
High Level Interprocess Communication
Primitives for a Prolog
to C-Parallel Translator

Amaury de Cazanove

CENG Technical Report 93-37

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, California 90089-2562
(213)740-4484

September 1993



Interproces Communication Primitives for a Prolog to C-parallel Translator

HIGH LEVEL INTERPROCESS COMMUNICA

TION PRIMITIVES FOR A PROLOG TO C-

PARALLEL TRANSLATOR

by

Amaury de Cazanove

Department of Electrical Engineering-Systems
University of Southern California

Los Angeles, CA 90089-2563



Interproces Communication Primitives for a Prolog to C-parallel Translator

ABSTRACT

Processing logic programs in parallel is much more complex than for conven

tional applications. Indeed, the inference mechanism, particularly the environment

stacking and the runtime traversal of a search tree, cannot be easily implemented

on distributed memory machines. The USC Research Team has therefore designed
a parallel execution model for logic programming by applying the principle of
data-driven execution to the inference mechanism of PROLOG. This model is

highly adaptable to fundamentally different parallel architectural platforms, such

as distributed memory multiprocessors, multi-threaded and data-flow architec

tures.

In order to efficiently target the environment to a range of parallel machines, a
parallel compiler has been implemented. It compiles the operational semantics of

PROLOG and produces an intermediate graphical form independent of any partic

ular architecture. This design may then be translated by appropriate translators into
the machine codes needed to run the application on specific architectures.

This paper introduces the parallel execution model with particular emphasis its
low level part: the binding environment. Unlike other previously tested binding
schemes often geared toward single address space machines, this one is highly
optimized for execution on non-single address space architectures.

Another purpose of this research is the implementation of high level interprocess
communication primitives, which will facilitate communication between processes
within a single uni-processor machine, and also within several ones linked by net
work. In the future, these primitives will be imperative to the function of a transla

tor designed specifically for Sparc stations.



Interproces Communication Primitives for a Prolog to C-parallel Translator

ACKNOWLEDGMENTS

I first want to thank my advisors for this training period: Dr. Jean-Luc Gaudiot,
associate professor, for welcoming me in his research group and Pr. Bernard

Lecussan, Chairman of the ENSAE Computer Science Department for trusting me

and offering me the opportunity to come at the University of Southern California.

I am also very grateful to HC Kim, Ph-D student, for his guidance, his kindness

and his patience throughout all the five months of my training session.

I am also very thankful to all the members of all the EE-Systems Department at

USC, more particularly Chinhyun Kim, Dae-Kyun Yoon, Moez Ayed, Namhoon

Yoo, and Hung-Yu Tseng for their constant help and friendship.

Finally, I won't forget to thank Miss Catherine Montagna and Rohini Montene

gro for their administrative help.



