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Abstract

Cache coherence protocols of increasing complexities call for auto-
mated verification tools which are both efficient and reliable. Most current
approaches can only verify protocols at a high level of abstraction, and the
model size is limited to a small number of interacting processes. Using a
simple full-map directory scheme as example, we show that the verifica-
tion of a simple protocol becomes overwhelmingly complex when imple-
mentation details are taken into account. One way to deal with the
complexity is to impose conservative handshaking rules such as acknowl-
edging every single message between caches and memory. Such a conser-
vative approach slows down every transaction in order to avoid race
conditions, which are relatively rare. The other approach explored in this
paper is to apply verification techniques to the protocol without acknowl-
edgements in order to determine the minimum set of messages needed for
correctness. A new verification technique which is extremely efficient and
is independent of the model size is applied and several non-obvious prob-
lems affecting the correctness of a protocol design are identified by the ver-

ification procedure.
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mentation details are taken into account. One way to deal with the
complexity is to impose conservative handshaking rules such as acknowl-
edging every single message between caches and memory. Such a conser-
vative approach slows down every transaction in order to avoid race
conditions, which are relatively rare. The other approach explored in this
paper is to apply verification techniques to the protocol without acknowl-
edgements in order to determine the minimum set of messages needed for
correctness. A new verification technique which is extremely efficient and
is independent of the model size is applied and several non-obvious prob-
lems affecting the correctness of a protocol design are identified by the ver-

ification procedure.
1.0 Introduction

Cache coherence is one of the most important aspects of a shared-memory multi-
processor system. A coherence protocol maintains a globally consistent view of memory
among processors. Snooping protocols [2] rely on broadcasting updates or invalidations to
keep data copies consistent and therefore, their applicability is inherently limited to sys-
tems with interconnection supporting efficient broadcast, mostly shared-bus systems. It is
well-known that a shared bus is non-scalable in the sense that a few processors can satu-

rate it even when private caches reduce the memory traffic.

Directory-based protocols [3, 6, 23] are more apt at enforcing coherence in sys-
tems with a large number of processors. A directory keeps track of caches with a valid
data copy so that coherence messages are sent to individual processors rather than broad-

cast to all processors, removing the need for an efficient broadcast medium. Although



many performance studies of directory-based schemes have been published in the litera-
ture [1, 7, 18], protocol correctness issues are usually left out. Because of their more com-
plex structures and of the difficulty of verifying protocols at lower implementation levels,

automated verification tools based on efficient and reliable procedures are sorely needed.

In this paper we first describe an implementation of the full-map directory scheme
proposed by Censier and Feautrier [6] down to the message-passing level. Even though
the protocol is very simple at its behavior specification level the complexity of even the
simplest implementation is overwhelming. One way to deal with the complexity is to
impose conservative handshaking rules such as acknowledging every single message
between caches and memory. Such a conservative approach slows down every transaction
in order to avoid race conditions, which are relatively rare. The other approach explored in
this paper is to apply verification techniques to the protocol without acknowledgements in
order to determine the minimum set of messages needed for correctness. We demonstrate
the successful application of a new verification technique [19] to the protocol implementa-
tion and discover several problems, which make a correct design difficult.

Our method is motivated by the observation that complex systems are often very
regular and symmetric. In particular, in a cache-based multiprocessor, the behavior of all
caches is characterized by the same finite-state process. Our symbolic state representations
[19] exploit this regularity to yield a very efficient state expansion process without the
state explosion problem [9, 11] plaguing other approaches. Additionally, the verification
procedure is independent of the system size and is totally reliable. All ‘possible’ states are
explored, as opposed to approaches verifying a ‘small’ system; in these approaches design
errors may appear for system sizes beyond the manageable model size and go undetected
in the verification of the small model.

This paper is organized as follows. Section 2 briefly overviews previous work in
the area of protocol verification. Section 3 provides a general and a more formal descrip-
tion of the protocol verified in this paper. In Section 4, our verification technique is for-
malized, and the verification results are then discussed in Section 5. Finally, we comment

on the prospects offered by our approach in the field of protocol verification.

2 .0 Previous Work

Several authors have addressed the problem of protocol verification in different
ways. Baer and Girault [4] introduced a Petri Net model that comprehensively specifies
the underlying hardware structure. Rudolf and Segal [20] gave a correctness proof of a



snooping protocol by enumerating all possible scenarios of reads and writes;each cache is
modeled as a finite state automaton and a product machine is a collection of » finite state
automata. Nanda and Bhuyan [17] presented a similar approach based on the composition
of communicating finite state machines and on state enumeration. For most of complex
protocols, their approaches are not feasible because of the enumeration complexity and of
the state space explosion problem.

