing a parallel software technology both at the low level (model of execution)
and at the high level (programming languages).

The USC Research Group has therefore investigated a parallel execution model [1], character-
ized by its adaptability for implementation on various parallel architectures. In order to verify the
performances of this model, a compiler for a pure logic kernel (i.e., a subset) of the PROLOG lan-
guage, in conjunction with appropriated translators towards parallel machines is expected to be
operational for the end of October 1993.

Finally, in the prospect of testing the functionality and the reliability of our Parallel Execution
Model in an multi-processes environment, (and not in the goal of improving the performance over
normal Prolog sequential systems), high level interprocess communication primitives have been
implemented. They allow communication between processes located either on a unique machine
or on separate ones linked by network. In the future, these primitives will be exploited by a trans-
lator dedicated to Sparc stations.

The organization of this report is as fallow:

- in section 2, we bring to mind the PROLOG terminology, the different kind of parallelism that
have been identified for PROLOG, and review research undertaken elsewhere.

- in section 3, we briefly present the parallel execution model, called “Non Deterministic Data-
Flow Parallel Execution Model” (NDFPEM).

- in section 4, we detail and assess a binding scheme which is highly optimized for non-single
address space systems.

- section 5 contains the implementation issues of high level communication primitives.

- in section 7, we draw some concluding remarks, and outline possible future work that will be
done for this project.
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2 BACKGROUND

2-1 Prolog Terminology

This subsection provides a very brief introduction to Prolog, intended to familiarize the “non-
Prolog” readers with the language terminology, syntax, program structure and execution seman-
tics.

This is the foundation for understanding the different types of parallelism that exist and how a
parallel execution model may support them.

A Prolog program comprises a set of clauses and a query. Program semantics can be either
declarative as a set of formulae, or operational as functions. Figure 2-1 shows a sample program
and its declarative meaning.

head body

I L I
procedure child(X,Y,Z) :- father(Y,X) , mother(Z,X). rule

Xisachild of Y
if Y is the father of X goals
and Z is the mother of X.

[ father (Chad,Mark).
procedure Chad is the father of Mark.

| father (John,Chad).
Chad is the father of Mark.

facts

procedure mother (Mary,Mark).

Mary is the mother of Mark.

variable atoms

7 - child &,Clmd,Mary) query
Who is a child of Chad and Mary ?

X = Mark. solution
Martk is a child of Chad and Mary.

Figure 2-1: Components of a Prolog Program
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A clause contains a head and an optional body, separated by the :- symbol. A clause body con-
tains one or more predicates, which are referred to as goals. The collection of all clauses that
have the same name and arity (the number of arguments) is called a procedure.

Prolog is a Logic Programming language, and as a programming language, it is distinguished
from procedural or functional languages (C or Lisp for example) by its logic variables, unifica-
tion operation, and built-in support for backtracking.

Prolog programs operate on terms, which can be either simple or compound. A simple term can
be atomic or variable: an atomic term cannot change his value during execution, but a variable
term may be bound to (i.e., assigned the value of) another term as a result of unification. A com-
pound term is comprised of a functor and several terms: the functor is composed of a non-
numeric atomic term and an arity, which specifies the number of terms contained in the com-
pound term; these terms may be simple or compound.

Prolog variables are called logic variables; variables bound together form an equivalence class.
Binding one variable to another term is the same as binding all variables in its equivalence class
to the same term. Dereference (an operation common to all Logic Programming languages) refers
to the operation that resolves a chain of references.

Unification is another operation common to all Logic Programming languages. It is pattern
matching with variable substitutions. Unification operates on two terms and it can either succeed
or fail. Unification succeeds under the fallowing conditions: if both terms are atomic and identical
(a simple pattern matching); if one term is a variable (unification binds the variable term to the
other one); or if the functors and terms of two compound terms all unify successfully.

Backtracking is a technique that implements non-deterministic behavior. Prolog execution
begins with a programmer provided query and attempts to prove the query using the facts and
rules which are stored in the program. At the beginning, the query is added to a set of goals to be
proven, S, as its first member. During program execution, a goal is removed from the set S.
Clauses are tried to see if a clause head will unify with the goal. If the unification is successful,
predicates in the clause body are added to S with variable bindings resulting from unification, and
the clause to be tried next is marked as a target for backtracking. Another goal from S is selected
and the execution proceeds. The query is proven true if all goals in S are proven. Backtracking is
invoked when unification fails. It resets variable bindings made during the failed execution and
removes goals added to S by the failed execution, such that the execution can proceed as if the
clauses invoked by the failed execution had nether taken place. If the unification fails and no
marked clauses can be found, the query fails.
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2-2 Parallelism in Prolog

With its simple syntax and regular structure, a Prolog program is inherently an AND/OR tree
An AND-node corresponds to a predicate, an OR-node to a clause. Execution of the program is
primarily a depth first, left to right traversal of the tree nodes. All the sibling AND-nodes are tra-
versed depth first, left to right, whereas an OR-node is traversed only if all siblings to the left of it
had failed. Backtracking allows for automatic exploration of previously untried alternatives. It is
also the cause for a great deal of complications in efficient parallel implementation.

Figure 2-2 shows a Prolog program with its corresponding program tree. The arrows show the
traversal of the nodes, which is equivalent to the execution of the program. The fin arrows show
the forward execution, while the large arrows show backward execution.

The work done at each node consists of unifying the calling parameters with the head argument
of the clause, and setting up the parameters for calls to its subgoals. In addition, the work in the
body of the node may involve applying some functional primitives known as built-ins for arith-
metic operations, input/output, data structure manipulations, and code alterations.

m(X,Y) :- £(X) , c(Y.X) . @
1

f(k) . 23 = END
£G) .

£1) .

cak). 4-11-18

c(bj) . 2 i)

8- 15

Figure 2-2: Prolog Program and Corresponding Program Tree

Here, we can see that the query has two solutions:
- at step 6, with X and Y binded respectively to k and a;
- at step 15, with X and Y binded respectively to j and b;
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2-2-1 AND-Parallelism

Inspecting the program tree, it seems natural that the branches of the tree can be executed in par-
allel. When the partitioning is done at a clause node, where calls to subgoals are to be done in par-
allel, it is known as AND-parallelism. Figure 2-3 shows the partitioning of the tree in figure 2-2,
where the spawned process are separated from the root process with dashed lines.

Figure 2-3: AND-parallel tree

The main difficulty with AND-parallelism is the problem of binding conflict, where more than
one AND subtree executing in parallel attempt to bind the same variable to different values
(e.g.,variable X in the figure above). We have to making sure that substitutions are consistent
across all literals.

Other problems include:

1. Keeping track of the success/failure of individuals literals.
2. Determining when the clause fails as a whole.

2-2-2 OR-parallelism

It comes from the observation that there are usually multiple clauses with the same predicate
symbol in the clause head. When the program execution is partitioned at a procedure node, with
broken branches to clause nodes which show alternative clauses that give several solutions, the
parallelism exploited is known as OR-parallelism. The task which executes one of the OR-bran-
ches can continue with the next goal in the parent’s clause. In Figure 2-4, the task completing the
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first clause of f(X) continues with the next goal c(Y,X), with X now instantiated to the value k.
Thus the results are passed down the execution tree and the final solutions are available at the leaf
tasks.

root task

OR-parallel tasks
Figure 2-4: OR-Parallel Tree

When OR-parallelism is combined with AND-parallelism, the results of the OR-tasks may be
passed back to the parent AND-task. In Figure 2-5, the goals f(X) and c(Y,X) are executed in
AND-tasks. OR-tasks are then spawned to execute the clauses of f in parallel. The results of these
OR-tasks are passed back to the parent task. The OR-tasks do not proceed with the next c(Y,X)
because it is already being executed by an AND-task.

_ root task

. ---)m-pmallq\msﬁg"‘v .

OR-pirallel tasks

Figure 2-5: AND-OR Parallel Tree
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OR-parallel clauses may share arguments variables in the head, but bindings of theses argu-
ments must be hidden from the ancestor nodes until that OR-node is actually traversed (in the
sequential semantic order). The challenge in implementing OR-parallelism is to resolve the bind-
ing conflicts in a space and time efficient manner. For example, the OR-tasks of the goal f(X) may
attempt to bind X at the same time. Thus, each of these OR-subtrees must contain a separate bind-
ing environment, as we will see further in section 4.

2-2-3 Other Types of Parallelism

Other type of parallelism have been identified for Prolog. Considering the fallowing example:

?7-m(s(...) , [---], X) .

m(s(...) , [---], X) :- a(1,X) , b(X) . (ml)
a(1,Xx) :- ... (al)
a(1,[3,5]) :- ... (a2)
a2,x) - ... (a3)
b([D. (b1)
b([HIT]) :- ... (H) , b(T) . (b2)

Stream-parallelism exists when a producer goal can pass a stream of values (elements of a list)
to the consumer goal in a pipelined fashion. In the example above, a(1,X) is the producer of X
while b(X) is the consumer; a and b can be executing in parallel, with b operating on a element in
the list X while a is producing the next element.

Search-parallelism allows the heads of all clauses in a procedure to be unified with a given sub-
goal. This can be viewed as a simplification of OR-parallelism. In the example above, the search

for the clauses that can match with a(7,X) can be carried on in parallel, resulting in the list of two
clauses [(al) , (a2)].

Unification-parallelism carries out the unification of the arguments in the clauses head in paral-
lel. In the example above, the structure s(...) and the list /---] in clauses head of m/ can be unified
with their calling arguments in the query m concurrently.

Depth-parallelism carries out the unification of the head of a clause concurrently with the unifi-
cation of a subgoal of the clause. In the example above, the unification of the arguments in m can
be done concurrently with the unification of arguments in a.
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2-3 Parallel Perspectives of Logic Programming Languages

The parallel implementation of logic languages entails an added level of complexity, even
though parallelism in logic programs is, to some extent, already specified implicitly in their oper-
ational semantic. Indeed, the strategy for parallel scheduling must address not only the issue of
delivering parallelism, but also that of minimizing the search space. For instance, given two
AND-independent goals @ and b which can be reached in respectively m and n inferences, the
total amount of inferences is O(mn) if the two goals are searched sequentially, whereas only
O(m+n) is performed if the goals are executed in parallel. On the other hand, for a given search
space of a Prolog program, the search strategy employed in a parallel model will determine the
overall processing time.

Moreover, the sequential nature of logic languages renders difficult their parallel execution: the
selection rule, e.g., the left-most try among alternatives in Prolog, forces sequentially. In turn, this
requires a stricter control and adds some constraints during Or-parallelism execution. Further, the
semantic of logic languages entails the maintenance and traversal of search tree at run-time. The
shared property of the tree favors centralized scheduling strategies, thus renders inefficient their
implementation on multiprocessor systems with a non-single address space.

2-4 Issues in Distributed Implementation

A number of parallel models have been proposed. They differ from each other in the way they
handle the various forms of parallelism and in their runtime scheduling strategies. As a testimony
of the proximity of the logic language semantics to the single address space, it should be noted
that the majority of these models are geared toward the shared memory multiprocessor model. In
contrast, only a few are geared to distributed memory systems.

The data-flow model has been proposed as an efficient answer to the programmability issue in
massively parallel machines. It provides for dynamic scheduling upon operand availability and
has the potential to hide communication latency, while maximally exposing available parallelism.
The clear benefit of this computation model is the improvement of the programmability.

In general, locality of reference indicates that normally the working set of Prolog involves 2 or 3
levels in the tree. Thus, the fine granularity supported by the process models may require high
communications if they allow unrestricted access. Binding schemes in distributed models are
directed to insure access only to environments in the local address space. To this end, the variable
importation method [2] employs backward unification along with head (forward) unification,
using import vectors. The closed binding approach [3], a successor of the variable importation
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method, efficiently uses memory by using closing operations without import vectors. In [3], Con-
ery’s closed binding is optimized to avoid copying of grounded structures. Apparently, the above
binding schemes trade the local access costs in additional computation from the auxiliary opera-
tions, i.e., back unification or environment closing. This extra computation may be intolerable
when programs entail high rates of instance terms, e.g., lists and structures, since explicit duplica-
tion of the terms is required at every such auxiliary operation.