Inteiproces Communication Primitives for a Prolog to C-parallel Translator

CONTENTS

1 INTRODUCTION 6

2 BACKGROUND 7

2-1 Prolog Terminology 7

2-2 Parallelism in Prolog 9

2-3 Parallel Perspective of Logic Programming Languages 13

2-4 Issues in Distributed Implementation 13

3 PARALLEL EXECUTION MODEL 15

3-1 Goals of the Design 15

3-2 Approaches 15

3-3 Features 16

4 BINDIND ENVIRONMENT 17

4-1 Presentation and Objectives of our Model 17

4-2 Terminologies 17

4-3 Identification of Overhead in the Close Binding 17

4-4 The Principles of Functional Binding 20

4-5 Conclusion and Remarks 22

5 INTERPROCESS COMMUNICATION PRIMITIVES 23

5-1 Internal Structure of a Translator 23

5-2 Interprocess Communication 24

5-3 FIFOs 25

5-4 Message system calls 29

5-5 Sockets 31

5 CONCLUSION 36



Interproces Communication Primitives for a Prolog to C-parallel Translator

CONTENTS

APPENDIX 37

A FIFO INTERPROCESS COMMUNICATION 38

A-l FIFO_message.h 38

A-2 FIFO_primitives.c 39

A-3 FIFO_examplel.c 42

A-4 FIFO_example2.c 44

B MESSAGEV INTERPROCESS COMMUNICATION 46

B-l MESSV_message.h 46

B-2 MESSV_primitives.c 47

B-3 MESSV_examplel.c 50

B-4 MESSV_example2.c 52

C SOCKET-BASED INTERPROCESS COMMUNICATION 54

C-l UNIX_socket_primitives.c 54

C-2UNIX_socket_examplel.c 59

C-3 UNIX_socket_example2.c 61

C-4 UNIX_socket_example3.c 63

C-5 UNIX_socket_example4.c 65

C-6 INTERNET_socket_primitives.c 67

C-7INTERNET_socket_examplel.c 72

C-8 INTERNET_socket_example2.c 74

C-9 INTERNET_socket_example3.c 76

C-10 INTERNET_socket_example4.c 78

REFERENCES 80



Interproces Communication Primitives for a Prolog to C-parallel Translator

1 INTRODUCTION

Logic programming based on universally quantified Horn clauses is becoming an accepted pro
gramming paradigm for symbolic computation. Thus, Prolog is one of the most popular logic pro
gramming language because of its many advantages in terms of ease of programming and
declarative semantics.

Often, applications in symbolic computing are complex and demand enormous computation.
The parallel processing is a promising answer to such requirements. Indeed, massively parallel
architectures are becoming commercially available, and logic languages present intrinsic features
for parallel execution, e.g., Or-parallelism, And-parallelism, Stream-And-parallelism and Unifi

cation-parallelism. However, the expected scale-up in performance has not materialized due to

the inherent difficulty in programming these parallel applications. Indeed, much effort is still

needed in developing a parallel software technology both at the low level (model of execution)

and at the high level (programming languages).

The USC Research Group has therefore investigated a parallel execution model [1], character

ized by its adaptability for implementation on various parallel architectures. In order to verify the

performances of this model, a compiler for a pure logic kernel (i.e., a subset) of the PROLOG lan

guage, in conjunction with appropriated translators towards parallel machines is expected to be
operational for the end of October 1993.

Finally, in the prospect of testing the functionality and the reliability of our Parallel Execution

Model in an multi-processes environment, (and not in the goal of improving the performance over

normal Prolog sequential systems), high level interprocess communication primitives have been
implemented. They allow communication between processes located either on a unique machine
or on separate ones linked by network. In the future, these primitives will be exploited by a trans
lator dedicated to Sparc stations.

The organization of this report is as fallow:

- in section 2, we bring to mind the PROLOG terminology, the different kind of parallelism that
have been identified for PROLOG, and review research undertaken elsewhere.

- in section 3, we briefly present the parallel execution model, called "Non Deterministic Data-
Row Parallel Execution Model" (NDFPEM).

- in section 4, we detail and assess a binding scheme which is highly optimized for non-single

address space systems.

- section 5 contains the implementation issues of high level communication primitives.

- in section 7, we draw some concluding remarks, and outline possible future work that will be
done for this project.



Interproces Communication Primitives for a Prolog to C-parallel Translator

2 BACKGROUND

2-1 Prolog Terminology

This subsection provides a very brief introduction to Prolog, intended to familiarize the "non-

Prolog" readers with the language terminology, syntax, program structure and execution seman

tics.

This is the foundation for understanding the different types of parallelism that exist and how a

parallel execution model may support them.

A Prolog program comprises a set of clauses and a query. Program semantics can be either

declarative as a set of formulae, or operational as functions. Figure 2-1 shows a sample program

and its declarative meaning.

procedure

procedure

procedure

head body

I 1 I
child(X,Y,Z):- father(Y,X), mother(Z,X).

goals
X is a child of Y
ifY is thefather ofX
and Z is the mother ofX.

father (Chad,Mark).

Chad is thefather ofMark.

father (John,Chad).

