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Abstract

The performance of a superpipeline processor heavily relies on its branch perfor-
mance. Traditional branch strategies used in pipeline processors are delayed
branches and branch with squashing. Delayed branches use safe instructions to fill
delay slots. However, for a deeply pipelined processor, a compiler may not be able
to find sufficient safe instructions to fill the branch delay slots. Branch with
squashing takes advantage of using instructions in target basic blocks to fill the
branch delay slots. However, the penalty of branch misprediction is large in
superpipelined processors.

In this paper, we proposed a novel branch scheme, named branch with masked
squashing, which take advantage of both delay branch and branch with squashing.
The basic idea is to fill delay slots with safe instructions which may come from
above or after the branch. For the remaining unfilled delay slots, we fill with
instructions from the predicted target path. In the case of misprediction, only
unsafe instructions are annulled. The safe instructions in branch delay slots are
always executed. Simulation results show that this branch strategy performs better
than traditional delayed branch and branch with squashing.
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1. Introduction

The speed and density of VLSI circuits has been significantly increased due to recently
improved technology. Research in computer architecture is motivated to utilize large numbers of
logic elements to improve performance. One method is to replicate multiple functional units in a
single chip as in VLIW and superscalar architecture. We will explore in this paper, another possi-
bility, superpipelined architecture [Jouppi 89].

The performance of a superpipelined processor depends critically on its branch perfor-
mance. A deep pipeline design can potentially create extremely high throughput since the each
pipeline stage is short. However, during program execution, several factors may break the pipe-
line flow. This results in less throughput than we expected. We focus here on pipeline breaks,
which result from branch operations. In a pipeline processor, a likely branch target is usually pre-
dicted in order to keep fetching instructions into pipeline stages. Since the likely target instruc-
tions are fetched before the branch conditions are evaluated, these instructions may be squashed
later when this branch goes another direction. The squashed instructions constitute a branch pen-
alty. The branch penalty of a superpipelined processor is obviously larger than a design with a
shorter pipeline.

In this paper, we mainly focus on the design issues of a branch on a superpipelined Prolog
processor, named the Southern California Abstract Machine (SLAM). The goal of the SLAM
project was to achieve the highest possible performance in a given technology, a 0.8u, 3-level
metal CMOS process, with a deep pipeline design, to build a single processor with a peak rate of
33 million logical inferences (or 200 MIPS). This superpipelined processor not only supports
generic RISC-like instructions, but also a powerful instruction set for effectively performing logic
programming as in Prolog. During the design process of the SLAM chip, we considered two
design goals simultaneously: high performance and code compaction.

In this paper, we investigate several branch strategies implemented in a superpipelined
Prolog processor.These branch strategies include traditional delayed branch and branch with
squashing [Smith 81], [Lee 84], [McFarling 86], [Dubey 91]. We also proposed a novel branch
strategy, named branch with mask squashing, which allow the compiler to fill the delay slots with
useful instructions as much as possible and fill predicted target instructions in the remaining delay
slots. This scheme shows better performance than the traditional delayed branch and branch with
squashing. To further study the impact of these branch strategies on the performance and static
code size of various superpipeline processors, we also conducted experiments with variations of
these branch strategies on SLAM with branch delay slots ranging from one to five.

The rest of the paper is organized as follows: Section 2 presents the high-level SLAM archi-
tecture. Section 3 briefly shows the methodologies used in this paper to evaluate branch strategies
implemented in SLAM. The software environment (compiler, profiler, and simulator) are also
introduced in this section. The detail of each branch strategy and the comparison among branch
strategies are presented in Section 4. In Section 5, we provide analytical models for evaluating



performance and static code size of branch strategies on different number of branch delay slots.
The results from analytic models are matched with the actual simulation results with the number
of branch delay slots ranging from one to five. Finally, conclusion and final remarks are offered in

Section 6.

2. SLAM Architecture

In this section, we briefly discuss the experimental machine used to evaluate various branch
strategies. The SLAM architecture contains a CPU core, instruction cache, data cache, segment
table, and fast tag logic. The CPU core contains a data path and a control path. Figure 1 shows a
block diagram of SLAM. The control path has PC-chain, clock circuitry, and pipeline control cir-
cuits. The data path consists of a 5-port register file which contains 32 general registers, a fast
carry-look-ahead adder, a barrel shifter, a logic unit, and circuits for data forwarding. The instruc-
tion cache is a 4KB, virtual-addressed, direct-mapped cache with 16-byte block. The data cache is
a 4KB, virtual-addressed, write-back, direct-mapped cache with 16-byte block. The segment table
has 64 entries.
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Figure 1 Block Diagram of the SLAM architecture

SLAM pipeline stages can be categorized into five phases based on their functionality.
These five pipeline phases are Instruction Fetch (IF), Instruction Decode (ID), ALU EXecution
(EX), Memory access (M), and Write Back (WB). Each pipeline phase contains two pipeline
stages. Figure 2 shows the pipeline structure of SLAM. The SLAM processor is a 8-stage pipeline
design in which pipeline stages are laid out as <IF1,IF2,ID1,ID2,EX1/M1,EX2/M2,WB1,WB2>.
M1 and M2 stages are parallel with EX1 and EX2 stages. In other words, this design will not be
able to support instructions which activate both ALU stages and memory stages. Pipeline delay
slots in the SLAM pipeline structure are also presented in Figure 2. There is one cycle delay for
load instructions and any following instructions which use the loaded data. There is a one cycle
delay of store instruction and any following instructions which use the data address bus (e.g. load
and store instructions), since the store instructions use data address bus for two consecutive cycles



(one for tag read and one for write operations). There is a delay cycle for compare instructions and
following branch instructions, since the branch direction can be decided in the pipeline stage ID2,
but the compare result can not be ready until the pipeline stage EX2. Finally, the branch delay slot
in the SLAM is three cycles. There are three pipeline stages between the pipeline stage IF1 and
ID2 where the branch decision is determined.
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Figure 2 Pipeline structure and delay slots of the SLAM

3. Methodology

We consider experiments using a computer architecture evaluation system for SLAM
which consists of a compiler front-end, an optimizing compiler backend, a parameterized instruc-
tion simulator, and a trace profiler.