In order to materialize the expected scale-up in performance on various parallel architectures,
we designed a parallel execution model, called the “Non-deterministic Data-Flow Parallel Execu-
tion Model” (NDFPEM) [1]. This model, described in section 3, is compound of a number of
components at various layers that are highly optimized particularly for non-single address space
architectures. At the highest layer, it provides a platform for distributed scheduling on top of self-
organized execution principles. At its lowest, the model provides a novel binding scheme, pre-
sented in section 4, particularly geared to distributed environments.
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3 PARALLEL EXECUTION MODEL

3-1 Goals of the Design

An important requirement of this parallel execution model for PROLOG is the preservation of
compatibility with the sequential semantics of PROLOG, excluding addition or modification of
syntactic structures of standard PROLOG. Another requirement for this model is the ability to
achieve scalable performance during execution of applications on large scale parallel architec-
tures. Finally, the third requirement is a high adaptability to profoundly different architectural
platforms.

Due to the above considerations, the primary goals of the design are to:

- investigate a design to relax the tight relationship of PROLOG semantics with single address
spaced architectures,

- provide a robust ground for distributed scheduling,

- investigate a binding scheme that supports the distributed nature of our target machines and
avoids the causes of overhead in the “closed binding” [3].

3-2 Approaches

In order to achieve the previously stated goals, we rely upon the data-driven approach. Consid-
ering that for a given environment, the evaluation of a clause produces a new environment, we
interpret a clause as a function. The environment at the point of the clause invocation, and the
environments produced from the evaluation, are viewed as the input and output of the function,
respectively. Along with this interpretation, we apply the principles of data-driven computation to
the inference mechanism of PROLOG, particularly for the execution control and the unification
process. Finally, we designed a graphical intermediate representation for logic languages, the
Abstract Logic Programming Graph (ALPG), which will be used as a vehicle for code translation
on the target architectures. The model thus established is called Non-deterministic-Data-Flow-
Parallel-Execution-Model (NDFPEM).

Consequently, the data-driven approach leads to a relaxation of the tight relationship between
PROLOG semantics and single address-spaced architectures by eliminating the shared search
tree. Moreover, the self-organizing inference paradigm embedded in our NDF graph provides a
robust ground for distributed scheduling.
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3-3 Features

The NDFPEM includes the fallowing distinct features. First, it is designed to exploit various
forms of parallelism: OR-, AND-, and Stream-AND- parallelism. Moreover, fine grain parallel-
ism internal to OR-tasks is supported by the ability to schedule multiple tasks on a processor. Sec-
ond, the NDFPEM is highly optimized for non-single address space architectures, specifically
distributed memory multiprocessors and architectures with hardware support for fine-grain paral-
lelism, such as multi-threaded and data-flow machines. The model is also suitable for distributed-
or multi-processing of logic languages in general workstation environments. Finally, the data-
driven execution of the NDFPEM attempts to be efficient, doing away with overhead incurred
from the process management required in general AND/OR-process models.
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4 BINDING ENVIRONMENT

4-1 Presentation and Objectives of our Model

As we said previously in section 2-4, for a thread of tasks on a processing element (PE), the
distribute models should maintain the efficiency of shared models. Focussed on the sources of the
inefficiency, we observed that the closing operation in closed bindind [3] may be a major source
of overhead. In order to relieve the overhead from distributed models, we identified the exact
details of the overhead and investigated the solution. The resulting binding scheme is called func-
tional binding (FB) [10]. As a hybrid of non-closed and closed binding, the FB is directed to cap-
ture the efficiency of the non-closed binding, while insuring the restricted access of the closed
binding. Thus, the FB facilitates the distributed implementation as one viable solution to mas-
sively parallel computation of logic programming.

4-2 Terminologies

In this subsection, we repeat the definitions of terminologies used in general closed binding
schemes. An environment (E) is a set of variables that are reachable in terms of binding and ref-
erence. A closed environment is a set of frames E such that no pointers or links originating from
E refers to slots in frames that are not members of E.

The closing operation means a transformation of a closed environment of two frames, working
frame (WF) and reference frame (RF). Before the transformation, there may exist references from
one frame to the other, so that neither is a closed environment. When we close WF with respect to
RF, WF becomes a closed environment and all inter-frame references will originate from the RF.
Figures 4-1 shows a example of closing operation.

4-3 Identification of Overhead in the Closed Binding

In general, the idea of closed environment is valuable for distributed models. Though, in real
implementation, it embeds source of overhead.

First, closing operations requires scanning an environment to check references reaching outside
the environment. This includes scanning all structures reachable from the environment.

Second, when a unbound structure is updated for closing, it is required to make a copy of the
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Program: :- p(x4,f(yq))- Name field
P(X2,¥2) = q(X2,¥2). :
Cell:
Value field
(Unification )
Xog_.o X i
2> rr [ %] V1

Y2- f(y4)) _— A iy 1/
ol Y2 |\

o Env. Closing
1> A2 2
|
X
V2 f(22) RF T
VisZy % Y2 f(y4)) B

WF [x,

-

Figure 4-1: An example of closing operation.

J

structure. Closed binding provides an opportunity of structure sharing in that variables are always
placed in frame and slots in heap memory and have always pointers to the variables in frames. In
reality, the indirection capability can hardly be exploited for structure sharing, since the offset
value in the heap is not fixed during closing. Thus, in real application, the closed binding always
assumes structure copying for every instantiating of a variable inside a structure.

Finally, when a slot in a working frame has a reference binding to a variable in a reference
frame, closing operation entails an extension of the WF to import the variable of the RF.

In the figure 4-2, we use a shortened notation in which a reference is expressed simply with an
arrow. The figure shows a set of unifications for a sequence of OR-tasks. Unification and closing
operations are enclosed in a circle and only environment frames are specified since the arguments
are straightforward in the program. It also illustrates the three sources of overhead. More particu-
larly, during closing operations, the reference of a slot in structure f is directed to point a slot in
different frames and the offset value doesn’t remain the same. Namely, the offset values for the
three references are 2, 3 and 2 respectively. This leads to the updating of the slot with appropriate
values, resulting in 3 copies of the structure f.
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Figure 4-2: An example of the environment closing

The closed binding attempts to meet the requirement demanded in distributed models, i.e.,
restricted reference, by applying closing concept to the level of OR-task. Namely, every OR-task
is maintained with an environment closed against over levels of the tree. The closed binding is
uniformly applied to a thread of tasks on a PE. However, the closing operation turns out redun-
dant since the environment for those tasks will always stay local to the PE; therefore, the overhead
from the closing operations on a intra-PE thread can not be justified with the restricted access.
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4-4 The Principles of Functional Binding

The key idea of the FB scheme is to maintain the environment of an OR-task to be closed to the
PE in which the task is scheduled, instead of to the task. Namely, the variables outside the envi-
ronments are reachable once they are in the local address space of the PE. This enlargement of the
closed range from a task to a PE eliminates the need of closing for a intra-PE thread of tasks.

In the FB scheme, variables are divided into two classes; if a variable appears in arguments of
structures, it belongs to an instance class; otherwise, it belongs to an non-instance class. The two
classes are dealt with differently:

- for non-instance variables, the effect of environment closing is implicitly achieved at the unifi-
cation; more precisely, at the unification, the child environment is insulated from the parent
environment; a rule specifying a reference direction sets reference bindings from parent to
child variables (in the unification algorithm, binding direction is determined such that the
environment closing is performed implicitly in unification process; global variables always
bind references to formal variables).

- the instance variables are managed such that the structure copying is avoided. Instance vari-
ables are named globally so that the variables are viewed with unique name both inside and
outside of a task. The bindings of the instance variables in a task are maintained locally in an
auxiliary structure allocated to the task. At forward execution (tree expansion), the pointer to
the parent’s auxiliary structure is passed to the child as part of an input environment, thus
every reference to a binding for an instance variable are performed locally in the task. At
backward execution (tree retraction, appears during backtracking or resolution of program ter-
mination), the pointer to a child auxiliary structure storing bindings of instance variables in a
task is passed to the parent’s task as part of the output environment.

Thus, back unification at the successful completion of a task is a simple retrieval of bindings,
since no explicit closing is performed in this scheme. Namely, bindings for variables in the parent
frame are retrieved from those of local variables if they exist, whereas tags of variable in the par-
ent frame are changed from the reference to the variables if the bindings do not exist.

As we say previously, the auxiliary store is utilized to maintain the bindings of instance vari-
ables, in order to avoid the structure copying on intra-PE node expansion. The store has a form of
a hash table in Figure 4-3 (a). As the duplication of the store is always performed in a single
address space, we achieve a duplication with a light overhead by just providing a copy of a head
as shown in Figure 4-3 (b). Further, the enqueuing of an element to the store is shown in Figure
4-3 (c).
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4-5 Conclusion and Remarks

Overall, the FB scheme reduces significantly the extra overhead in an intra-PE task thread con-
sidered to be inevitable for a non-single memory space. The reduction of the overhead comes
from the fallowing benefits:

- structure copying is not required in an intra-PE task thread, only copying of hash table heads is

necessary;

- there are no explicit closing operations both at unification and at back-unification; thus need-

less of scanning structures entailed in closed binding.

Instead, two new issues are raised in the FB scheme:
- the management of instance variables, especially the detection and the naming convention;
- the management of auxiliary structures for storing the binding of instance variables.

Now, the point is to evaluate the gain in performance brought by this novel binding scheme, and
more particularly to verify that the overhead introduces by this new scheme is significantly
smaller than the one provided by the “closed binding scheme”. In particular, the management of
the instance variables, which are named globally, should remain a critical problem on distributed
memory machine implementations.
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S INTERPROCESS COMMUNICATION PRIMITIVES

5-1 Internal Structure of a Translator

Figure 5-1 shows an overall view of a typical translator for our parallel model. It exploits the set
of functions given by the Abstract Logic Programing Graph (ALPG), unique and independent of

any particular architecture, and translates it into a parallel-C code for a specific underlying
machine.

This translator is compound of two main elements, a parallel-C code generator and a runtime
system. The parallel-C code generator is in fact the set of ALPG functions writing in C and thus
adapted to run on the specific target machine. To perform this, the generator needs the help of a
runtime system which provides low level services. It implements primitive languages features, in
contrast to the standard library which is typically implemented in the language itself.

ALPG:
set of functions

TRANSLATOR

RUNTIME SYSTEM:

Library of Primitives
Provides Essential Services

fa’/'.//lIIIIIIIIIII/I/IIIIIIIJ

=
o
N

PARALLEL C-CODE
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Standard Library of Functions

N

PARALLEL MACHINE

Multi-Processors or Multi-
Processes Configuration

Figure 5-1: Overall View of the Translator
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The task of writing a parallel program for a specific machine involves:

- deciding how to decompose the computation into parallel sub-computations,
- mapping these parallel sub-computations to specific processors or processes,
- deciding when to execute them (scheduling),

- and expressing these decisions using the primitives provided by the machine.

The runtime system provides dynamic load balancing, which includes the two first require-
ments, scheduling, and also garbage collection (i.e., management of dynamically-allocated stor-
age).

A similar translator for Sparc stations will be implemented in the very near future. It will pro-
duce an executable code for a unique Sparc station in a multi-processes configuration, and also for
several such workstation linked by Internet. We present below a set of primitives that will be part
of this expected translator’s runtime system (useful for mapping features).