Chad is thefather ofMark.

mother (Mary,Mark).

Mary is the mother ofMark.

variable atoms

? - child (X,Chad,Mary)

Who is a child of Chad and Mary ?

X = Mark.

Mark is a child of Chad and Mary.

Figure 2-1: Components of a Prolog Program

rule

facts

query

solution



Interproces Communication Primitives for a Prolog to C-parallel Translator

A clause contains a head and an optional body, separated by the :- symbol. A clause body con

tains one or more predicates, which are referred to as goals. The collection of all clauses that

have the same name and arity (the number of arguments) is called a procedure.

Prolog is a Logic Programming language, and as a programming language, it is distinguished
from procedural or functional languages (C or Lisp for example) by its logic variables, unifica

tion operation, and built-in support for backtracking.

Prolog programs operate on terms, which can be either simple or compound. A simple term can

be atomic or variable: an atomic term cannot change his value during execution, but a variable

term may be bound to (i.e., assigned the value of) another term as a result of unification. A com

pound term is comprised of a functor and several terms: the functor is composed of a non-
numeric atomic term and an arity, which specifies the number of terms contained in the com

pound term; these terms may be simple or compound.

Prolog variables are called logic variables; variables bound together form an equivalence class.

Binding one variable to another term is the same as binding all variables in its equivalence class

to the same term. Dereference (an operation common to all Logic Programming languages) refers

to the operation that resolves a chain of references.

Unification is another operation common to all Logic Programming languages. It is pattern

matching with variable substitutions. Unification operates on two terms and it can either succeed

or fail. Unification succeeds under the fallowing conditions: if both terms are atomic and identical
(a simple pattern matching); if one term is a variable (unification binds the variable term to the

other one); or if the functors and terms of two compound terms all unify successfully.

Backtracking is a technique that implements non-deterministic behavior. Prolog execution

begins with a programmer provided query and attempts to prove the query using the facts and

rules which are stored in the program. At the beginning, the query is added to a set of goals to be

proven, S, as its first member. During program execution, a goal is removed from the set S.

Clauses are tried to see if a clause head will unify with the goal. If the unification is successful,

predicates in the clause body are added to S with variable bindings resulting from unification, and

the clause to be tried next is marked as a target for backtracking. Another goal from S is selected

and the execution proceeds. The query is proven true if all goals in S are proven. Backtracking is

invoked when unification fails. It resets variable bindings made during the failed execution and
removes goals added to S by the failed execution, such that the execution can proceed as if the
clauses invoked by the failed execution had nether taken place. If the unification fails and no

marked clauses can be found, the query fails.



Interproces Communication Primitives for a Prolog to C-parallel Translator

2-2 Parallelism in Prolog

With its simple syntax and regular structure, a Prolog program is inherently an AND/OR tree

An AND-node corresponds to a predicate, an OR-node to a clause. Execution of the program is

primarily a depth first, left to right traversal of the tree nodes. All the sibling AND-nodes are tra
versed depth first, left to right, whereas an OR-node is traversed only if all siblings to the left of it
had failed. Backtracking allows for automatic exploration of previously untried alternatives. It is

also the cause for a great deal of complications in efficient parallel implementation.

Figure 2-2 shows a Prolog program with its corresponding program tree. The arrows show the

traversal of the nodes, which is equivalent to the execution of the program. The fin arrows show
the forward execution, while the large arrows show backward execution.

The work done at each node consists of unifying the calling parameters with the head argument

of the clause, and setting up the parameters for calls to its subgoals. In addition, the work in the
body of the node may involve applying some functional primitives known as built-ins for arith

metic operations, input/output, data structure manipulations, and code alterations.

m(X,Y):- f(X), c(Y,X)

f(k).

f(D-

c(a,k).
c(b,j).