The benchmark programs are compiled through the Aquarius Prolog compiler front-end
into an intermediate representation (BAM code) [Van Roy 92]. The instruction set of the BAM
code is designed in a way such that a Prolog program can be optimally compiled by the Aquarius
Prolog compiler front-end, and a new platform for a target machine can easily be generated. The
Aquarius optimizing backend [Su 92] performs further code translation, register allocation,
instruction scheduling, peephole optimization, and assembly to a benchmark program in the BAM
code. The output of the Aquarius optimizing backend is an object code of the target machine. In
this paper, we will use the Aquarius optimizing backend for generating the SLAM object code.

An parameterized retargetable instruction-level simulator further takes the object code as
an input and generates an execution trace of a given benchmark program in object code. This trace



will be read by a trace profiler which will generate run-time profiling information. This run-time
profiling information can be read by users in order to monitor the quality of designs or read by a
compiler backend in order to generate code based on this profiling information. Profiling informa-
tion will be very useful when similar execution patterns can be found among program executions
with different data sets.

3.1 Benchmarks

The benchmark programs used in this study are described in Table 1. These benchmark
programs are selected from the Aquarius benchmark suite [Haygood 89]. Execution cycles for
these benchmark programs ranges from thousands to millions of cycles. Applications of these
benchmark programs includes list manipulation, data base queries, theorem provers, and com-
puter language parsers.

Benchmark Line | Instructions Description
nreverse 145 1,138,655 | Naive reverse of a 30-element list
gsort 225 4,560 | Quicksort of a 50-element list
tak 397 1,064,197 | A parser for language translation

circuit 1315 4,504,940 | VLSI module generator
query 4395 | 4,487,201 | Query a data base
zebra 985 350,761 A data base query

boyer 9918 | 27,494,723 | An extract from a Boyer-Moore theorem prover

chat 114312 18,883,712 | A small subset of English for database querying

Table 1 Benchmark programs

Figure 3 shows the dynamic instruction mix among these benchmark programs. The
dynamic instruction mix is defined as the instruction mix from the execution trace. On average,
branch instructions contributes 12.12% of the total execution trace.The call, return, and jump
instructions all together make up 8.30% of the execution trace; the load and store instructions
make up another 26.55% of the execution trace. The remaining 53.03% of the execution trace is
arithmetic, logical, and move instructions. For a pipeline processor with three-cycle branch delay,
the branch performance could cost as much as a 36% performance degradation.

Figure 4 shows static instruction mix among these benchmark programs. The static
instruction mix is defined as the instruction mix of the static code. on average, branch instructions
contributes 6.95% of the static instruction mix. The percentage of call, return, and jump instruc-
tions in the static instruction mix is 9.06%; the percentage of load and store instructions in the
static instruction mix is 38.22%. The remaining 45.77% of the static instruction mix are arith-
metic, logical, and move instructions. For a pipeline processor with three-cycle branch delay, a



bad branch strategy may cost as much as 27% in static code size.
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Figure 4 Static instruction mix

3.2 Retargetable Instruction scheduler

The retargetable instruction scheduler in SLAM, named SUPER-REORDERER, is used to
fill branch delay slots. In SUPER-REORDERER, we apply a list scheduling algorithm. Given the
DAG (Direct Acyclic Graph) of a basic block, the code generator of SUPER-REORDERER
keeps a list of instructions that are ready to be executed without causing delays. In each iteration,
the code generator selects an instruction from this list and also updates the list. Various heuristics
are used to help the code generator make a better code schedule.

A post-branch instruction scheduling process is applied at the end of the code generation
phase. Based on the branch instructions described in the target machine specification, the post-
branch instruction scheduler finds suitable instructions, such as those instructions prior to that
branch instruction, fall-through instructions, or those instructions in the target basic block, to feed
into the branch delay slots. If no suitable instruction can be found, the code generator simply puts
“NOPs” into the branch delay slots. For filling delay slots with instructions from target blocks, we
extended a more advanced target inlining algorithm, called restricted target inlining. The original
target inlining algorithm is proposed by [Hwu 92]. Hwu'’s algorithm assumes every instruction
(including a branch instruction) in target blocks can be used to fill delay slots. However, in a prac-
tical machine, we may not be able to move local branch instructions very far away from their orig-
inal basic block due to the restriction of their instruction fields representing target addresses.
Therefore, instructions in target basic blocks may not be moved around freely. Because of this
property, Hwu’s algorithm needs to be modified in order to maintain correctness. More details of



the restricted target inlining used in SLAM are shown in [Su 93].

3.3 Parameterized Instruction-level Simulator

In order to correctly evaluate the performance of various target architectures, we wrote an
instruction-level simulator. This simulator assumes memory accesses of all target machines are
miss-free. This simplifies the machine specification and also allows efficient simulation. The out-
put of the instruction-level simulator includes total execution cycles, total pipeline stall cycles,
total annulled cycles due to branch misprediction, execution cycles for each instruction, and vari-
ous execution traces for the trace profiler and cache simulator.

3.4 Profiling System

We wrote the profiling system used in this study. Previously existing profiling systems
(e.g. pixie, profigprof, and globin tely on a technique best described as invasive profiling of the
compiled code. This type of profiling inserts additional instructions into the object code of the
program being profiled. These instructions, called instrumentation code, provide the mechanism
whereby data about the execution of the program can be collected. During some intervals of pro-
gram execution, the instrumentation code causes an interrupt and a jump to a special routine. The
routines that are invoked by instrumentation code to collect and analyze the data are referred to as
the profiling code. All these profiling systems need the compiler to insert instrumentation code,
which may add a tremendous amount of complexity to the compiler. In addition, adding instru-
mentation code to the benchmark programs may make the optimal instruction scheduling very
hard to achieve because instrumentation code skews data.