5-2 Interprocess communication
S-2-1 Definitions

A process is an execution environment that consists of three segments: instruction segment,
user-data segment, and system-data segment (includes attributes such as current directory, pro-
cess-ID, open file descriptors, etc.).

A program is a collection of instructions and data that is kept in an ordinary file on disk, which
is used to initialize the instruction and user-data segments of a process.

5-2-1 Interprocess Communication in our Application

Several mechanisms (at least 10) exist under UNIX to allow processes to communicate. We
review here four of them that could answered our application requirements, which are:

- to allow bidirectional communication,

- to allow two processes with non-common ancestor to communicate,

- to allow communication with different message types,

- reliability (no lost of message, no destination error,...)

- speed: exchanges must be fast.

We could have used pipes to insure the interprocess communication. A pipe is a one-way com-
munication mechanism well known to shell users. But pipes have four majors disadvantages, too
constraining for our project:
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- a pipe is a one-way communication mechanism, and using a same pipe for a two-ways com-
munication between two processes is possible but very complicated;

- reads and writes are not guaranteed to be atomic, prohibiting the use of pipes when there are
multiple readers or multiple writers;

- pipes are a simple solution for communicating between processes that are related, typically
parent and child. It is also impossible for two processes with no common ancestor to com-
municate, which is intolerable in our application;

- finally, pipes might be too slow; the data has to be copied from the writing user process to
the kernel and back again to the reader; no actual I/O is performed, but the copying alone
can take too long for our purpose.

FIFOs, or named pipes, solve the three first disadvantages of pipes. A FIFO exists as a special
file, and any process with permission can open it for reading or writing. Atomicity is guaranteed:
the bytes written or read via a single system call are always contiguous. Hence, both multiple
writer and multiple readers are easily handled. FIFOs are also easy to program. The problem is
that they don’t eliminate the fourth disadvantage of pipes: as we will demonstrate, they are some-
times to slow.

Message System Calls, a interprocess communication feature of System V, regroups all the
advantages of FIFOs, and it is faster. A message is a small amount of data (500 bytes, say) that
can be send to a message queue. Messages can be of different types, and any process with appro-
priate permissions can receive messages from a queue. As we will see, this mechanism provides
very good results in terms of performance. However, Message System Calls present several draw-
backs: they are complex, incompletely document and above all, they are nonportable, which
entails several problems when transporting the application from one machine to another one.

Socket-Based Interprocess Communication is a framework for transport-level programming.
Sockets are the enpoints of communication channels. Two unrelated processes can create sockets
separately and then send messages between them. Messages can be of different types and sizes.
The communication is bidirectional, reliable, error-free, fast, and possible between any two pro-
cesses that reside either on the same or on separate machines linked by Internet network. We have
selected this communication mechanism, because it happened to be the one which gave the best
answer to the semantic and performance requirements of our application.

5-3 FIFOs

A FIFO combines features of a file and a pipe. Like a file, it has a name, and any process with
appropriate permissions may open it for reading or writing. Unlike with pipe, then, unrelated pro-
cesses may communicate over a FIFO, since they need not rely on inheritance alone to access it.
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Once opened, however, a FIFO acts more like a pipe than a file. Written data is read back in
first-and-first-out order, and single write and read system calls are guaranteed to be atomic, pro-
vided the amount read or written doesn’t exceed the capacity of the FIFO, which is the same as
the capacity of a pipe (implementation dependant, but at least 4096 bytes). Data once read can’t
be read again.

Plain FIFOs don’t work well as message carriers; some additional mechanism has to be added.

We thus implemented four primitives, queue, send, receive and rmqueue. Here are their head-
ers:

static int queue(key)  return the queue ID, and create one if necessary.
long key;

boolean send(dstkey, buf, nbytes)

boolean receive(srckey, buf, nbytes)
long dstkey, srckey; destination and source key;
struct msgbuf *buf;  buf points to the message;

int nbytes; size of the message.
void rmqueue(key) remove the queue identified by key.
long key;

Messages are sent to a queue, identified by a long integer called the key. buf points to the mes-
sage, which is nbytes in length. A message may consist of any arbitrary data, but it must begin
with a long integer that is unused. That is, a message might be structured like this:

struct msgdata
{
long unused;
char data[100];
}

This allow room for 100 bytes of message data. The header declare buf as a pointer to a char
instead of a pointer to a struct msgdata so that the actual message structure can vary with the
application.

The queue can get full. If it does, send blocks until it empties enough to hold the message being
sent.

receive takes the oldest message off the queue and copies it to storage pointed to by buf. It is a
serious error if the nbytes argument to receive does not exactly equal the corresponding argument
to the call to send that deposited the message. The receiver must know the size of the message at
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the head of the queue.

In order for two processes to communicate with send and receive, they must know each other’s
receiving queue keys. Each can then send messages to the other’s queue. They could communi-
cate with only one queue, but they then have to synchronize themselves to avoid problem inherent
to pipe characteristic when using in a two-way communication purpose. We avoid it by using two
pipes instead of one for two ways communication. In the case of a centralized server and its cli-
ents, the server’s key should be established in advance and told to each client. Each client makes
up its own key, its process number here, since that guaranteed uniqueness. A client passes its key
to the server with each request for service so the server knows on which queue to respond.

Here’s how to implement send and receive with FIFOs: a queue is a FIFO. We’ll construct its
name by converting the key to a string and prefixing it with /tmp/fifo. For example, the queue cor-
responding to key 12345 would be /tmp/fifo12345.

Our implementation must avoid two major problems. First, we don’t want a sender to block per-
manently if the expected receiver never opens its FIFO for reading. This might hang the server if
a client terminates abnormally, which would deny services to all clients. But we also don’t want
the sender to give up too soon if the receiver isn’t ready, because in starting the application system
we have to create several processes (the server and its initial clients), and it might take a few sec-
onds for every participant to get rolling. So a sender sets O-NDELAY when opening a FIFO for
writing, and, if it fails because no client had the FIFO open, it sleeps for a while and tries again.
After a few time it gives up. The symbolic constant NAPTIME is equal to the number of seconds
to sleep; MAXTRIE is equal to the number of tries.

We care a lot less about whether the receiver blocks. In our application, a client can safely
blocks waiting for the server to respond.

The second major problem is that a server with many clients can easily run out of descriptors
(20 per process). This can occur if a parent node in a Prolog Tree has to create several child nodes
which can then run in parallel. A process has three standard file descriptors (0, 1, and 2), one for
its receiving queue, one for each client’s queue, and one for each data file. Since all client FIFOs
can’t be open at once, the obvious solution is to open a FIFO, write the message, and then close it
to free the file descriptor. But opens take too long, so this would slow down communication too
much. After all, it’s when the server has many clients that efficiency matters most.

A good solution is to use a scheme analogous to that used by virtual memory systems. Keep a
limited number of FIFOs open, say seven. When a eighth is needed, close an open one and use its
file descriptor. The best one to close is the one that will be needed furthest in the future (this can
be proven), but unfortunately, the server can’t predict the future. So a reasonable compromise is
to close the FIFO that was least recently used, on the theory that a FIFO that hasn’t been used for
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a while won’t be used for a while yet. If the clients make server request in round-robin order, our
scheme will fail, since the least-recently-used FIFO is precisely the wrong one to close. But if
each client tends to bunch its requests, which is the case in our application where only one trans-
action is generally executed between two processes at a time (forward or backward execution, see
section 4-4), that least-recently-approach works well.

We can keep a table of the open file descriptors like this:

static struct
{
long key;
int fd;
int time;

}

Whenever we read or write a FIFO, we report the current time in the time member of the corre-
sponding fifo element. If we need to usurp a file descriptor, we just go through the array looking
for the element with the oldest time. We close its fd member, open the new FIFO, and store the
key, file descriptor, and current time in that element.

Since we are using the time member only to record relative times, we don’t need to actually
interrogate the computer’s clock to store the current time. We can implement a local variable
(clock) each time send and receive is called, and then store the current value of clock in the time
member.

Figure 5-2 explicates the way FIFOs interprocess communication primitives have to be use,
which is rather easy. The server calls “send” which creates a server’s FIFO if it doesn’t exist, and
“waits” for the client‘s FIFO to be created. If it is not, the server will give up after several tries;
else, it sends the message to the client. At the end of the transaction, the two FIFO queue names
are removed.

The code for these primitives, as well as two example programs that exploit and test them is vis-
ible in appendix A. The results of these tests showed that the FIFOs are very reliable, easy to use,
but also much too slow for our application: the average time for a exchange is about 0,5 second!
This is the reason why we abandoned them.
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send (client-key, message, sizeof(message)) if client not ready, try again
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receive (client-key, message, sizeof(message))

Y Y
rmqueue (server-key) rmqueue (client-key)

Figure 5-2: FIFOs Interprocess Communication Primitive Calls

5-4 Message System Calls

Four system calls (visible bellow) are available in System V, handle messages analogously to
send and receive, which were implemented in the previous section with FIFOs. The SystemV
scheme is much more elaborate, however, and has many more options (that we won’t use in our
application).

int msgget(key, flags) return the message queue-ID, and create one if necessary
key-t key; queue key (long)
int flags; option flags
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int msgsnd(qid, buf, nbytes, flags) send message to queue
int msgrev(qid, buf, nbytes, mtype, flags) receive message
int qid; queue-ID
struct msgbuf *buf; buf points to the message
int nbytes; size of the message
long mtype; type of the message
int flags; option flags
int msgctl (gid, cmd, sbuf) control message queue
int qid;
int cmd; command
struct msqid_ds *sbuf; pointer to status buffer

To use messages we start with msgget, which is analogous to open. It takes a key, which must
be a long integer, and returns an integer called the queue-ID. A queue-ID is like a file descriptor,
except that any process that knows its value may use it (it doesn’t have to be inherited to be valid).
Like a file descriptor, a queue-ID is an index into a table inside the kernel. By translating external
keys to queunes-IDs, a time-consuming look up can be avoided when the queue has to be refer-
enced.

The flags argument to msgget is needed to see if the queue already exists; if so, it isn’t created.
This avoid a clash with an existing queue, which would be possible where an actual key to be
used. In our application, this feature isn’t useful: we’ll use the process-ID as the key for a private
key.

Once we have a queue-ID, we can call msgsnd to put a message on it. The second argument,
buf, points to an arbitrary structure that must begin with a long integer greater than zero, called
the message type (the message structure defined in the previous section qualify). nbytes is the
number of bytes in the message exclusive of the message type. The last argument, flags, is nor-
mally 0, causing msgsnd to block if the queue is full. If it is set instead to IPC_NOWAIT (which
acts like O_NDELAY on FIFOs), then msgsnd returns immediately with an error if the queue is
full.

The receiver calls msgrev. nbytes is set to the size of the largest message that will fit in the stor-
age area pointed to by buf, again exclusive of the message type member. Since the size of the
actual message received can be less than nbytes, it is returned as the value of msgrev (analogous
to read). If the receiver wants messages only of a certain type, mtype is set to the type number.
Otherwise, it should be zero, in which case the oldest message on the queue, regardless of type,
will be received (what we chose to implement). If no appropriate message is on the queue, the
receiver blocks if flags is zero. If IPC_NOWAIT flag is on, the receiver returns with an error



Interproces Communication Primitives for a Prolog to C-parallel Translator 31

instead of blocking.

msgctl interrogates or controls various properties of the queue such as access permissions, own-
ership, and capacity. We’ll skip the details, not useful in our application.

From these four system calls, we implemented four primitives very similar to the FIFO ones:
they’ve got the same headers, and are used in the same way (see figure 5-2). The main difference
comes from the fact that the sender or the receiver blocks only if the queue is respectively, full or
empty. This is OK because unlike FIFOs, the sender can put messages on the queue without wait-
ing for the receiver; there is no concept of “open for reading”.