23 = END

Figure 2-2: Prolog Program and Corresponding Program Tree

Here, we can see that the query has two solutions:

- at step 6, with X and Y binded respectively to k and a;

- at step 15, with X and Y binded respectively to j and b;



Interproces Communication Primitives for a Prolog to C-parallel Translator 10

2-2-1 AND-Parallelism

Inspecting the program tree, it seems natural that the branches of the tree can be executed in par
allel. When the partitioning is done at a clause node, where calls to subgoals are to be done in par
allel, it is known as AND-parallelism. Figure 2-3 shows the partitioning of the tree in figure 2-2,
where the spawned process are separated from the root process with dashed lines.

root task

AND-parallel tasks

Figure 2-3: AND-parallel tree

The main difficulty with AND-parallelism is the problem of binding conflict, where more than
one AND subtree executing in parallel attempt to bind the same variable to different values
(e.g.,variable X in the figure above). We have to making sure that substitutions are consistent
across all literals.

Other problems include:

1. Keeping track of the success/failure of individuals literals.
2. Determining when the clause fails as a whole.

2-2-2 OR-parallelism

It comes from the observation that there are usually multiple clauses with the same predicate
symbol in the clause head. When the program execution is partitioned at a procedure node, with
broken branches to clause nodes which show alternative clauses that give several solutions, the

parallelism exploited is known as OR-parallelism. The task which executes one of the OR-bran-
ches can continue with the next goal in the parent's clause. In Figure2-4, the task completing the



Interproces Communication Primitives for a Prolog to C-parallelTranslator 11

first clause of f(X) continues with the next goal c(Y,X), with X now instantiated to the value k.

Thus the results are passed down the execution tree and the final solutions are available at the leaf

tasks.

root task

OR-parallel tasks

Figure 2-4: OR-Parallel Tree

When OR-parallelism is combined with AND-parallelism, the results of the OR-tasks may be

passed back to the parent AND-task. In Figure 2-5, the goals f(X) and c(Y,X) are executed in
AND-tasks. OR-tasks are then spawned to execute the clauses of f in parallel. Tlie results of these

OR-tasks are passed back to the parent task. Tlie OR-tasks do not proceed with the next c(Y,X)
because it is already being executed by an AND-task.

root task

ND-parallel tasks ~~^<rqua

OR-parallel tasks

Figure 2-5: AND-OR Parallel Tree



Interproces Communication Primitives for a Prolog to C-parallel Translator 12

OR-parallel clauses may share arguments variables in the head, but bindings of theses argu

ments must be hidden from the ancestor nodes until that OR-node is actually traversed (in the

sequential semantic order). Tlie challenge in implementing OR-parallelism is to resolve the bind

ing conflicts in a space and time efficient manner. For example, the OR-tasks of the goal f(X) may

attempt to bind X at the same time. Thus, each of these OR-subtrees must contain a separate bind

ing environment, as we will see further in section 4.

2-2-3 Other Types of Parallelism

Other type of parallelism have been identified for Prolog. Considering the fallowing example:

?- m(s(...) , [-] , X) .

m(s(...),[-],X):-a(l,X),b(X). (ml)

a(l,X):-... (al)

a(l,[3,5]):-... (a2)

a(2,X):-... (a3)

b([]). (bl)

btfHITl):-... (H), b(T). (b2)

Stream-parallelism exists when a producer goal can pass a stream of values (elements of a list)

to the consumer goal in a pipelined fashion. In the example above, a(lX) is the producer of X

while b(X) is the consumer; a and b can be executing in parallel, with b operating on a element in

the list X while a is producing the next element.

Search-parallelism allows the heads of all clauses in a procedure to be unified with a given sub-

goal. This can be viewed as a simplification of OR-parallelism. In the example above, tlie search

for the clauses that can match with a(ipC) can be carried on in parallel, resulting in the list of two
clauses [(al), (a2)J.

Unification-parallelism carries out the unification of the arguments in the clauses head in paral

lel. In the example above, the structure s(...) and the list f—] in clauses head of ml can be unified
with their calling arguments in the query m concurrently.