The profiling system of SLAM is a trace-driven profiling system. Instead of adding instru-
mentation code into the benchmark programs and providing profiling code, we directly add instru-
mentation code into the simulator. The simulator than produces the profiling trace which the trace-
profiler takes as an input and gathers statistics. The advantages of this trace-driven profiling sys-
tem are (1) The compiler does not need to be changed in order to insert instrumentation code into
benchmark programs. (2) An optimizing instruction scheduler can reorder instructions without
interference from instrumentation code. (3) Compiled benchmark programs do not need to be
recompiled when we want to collect different profiling data. Only the simulator and trace-profiler
need to be modified for collecting new profiling data. (4) Finer grain profiling data can be
retrieved since the trace-driven profiling system directly monitors each individual instruction.

3.5 Measurement

We use an experimental model based on the performance and static code size of each
branch instruction to obtain measurements. The performance is measured by CPB (Clock Per
Branch). The CPB is defined as the number of cycles for a branch which includes the cycle for the
branch instruction itself and the cycles for instructions which are not useful. The useful instruc-
tions are defined as normal instructions which belong to the program when the branch delay slot is
zero. We do not consider instructions executed due to branch misprediction or NOPs as useful



instructions. Let the number of cycles for a program running on a machine with no branch delays
be Cyeros let the number of cycles for a program running on the same machine with N-cycle
branch delays be C;,. We assume the number of branch instructions in this program execution is
Ny, CPB can be calculated by the following equation.

CPB = [(Cp - Cyero) / Nyl + 1

The static code size of a branch is measured by IPB (static Instructions Per Branch). The
IPB is defined as the number of static instructions, which includes the branch instruction itself and
any additional instructions inserted in the branch delay slots, associated with a branch instruction.
Let the number of static instructions of a program compiled for a machine with no branch delay
slots be S,¢0; let the number of static instructions of a program compiled for the same machine
machine with N-cycle branch delay slots be S,.We also assume the number of branch instructions
in the static code of this program is S;,. IPB can be calculated by the following equation.

IPB = [(Sp, - Szer0) / Spl + 1

For example, using a branch strategy on a machine with 3-cycle branch delays, a program
has the following statistics,:

C3 =1,327,986 cycles
Cuero = 1,090,642 cycles
Cp = 178,489

S3 = 7,895 instructions
S;ero = 7,048 instructions
Sp= 1,324

The performance of this branch strategy is 2.32 CPB. The static code size of a branch
becomes 1.64 IPB.

4. Reduce Branch Penalties

To reduce the cost of a branch, we must minimize the cost of branch delays. We first
briefly discuss traditional branch strategies for reducing the cost of branch delays used in contem-
porary pipeline microprocessors. These branch strategies include delayed branch, branch with
squash, prophetic branch [Srivastava 93]. We then introduce a new branch strategy, called branch
with masked squash, which is designed especially for achieving our design goals. Implementation
of this new branch is also discussed.

4.1 Base Models
A simple branch strategy, name BASE, simply adds three NOP (No OPerations) instruc-



tions into the delay slots of any branch instruction. Another simple branch strategy, named
STALL, does not add any instructions into delay slots. The machine simply stalls until the branch
decision has been made. Both BASE and STALL are used as the base models for comparison to
other branch strategies in terms of the performance and static code size. BASE has the worst
branch performance (4.0 CPB) and static code size (4.0 IPB). STALL has also the worst perfor-
mance (4.0 CPB). However, it has the best static code size (1.00 IPB) since code is not duplicated
in STALL.

4.2 Delayed Branch

Instructions in the delay slots of a delayed branch are always executed. In order to reduce
the cost of branch, a compiler must find sufficient safe instructions to fill these branch delay slots.
Instructions in these branch delay slots can come from either above the branch or target basic
blocks which do not affect program semantics regardless of which direction the branch goes. If
there are not sufficient instructions that can be found by compiler to fill branch delay slots, NOPs
are inserted into these unfilled branch delay slots. Delayed branches has been used successfully on
several RISC machines. These machines, including the IBM-801, MIPS [MIPS 86], and VLSI-
BAM [Holmer 92], have a one-cycle branch delay. The cost of delayed branch ranges from 1.3 to
1.5 cycles.

Figure 5 shows the branch performance and static code size of delayed branch with three-
cycle branch delays. We assume the compare and branch operations are separate instructions. The
average CPI of delayed branch is 3.12. Equivalently, only 0.88 safe instructions, on average, can
be found by the compiler to fill the branch delay slots. The same phenomenon applies to the static
code size. There are on average of 1.97 NOPs placed in the branch delay slots due to not enough
save instructions being found.
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Figure 5 Performance and static code size of delayed branch

4.3 Branch With Squashing

Branch with squashing takes advantage of filling delay slots with safe instructions and
instructions from target basic blocks. In order to effectively use branch with squashing, the com-
piler must predict branch outcomes during compile-time. During run-time, if the prediction is cor-
rect, then instructions in delay slots are executed in the correct order. In other words, there will not
be any branch penalty in this case. In the case of branch misprediction, instructions in the delay
slots belong to the wrong target basic block. These instructions should not be executed. These
instruction should be squashed by hardware.

The performance of branch with squashing depends on branch prediction at compile-time.
A simple static branch prediction method is to predict branch taken if the branch direction is back-
ward and not taken if the branch direction is forward. The reason of using this prediction strategy
is that backward branches are likely to be branches for a loop and forward branches are likely to
be for a fork operation. This branch prediction strategy has been successfully used in RISC pro-
cessors. More advanced static branch prediction relies on run-time profiling. Profile information

from previous runs can be very helpful for the next run, although the data sets used in the runs are
different [Fisher 93].

We experiment with the branch with squashing strategy on our superpipelined processor.
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For a correct branch prediction, the cost of a branch is only one cycle. For a misprediction, the
cost of the branch becomes four cycles, in which one cycle is for the branch instruction itself and
three cycles are for squashing unsafe instructions. To investigate the use of both delayed branch,
branch with squashing, and the impact of profiling techniques, we experimented four different
models as described below.