To overcome the state explosion problems, McMillan and Schwalbe [16] evaluate
the truth value of protocol correctness conditions in temporal logic without constructing
the global state diagram explicitly. However, the transition relations among global states
must be constructed, which itself is not feasible for most complex systems [8]. By using
higher-order logic, Loewenstein and Dill [15] show the correspondence (simulation rela-
tion) between state machines representing an implementation and specification behavior at
a high-level abstraction. Although the logic is powerful, finding the simulation relation is
difficult and inefficient.

To overcome the limitation that only protocols with few number of interacting pro-
cesses can be verified in practice, reasoning about protocols with large number of pro-
cesses is currently a topic of active research. In [5], reasoning about systems with many
identical finite state processes is facilitated by finding a correspondence between two (glo-
bal state) structures M and M’ representing the system of manageable and overwhelming
complexities respectively. A given relation E can determine whether there is a correspon-
dence relation between two structures. If two structures correspond, formulas in temporal
logic can be evaluated on the smaller base state machine equivalently. In practice, this
method is not feasible for protocols with complex structure. First, discovery of the corre-
spondence relation between two structures relies on unrealistic human ingenuity. Second,
construction of the global state diagram of the base machine may be a difficult procedure

itself.

Recent work [13] suggests the use of partial-order relations between processes to
form an invariant process. A process is invariant if the composition of the invariant pro-
cess with a new process is less than or equal to the invariant. This method has great poten-



tials but the construction of the invariant process in [13] is not automated and requires

considerable ingenuity, which is unrealistic for complex protocols.
3.0 Full-Map Directory-Based Cache Coherence Protocol

Although many protocols have been proposed [1, 3, 23], we consider Censier and
Feautrier’s write-invalidate full-map directory protocol [6] to illustrate the approach.
Every memory block is associated with a vector of presence bits, each of which indicates
whether or not a cache has a copy of the block. When an invalidation occurs, invalida-
tions are only sent to caches with their presence bits set.

base machine
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FIGURE 1. Architecture of a Directory-Based Coherence Protocol

The architecture, illustrated in Figure 1, consists of a central directory and many
processor-cache connections. Each processor is associated with one message sending
channel (CH-) and one message receiving channel (CH+) to model the message flow
between caches and main memory. In order to model the effect of memory event ordering,
there is no restriction on the order in which messages are delivered, that is, messages may
be received and consumed in an order different from the one in which they are issued.
Each directory entry consists of a full-map presence bit vector and of an extra dirty bit
indicating whether or not a dirty copy exists. Also, when a request being granted is in
progress, the corresponding directory entry is locked, and is released when the coherent

event is complete [18].

3.1 Cache States and Memory Commands

Caches can be in one of three states: Invalid, Shared (clean and potentially shared
with other caches), and Owner (modified and only cached copy)l. Additionally, three tran-



sient states are required to model pending cache events in progress. They are read-miss-
pending(RMP), write-miss-pending(WMP) and write-hit-pending(WHP). RMP and WMP
should be clear, and WHP corresponds to the case that the local processor writes to a local
clean copy and must invalidate remote copies first. For the rest of this paper, we also write

I, § and O for Invalid, Shared and Owner to simplify the notations.

Caches and memory interact by two sets of memory-to-cache and cache-to-mem-
ory commands as summarized in Table 1. The ‘Reject’ message means that a request is
aborted because a locked (busy) directory entry and must be retried. Alternatively the
request could be queued at the memory module; this alternative can be easily modeled in
the state expansion process by simply keeping the requests in the sending channels;
requests are consumed only when the directory entry is free however.

TABLE 1. Memory Commands.
Type Command Functions
Inv Invalidate.
Memory UpdM Request to update main memory copy. Receiving
To cache must be an Owner and changes to Shared
state.
Cache(Z,) . .
Ownership  Ownership is transferred on the cache.
Data A data copy is supplied on the cache’s request.
Reject Indicates that the request is rejected because of a
locked directory entry.
7 ReqSC chu::st a Shared copy.
Cache ReqO Request Ownership.
To ReqOC Request Ownership and data copy.
Memory(Z;) | DxM Owner cache updates main memory and relin-

quishes ownership on request. Owner cache trans-
fers to Shared state.

DOxM Upon receiving an invalidation or being replaced,
Owner updates main memory, relinquishes owner-
ship and invalidates itself.

Repl Cache in Shared state executes a regular replace-
ment.
TAck Acknowledge invalidation.

3.2 Cache Algorithm

The descriptions of the cache algorithm, given in Figure 2, is inspired by Hoare’s
CSP language [10], whose features are now briefly described. Indexed processes Proc,

1. Since not much implementation effort has ever been published in the literature, the protocol in this paper
is only an empirical design. However, its descriptions follows general perceptions [6, 7, 18, 22].