Depth-parallelism carries out the unification of the head of a clause concurrently with the unifi

cation of a subgoal of the clause. In the example above, the unification of the arguments in m can

be done concurrently with the unification of arguments in a.



Interproces Communication Primitives for a Prolog to C-parallel Translator 13

2-3 Parallel Perspectives of Logic Programming Languages

The parallel implementation of logic languages entails an added level of complexity, even

though parallelism in logic programs is, to some extent, already specified implicitly in their oper

ational semantic. Indeed, the strategy for parallel scheduling must address not only the issue of

delivering parallelism, but also that of minimizing the search space. For instance, given two

AND-independent goals a and b which can be reached in respectively m and n inferences, the

total amount of inferences is O(mn) if the two goals are searched sequentially, whereas only

0(m+n) is performed if the goals are executed in parallel. On the other hand, for a given search
space of a Prolog program, the search strategy employed in a parallel model will determine the

overall processing time.

Moreover, the sequential nature of logic languages renders difficult their parallel execution: the
selection rule, e.g., the left-most try among alternatives in Prolog, forces sequentially. In turn, this

requires a stricter control and adds some constraints during Or-parallelism execution. Further, the

semantic of logic languages entails the maintenance and traversal of search tree at run-time. The
shared property of the tree favors centralized scheduling strategies, thus renders inefficient their

implementation on multiprocessor systems with a non-single address space.

2-4 Issues in Distributed Implementation

A number of parallel models have been proposed. They differ from each other in the way they

handle the various forms of parallelism and in their runtime scheduling strategies. As a testimony

of the proximity of the logic language semantics to the single address space, it should be noted

that the majority of these models are geared toward the shared memory multiprocessor model. In

contrast, only a few are geared to distributed memory systems.

The data-flow model has been proposed as an efficient answer to the programmability issue in

massively parallel machines. It provides for dynamic scheduling upon operand availability and

has the potential to hide communication latency, while maximally exposing available parallelism.

The clear benefit of this computation model is the improvement of the programmability.

In general, locality of reference indicates that normally the working set of Prolog involves 2 or 3

levels in the tree. Thus, the fine granularity supported by the process models may require high

communications if they allow unrestricted access. Binding schemes in distributed models are

directed to insure access only to environments in the local address space. To this end, the variable

importation method [21 employs backward unification along with head (forward) unification,

using import vectors. The closed binding approach [3], a successor of the variable importation



Interproces Communication Primitives for a Prolog to C-parallel Translator 14

method, efficiently uses memory by using closing operations without import vectors. In [3], Con-
ery's closed binding is optimized to avoid copying of grounded structures. Apparently, the above
binding schemes trade the local access costs in additional computation from the auxiliary opera
tions, i.e., back unification or environment closing. This extra computation may be intolerable

when programs entail high rates of instance terms, e.g., lists and structures, since explicit duplica
tion of the terms is required at every such auxiliary operation.

In order to materialize the expected scale-up in performance on various parallel architectures,
we designed a parallel execution model, called the "Non-deterministic Data-Flow Parallel Execu
tion Model" (NDFPEM) [1]. This model, described in section 3, is compound of a number of

components at various layers that are highly optimized particularly for non-single address space

architectures. At the highest layer, it provides a platform for distributed scheduling on top of self-
organized execution principles. At its lowest, the model provides a novel binding scheme, pre

sented in section 4, particularly geared to distributed environments.



Interproces Communication Primitives for a Prolog to C-parallel Translator 15

3 PARALLEL EXECUTION MODEL

3-1 Goals of the Design

An important requirement of this parallel execution model for PROLOG is the preservation of

compatibility with the sequential semantics of PROLOG, excluding addition or modification of

syntactic structures of standard PROLOG. Another requirement for this model is the ability to

achieve scalable performance during execution of applications on large scale parallel architec

tures. Finally, the third requirement is a high adaptability to profoundly different architectural

platforms.