(I) Branch with squashing only (BWS)

For a backward branch, we copy instructions from branch target basic blocks into the
delay slots. For a forward branch, we do not copy instructions. The delay slots are filled from
instructions below this branch.

(IT) Delayed branch and branch with squashing (BWS_DB)

Similarly to the previous model, we predict branch taken if it is a backward branch and not
taken if it is a forward branch. We combine the previous model with a delayed branch scheme. For
the case of a branch where the compiler can find sufficient instructions to fill all the delay slots,
we use delayed branch. Otherwise, we use branch with squashing.

(IIT) Profile branch with squashing (P_BWS)

The model mainly uses profile information to reduce the overhead of branch with squash-
ing. The compiler predicts a branch direction based on this profile information of previous runs.

(IV) Profile delayed branch and branch with squashing (P_BWS_DB)

Similarly to P_BWS, profile guided branch with squashing, we use profile information to
reduce the overhead of branch with squashing. In addition, the compiler will use delayed branch if
sufficient safe instructions can be found to fill the delay slots. Otherwise, the compiler will use
branch with squashing based on the proifile information.

In Figure 6, we show the simulation results of the four varieties of branch with squashing.
The performance and static code size of BWS is 2.27 CPB and 1.16 respectively. Compared to
DB, which has 3.12 CPB and 2.97 IPB, the improvement of performance and static code size by
using BWS are 37.44% and 60.94%. This improvement is not surprised because on average only
1.03 safe instructions can be found by the compiler to fill in the branch delay slots. In other words,
there are on average of 1.97 NOPs in the delay slots for DB. For BWS, since most of branches in
our benchmark programs are forward branches which do not duplicate the code, the static code
size should be a lot less than DB. The performance of BWS with 50% misprediction is already 2.5

CPB. For BWS with lower misprediction rate, the performance should be significantly better than
DB.

The BWS_DB strategy has 2.16 CPB and 1.08 IPB. Adding a delayed branch scheme in
BWS slightly improves performance and static code size. Compared to BWS, BWS_DB has
5.10% improvement in performance and 6.89% improvement in static code size. This improve-
ment comes from the case when all three branch delay slots filled by safe instructions.
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The P_BWS strategy has 1.46 CPB and 2.27 IPB. Adding profile information can signifi-
cantly improve performance for BWS. Compared to BWS, the P_BWS improves performance
55.48%. However, the static code size is increased in P_BWS by 95.69%. This is because the pro-
file information guides the branch directions which force some forward branches to be predicted
as taken. This forward branch with the predicting branch taken will use instructions from pre-
dicted target basic blocks to fill delay slots, which causes the increased static code size for the
branch.

The P_BWS_DB strategy has the best performance among these four branch strategies
discussed above, although the static code size is as bad as P_BWS. The P_BWS_DB strategy has
1.42 CPI, which is a 2.80%, 52.11%, and 59.86% performance improvement over P_BWS,
BWS_DB, and BWS. Similarly to the P_BWS strategy, the large static code size in the
P_BWS_DB strategy, which is 2.23 IPB, comes from the code duplication of target instructions to
fill delay slots for some forward branches guided by profile information.

4.4 Prophetic Branch

Prophetic branch is a new method for implementing branches by predicting branch taken
without inlining target instructions. Branch delay slots in prophetic branch are always filled by
instructions above the branch, including instructions which evaluate a branch condition (e.g. com-
pare instructions). The basic idea is to specify the likely conditional branch before its condition
evaluation. When the branch instruction is decoded and the likely target address is calculated, tar-
get instructions start to be fetched. These instructions from target blocks are continuously fetched
until the condition is evaluated, which can be several cycles after the branch instruction. Since the
compare instruction which evaluates the branch condition can be moved several cycles after a
branch instruction, delay slots can be easily filled by safe instructions above this branch instruc-
tion. In addition, static code size of a program is not increased since no instructions from target
basic block are duplicated.

Figure 7 shows an example. A sample instruction sequence is presented in Figure 7(a).
Since btan is a predicted likely taken branch instruction, we need to implement target inlining in
order to avoid delay cycles due to branches which is shown in Figure 7(b). Three target instruc-
tions are copied into delay slots of instruction btan. This results in increasing code size by three
instructions. Figure 7(c) shows a version of this sample instruction sequence using prophetic
branches. Branch delay slots are filled by instructions above the branches, including instruction
cmp(ltu,e,b) which evaluates branch condition.

13
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Figure 7 Branches for target-inling vs. Prophetic branches

Prophetic branches can help to avoid code duplication when a predicted branch is taken.
However, when a prophetic branch is mispredicted, the penalty of misprediction is larger than tra-
ditional branches with squashing. For example, the penalty of misprediction in the branch with
squashing is three cycles, which is shown in Figure 8. A prophetic branch will squash as many as
five instructions due to branch misprediction in the same pipeline structure. This is because the
evaluation of the branch condition is in pipeline stage EX2. In the case of misprediction, all
instructions in the pipeline stages EX1, ID2, ID1, IF2, IF1 are from the wrong target basic blocks.
These five instructions in the delay slots must be squashed in order to preserve the program
semantics.
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Figure 8§ Delay slots of prophetic branches
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To further understand how prophetic branches affect the performance, we select four dif-
ferent model for investigation. These four models, which are described below. The first model
uses only prophetic branch. The rest of the models are combined prophetic branches alone with
some other strategy.

(I) Prophetic branch only (PB)

For a backward branch, we use prophetic branch in which delay slots are filled from
instructions above the prophetic branch instruction. For a forward branch, we simply use branch
with squashing which predicts the branch is not taken. The delay slots are filled from instructions
below this branch.

(II) Prophetic branch with delayed branch (PB_DB)

Similarly to the previous model, we use prophetic branch if it is a backward branch and
branch with squashing if it is a forward branch. For the case of a branch with sufficient instruc-
tions to fill all the delay slots, we use delayed branch. Otherwise, we use prophetic branch.