The MessageV interprocess primitives are visible in Appendix B. We tested them with exactly
the same two programs we implemented for the FIFOs primitives In comparison, they happened
to be much faster. However, we met a lot of problems in term of reliability when transporting our
software from one machine to another one: system errors occurred from time to time, like “no
place left on device”, and it was impossible to determine the exact origin of the problem with the
documentation we possessed. For this reason, we decided to not use them.

5-5 Sockets

Processes can communicate via UNIX sockets. Sockets are the endpoints of communication
channels. When sockets are created by different programs, they have to be named to refer to one
another. Names generally must be translated into addresses for use.

The space from which a address is specified by a domain; there are several such domains for
sockets, in particular UNIX domain and Internet domain. In the UNIX domain, a socket is given
a path name within the file system name space. A file system node is created for the socket and
other processes may then refer to it by given its pathname. UNIX domain names, thus, allow com-
munication between any two processes located on the same machine and that are able to access
the socket pathnames. The INTERNET domain is the UNIX implementation of the DRPA Inter-
net standard protocols IP/TCP/UDP. Addresses in the Internet domain consist of a machine net-
work address and an identifying number, called a port. Internet domain names allow
communication between separate machines linked by network.

Communication can be either through a stream socket or by datagram. Stream communication
implies a connection. The communication is bidirectional, error-free, reliable, and, as in pipe, no
message boundaries are kept. Reading from a stream may result in reading the data sent from one
or several calls to write() or only part of the data from a single call, if there is not enough room
from the entire message, or if not all the data from a large message has been transferred.The pro-
tocol implementing such a style will retransmit messages received with errors. It will also return
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error messages if one tries to send a message after the connection has been broken. Datagram
communication does not use connection. Each message is addressed individually. If the address is
correct, it will generally be received, although this is not guaranteed. Often datagrams are used for
requests that require a response from the recipient. If no response arrives in a reasonable amount
of time, the request is repeated. The individual datagrams will be kept separate when they are
read, that is, message boundaries are preserved.

The choice between sockets streams and datagrams has been made by carefully considering the
semantic and performance requirements of our application. Stream can be both advantageous and
disadvantageous. One disadvantage could be that, since a process is only allowed a limited num-
ber of file descriptors (20), there is a limit on the number of streams that a process can have
opened at any given time. This doesn’t really imply any restriction in our application, since each
socket is immediately closed after an exchange (and so its corresponding file descriptor is freed),
so that even if a server has to communicate with over 20 clients, it will always dispose of avail-
able file descriptors. An other drawback is that for delivering a short message, the stream setup
and teardown can be unnecessarily long. Weighed against this are the reliability built into the
streams, and the fact that using datagrams increase the complexity of the program, which must
now concern itself with lost or out of order messages. Considering that in our application, the
safety of the communication is one of our major preoccupation, we relied upon the principle of
socket stream.

Here we detail the set of primitives we have implemented and explain how to use them.

To allow two processes to communicate, both of them has to create its own socket by calling the
fallowing primitive, which returned a socket file descriptor (integer):

create_socket()

Then, in order for processes to rendezvous, the server must assign a name to its socket by call-
ing “bind()” system call.

Names in the UNIX domain are path names. When a name is bound into the name space, a file
(vnode) is allocated in the file system. If the vnode is not deallocated, the name will continue to
exist even after the bound socket is closed. This can cause subsequent runs of a program to find
that a name is unavailable, and can cause a directory to fill up with these objects. That’s why we
remove systematically the name when the communication is over by calling “unlink()”.

Internet address specify a host address and a delivery slot, or port, on that machine. Unlike
UNIX domain names, Internet socket names are not entered into the file system and, therefore,
they do not have to be unlinked after the socket has been closed.

The server then calls “listen()”, which marks the socket as willing to accept connections and ini-
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tializes the queue of pending connections (in case of several clients attempt to connect more or
less simultaneously). When a connection is requested, it is listed in the queue. If the queue is full,
an error status may be returned to the requester. The maximun length of this queue is specified by
the second argument of “listen()”.

Then, the “accept()” call takes a pending connection request from the queue if one is available,
or blocks waiting for a request. It also returns a new file descriptor (socket) and messages are
written or read from the connection socket.

All these features are included in the primitives:

server _send_data() the server writes the message
server receive _data()  the server reads the message

A client initiates a connection with the server using “accept()”, specifying the address to which
it wishes its socket connected. Provided that the target socket exists and is prepared to handle a
connection, connection will be complete, and the client can begin to read or send messages. The
messages will be delivered in order without message boundaries. The connection is destroyed
when either socket is closed (or soon thereafter). To perform that, we implemented:

client receive_data() the client reads the message
client_send data() the client sends the message

After the communication is done, we safely close the two sockets using:
delete_socket()

Figure 5-3 and 5-4 shows the primitive calls used in typical communications: on the first one,
the server is the sender; on the second one, the server is the receiver.

The code of all these primitives, as well as several example programs which exploit them, is vis-
ible in Appendix C. The socket-based interprocess mechanism has showed great performances in
terms of reliability and speed. Even if they are a bit more complicated to use than the two previous
mechanisms, FIFOs and MesageV, they will be further use by the translator dedicated to Sparc
station.
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Figure 5-3: Socket_primitive calls - the server is the sender
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6 CONCLUSION

In this report, we have briefly described a novel parallel execution model for logic program-
ming, characterized by its adaptability for implementation on large scale architectural platforms.
This model applies the principle of data-driven execution to the inference mechanism of Prolog.

Particularly emphasis was placed on its lowest level, the binding environment. The USC
Research Team designed the “Functional Binding Scheme”, which is highly optimized for non-
single address space machines. Since this new model deals with the management of global vari-
ables, which could prove to be source of overhead on distributed memory implementation, it is
necessary to further evaluate its real benefit in comparison with the already existing “Closed
Binding Scheme”.

To this end, the USC Research Group is implementing a parallel compiler for a pure logic ker-
nel (i.e, a subset) of the Prolog language, in conjunction with specific translators for various paral-
lel machines. Input a Prolog programs will enable the compiler to generate a graphical
intermediate representation, which can be then tailored to the target machines through appropriate
translators.

One of these translators will be specific to a Sparc station in a multiple processes configuration,
and also to several such workstations linked by network. The purpose of this application is to
expand the expressive power of Prolog to encompass distributed applications, and also to test the
functionality and the reliability of our parallel execution model. It is not geared toward a perfor-
mance improvement over normal Prolog sequential systems.

Therefore, we found necessary to implement a comprehensive set of interprocess communica-
tion primitives by studying, testing, and comparing several interprocess communication systems
available under UNIX. In our opinion, “Socket-Based Interprocess Communication” proved to be
the one which answered the best our application requirements, that is, speed, reliability, different
message types exchanges and unrelated processes communication.

Finally, in the prospect of significantly improve the execution of Prolog programs using parallel
architectures, further work for this project will be the implementation of translators for the
Fujitz’s AP1000 and for the Motorola’s Monsoon machines. This should be done for the end of
this year.
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/**********ir********************************'k************************/

/**********************'k*********'Ir*1\'*********************************/

/** **/
/** This file contains the message structure used by the i
/** FIFO interprocess communication mechanism ko
[** *k )

/************************‘k*************'1-*****************************/
/************************************'k*******************************/

#include <stdio.h>

typedef struct {
long unused;
int pid;
int number;

)} MESSAGE;



/******************************'k*************************************/

/**********'k*****'k'k*************************************************'k/

/'k*
/**
/**
/**

**/
This file contains the set of primitives used by the FIFO's *ky
interprocess communication mechanism *¥Y
**/

/****‘k***'k*'k*********************************************************/

/************************'k*******************'k***********************/

#include <stdio.h>
#include <errno.h>
#include <fentl.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAXOPEN 20 /* number of message queues allowed */
#define NAPTIME 5 /* number of seconds to sleep before next trie */
#define MAXTRIES 3 /* number of tries to open a FIFO for writing when */

/* no reader have the FIFO open */

typedef enum{FALSE, TRUE)} BOOLEAN;

/*****************************************************i*************/

i *f
/* This function prints systen call error message and terminate *
i % &y

/*******************************************************************/

void syserr(msg) /* print systen call error message and terminate */
char *msg;

-

extern int errno, sys_nerr;
extern char *sys_errlist][];

fprintf (stderr, "ERROR:%s (%2d", msg, errno);
if (errno > 0 && errno < sys_nerr)

fprintf (stderr, ";%s)\n\n", sys_errlist([errnol]);

else

fprintf (stderr, *)\n\n");

exit(0);

/*************t**********************i’******************************[

/* */
/* This function constructs a fifo name from key and returns an *iy
/* queue ID xy
I */

/****************************t**************************************l

static char *fifoname (key)
long key;
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static char fifo[20];
sprintf(fifo, "/tmp/fifo%ld", key);
return(fifo);

}

static int openfifo(key, flags) /* return fifo fd */
long key;
int flags;
{
static struct
(
long key;
int fd;
int time;
} fifos[MAXOPEN] ;
static int clock;
int i, avail, oldest, fd, tries;
char *fifo;
extern int errno;

clock++;
avail = -1;
for (i = 0; i < MAXOPEN; i++)
{
if (fifos([i] .key == key)

(
fifos[i].time = clock;
return(fifes([i].£d);
)
if (fifos[i].key == 0 && avail == -1)
avail = i;
}
if (avail == -1) /* all fds in use; find oldest */
{

oldest = -1;
for (i = 0; i < MAXOPEN; i++)
if (oldest == -1 || fifos[i].time < oldest)
{
oldest = fifos[i].time;
avail = i;

)

if (close(fifos[avail].fd) == -1)
return(-1);
}
fifo = fifoname (key);
if (mkfifo(fifo) == -1 && errno != EEXIST)

return(-1);
for (tries = 1; tries <= MAXTRIES; tries++)

{
if ((fd = open(fifo, flags | O_NDELAY)) != -1)
break;
if (errno != ENXIO)

return(-1);
printf ("dodo\n") ;
sleep (NAPTIME) ;
)
if (fd == -1)
{
errno = ENXIO; /* sleep may have miss up */
return(-1);
}
if (fentl(fd, F_SETFL, flags) == -1) /* clear O_NDELAY */
return(-1);
fifos[avail] .key = key;
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fifos[availl.fd = £4;
fifos[avail] .time = clock;
return (£d) ;

)

/***********************************************'k****************‘k**/

/* */
/* This function sends a message to the destination queue (key) L33
/> */

/**‘k****************************'k***'lr*t*****************************/

BOOLEAN send(dstkey, buf, nbytes)
long dstkey;
struct msgbuf *buf;
int nbytes;

int f£4;

if ((£d = openfifo(dstkey, O_WRONLY)) == -1)
return (FALSE) ;

return (write(fd, buf, nbytes) != -1);

/*************************t**********‘k****************************'k*/

/* */
/* This function receives a message from the source queue (key) )
/* */

/***********************************************‘k*******************/

BOOLEAN receive(srckey, buf, nbytes)
long srckey;
struct msgbuf *buf;
int nbytes;

int fd, nread;
if ((fd = openfifo(srckey, O_RDONLY)) == -1)
{
printf ("receive missed");
return (FALSE) ;
}
while((nread = read(fd, buf, nbytes)) == 0);
sleep (NAPTIME) ;
return(nread != -1);

/***************************‘k******'k********************************/

J* *f
/* This function removes the message queue identified by the key *Y
[ Y

/*******************************************************************/

void rmgueue (key)
long key;
{
int errno;
if (unlink(fifoname(key)) == -1 && errno != ENOENT)
syserr ("unlink");




/***********************************************************************/

/***********'k***********************************************************/

/**

/** This source creates a child process clone to the parent’s one.
/** They communicate by using FIFO. The parent send two messages to
/** the child who return the first one only.