Due to the above considerations, the primary goals of the design are to:

- investigate a design to relax the tight relationship of PROLOG semantics with single address

spaced architectures,

- provide a robust ground for distributed scheduling,

- investigate a binding scheme that supports the distributed nature of our target machines and

avoids the causes of overhead in the "closed binding" [3].

3-2 Approaches

In order to achieve the previously stated goals, we rely upon the data-driven approach. Consid

ering that for a given environment, the evaluation of a clause produces a new environment, we

interpret a clause as a function. The environment at the point of the clause invocation, and the

environments produced from the evaluation, are viewed as the input and output of the function,

respectively. Along with this interpretation, we apply the principles of data-driven computation to

the inference mechanism of PROLOG, particularly for the execution control and the unification

process. Finally, we designed a graphical intemiediate representation for logic languages, the

Abstract Logic Programming Graph (ALPG), which will be used as a vehicle for code translation

on the target architectures. The model thus established is called Non-deterministic-Data-Flow-

Parallel-Execution-Model (NDFPEM).

Consequently, the data-driven approach leads to a relaxation of the tight relationship between

PROLOG semantics and single address-spaced architectures by eliminating the shared search
tree. Moreover, the self-organizing inference paradigm embedded in our NDF graph provides a

robust ground for distributed scheduling.



Interproces Communication Primitives for a Prolog to C-parallel Translator 16

3-3 Features

The NDFPEM includes the fallowing distinct features. First, it is designed to exploit various

forms of parallelism: OR-, AND-, and Stream-AND- parallelism. Moreover, fine grain parallel
ism internal to OR-tasks is supported by the ability to schedule multiple tasks on a processor. Sec

ond, the NDFPEM is highly optimized for non-single address space architectures, specifically
distributed memory multiprocessors and architectures with hardware support for fine-grain paral

lelism, such as multi-threaded and data-flow machines. The model is also suitable for distributed-

or multi-processing of logic languages in general workstation environments. Finally, the data-

driven execution of the NDFPEM attempts to be efficient, doing away with overhead incurred

from the process management required in general AND/OR-process models.



Interproces Communication Primitives for a Prolog to C-parallel Translator 17

4 BINDING ENVIRONMENT

4-1 Presentation and Objectives of our Model

As we said previously in section 2-4, for a thread of tasks on a processing element (PE), the

distribute models should maintain the efficiency of shared models. Focussed on the sources of the

inefficiency, we observed that the closing operation in closed bindind [3] may be a major source

of overhead. In order to relieve the overhead from distributed models, we identified the exact

details of the overhead and investigated the solution. The resulting binding scheme is called func

tional binding (FB) [10]. As a hybrid of non-closed and closed binding, the FB is directed to cap

ture the efficiency of the non-closed binding, while insuring the restricted access of the closed

binding. Thus, the FB facilitates the distributed implementation as one viable solution to mas

sively parallel computation of logic programming.

4-2 Terminologies

In this subsection, we repeat the definitions of terminologies used in general closed binding

schemes. An environment (E) is a set of variables that are reachable in terms of binding and ref

erence. A closed environment is a set of frames E such that no pointers or links originating from

E refers to slots in frames that are not members of E.

The closing operation means a transformation of a closed environment of two frames, working
frame (WF) and reference frame (RF). Before the transformation, there may exist references from

one frame to the other, so that neither is a closed environment. When we close WF with respect to

RF, WF becomes a closed environment and all inter-frame references will originate from the RF.

Figures 4-1 shows a example of closing operation.

4-3 Identification of Overhead in the Closed Binding

In general, the idea of closed environment is valuable for distributed models. Though, in real

implementation, it embeds source of overhead.

First, closing operations requires scanning an environment to check references reaching outside

the environment. This includes scanning all structures reachable from the environment.

Second, when a unbound structure is updated for closing, it is required to make a copy of the



Interproces Communication Primitives for a Prolog to C-parallel Translator 18

Program: :- p(xhf(yi)).

p(x2,y2):~ q(x2»y2)«

x2-->x1

V2-.>f(yi))

x1~> x2

Y2 -> f( z2)

yi -> Z2 •
y2->f(yi))

Unification

RF

WF X2| Y2

Env. Closing

Figure 4-1: An example of closing operation.