(I1I) Profiled prophetic branch (P_PB)

This model is basically the PB strategy with the help of profile information to reduce the
overhead of prophetic branch. The compiler then predicts branch directions based on this profile
information of previous run.

(IV) Profiled prophetic branch with delayed branch (P_PB_DB)

Similarly to the model P_PB, we use profile information to reduce overhead of prophetic
branches. In addition, the compiler will use delayed branch if there are sufficient safe instructions
can be found to fill the delay slots. Otherwise, the compiler will use branch with squashing or pro-
phetic branch based on the profile information.

Figure 9 shows the simulation results of these four varieties of prophetic branch. Since no
code needed to be duplicated in these four branch strategies, the static code sizes of them are all
1.0 IPB.

The performance of PB is 3.13 CPI, which is about the same to DB. Unlike DB, which
suffers performance due to having 1.88 NOPs on average for each branch, PB suffers low perfor-
mance due to extra penalty of branch misprediction. Compared to the performance of the best
branch strategies of branch with squash P_BWS_DB (which is 1.42 CPI), PB has only 45.37% of
the performance.

The performance of PB_DB is 2.94 CPI, which is slightly better than PB. The gain, which
is about 6.47%, in performance is mainly from replacing some branches in PB with delayed
branches if the compiler can find three instructions to completely fill the delay slots.
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The profile information significantly improves performance of the prophetic branch. The
performance improvement is 76.83% on PB (P_PB has 1.77CPI) and 66.10% on PB_DB
(P_PB_DB has 1.71 CPI). Compared to the performance of the best branch strategies of branch
with squash P_BWS_DB, the best performance of the best branch strategies of prophetic branch
P_PB_DB has only 83.04% of the performance. However, the static code size of a branch in
P_PB_DB (which is 1.0 IPB) has only half of that in P_BWS_DB (which is 2.0 IPB).

4.5 Branch With Masked Squash

In previous sections, we discussed three branch strategies, delayed branch, branch with
squashing, and prophetic branch. Delayed branch takes advantages of using safe instructions
above the branch to fill delay slots. In addition, hardware support for delayed branch is simple.
However, there may not be a sufficient safe instructions found to fill the branch delay slots.
Branch with squashing takes the advantage of using unsafe instructions from target basic blocks
to fill the branch delay slots. However, the performance of branch with squashing heavily relies
on the correctness of branch prediction. The penalty of misprediction may be very large since
instructions in branch delay slots must be annulled. In addition, code duplication for target inlin-
ing can be significant. Prophetic branch can avoid code duplication while the branch direction is
taken.

Figure 10 shows an example of branch with masked squashing. This example uses the
same instruction sequence shown in Figure 10. In the case of a delayed branch, two instructions
from above the branch, Id(r(1)),r(2)) and add(r(1),r(2),r(3)), are used to fill delay slots. Since
there are three delay slots that need to be filled and only two safe instruction can be found to fill in
these delay slots, the third delay slot is filled by a NOP. In the case of branch with masked squash-
ing, both two safe instructions are used to fill the delay slots. In addition, an unsafe instruction
from the target basic block, pushdc(r(0)/r(1),b,2), is used to fill the third delay slot. Moreover,
since there is a load delay between the instructions ld(r(1)),7(2)) and add(r(1),r(2),r(3)), we can
also use this unsafe instructions to fill this load delay slot, which is shown in Figure 10 (c).

In order to use the branch with squashing scheme, we must define a scheme to specify
what instructions are safe or unsafe. In general, there are two ways to specify unsafe instructions
in the branch delay slots, which are described below.

The first scheme is that each instruction has a safe/unsafe bit associated with it. This safe/
unsafe bit can be hard-wired in the instruction bits. When the compiler uses an unsafe instructions
to fill a branch delay slot, the safe/unsafe bit associated in these instruction are set (meaning
unsafe). If the branch is correctly predicted, all unsafe instructions act as normal safe instructions.
If the branch is mispredicted, all instructions in the pipeline stages (before pipeline stage ID2)
with safe/unsafe bit on are squashed.
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In the second scheme, each branch instruction has mask bits to specify unsafe instructions
in the branch delay slots. A simple implementation of this scheme is to assign one bit for each
branch delay slot. If a delay slot is filled unsafe instruction, the corresponding mask bit in the
branch instruction is set. The mask bits are passed through the control pipeline. If the branch is
correctly predicted, these mask bits are inactivated. On the other hand, if the branch is mispre-
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(a) sample code (b) Delayed branch (c) Branch with masked squashing
Figure 10 Branches for target-inling vs. Prophetic branches

dicted, these mask bits are activated. The first significant bit of the mask bits is used to specify
whether the next instruction is safe or unsafe. If this bit is set, then the next instruction is squashed
in the pipeline stage ID2. If this bit is not set, then the next instruction is executed. At the end of a
cycle, the mask bits are shifted left one bit. This process will continue until all instructions in
delay slots are handled.

To understand how branch with masked squashing affects branch performance, we select
two different models for investigation, which are described below.

(I) Branch with masked squashing (BWMS)

For each branch, the compiler tries to find as many safe instructions above the branch as
possible to fill the delay slots. If there are delay slots remaining unfilled, instructions from the pre-
dicted target basic block are used to fill these delay slots. For a forward branch, we simply predict
branch is not taken. For a backward branch, we predict the branch is taken.

(II) Profile branch with masked squashing (P_BWMS)

The model is mainly using profile information to reduce overhead of misprediction for
BWMS. The compiler then predicts branches based on this profile information.

Figure 11 shows simulation results of branch with mask squashing. BMWS has 1.87 CPB
and 1.07 IPB. Without consider the help from profile information, BMWS has the best perfor-
mance among the branch strategies discussed so far. The gain of performance mainly comes from
the use of safe and predict target instructions in the branch delay slots.