Cache, Replacement, SCH, RCH, and Memory cooperatively specify the behavior of
the protocol. A repetitive execution, indicated by a leading asterisk, represents as many
iterations as possible of its constituent statements. The selection of execution is specified
by an alternative command [G; — S; [] Gy, = S» [] ... [] G,, = S,)], where G; is a ‘guard’
boolean expression and S; is a set of ‘guarded’ statements. The process chooses and exe-
cutes an arbitrary S; for which G; holds. Communication between two processes is by two
input and output commands: P/x outputs a message x to process P, and 07y inputs a mes-
sage from process O and saves the message in variable y. Two processes can communicate
whenever their input and output commands match.



I: Proc;:: *[ Cache!(’R’, addr, @); Cache7data [| Cache ! ("W', addr, data); Cache;Twait |

2:  Cache;::*| Proc;)(op, a, d); /* memory access requests from processor */

EE blk.no:=BlockNo(a): /* the block contains location a */

4: [op="R* =

5: [ Cache;st[blk.no]=0 v Cache;.st[blk.no}=S — Proc;!Cache.m[a] /* read hit ¥/

6: [] Cache;.st[blk.no]=/ — Cache;.st[blk.no]:=RMP; Replacement;!’ jumpstart’;

7: SCH('ReqSC’, blk); /* read miss */

8: ]

9: [lop="W" —=

10: [ Cache;st[blk.no]=0 — Cache;.m[a]:=d; Proc;!"done’; /* write hit on Owner copy */
11: [l Cache;.st[blk.no}=§ — Cache;.st[blk.no]:=WHP; SCH)('ReqO’, blk); /* on Shared copy */
12: [1 Cache;.st[blk.no]=/ — Cache;.st[blk.no]:=WMP; Replacement;!’jumpstart’;

SCH(’ReqOC’, blk); /* write miss */
]
]
[1 RCH;Xrmsg, blk); /* receive messages from receiving channel */
[ rmsg="Inv’ —
[ Cache;.st[blk.no]=S — Cache;.st[blk.no]:=l; SCH!('IAck’, blk); /* ack. an invalidation */
[] Cache;.st[blk.no]=0 — Cache;.st[blk.no]:=I; blk.data:=Cache;.m[blk.no];

P et e et

20: SCH('DOxM’, blk); /* ack. by data & ownership */

21 ]

22 [1rmsg="UpdM* — Cache;.st[blk.no}=0 — Cache;.st[blk.no]:=S; blk.data:=Cache;.m[blk.noJ;
23: SCH;}("DxM’, blk); /* update memory */

24: [] rmsg="Ownership’ — Cache;.st|blk.no]=WHP — Cache;.st[blk.no]:=0;

25: Cache;.m[a]:=d; Proc;!"done’;

26: [] rmsg="Data’ — [ Cache;.st[blk.no]=RMP — Cache;.st[blk.no]:=S; Cache;.m[blk.no]:=blk.data;
2% Proc;!C;.m[a];

28: [] Cache;.st[blk.no]=WMP — Cache;st[blk.no]:=0; Cache;.m[blk.no]:=blk.data;
29: Cache;.m[a]:=d; Proc;!’done’;

30: 1

31: [) rmsg="Reject’ = [ Cache;.st[blk.no]=RMP — SCH}('ReqSC’, blk); /* re-send the request */
32: [] Cache;.st[blk.no]=WMP — SCH;!('ReqOC", blk);

33: [] Cache;.st[blk.no]=WHP — SCH('ReqO’, blk);

34: ]

35: ]

36: ]

37: Replacement;: | Cache?start; eblk.no:=Evict(); /* replacement */

38: [ Cache;st[eblk.no]=0 — Cache;st[eblk.no]:=I; eblk.data:=Cache;.m[eblk.no]

39: SCH('DOxM’, eblk); /* write back and release ownership */

40: [J Cache;.st[eblk.no]=S — Cache;.st[eblk.no]:=I; SCH;!('Repl’, cblk);

41: ]

42: |

43: SCH ;::*[ Cache;(smsg, sblk); InsertSCH;(smsg, sblk); /* recording messages sent by cache */

44: [] —EmptySCH; — GetSCH;(smsg, sblk); /* get the message emerging from the channel */

45: Memory\(smsg, sblk); /* propagating messages to memory™*/

46: ]

47: RCH;::*| Memory(rmsg, rblk); InsertRCH;(rmsg, rblk); /* recording messages sent by memory */

48: [) —=EmptyRCH; — GetRCH;(rmsg, rblk); /* get the message emerging from the channel*/

49: Cache(rmsg, tblk); /* propagating-messages to cache */

50: ] =4

FIGURE 2. Cache Algorithm.