Name field

Cell: f
Value field

structure. Closed binding provides an opportunity of structure sharing in that variables are always

placed in frame and slots in heap memory and have always pointers to tlie variables in frames. In
reality, the indirection capability can hardly be exploited for structure sharing, since the offset

value in the heap is not fixed during closing. Thus, in real application, the closed binding always

assumes structure copying for every instantiating of a variable inside a structure.

Finally, when a slot in a working frame has a reference binding to a variable in a reference

frame, closing operation entails an extension of the WF to import the variable of tlie RF.

In the figure 4-2, we use a shortened notation in which a reference is expressed simply with an

arrow. The figure shows a set of unifications for a sequence of OR-tasks. Unification and closing

operations are enclosed in a circle and only environment frames are specified since the arguments

are straightforward in the program. It also illustrates the three sources of overhead. More particu
larly, during closing operations, the reference of a slot in structure/is directed to point a slot in

different frames and the offset value doesn't remain the same. Namely, the offset values for the

three references are 2, 3 and 2 respectively. This leads to the updating of the slot with appropriate

values, resulting in 3 copies of the structure/.



Interproces Communication Primitives for a Prolog to C-parallel Translator 19

Unification

Env. Closing

Unification

XI 1 |Y1

•;•
xi |yi

X2
k

Y2

Program:

:-p(Xl,f(Yl)).

p(X2,Y2):- q(X2,Y2).

q(3,Y3):- r(3,Y3).

r(3,f(4)).

Name field

Cell: f
Value field

Figure 4-2: An example of the environment closing

The closed binding attempts to meet the requirement demanded in distributed models, i.e.,

restricted reference, by applying closing concept to the level of OR-task. Namely, every OR-task
is maintained with an environment closed against over levels of the tree. The closed binding is

uniformly applied to a thread of tasks on a PE. However, the closing operation turns out redun

dant since the environment for those tasks will always stay local to the PE; therefore, tlie overhead

from the closing operations on a intra-PE thread can not be justified with the restricted access.



Interproces Communication Primitives for a Prolog to C-parallel Translator 20

4-4 The Principles of Functional Binding

The key idea of the FB scheme is to maintain the environment of an OR-task to be closed to the

PE in which the task is scheduled, instead of to tlie task. Namely, the variables outside the envi

ronments are reachable once they are in the local address space of tlie PE. This enlargement of the
closed range from a task to a PE eliminates the need of closing for a intra-PE thread of tasks.

In the FB scheme, variables are divided into two classes; if a variable appears in arguments of

structures, it belongs to an instance class; otherwise, it belongs to an non-instance class. The two
classes are dealt with differently:

- for non-instance variables, the effect of environment closing is implicitly achieved at the unifi

cation; more precisely, at the unification, the child environment is insulated from the parent
environment; a rule specifying a reference direction sets reference bindings from parent to

child variables (in the unification algorithm, binding direction is determined such that the

environment closing is performed implicitly in unification process; global variables always

bind references to formal variables).

- the instance variables are managed such that the structure copying is avoided. Instance vari

ables are named globally so that the variables are viewed with unique name both inside and
outside of a task. The bindings of the instance variables in a task are maintained locally in an

auxiliary structure allocated to the task. At forward execution (tree expansion), the pointer to

the parent's auxiliary structure is passed to the child as part of an input environment, thus

every reference to a binding for an instance variable are performed locally in the task. At

backward execution (tree retraction, appears during backtracking or resolution of program ter

mination), the pointer to a child auxiliary structure storing bindings of instance variables in a
task is passed to the parent's task as part of the output environment.

Thus, back unification at the successful completion of a task is a simple retrieval of bindings,

since no explicit closing is performed in this scheme. Namely, bindings for variables in the parent

frame are retrieved from those of local variables if they exist, whereas tags of variable in the par

ent frame are changed from the reference to the variables if the bindings do not exist.