The P_BWMS strategy has 1.36 CPB and 1.57 IPB. Profile information helps BWMS to
improve performance 37.50%. However, the static code size of a branch is increased 53.64%. The
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reason the increased static code size of a branch is increased is that profile information guldf‘:s the
branch direction which force some forward branch to be predicted as a taken branch. Code 1s
duplicated when a forward branch predicts the branch is taken.
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Figure 11 Performance and staic code size for branch with masked squashing

4.6 Discussion

Figure 12 summarize the performance and static code size for the branch strategies dis-
cussed in this paper. The horizontal axis represents performance in terms of CPB. The vertical
axis represents static code size of a branch in term of IPB. We located each branch strategy based
on its (CPB, IPB). DB (3.12, 2.97) does not perform well on performance and static code size
when there are three branch delay slots. The PB (3.13, 1.00) and PB_DB (2.94, 1.00) have the
same static code size and similar performance. The BWS (2.27, 1.16) and BWS_DB (2.16,1.08)
have significantly better performance than DB, PB, and PB_DB. In addition, the static code size is
slightly worse than prophetic branch (about 10%), but significantly better than DB. Finally,
BWMS, at (1.87, 1.07), has the best performance among all branch strategies discussed above.
Compared to these branch strategies, BWMS has 15.51%, 21.39%, 57.22%, 67.38%, 66.84% bet-
ter the performances than BWS_DB, BWS, PB_DB, DB, and PB. The static code size of a branch
in BWMS is 7% larger than the branch strategies of prophetic branches and 1% less than
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BWS_DB.

Adding profile information to these branch strategies can significantly improve the perfor-
mance. These profile guided branch strategies are plotted as black nodes in Figure 12. Two pro-
phetic branch models which use profile information are P_PB (1.77, 1.00) and P_PB_DB (1.71,
1.00). P_PB and P_PB_DB has 76.83% and 71.93% over PB and PB_DB respectively. Two pro-
file guided models of branch with squashing are P_BWS (1.46,2.27) and P_BWS_DB (1.42,
2.23). P_BWS has 55.48% increased performance over BWS; P_BWS_DB has 52.11% increased
performance over BWS_DB. Profile information also is a great help to BMWS. P_BMWS (1.36,
1.57) has 37.50% increased performance over BMWS. Among the branch strategies with profile
information helps, P_BMWS has the best performance.

Adding profile information to the branch strategies other than prophetic branch can also
increase the static code size. P_BWS, P_BWS_DB and P BWMS increase by 48.90%, 51.57%,
and 31.85% the static code size of a branch compared to BWS, BWS_DB, and BWMS, respec-
tively. P_BMWS not only has better performance and but also has less static code size than
P_BWS, P_BWS_DB, and DB.

5 Scalability

In last section, we experimented with several branch strategies in SLAM. The result sug-
gests that BMWS is a good choice in a superpipelined processor. Does this result hold when the
number of branch delay slots is changed? In order to answer this question, we first provide ana-
lytic models for performance and static code size of the branch strategies. These analytic models
can be easily used to analyze some relationship among these branch strategies. We also can use
these analytic models to estimate the performance and static code size on any number of delay
slots. We compare the results from actual simulation and from analytic models.

5.1 Analytic Models

For a better understanding of each branch strategy, we also provide an analytic model for
the estimation of performance and static code size. Let P4 be the average number of safe instruc-
tions found by the compiler for each branch instruction in the execution trace. Let Py be the aver-
age number of safe instructions found by the compiler for each branch instruction in a static
program. Let D be the number of pipeline stages. We assume Phiss 18 the percentage of branch
misprediction in the execution trace. We also assume Py, is the percentage of a backward
branch in a static program.

Based on the above assumptions, we derive an analytic model of performance and static
code size in terms of D, Py, Pg, Ppyics, and Py . The performance of BASE is (1 + D) since there
are D NOPs in the delay slots in addition to the branch instruction itself. Similar to BASE, the
performance of STALL is also (1+D). The static code size of BASE is (1 + D) since there are D
NOPs in the delay slots in addition to the branch instruction itself. For STALL, the static code size

21



IPB

BASE
(4.00, 4.00)

4'0 .................................... ............. 'P_BW’S . !‘__PB ....... CRBWS e .
(1.36,2.27)| |71, 1.00){[ 2.27, 1.16) ;

I

- DR
P_BWS:DB i VB ee— (3"':;_‘5 297)
(1:42,2.33) v = e
2.0 : o® ? PE_DB
P_BWMS (2.94,1.00)
(134,15 @ % . [sTALL
® - |(4.00,1.00)
. : @
:[P_PB_DB / BWMS BWS DB | | PB
| (1271, 1.00) (1.87,1.07) | 2.16,1.08)| (3.13.1.00) ‘
i = %
1.0 2.0 3.0 4.0 CPB
= ~oacts Discriplion

BASE T three NOPs 1to the branch delay slots

DB Delayed Branch

BWS Branch with squashing

BWS_DB Branch with squashing and delayed branch

BWMS Branch with masked squashing

PB Prophetic branch

PB DB Prophetic branch and delayed branch

P BWS Profile guided Branch with squashing

P BWS DB Profile guided Branch with squashing and delayed branch

P BWMS Profile guided Branch with masked squashing

P PB Profile guided prophetic branch

P PR DR Profile guided prophetic branch and delayed branch

Figure 12 Static Code Size vs. performance

is 1 since no code has been duplicated in this model. For DB, the analytic model is slightly more
complicated. The percentage of a safe instruction in a delay slot is (P4/D) in the execution trace.
The percentage of a NOP in a delay slot is (1 - P4/D). Since the number of delay slots is D, the
average number of NOPs in the delay slots is D*(1 - Py/D). The performance of DB is the average
number of NOPs in the delay slots of a branch in the execution trace plus one, which is (1+ (D*(1
- P4/D))). The analytic model for the static code size of DB is similar to the model for perfor-
mance, except that Py in performance model is replaced by Py, yielding (1+ (D*(1 - Py/D))).