/**

**/
**/
**/
**/
**/

/******************i********t*1\'**1’*************************************1‘/

/*******‘k*******************************‘t*************************‘k*****/

#include "FIFO_primitives.c"

#include "FIFO_message.h"

main()

{
int parent, child;
MESSAGE m, n;

/***********************************************************************/

/*********************************‘k*************************************/

/*

/* fork creates a new process with almost exact copies of instruction,
data segments. After fork return, both parent
/* and child processes receive the return. The return value is

/* different, however, which is crucial, because it allows their

/* user-data, and system-

/* subsequent actions to differ:

/* - the child receives a 0 return value;

/* - the parent receives the process-ID of the child.
/*

2y
*/
*/
*/
i
Ef
Xy
*y
i

/***********************************************************************/

/***********************************************************************/

if ((child = fork()) == -1) /* creates a child process */
(
perror ("fork");
exit(0);
) =
else
(
if (child != 0) /* this the parent, the return value is <> 0 */
{

parent = getpid();

printf ("parent = process # %d\n\n", parent);

/* send message m to the child */

m.pid = getpid();

m.number = 1;

if (!send(child, &m,
syserr ("sendl\n");

/* receive message n
setbuf (stdout, NULL) ;

/* send address for eventual return */
/* send value 1 */
sizeof (m)))

from the child */
/* turns off buffering */

if (!receive(m.pid, &n, sizeof(n)))

syserr ("received2")

/* send message n to

n.number = 3;

if (!send(n.pid, &n,
syserr("sendl\n") ;

the child */

sizeof(n)))
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/** The fallowing instruction "sleep" is necessary to allow the **/
/** child process to print the successful message "data receive" **/
/** It also indicates the time necessary for the four exchanges: **/

/** almost 5 seconds !!! *%
/*******'*************************'k*********************************/

sleep(5);
rmqueue (parent) ; /* remove the parent queue */
}
if (child == 0) /* this is the child; the return value is = 0 */
{
child = getpid();
printf("child = process # %d\n\n", child);
/* receive message m from the parent */
setbuf (stdout, NULL) ; /* turns off buffering */
if (!receive(child, &m, sizeof(m)))
syserr("receivedl\n");
/* send message n to the parent */
n.pid = getpidl();
n.number = 2;
if (!send(m.pid, &n, sizeof(n)))
syserr("send2") ;
/* receive message n from the parent */
setbuf (stdout, NULL) ; /* turns off buffering */
if (lreceive(n.pid, &n, sizeof(n)))
syserr("received2") ;
printf("Have I well received 3 from the son ? %d\n\n", n.number);
rmqueue (child) ; /* remove the child queue */
}
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/*****************************************'k*****************************/
/************************************‘k**********************************/

/** **I
/** This source creates a child process clone to the parent’s one. ey
/** They communicate by using FIFO. The parent send two messages to %]
/** the child who return them. *k /
/** **/

/********************************************'k**'k*'k*********************/
/***********************************************-ir***********************/

#include "FIFO_primitives.c"
#include "FIFO_message.h"

main()

{
int parent, child, sol;
MESSAGE m, n;

/**************‘k********************************************************/
/********‘k*******************************‘k******************************JI
/* *f
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is %y
/* different, however, which is crucial, because it allows their *f
/* subsequent actions to differ: *f
/* - the child receives a 0 return value; *f
/* - the parent receives the process-ID of the child. */
i */

/‘k******************************************************'k***************/
/**********1\'******************************1\-*****************************/

if ((child = fork()) == -1) /* create a child process */
{
perror (*fork");
exit(0);
}
else
{
if (child != 0) /* this the parent, the return value is <> 0 */
{

parent = getpid();
printf (“parent = process # %d\n\n", parent);

/* send message m to the child */
m.pid = getpid(); /* sent address for eventual return */
m.number = 1; /* sent value 1 */
if (!send(child, &m, sizeof(m)))
syserr ("sendl\n");

/* receive message n from the son */
setbuf (stdout, NULL) ; /* turns off buffering */
if (!receive(m.pid, &n, sizeof(n)))
syserr ("received2");
printf(*Have I well received 2 from the son ? %d\n\n", n.number);

rmgueue (parent) ; /* remove the parent gueue */



if {child == 0)

({

child = getpid();
printf("child = process # %d\n\n", child);

/* receive message m from the parent */

setbuf (stdout, NULL); /* turns off buffering */

if (!receive(child, &m, sizeof(m)))
syserr("receivedl\n") ;

/* send message n to the parent */

n.pid = getpid();

n.number = 2;

if (!send(m.pid, &n, sizeof(n)))
syserr ("send2") ;

rmgueue (child) ; /* remove the child queue */




/************************************************************'k*******/

/***********'k***********'k********************************************/

et *% )
/** This file contains the message structure used by the ke
/** Message System V interprocess communication mechanism *de )
/** **/

/*******‘k**************‘k*'k*******************************************/
/********************************************'k***********************/

#include <stdio.h>

typedef struct (
long unused;
int pid;
int number;

} MESSAGE;



/***i****************************************************************/

/********************************************************************/

/** **/
/*¥* This file contains the set of primitives used by the Message **/
/** System V interprocess communication mechanism LY
JE* *%/

/********************************************************************/
/**********************************'k*********************************/

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAXOPEN 20 /* number of message queues allowed */

typedef enum{FALSE, TRUE} BOOLEAN;

/*******************************************t*t*********************/

[* */
/* This function prints systen call error message and terminate */
/* */

/*t******************************************'k***‘k******************/

void syserr (msg)
char *msg;

extern int errno, sys_nerr;
extern char *sys_errlist([];

fprints (stderr, "ERROR:%s (%d", msg, errno);
if (errno > 0 && errno < sys_nerr)
fprintf(stderr, *;%s)\n", sys_errlist[errno]);
else
fprintf(stderr, ")\n");
exit (0);

/*************************'A'**********************i****t**i’**********/

* *
/* This function returns an queue ID (creates one if necessary) i
/* */

/*******************************************************************/

static int openqueue (key)
long key;
{
static struct
{
long key;
int qgid;
} queues [MAXOPEN] ;
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int i, avail, qgid;
extern int errno;

avail = -1;
for (i=0; i<MAXOPEN; i++)
{

if (queues[i] .key == key)
return(gqueues[i] .qgid);

if (queues[i].key == 0 && avail == -1)
avail = i;

}
if (avail == -1)
{

errno = 0;

return(-1);
)
if ((gid = msgget(key, 0666|IPC_CREAT)) == -1)
(

syserr ("msgget");
return(-1);
)
queues [avail] .key
queues [avail] .gid
return (gid) ;

key;
qid;

/********************i*********************ﬁ************************/

/* */
/* This function sends a message to the destination queue (key) *J
f* *J

/***************'k1\‘***'k****'k****'k************************************/

BOOLEAN send(dstkey, buf, nbytes)
long dstkey;
struct msgbuf *buf;
int nbytes;

int gid;
if ((gid = openqueue (dstkey)) == -1)
printf ("send missed");
buf->mtype = 1;
return(msgsnd(gid, buf, nbytes - sizeof (buf->mtype), 0) != -1);

/***1\'*****'lr*********************************************************/

/* */
/* This function receives a message from the source gueue (key) */
i * /

/*‘#*********1\'*1\-****1\-*****'A’******************************************/

BOOLEAN receive(srckey, buf, nbytes)
long srckey;
struct msgbuf *buf;
int nbytes;

int gid;
if ((gid = openqueue(srckey)) == -1)
return (FALSE) ;
return(msgrcv(gid, buf, nbytes - sizeof (buf->mtype), 0L, 0) != -1);




/******************************************'k************************[

/* ‘*/
/* This function removes the message queue identified by the key */
i *7

/*************1\-*******'k**'k******************************************!

void rmgueue (key)
long key;
{
int gid;
if ((gid = openqueue(key)) == -1 || msgctl(gid, IPC_RMID, NULL) == -1)
perror ("rmgqueue") ;



/***t******1\"A.'*****************************************‘k*****************/

/*****************************************‘k*****************************/

/**
/**
/*‘k
/**
/**

This source creates a child process clone to the parent’s one.

They communicate by using Message System calls. The parent sends

two messages to the child who returns the first one only.

'k*/
**/
**/
*‘*/

**/

/********1\'*************************'k************************************/

/***********************************************************************/

#include "MESSV_primitives.c"
#include

main ()

{

"MESSV_message.h"

int parent, child;
MESSAGE m, n;

/’*******************************************************************‘k***/

/*****************************‘k*****************************************/

/*
/-Jr
/*
/*
/*
/*
/*
/‘lr
/*

fork creates a new process with almost exact copies of instruction,

user-data,

and child processes receive the return. The return value is

different, however,

which is crucial, because it allows their

subsequent actions to differ:
- the child receives a 0 return value;
- the parent receives the process-ID of the child.

and system-data segments. After fork return, both parent

wy
*/
*/
*/
L4
*yf
*f
*/
*/

/************************‘k**********************************************/

/**********************‘k**************‘k*********************************/

if

(

}

((child = fork()) ==

perror ("fork") ;
exit (9);

else

(

if
{

pa
pr

rent = getpid();

-1) /* creates a child process */

/* this the parent, the return value is <> 0 */

intf ("parent = process # %d\n\n", parent);

/* send message m to the child */
m.pid = getpid();

m.
if

number = 1;
(!send(child, &m,
syserr("sendl\n");

/* send address for eventual return */
/* send value 1 */
sizeof (m)))

/* receive message n from the child */

se
if

tbuf (stdout, NULL)
(!receive (m.pid,
syserr ("received2"

: /* turns off buffering */
&n, sizeof(n)))
Yi

/* send message n to the child */

0.
if

number = 3;
(!send(n.pid, &n,
syserr(*sendl\n");

sizeof (n)))



/* remove the parent queue */
rmgqueue (parent) ;

)

if (child == 0)
{
child = getpid();

/* this is the child; the return value is = 0 */

printf("child = process # %d\n\n", child);

/* receive message m from the parent */

setbuf (stdout, NULL);
if (!receive(child, &m,
syserr("receivedl\n")

/* turns off buffering */
sizeof (m)))

i

/* send message n to the parent */

n.pid = getpid();
n.number = 2;

if (!send(m.pid, &n, sizeof(n)))

syserr ("send2") ;

/* receive message n from the parent */

setbuf (stdout, NULL) ;
if (!receive(n.pid, &n,
syserr("received2");

/* turns off buffering */
sizeof(n)))

printf (*Have I well received 3 from the son ? %d\n\n", n.number);

/* remove the child queue */

rmgueue (child) ;



/*******i'*'k******'k*******'k**********************************************/

/***********************************************************‘k***********/

/** **/
/** This source creates a child process clone to the parent’s one. wikf
/** They communicate by using Message System calls. The parent sends **/
/** two messages to the child who returns both of them. ek
/-k* **/

/****************‘k******************************************************/

/***********************************************************************/

#include "MESSV_primitives.c"
#include "MESSV_message.h"

main ()

(
int parent, child, sol;
MESSAGE m, n;

/***********************************************************************/

/***************************‘k**********************'Ir*****'k**************/

/*

/* fork creates a new process with almost exact copies of instruction,

/* user-data, and system-data segments. After fork return,

both parent

/* and child processes receive the return. The return value is
/* different, however, which is crucial, because it allows their

/* subsequent actions to differ:

/* - the child receives a 0 return value;
/* - the parent receives the process-ID of the child.
/*

*y
%t
i
*/
*/
=
*4
*f
it

/**********************************'k************************'k***********/

/********'k*'k************************************************************/

if ((child = fork()) == -1) /* create a child process */
(
perroxr (" fork");
exit{0);
}
else
{
if (child = 0) /* this the parent, the return value is <> 0 */
{

parent = getpid();
printf ("parent = process # %d\n\n", parent);