As we say previously, the auxiliary store is utilized to maintain the bindings of instance vari

ables, in order to avoid the structure copying on intra-PE node expansion. The store has a form of

a hash table in Figure 4-3 (a). As the duplication of die store is always performed in a single

address space, we achieve a duplication with a light overhead by just providing a copy of a head

as shown in Figure 4-3 (b). Further, the enqueuing of an element to the store is shown in Figure
4-3 (c).



Interproces Communication Primitives for a Prolog to C-parallel Translator

W

(a) Original hash

START

*1
4.

/xrnmxzzmxzxxtmxmmtz?*.

p(*2>y2) •• q(*2>y2)-

x23 yj v

>?:•:•;•!•»:•»:•;•:•:•:•;•:•:•!' :ismimm;wi!a\

P(3,Y3) > 'fty^.

&Y3 fJ z3

^rW!;IWI:!;l^^

V^: ::>S^^

Y3 f3 Z3 4

o-
o

e-

^>

0
0

0 7

•1
o-
0

o

o-
0

1/

^a

ii

•UP
(b) Duplication of a hash (c) After adding an entry

to a new hash

Figure 4-3: Operation with Hash Tables

START

*1 YM hp h

/mmmmtmmfiiifflmisim*

p(*2,y2) •*- qfey^.

^2 3_ Y2 j^h£jh±

>TCS*w:WM^^^

P(3,y^ > r(3,y3).

Y3 hp h

rtMwxwwtttmmmxm*.

r(3,f(4)).

Y3 f1 hp h2

^

^71

1,21
o

s"

B-

(5D

(a) Copying Structures (b) Lazy Hash Copying

Figure 4-4: Overhead comparison between Structure Copying and Auxiliary Structure

21



Interproces Communication Primitives for a Prolog to C-parallel Translator 22

4-5 Conclusion and Remarks

Overall, the FB scheme reduces significantly the extra overhead in an intra-PE task thread con

sidered to be inevitable for a non-single memory space. The reduction of the overhead comes

from the fallowing benefits:

- structure copying is not required in an intra-PE task thread, only copying of hash table heads is

necessary;

- there are no explicit closing operations both at unification and at back-unification; thus need

less of scanning structures entailed in closed binding.

Instead, two new issues are raised in the FB scheme:

- the management of instance variables, especially the detection and the naming convention;

- the management of auxiliary structures for storing the binding of instance variables.

Now, the point is to evaluate the gain in performance brought by this novel binding scheme, and
more particularly to verify that the overhead introduces by this new scheme is significantly

smaller than the one provided by the "closed binding scheme". In particular, tlie management of

the instance variables, which are named globally, should remain a critical problem on distributed

memory machine implementations.



Interproces Communication Primitives for a Prolog to C-parallel Translator 23

5 INTERPROCESS COMMUNICATION PRIMITIVES

5-1 Internal Structure of a Translator

Figure 5-1 shows an overall view of a typical translator for our parallel model. It exploits tlie set
of functions given by the Abstract Logic ProgramingGraph (ALPG), unique and independent of
any particular architecture, and translates it into a parallel-C code for a specific underlying
machine.

This translator is compound of two main elements, a parallel-C code generator and a runtime

system. The parallel-C code generator is in fact the set of ALPG functions writing in C and thus

adapted to run on the specific target machine. To perform this, the generator needs the help of a
runtime system which provides low level services. It implements primitive languages features, in

contrast to the standard library which is typically implemented in tlie language itself.

ALPG:

set of functions

Z

f

TRANSLATOR

RUNTIME SYSTEM:

Library of Primitives
Provides Essential Services

J*
PARALLEL C-CODE

GENERATOR

Standard Library of Functions

PARALLEL MACHINE

Multi-Processors or Multi-
Processes Configuration

Figure 5-1: Overall View of the Translator




















































































