The analytic model of the performance of BWS is (1 + D * Pmiss), since the misprediction
of a branch cost D cycles and the branch instruction itself costs one cycle. For BWS_DB, all delay
slots need to be filled by instructions from the target basic block unless there are at least D safe
instructions found by the compiler. Since the percentage of delay slots filled by safe instructions is
(Pg¢/D) in the execution trace, the percentage of all branch delay slots filled by safe instructions is
(pd/D)D. In other words, the percentage of branches with squashing among all branches in the
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execution trace is (1 - (pd/D)D) These branches with squashing can be applied to BWS model
which is Ppjes * D. Therefore, the analytic model of BWS_DB is (1+ D*Pmiss*(1 - (Pdﬂ)) ).
The analytic models for static code size of BWS and BWS_DB are similar to the performance
model excepting Py and Py are replaced with Pg and Py..

The analytic models of performance of PB and PB_DB are similar to BWS and BWS_DB
except that D is replaced by (D+2). This is because the misprediction penalty in prophetic branch
is 2 cycles more than the misprediction penalty in normal branches. The static code size of PB and
PB_DB are 1 since no code is duplicated.

The analytic model of performance of BWMS is 1 + D * Ppisc * (1- Pg/D). It includes one
cycle for the branch instruction itself and the misprediction penalty for squashing those unsafe
instructions in the delay slots. These unsafe instructions are used to replace NOPs in DB. Since
the percentage of delay slots filled by NOPs is (1- Py/D) and there are D delay slots for each
branch instruction, the average misprediction penalty for squashing unsafe instructions is D *
Phigs * (1- Pg/D). The analytic model of static code size of BWMS is similar to the performance
model excepting Py and Py;¢, are replaced by P and Py,

The analytic models of profile guided branch strategies are similar to the branch strategies
without the help of profile information. The performance gains of profile-guided branch strategies
is mainly from reducing value of P ;. Profile information can increase or decrease the number
of backward branches in a static program. Therefore Py, could be increased or decreased
depending on the benchmark program.

Table 2 is a summary of the analytic models of all branch strategies. From this table, we
can easily derived some conclusions.

Conclusion 1:

The performance of DB is always better than the performance of BASE and STALL.
Reason:

The performance of BASE and STALL is (1+D); the performance of DB is (1 + D # (1 -
Py/D)). Since Py is always less than one and D is at least one, the value of (1 - Py/D) is always less
than one. Therefore, the value of (1 +D * (1 - Py/D)) is always less than (1 + D). Therefore, The
performance of DB is always better than the performance of BASE and STALL.

Conclusion 2:

The performance of DB is better than BWS only when (1 - P4ID)is smaller than P
static code size of DB is better than BWS only when (1 - PyD) is smaller than P,

Reason:

The

miss-

23



Average CPB Average IPB
BASE 1+D 1+D
STALL 1+D 1
DB 1+D* (1-PyD) 1+D* (1-PyD)
BWS 1+D*P_; 1+ D * Ppae
BWS_DB 14D *P . * (1-(pyD)P) 14D * Py * (1 - P¢/D)
PB 1+ (D+2) * Ppics 1
PB_DB 1+ (D+2) * Projs * (1-(pa/D)) 1
BMWS 14D * P, * (1- PyD) 1+ D * Py * (1- Py/D) * (1-(pyD)®)
P_BWS 14D * Py 14D * Py
P BWS DB |1+D*P . * ((1-(pgD)?) 14D * Pyaei * ((1-(ps/D)")
P_PB 1+ (D+2) * Py 1
P_PB_DB 14 (D+2) * Ppise * (1-(pg/D)P 1
P_PWMS 14D * Prigs * (1- PyD) * (1-(pgD)P) | 1+ D * Py * (1- Py/D) * (1-(pyD)P)
D: The number of delay slots.
Py The average number of save instructions been filled into delay slots for a branch in the trace.

Phisss  The percentage of miss prediction of a branch in the trace. ) ]
* The average number of save instruction been filled into delay slots for a branch in a static program
Ppack:  Thepercentage of backword branch of a branch in a statoc program

Table 2 Analytical Models

The performance of BWS is (1 + D * Pp;); the performance of DB is (1 + D * (1 - Pq/
D)). The performance of DB is better than the performance of BWS only when Py is larger than

(1 - Py/D). A similar reason for the static code sizes obtained by replacing Ppyjeq and Py to Phadk
and Pq.

Conclusion 3:

The performance of prophetic branch is always equal to or worst than branch with
squashing. The static code size of prophetic branch is always smaller than branch with squashing.

Reason:

The performance of BWS is (1 + D * P;c.); The performance of PB is (1 + (D+2) *
Phisg)- Since Ppy;q is larger than zero, the performance of BWS is always better than the perfor-
mance of PB. The same prove applies to BWS_DB and PB_DB. The static code size of PB and
PB_DB is 1.00 IPB. The static code size of branch with squashing is larger than the value of a+
D * Ppack * (1 - P¢/D)). The static code size of branch with squashing is equal to 1.00 IPB only
when Py, is zero or Py is equal to D. Otherwise, the static code size of branch with squashing is
always larger than prophetic branch.
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Conclusion 4:

The performance of BMWS is always equal to or better than BWS, BWS_DB, PB, PB_DB
and DB. The static code size of BWS is always smaller than BWS, BWS_DB, and DB.

Reason:

The performance of BWMS is (1 + D * Pppiec * (1- Pg/D)). Since the value of Py is
equal to or less than 1, the value of (1 + D * Ppic * (1- Pg/D)) is always equal to or 1argcr. than (1
+ D * (1- P4/D)), which is the performance of DB. Therefore, the performance of BWMS is better
than the performance of DB. Since the value of (1- Py/D) is always equal to or less than 1, the
value of (1 + D * P50 * (1- P4/D)) is always equal to or larger than (1 + D * Pp;0), which is the
performance of BWS. Therefore, the performance of BWMS is better than the performance of
BWS. The performance of BWS_DB is (1 + D * Ppjes * (1—(pd/D)D)). Since the value of (1-(pg/
D)) is always equal to or less than the value of (1- Py/D), the performance of BWMS is always
equal to or better than BWS_DB. We have already shown the performance of branch with squash-
ing is always equal to or better than prophetic branches from Conclusion 3. We can conclude that
the performance of BMWS is always equal to or better than BWS, BWS_DB, PB, PB_DB and
DB. A similar result for can be applied to conclude that the static code size of BWS is always
equal to or smaller than BWS, BWS_DB, and DB.