/* send message m to the child */

m.pid = getpid(); /* sent address for eventual return */

m.number = 1; /* sent value 1 */
if (!send(child, &m, sizeof(m)))
syserr ("sendl\n");

/* receive message n from the son */
setbuf (stdout, NULL) ; /* turns off buffering */
if (!receive(m.pid, &n, sizeof(n)))
syserr ("received2");
printf ("Have I well received 2 from the son ? %2d\n\n",

/* remove the parent queue */
rmqueue (parent) ;

n.number) ;




if (child == 0) /* this is the child; the return value is = 0 */
{

child = getpid();
printf("child = process # %d\n\n", child);

/* receive message m from the parent */
setbuf (stdout, NULL); /* turns off buffering */
if (!receive(child, &m, sizeof(m)))

syserr ("receivedl\n");

/* send message n to the parent */

n.pid = getpid();

n.number = 2;

if (!send(m.pid, &n, sizeof(n)))
syserr("send2") ;

/* remove the child queue */
rmqueue (child) ;



/***‘I\"k****'k*****************************************************************/

/****‘k*********************1\'*'k'ir**1\'**1\'***************************************/

/** **/
/** This program contains all the primitives used to allow communication **/
/** between processes within the UNIX domain (processes run on the same *dkf
/** machine) . *kf
/** **/
/**************************************************************‘k************/

/*********1\‘*9.'1\'*'*'k**************************************************‘k*'k******/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>
#include <fcentl.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX NAME 10

/***************************************************************************/

/** **/
/** This primitive prints system call error message and terminate S
/** **/

/***********************************************************************'k***/

void syserr (msg)
char *msg;

extern int errno, sys_nerr;
extern char *sys_errlist[];
fprintf (stderr, "ERROR:%s (%d", msg, errno);
if (errno > 0 && errno < sys_nerr)
fprintf (stderr, *;%s)\n\n", sys_errlist[errno]);
else
fprintf (stderr, ")\n\n") ;
exit (0);

/*1\’*************************************************************************/

/** **/
/** This primitive set up all the necessary fields in the "sockaddr_un® wk /
/** structure, which contains the UNIX pathname. ** f
/‘:l‘* **/

/***************************************************************************/

struct sockaddr_un get_UNIX_addr (file_name)
char file_name[MAX_NAME] ;

struct sockaddr_un sunix;

sunix.sun_family = AF UNIX;



strepy (sunix.sun_path,

return (sunix);

/**************‘k‘k*****‘***************‘k**************‘************************/

/** *'Ir/
/** This primitive creates a stream socket in the UNIX domain ek
/** **/

/*********************'k*******‘k************'k*i.'*************************‘k****‘/

int create_socket ()

{
int socket_fd;
socket_fd = socket (AF_UNIX, SOCK_STREAM, 0);
if (socket_fd == -1)
{
syserr ("opening stream socket");
exit (0);
}
printf ("socket created # = %d\n\n", socket_f£fd);
return (socket_£d);
)

/*'k*'k***‘k*'k*'k***********************‘k***************************************[

/** **/
/** This primitive closes the socket defined by its file descriptor s
/** **/

/*********i*******************************'k*********************************/

void delete_socket (socket_fd)
int socket_fd;

{
if (close(socket_fd) == -1)
syserxr("close socket");
exit (07 ;
}

/******************************'k************'k*******************************/
/** **/
/** This primitive binds a UNIX socket name to the socket defined by its **/
/** socket file descriptor entry argument. This name is actually an UNIX **/

/** address returned by the "get_UNIX_addr" call. *ok
/** This primitive is used by the server only. ke f
/** **/

/***********************************************************'k****1{**********/

void bind_socket (socket_fd, file_name)
int socket_fd;
char file_name [MAX_NAME] ;

struct sockaddr_un address;

address = get_UNIX_addr(file_name);
if (bind(socket_fd, (struct sockadrr *)&address, sizeof (struct sockaddr_un))
{

syserr("binding stream socket");
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exit (0);

/***************************************************************************/

/** **/
/** This primitive is to be used by the server only, just after the "bind **/
/** socket" one, and in relation with "“client_receive_data". ek f
/** The server sets up a gueue for incoming connection requests using Rl
/** "listen()". Then it initiates a connection using "accept". The Wik f
/** "accept" call returns a new file descriptor which is use to send a Tk )
/** message to the client. L
/** **/

/**************************‘k**********************************t****i‘********/

void server_send_data(socket_fd, buffer)
int sockgt_fd;
char buffer[1024];

int msgsock;

/* Start accepting connection */
listen(socket_f£fd, 5);

msgsock = accept (socket_fd, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)
syserr ("accept");

/* write the message for the client */

else if (write(msgsock, buffer, 1024) == -1)
syvserr ("writing on stream socket®);
if (close(msgsock) == -1)

syserr ("close socket");

/***‘k****’***********'k******************************************t*******'k****/

/** **/
/** This primitive is used by the client only, in relation with "server_ *%/
/** send_data". *x
/** First, it looks up to the server socket UNIX address it wishes to *k S

/** connect by using "get_UNIX_addr" call. Then it requests a connection **/
/** using "connect". If the connection is established by the server, the **/

/** two processes can communicate. *k )
/** Here, the client reads a message sent by the server. =2
/** **/

/************'k**************************************************************/

void client_receive_data(socket_£fd, file_name)
int socket_fd;
char file_name[MAX_ NAME] ;

char buf[1024];
struct sockaddr_un server;
int rval;

/* Connect socket using get_UNIX_addr call */
server = get_UNIX_addr(file_name) ;

if (connect (socket_fd, (struct sockaddr *)&server, sizeof (struct sockaddr_un)) == -1)



delete_socket (socket_£d) ;
syserr ("connecting stream socket");
exit (0);

}

/* read the message sent by the server */
do
{
if ((rval = read(socket_fd, buf, 1024)) == -1)
perror ("readind stream message") ;
else
printf("message read : %s\n", buf);
}

while (rval > 0);

/* removed the name of the socket on the current directory */
unlink (server.sun_path); '

/***************************************************************************/

/**

/** This primitive is to be used by the server only, just after the "bind
/** socket" one, and in relation with "client_send_data*.

/** The server sets up a queue for incoming connection requests using

/** "listen()". Then it initiates a connection using "accept". The

/** "accept" call returns a new file descriptor which is use to receive a

/** message from the client.
/**

**/

** /

*x f

**/

* % [

* %/
* %/

**/

/***************************************************************************/

void server_receive_data(socket_fd, file_name)
int socket_£d;
char file_name [MAX_ NAME] ;
{
int msgsock;
char buf[1024];
int rval;
/* Start accepting connection */
listen(socket_fd, 5);

msgsock = accept (socket_fd, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)
syserr ("accept");

/* read the message sent by the server */
do
{
if ((rval = read(msgsock, buf, 1024)) == -1)
perror ("readind stream message");
else
printf ("message read : %s\n", buf);
)
while (rval > 0);
if (close(msgsock) == -1)
syserr ("close socket");

/* removed the name of the socket on the current directory */
unlink(file_name) ;



/***********************************‘k***************************************/

/** **/
/** This primitive is used by the client only, in relation with "server_ **/
/** send_data". **
/** Pirst, it loocks up to the server socket UNIX address it wishes to *x

/** connect by using "get_UNIX_addr" call. Then it requests a connection **/
/** using "“connect". If the connection is established by the server, the **/

/** two processes can communicate. By
/** Here, the client send a message to the server. *% /
/** **/

/***************************************************************************/

void client_send_data(socket_fd, file_name, buffer)
int socket_£fd;
char file_name [MAX_NAME];
char buffer([1024];

struct sockaddr_un server:

/* Connect socket using get_UNIX_addr call */
server = get_UNIX_addr(file_name) ;

if (connect (socket_fd, (struct sockaddr *)&server, sizeof (struct sockaddr_un)) == -1)
{

delete_socket (socket_£fd) ;

syserr ("connecting stream socket");

exit (0);
}

/* write the message for the server */
else if (write(socket_fd, buffer, 1024) == -1)
syserr ("writing on stream socket");



/*******************************************************************t*******/

/***************************************************************************/

/t* **/
/** This is a example program using sockets within the UNIX domain. LY
/** A parent process sends a message to a child process. wE
[* - The parent is the server: it creates a socket, binds a name to it, **/
Y e listens for a connection and accepts it to write the message. *xf
ik - The child is the client: it creates a socket, asks to connect it **/
s to the parent’s one, and reads the message ** f
/** **/

/***************************************************************************/
/***************1\'*********1\’**************‘k****'k***************************‘k*/

#include "U_socket_primitives.c"

/***************************************************************************/

/** **/
/** This two values may be adjusted with the appliation requirements Ty
/** **/

/********************************************************************‘k******/

#define NAME "riri" /* pathname */
#define DATA "message sent to the client-child" /* data exchanged */

main ()

(
int parent, child; /* process ID (not necessary) */
int server_fd, client_fd, msg_sock; /* socket file descriptors */
char file_name [MAX_ NAME];
char buffer([1024];

/* initialyze the file_name, filfull "buffer" */
strepy(file_name, NAME) ;
strcpy{buffer, DATA);

parent = getpid();
printf ("parent id = %d\n\n", parent);

/* Create a socket */
server_fd = create_socket();

/* Name socket using file system name */
bind_socket (server_fd, file_name);

/***********************************************************************/
/*******************‘k‘k‘k**************'k**********************************/
i * i
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is */
/* different, however, which is crucial, because it allows their */
/* subsequent actions to differ: */
/* - the child receives a 0 return value; */
/* - the parent receives the process-ID of the child. */
J* *)

/***********************************************************************[
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/*'k********************'k***********************#************************/

((child = fork()) == -1)

perrox ("fork");
exit (0);

if (child != 0) /* this the parent, the return value is <> 0

/* Start accepting connection and write message to the client */

server_send_data (server_£fd, buffer);

sleep(l); /* not necessary, allow a good print of the message result

/* delete the server socket */
delete_socket (server_fd) ;

if (chiid == 0) /* this is the child; the return value is

child = getpid();
printf ("child id = %d\n\n", child);

/* Create a socket */
client_fd = create_sccket();

/* Read the message after requesting for connection to server socket

client_receive_data(client_£fd, file_name);



/***************************************************************************/

/*******************************************************************1\'*******,

/**

/** This is an example program using sockets within the UNIX domain.
/** A parent process receives a message sent by a child process.

/**
/**
/**
/‘**
/**

- The child is the server: it creates a socket, binds a name to it,

listens for a connection and accepts it to write the message.

- The parent is the client: it creates a socket, asks to connect it

to the child’s one, and read the message

**/
**/
**/

*-Jr/

*'k/
**/
**/
**/

/****************************************************‘k**********************/

/*******************************************************'k*******************/

#include "U_socket_primitives.c"

/************************t*******t******************************************/

/**

/** This two values may be adjusted with the appliation requirements

/1-*

**/
**/
**/

/************************************************'k**************************/

#define NAME "riri" /* pathname */
e DATA "message sent to the client-parent" /* data exchanged */

#defin

main()
{
int
int
char
char

parent, child; /* process ID (not necessary) */
server_fd, client_fd, msg_sock; /* socket file descriptors */

file_name [MAX NAME];
buffer[1024];

/* initialyse "file_name", filfull "buffer" */
strcpy (file_name, NAME);
strepy (buffer, DATA);

/***********************************************************************/

/***********************************************'k***********************/

/*

/* fork creates a new process with almost exact copies of instruction,

/* user-data, and system-data segments. After fork return,

both parent

/* and child processes receive the return. The return value is
/* different, however, which is crucial, because it allows their
/* subsequent actions to differ:

/*
/*
/*

- the child receives a 0 return value;
- the parent receives the process-ID of the child.

*/
wif
*i
i
i
*/
i
*f
7

/***********************************************************************/

/********************'k********t***************************'k*************/

if ((child = fork()) == -1)
{
perror ("fork") ;
exit (0);
}
else

(



if (child != 0) /* this the parent, the return value is <> 0 */

{

}
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parent = getpid();
printf ("parent id = %d\n\n", parent);

/* Create a socket */
client_fd = create_socket();

/************************1{*1\'*****‘k*****t**************'k************/

/* The fallowing instruction "sleep" is here to insure that the L

/* server (here the child) has had the time to create its own *yf
/* socket and is ready to accept connection BEFORE the client */
/* attempts to make a request. L2

/******************************************************************/

sleep(1l);

/* Read the message after requesting for connection to server socket */
client_receive_data(client_fd, file_name);

/* delete the client socket */
delete_socket (client_£d);

if (child == 0) /* this is the child; the return value is = 0 */

({

child = getpid();
printf("child id = %d\n\n", child);

/* Create a socket */
server_fd = create_socket();

/* Name socket using file system name */
bind_socket (server_fd, file_name);

/* Start accepting connection and write message to the client */
server_send_data (server_fd, buffer);

/* delete the server socket */
delete_socket (server_fd);
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/***********'k*****************‘k*********************************************/
/*********'k**********************‘k**‘k***************************************/

/** **/
/** This is a example program using sockets within the UNIX domain. ko
/** A parent process receives a message sent by a child process. La.1V§
& - The parent is the server: it creates a socket, binds a name to it, **/
ik listens for a connection and accepts it to receive the message. Tk
JE* - The child is the client: it creates a socket, asks to connect it %%/
% to the parent’s one, and sends the message. *def
/** **/

/***************************************************************************/
/*********************************‘k*****************************************/

#include "U_socket_primitives.c"

/****’k*******************************************************************‘k**/

/** **/
/** This two values may be adjusted with the appliation requirements b3 ¢
/** **/

/***************************************************************************/

#define NAME "riri* /* pathname */
#define DATA "message sent to the server-parent" /* data exchanged */

main()

{
int parent, child; /* process ID (not necessary) */
int server_fd, client_£fd, msg_sock; /* socket file descriptors */
char file_name [MAX_NAME] ;
char buffer[1024];

/* initialyze the file_name, filfull "buffer* */
strepy (£ile_name, NAME) ;
strepy (buffer, DATA);

parent = getpid();
printf ("parent id = %d\n\n", parent);

/* Create a socket */
server_fd = create_socket();

/* Name socket using file system name */
bind_socket (server_£fd, file_name);

/*************'k***********‘********************************‘k*************/
/***********************************************************************/
ik L
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is 1
/* different, however, which is crucial, because it allows their *7
/* subsequent actions to differ: A
/* - the child receives a 0 return value; */
/* - the parent receives the process-ID of the child. 4
/* */

/*'k*********************************************************************/
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/***.. *******:k**i-****t**w*****.*****I*******i*********************.*********/
if ((child = fork()) == -1)
{
perror ("fork");
exit (0);
}
else
{
if (child !'= 0) /* this the parent, the return value is <> 0 */
{
/* Start accepting connection and read message from the client */
server_receive_data (server_fd, file_name);
/* delete the server socket */
delete_socket (server_£d4d);
)
if (child == 0) /* this is the child; the return value is = 0 */
(
child = getpid();
printf ("child id = %d\n\n", child);
/* Create a socket */
client_fd = create_socket();
/* Write the message after requesting for connection to server socket */
client_send_data(client_fd, file_name, buffer);
1



/***************************************************************************/

/************************************************t**************************/

**/

/**

/** This is an example program using sockets within the UNIX domain.
/** A parent process sends a message to its child process.

/**
/**
/**
/**
/*i‘

- The child is the server: it creates a socket, binds a name to it,
listens for a connection and accepts it to read the message.

- The parent is the client: it creates a socket, asks to connect it
to the child’s one, and write the message.

**/
**/
*'k/
**/
*'k/
'k*/
**/

/***************************************************************************/

/**********‘k**********************************************#*****************/

#include "U_socket_primitives.c"

/****************************************************************‘k**********/

**/

/**

/** This two wvalues may be adjusted with the appliation requirements

/**

#defin
#defin

main ()

int
int
char
char

e NAME “riri" /* pathname */
e DATA "message sent to the server-child * /* data exchanged */

**/

**/

/***************t***********************************************************/

parent, child; /* process ID (not necessary)

server_fd, client_fd, msg_sock; /* socket file descriptors
file_name [MAX_NAME];
buffer[1024];

/* initialys "file_name", filfull "buffer" */
strepy (file_name, NAME) ;
strcpy (buffer, DATA);

*1

/*********************************************************‘k*************/

/***********************************************************************[

/*

f* £
% u
/* a
/* d

ork creates a new process with almost exact copies of instruction,
ser-data, and system-data segments. After fork return, both parent
nd child processes receive the return. The return value is
ifferent, however, which is crucial, because it allows their

/* subsequent actions to differ:

/1\'
/*
/*

- the child receives a 0 return value;
- the parent receives the process-ID of the child.

*/
*J
*y
*/
*]
*y
*/
*y
*/

/**************1\'********************************************************/

/***********************************************************************[

if ((child = fork()) == -1)
{
perror ("fork");
exit (0);
}
else

(

*/



if (child

}

if

{

parent = getpid();
printf (*parent id = %d\n\n", parent);

/* Create a socket */
client_fd = create_socket();

/’****************1\'******'k********'k******'k**************************/

/* The fallowing instruction "sleep® is here to insure that the *f

/* server (here the child) has had the time to create its own */
/* socket and is ready to accept connection BEFORE the client =
/* attempts to make a request. *if

/**************************************'k*'k'k**********'k*************/
sleep(l);

/* Write the message after requesting for connection to server socket */
client_send_data(client_£fd, file_name, buffer);

sleep(l); /* not necessary, allow the message result to be well printed*/

/* delete the client socket */
delete_socket (client_fd);
(child == 0) /* this is the child; the return wvalue is = 0 */

child = getpid();
printf(*child id = %d\n\n", child);

/* Create a socket */
server_fd = create_socket();

/* Name socket using file system name */
bind_socket (server_£fd, file_name);

/* Start accepting connection and read message sent by the client */
server_receive_data (server_fd, file_name);

/* delete the server socket */
delete_socket (server_f£fd);



~ INTERNET socket_primitives.c

/*************************************'k*************************************/
/*********************************'k***********-k***‘k*************************,

/** **/
/** This program contains all the primitives used to allow communication **/
/** between processes within the Internet domain (processes can run on e |
/** geparate machines linked by network). % f
/** 'ir'l\'/

/i‘**************************************************************************/
/****'ir**************************'k*******'k‘k**********************************/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <errno.h>
#include <fecntl.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_ NAME 48

/**********************************‘k'k************************************‘k**[

/** **/

/** This primitive prints system call error message and terminate fiad?
P

/‘*‘k **/

/*******************************************t*******************************/

void syserr (msg)
char *msg;

{
extern int errno, sys_nerr;
extern char *sys_errlist([];

fprintf(stderr, "ERROR:%s (%d", msg, errno);
if (errno > 0 && errno < sys_nerr)
fprintf (stderr, ";%s)\n\n", sys_errlist[errno]);
else
fprintf (stderr, ")\n\n");
exit (0);

/***************************************************************************/
/** **/
/** This primitive set up all the necessary fields in the "sockaddr_in* ik
/** structure, which contains the Internet address (i.e., protocecl, local **/

/** machine address, local port), and returns it to the caller. *E )
/*.k 'k'ir/

/*********************i*******************t*********************************/

struct sockaddr_in *inet_socketaddr (host, port)
char *host;
int port;

struct sockaddr_in sin;
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struct hostent *hp;

char local_host [MAX NAME];
if (host == NULL) /* default to current host */
: if (gethostname(local_host, MAX_NAME) == -1)
{ syserr ("gethostname()");
exit (0);
Aost = local_host;
)

hp = gethostbyname (host) ;

bzero ((char *)&sin, sizeof(struct sockaddr_in));

becopy ((char *)hp -> h_addr, (char *)&(sin.sin_addr), hp -> h_length);
sin.sin_family = hp->h_addrtype;

sin.sin_port = htons (port);

return (&sin);

/**********************************************************************i—***-k/

/** **/
/** This primitive creates a stream socket in the Internet domain sk
/** **/

/***************************************************************************/

int create_socket ()

{
int socket_fd;

socket_fd = socket (AF_INET, SOCK_STREAM, 0);
if (socket_fd == -1)
{
syserr ("opening stream socket");
exit (0);
}
printf +("socket created # = %d\n\n", socket_fd);
return (socket_£d);

/***************************************************************************/

/** **/
/** This primitive closes the socket defined by its file descriptor el
/** **/

/***************************************************************************l

void delete_socket (socket_£d)
int socket_fd;

{
if (close(socket_£fd) == -1)
syserr ("close socket");
exit (0);
}

/***************************************************************************/

/** **/




I

¥ This prlmltlve blnds a Internet socket name to socket deflned by the **/

/** socket file descriptor entry argument. This name is actually an *x )
/** Internet address given by the "inet_socketaddr® call. ]
/** This primitive is used by the server only. xS
Jx* *% /

/****************1\'************'k*********************************************/

void bind_socket (socket_fd, port_number)
int socket_fd;
int port_number;

{

struct sockaddr_in *address;

/* Name socket using incoming poet number */
address = inet_socketaddr (NULL, port_number) ;

if (bind(socket_fd, address, sizeof (struct sockaddr_in)) == -1)
{

syserr("binding stream socket");

exit (0);
1

/*********‘k******'k*****i’*‘***********************************************'k'k**/

/** **/
/** This primitive is to be used by the server only, just after the "bind **/
/** socket" one, and in relation with "client_receive_data". ok /
/** The server sets up a queue for incoming connection requests using ek
/** "listen()". Then it initiates a connection using "accept®. The ok /
/** "accept" call returns a new file descriptor which is used to send a e
/** message to the client. LE
/** **/

/***************************************************************************/

void server_send_data (socket_fd, buffer)
int socket_fd;
char buffer[1024];
{
int msgsock;
/* Start accepting connection */
listen(socket_fd, 5);

msgsock = accept (socket_fd, (struct sockaddr *)0, (int *)0):
if (msgsock == -1)
syserr("accept");

/* write the message for the client */

else if (write(msgsock, buffer, 1024) == -1)
syserr ("writing on stream socket");

if (close(msgsock) == -1)
syserr ("close socket");

/**************************************t************************************/

% *k /
/** This primitive is used by the client only, in relation with “server_ *%*/
/** send_data". *% J
/** First, it looks up to the server socket UNIX address it wishes to ** /

/** connect by using "get_UNIX_addr" call. Then it requests a connection *%/
/** using “connect®. If the connection is established by the server, the =*#*/
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/** two processes can communicate. k&
/** Here, the client reads a message sent by the server. Exy
/** **/

/***************************************************************************/

void client_receive_data (socket_fd, port_number)
int socket_fd;
int port_number;

{

char buf[1024];
struct sockaddr_in *server;
int rval;

/* Connect socket using inet_sockaddr call */
server = (struct sockaddr_in *)inet_socketaddr (NULL, port_number);
if (connect (socket_fd, (struct sockaddr *)server, sizeof (*server)) == -1)
(
delete_socket (socket_£fd);
syserr ("connecting stream socket®);
exit (0);
}

/* read the message sent by the server */
do
{
if ((rval = read(socket_fd, buf, 1024)) == -1)
perror ("readind stream message");
else
printf ("message read : %s\n", buf);
}

while (rval > 0);