5.2 Experimental Results

In the previous section, we provided an analytic model of performance and static code size
for all the branch strategies. In this section, we would like to experiment with the branch strate-
gies on a superpipelined Prolog processor with various numbers of branch delay slots. The simu-
lation results should match the results from analytic models.

Figure 13 shows the performance of branch strategies without help from the profile infor-
mation with the number of branch delay slots ranging from one to five. The performance of all
branch strategies decreases when the number of branch delay slots is increased. This agrees with
the increasing D in the analytic models. In general, BASE has the worst performance among all
branch strategies, except PB performs worse than BASE when the number of branch delay slots is
only one. This irregular behavior of PB is mainly due to a significantly large misprediction pen-
alty compared to the number of branch delay slot. In this case, the number of branch delay slots is
one; the misprediction penalty is three. From the analytic models of PB and BASE, the perfor-
mance of BASE is better than PB only when the value of (D+2) * Py is larger than the value of
D. In this special case, when D is equal to one, the value of Pp; must larger than 1/3.

The performance of DB is better than all prophetic branches when the number of delay
slots is less than three. But a deeply pipelined machine, the prophetic branch is expected to be bet-
ter than DB. However, when the number of delay slots is small, DB can perform much better than
prophetic branches. From the analytic models of DB and prophetic branches, the performance of
DB is better than all prophetic branches only when the value of D * (1 - Py/D) is smaller than the
value of (D+2) * Ppics * (1-(py/D)P).
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The performance of both BWS and BWS_DB is significantly better than DB,_ PB, and
PB_DB. Especially when the number of delay slots is increased, the performance gains of BWS
and BWS_DB over DB, PB, and PB_DB is also increased. From Conclusion 3, we have shown
that the performance of BWS and BWS_DB are always better than the performance of PB, and
PB_DB. Conclusion 2 suggests that the performance of BWS and BWS_DB is better than DB
only when (1 - P¢/D) is larger than Py ;c. In the SLAM case, Py is less than 1/3. Therefore, the
value of (1 - Py/D) is always larger than Pp,;sc. BMWS shows the best performance on the number
of delay slots ranged from one to five. This is also suggested by Conclusion 4.

CPB

1.0 2.0 3.0 4.0 50  Delay Slots
Figure 13 Branch performance vs. the number of delay slots

Figure 14 shows the performance of branches with the help of profile information on a
machine with different numbers of delay slots. In general, profile information helps all branch
strategies discussed in this paper, excepting BASE and DB which do not use profile information.
The performance gain due to profile information is increased when the number of delay slots is
increased. P_BWMS has the best performance among all branch strategies on machines with one
to five delay slots. In the analytic models, since profile information only reduces the value of

Ppiss» the performance ratio among all branch strategies still holds except for BASE, STALL, and
DB.

Figure 15 shows the static code size of branch strategies when the number of delay slots
varies. BASE has the worst static code size among all branch strategies. DB also has worse static
code size compared to most of the branch strategies. The remaining branch strategies (i.e. BWS,
BWS_DB, PB, PB_DB, and BWMS) have very close static code sizes. This is because the value
of Ppack is very small in the SLAM benchmark suite. The impact of other factors (e. g. D and Py)
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Figure 14 Profile guided branch performance vs. the number of delay slots

are not obvious due to this small Py,.x. The prophetic branch has the best static code size, which
is 1.00 IPB, but only 5~10% better than BWS, BWS_DB, and BWMS. Comparing BWMS and
prophetic branch (PB and PB_DB), BWMS has significantly better performance than prophetic
branches. However, BWMS has worse static code size than prophetic branches. Compared to
BWMS and branch with squashing (BWS and BWS_DB), both performance and static code size
of BWMS are better.

Figure 16 shows the static code sizes of profile guided branches when the number of delay
slots vary. Profile information can significantly increase the performance, though the static code
size is also increased. The static code size of all profile guided prophetic branches is still 1.00 IPB.
Compared to P_BWS and P_BWS_DB, P. BWMS has better performance and static code size.

6. Conclusion

In this paper, we have investigated several branch strategies used in modern pipelined pro-
cessors. These branch strategies (i.e delay branch, branch with squashing, and prophetic branch)
are useful only for a small number of branch delay slots. For a superpipelined processor, we need
more aggressive branch strategies in order to avoid the large branch overhead.

We have proposed a novel branch scheme, called branch with masked squashing, which
takes advantage of both delayed branch and branch with squashing. This scheme benefits from
both compiler techniques and static branch prediction to optimally reduce penalty of mispredic-
tion. Since most modern microprocessors implement both delayed branch and branch with
squashing, the only additional cost to implement branch with masked squashing is to specify
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Figure 16 Static code size of profile guided branch vs. the number of delay slots

which instructions in the delay slots are unsafe. This information can be encoded into the branch
instruction opcode or one bit per instruction can specify unsafe instructions.

We evaluate these branch strategies with the help of profile information. Profile informa-
tion does improve performance of all branch strategies discussed in this paper. However, these
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profile-guided branch strategies also increase static code size. Profile-guided branch with masked
squashing has the best performance of all profile-guided branches.

Finally, we show experimental results for the branch strategies on machines with different
numbers of branch delay slots. We provide analytic models to estimate the performance and static
code size of a branch among the branch strategies. We also evaluate the actual performance and
static code size by compilation and simulation. Both results from analytic models and simulation
are perfectly matched. It suggests that the branch with squashing outperforms than other branch
schemes no matter how many branch delay slots are required. It is not surprising since branch
with masked squashing is built by taking advantages of delayed branch and branch with squash-
ing. This study suggests that the branch with masked squashing is a very useful branch scheme for
deeply pipelined processors.
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