/*************************i************************‘ﬁ*******************'k****/

/** **/
/** This primitive is to be used by the server only, just after the "bind **/
/** socket" one, and in relation with "client_send_data". k)
/** The server sets up a queue for incoming connection requests using wkf
/** "listen()". Then it initiates a connection using "accept". The &y
/** "accept" call returns a new file descriptor which is use to receive a *%/
/** message from the client. o
/** **/

/*‘k***************************************************1\‘*********************/

void server_receive_data(socket_£d)
int socket_fd;
{
int msgsock;
char buf[1024];
int 1rval;

/* Start accepting connection */
listen(socket_£fd, 5);

msgsock = accept (socket_fd, (struct sockaddr *)0, (int *)0);
if (msgsock == -1)
syserr ("accept™) ;

/* read the message sent by the server */
do

(
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if ((rval read(msgsock, buf, 1024)) == -1)
perror ("readind stream message");

else

printf ("message read : %s\n", buf);

]

while (rval > 0);

if (close(msgsock) == -1)
syserr("close socket");

/*****************************i’*******1\"k*'k*****'Ir****‘A‘******************'k****/

/** **/
/** This primitive is used by the client only, in relation with "server_ **/
/** send_data". *% )
/** FPirst, it looks up to the server socket UNIX address it wishes to e f

/** connect by using "get_ UNIX_ addr" call. Then it requests a connection **/
/** using "connect". If the connection is established by the server, the *%*/

/** two processes can communicate. kS
/** Here, the client send a message to the server. *k/
/** **/

/**********************************************‘k***********************‘k****/

void client_send_data(socket_£fd, port_number, buffer)
int socket_f£d4;
int port_number;
char buffer[1024];

struct sockaddr_in *server;

/* Connect socket using inet_sockaddr call */

server = (struct sockaddr_in *)inet_socketaddr (NULL, port_number);
if (connect (socket_fd, (struct sockaddr *)server, sizeof (*server)) == -1)
(

delete_socket (socket_£d) ;
syserr ("connecting stream socket");
exit(0);
}
/* write the message for the client */
else if (write(socket_fd, buffer, 1024) == -1)
syserr("writing on stream socket");



/*************************************'k*************************************/

/***********************'k***************************************************/

/** **/
/** This is a example program using sockets within the INTERNET domain. i
/** A parent process sends a message to a child process. *% f
IEx - The parent is the server: it creates a socket, binds a name to it,**/
Y il listens for a connection and accepts it to write the message. wik
! el - The child is the client: it creates a socket, asks to connect it *%*/
% to the parent’s one, and reads the message *k ]
/** **/

/****************************************i********************************t*/
/***************************************************‘k***********************/

#include "E_socket_primitives.c*

/****'k*‘**************************************i*******‘k*********1\'************/

/** **/
/** This message may be adjusted with the appliation requirements RR
/** i*/
/*********************'k**'ﬁ.’**************************************************/
#define DATA "message sent to the client-child® /* data exchanged */
int port_server = 0; /* port number */
main ()
{
int parent, child; /* processes ID (not necessary) */
int server_fd, client_£fd; /* socket file descriptors */
char buffer[1024];

/* copy the message in "buffer" */
strcpy (buffer, DATA);

parent = getpid();

printf ("parent id = %d\n\n", parent);

/* we intialize the port address with the parent process ID */
port_server = parent;

/* Create a socket */
server_fd = create_socket();

/* Name socket using port_server */
bind_socket (server_fd, port_server);

/***********************************************************************/
/***********************************************************************/
/* */
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is */
/* different, however, which is crucial, because it allows their */
/* subsequent actions to differ: b7
/* - the child receives a 0 return value: */
/* - the parent receives the process-ID of the child. L4

¥ */



/***********************************************************************/

if ((child = fork()) == -1)
{
perror ("fork") ;
exit (0);
}
else
(
if (child != 0) /* this the parent, the return value is <> 0

{
/* Start accepting connection and write message to the client */
server_send_data(server_fd, buffer);
sleep(l); /* not necessary, allow a good print of the message result

/* delete the server socket */
delete_socket (server_£d);

}

if (child == 0) /* this is the child; the return value is = 0
{

child = getpid();

printf(*child id = %d\n\n", child);

/* Create a socket */
client_fd = create_socket();

/* Read the message after requesting for connection to server socket
client_receive_data(client_fd, port_server);

/* delete the socket */
delete_socket (client_£fd);

*/

*/

Lavi
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/***'A'**‘k****'k********************************'k*'k****************************/
/************************'k******************************'k*******************/

/** 'ﬁr‘*/
/** This is an example program using sockets within the INTERNET domain. **/
/** A parent process receives a message sent by its child process. *% f
fEF - The child is the server: it creates a socket, binds a name to it, **/
et listens for a connection and accepts it to write the message. ** f
i - The parent is the client: it creates a socket, asks to connect it **/
[ to the child’s one, and read the message *k /
/** **/

/**t*****‘k*******************‘k**********************************************/
/******************************************************************'*********/

#include "E_socket_primitives.c"

/***************************************************************************l

/** **/
/** This message may be adjusted with the appliation requirements LY
/** **/

/***************************************************************************/

#define DATA "message sent to the client-parent” /* data exchanged */

int port_server = 0; /* port number */

main()

{
int parent, child; /* process ID (not necessary) */
int server_fd, client_fd; /* socket file descriptors */
char buffer[1024];

/* copy the message in "buffer" */
strcpy (buffer, DATA);

/* we intialize the port address with the parent process ID */
port_server = getpid();

/***********************************'A'***********************************/
/********************************************************‘k**************/
g ¥/
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is */
/* different, however, which is crucial, because it allows their */
/* subsequent actions to differ: */
/* - the child receives a 0 return value; */
/* - the parent receives the process-ID of the child. L4
/* *d

/***********i************************************‘k**********************/

/***‘k*********************t**********************************‘k**********/

if ((child = fork()) == -1)
(

perror ("fork") ;

exit (0);




if (child != 0) /* this the parent, the return value is <> 0 */

{

}

parent = getpid();
printf ("parent id = %d\n\n", parent);

/* Create a socket */
client_fd = create_socket();

/******************************************************************/

/* The fallowing instruction "sleep" is here to insure that the Y

/* server (here the child) has had the time to create its own */
/* socket and is ready to accept connection BEFORE the client ey
/* attempts to make a request. *7

/******************************************************************/

sleep(l); /* not necessary, allow a good print of the message result */

/* Read the message after requesting for connection to server socket */
client_receive_data(client_£fd, port_server);

/* delete the socket */
delete_socket(client_fd4);

if (child == 0) /* this is the child; the return value is = 0 */

(

child = getpid();
printf("child id = %d\n\n", child);

/* Create a socket */
server_fd = create_socket();

/* Name socket using port_server */
bind_socket (server_fd, port_server);

/* Start accepting connection and write the message to the client */
server_send_data(server_fd, buffer);

/* delete the server socket */
delete_socket (server_fd);



/***************************************************************************/

/***************************************************************************/

JF* *x
/** This is a example program using sockets within the INTERNET domain. **/
/** A child process sends a message to its parent process. *K
J*F - The parent is the server: it creates a socket, binds a name to it, **/
JE¥ listens for a connection and accepts it to receive the message. *X /
b - The child is the client: it creates a socket, asks to connect it **/
JE* to the parent’s one, and sends the message. *k f
/** **/

/**************i**************************************1\'1\'********************/

/t****************************************i*********'k***********************/

#include "E_socket_primitives.c"

/***************************************************************************/

/*-k . **/
/** This message may be adjusted with the appliation requirements wx
/** **/

/********************************************************************‘k******/

#define DATA "message sent to the server-parent" /* data exchanged */

int port_server = 0; /* port number */

main()

{
int parent, child; /* processes ID (not necessary) */
int server_fd, client_f£fd; /* socket file descriptors */
char buffer[1024];

/* copy the message in "buffer" */
strepy (buffer, DATA);

parent = getpid();
printf ("parent id = %d\n\n", parent);

/* we intialize the port address with the parent process ID */
port_server = parent;

/* Create a socket */
server_fd = create_socket();

/* Name socket using port_server */
bind_socket (server_£fd, port_server);

/'A'**********************************************************************/
/***********************************************************************/
I* #/f
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is */
/* different, however, which is crucial, because it allows their */
/* subsequent actions to differ: *®/
/* - the child receives a 0 return wvalue; * /
/* - the parent receives the process-ID of the child. %/

7> */
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/**************************'k***********'k'!r*******************************/

/****************************************************'k******************/

if ((child = fork()) == -1)
{
perrorxr ("fork");
exit (0);
}
else
(
if (child != 0) /* this the parent, the return value is <> 0 */
{
/* Start accepting connection and read the message from the client */
server_receive_data(server_£fd);
sleep(l);

/* delete the server socket */
delete_socket (server_£fd) ;

}

if (child == 0) /* this is the child; the return value is = 0 */
(

child = getpid();

printf("child id = %d\n\n", child);

/* Create a socket */
client_fd = create_socket();

/* Write the message after requesting for connection to server socket */
client_send_data(client_fd, port_server, buffer);

/* delete the socket */
delete_socket(client_£4);
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NTERNET_socket_exampled.c

/***************************'ir**'k******'k*************************************/
/***********************************'k********'k****************'k*************/

/** 'k*/
/** This is an example program using sockets within the INTERNET domain. **/
/** A parent process sends a message to its child process. kg
i E* - The child is the server: it creates a socket, binds a name to it, **/
it listens for a connection and accepts it to receeive the message. **/
Fid - The parent is the client: it creates a socket, asks to connect it **/
R to the child’s one, and sends the message. %k /
/** **/

/************************‘k**************************************************/
/**************************************************‘k***********‘***'k*********/

#include "E_socket_primitives.c"

/*****************************************t*********************************/

/** **/
/** This message may be adjusted with the appliation requirements LS}
/** *i—/

/***************************************************************************/

#define DATA "message sent to the server_child" /* data exchanged */

int port_server = 0; /* port number */

main()

{
int parent, child; /* process ID (not necessary) */
int server_fd, client_fd; /* socket file descriptors */
char buffer(1024];

/* copy the message in "buffer" */
strepy (buffer, DATA);

/* we intialize the port address with the parent process ID */
port_server = getpid();

/****************************************'k*****************************1\'/
/******************'Ir********1\'*******************************************/’
/* */
/* fork creates a new process with almost exact copies of instruction, */
/* user-data, and system-data segments. After fork return, both parent */

/* and child processes receive the return. The return value is * 4
/* different, however, which is crucial, because it allows their */
/* subsequent actions to differ: */
/* - the child receives a 0 return value; cl 4
/* - the parent receives the process-ID of the child. */
i *

/*****************************************************‘k*****'k***'k*******[
/***********************************************************************/

if ((child = fork()) == -1)
(

perror ("fork") ;

exit (0);




if (child != 0) /* this the parent, the return value is <> 0 */
({

)

if
{

parent = getpid();
printf ("parent id = %d\n\n", parent);

/* Create a socket */
client_fd = create_socket();

/***************************************i**************************/

/* The fallowing instruction "sleep" is here to insure that the */

/* server (here the child) has had the time to create its own |
/* socket and is ready to accept connection BEFORE the client *
/* attempts to make a request. W,

/******‘*************************************i****************'k*****/
sleep(l);

/* Write the message after requesting for connection to server socket */
client_send_data(client_fd, port_server, buffer);

sleep(l); /* not necessary, allow a good print of the message result */

/* delete the socket */
delete_socket (client_fd);

(child == 0) /* this is the child; the return value is = 0 */

child = getpid();
printf("child id = %d\n\n", child);

/* Create a socket */
server_fd = create_socket();

/* Name socket using port_server */
bind_socket (server_fd, port_server);

/* Start accepting connection and read message sent by the client */
server_receive_data(server_fd);

/* delete the server socket */
delete_socket (server_fd);
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