51:
52:
53:
54:
55:
56:
57.
58:
59:
60:
61:
62:
63:

65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
17
78:
79:
80:
81:
82:
83:

85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:

Memory ::
*[SCH 2 (cmd, dblk);

[ Memory.st[dblk.no]=free — /* directory entry is free */
[ emd="ReqSC’ —
[ dirtybit=1 — /* an Owner copy exists ¥/
Memory.st[dblk.no]:=XData; reqc:=i;
RCH ...,/ CUpdM’, dblk); /* update memory copy */
[] dirtybit=0 — presencebit[i]:=1; dblk.data:=Memory.m[dblk.no];
RCH('Data’, dblk); /* memory provides the data */
]
[] emd="ReqQ’ v cmd="ReqOC’ —

[ for all (j # i A presencebit[j]=0) — /* no other cached copies exist */
dirtybit:=1;
[ emd="ReqO’ — RCH('Ownership’, dblk);
[] emd="ReqOC" — presencebit[i]:=1; dblk.data:=Memory.m[dblk.no];

RCH!('Data’, dblk);

]

[1 —(for all (j # reqc A presencebit[j]=0)) — /* there exists some cached copies */
reqe:=i;
[ emd="ReqO’ — Memory.st[dblk.no]:=XOwn;
[1 emd="ReqOC" — Memory.st[dblk.no]:=X0OwnC;
]
for all (j # reqe A presencebit[jl=1) RCH;!("Tnv’, dblk);

[1 cmd="Repl’ — presencebit[i]:=0;
[l emd="DOxM’ — presencebit[i]:=0; dirtybit:=0; Memory.m[dblk.no]:=dblk.data;
]
[ =(Memory.st[dblk.no]=free) — /* directory entry is locked */
[ (cmd="ReqSC’ v emd="ReqO’ v cmd="ReqOC") — RCH;!('Reject’, dblk);
[l cmd="DxM’ — dirtybit:=0; /* owner no longer exists */
Memory.m[dblk.no]:=dblk.data; /* update memory copy */
Memory.st[dblk.no}=XData — RCH,,. !('Data’, dblk); /* supplies data *]
presencebit[reqe]:=1; reqe:=null; /* requesting cache is reset */
Memory.st[dblk.no]:=free;
(] cmd="DOxM’ — dirtybit:=0; Memory.m[dblk.no]:=dblk.data; /* update memory copy */
presencebit[i]:=0; presencebit[reqc]:=1; /* Owner invalidated */
[ Memory.st[dblk.no}=XData — RCH,,,!('Data’, dblk); /* supplies data */
[1 Memory.st[dblk.no]=XOwnC — dirtybit:=1; RCH,“F!(‘Dala'. dblk);
]
reqe:=null; Memory.st:=[ree;
[1 emd="Repl” — presencebit[i]:=0;
[] emd="TAck’ — presencebit[i]:=0,
for all (j # reqe A presencebit[j]=0) — /* no other cached copies */
[ [ Memory.st[dblk.no]=XOwn — dirtybit:=1; RCHn.qC!('Ownership’, dblk);
(] Memory.st[dblk.no]=XOwnC — dirtybit:=1; /* new Owner */
dblk.data:=Memory.m[dblk.no};
RCH,,qc!('Dala', dblk);
]
reqe:=null; Memory.st[dblk.no]:=free;
]

FIGURE 2. Cache Algorithm (cont’d).



3.2.1 Processor and Cache Processes

The simple sequential program Proc describes the operation of a processor execut-
ing loads and stores repeatedly and stalled while waiting for the completion of its memory
accesses. The Cache process specifying the activity of the cache controller is a non-termi-
nating loop, each step of which accepts the request from the local processor or consumes a
message from the receiving channel. Generally, a data block is denoted by blk with
address blk.no and with data values blk.data, and its cache (memory directory) state is
Cache.st[blk.no] (Memory.st[blk.no]). The value at location addr in the cache (main)
memory array is Cache.m[addr] (Memory.m[addr]). We also use a unspecified function
BlockNo(addr) which returns the index of the block containing the location addr, and use
the notation Cache.m[blk.no] to represent all the data values in the indexed block.

The cache algorithm is simple. A read hit or a write hit on an Owner copy do not
generate any coherence event. A read miss first changes the local cache state to RMP, and
a request for a Shared copy is sent down the sending channel. A write hit on a Shared copy
initiates a ReqO request and changes the local state to WHP. A write miss requests an
Owner copy with a ReqOC command and the local cache state is WMP. An access miss
also calls for block replacement to make room for the new data block. The replacement
procedure is simple if the cache is in the Shared state: a simple Repl message is sent to the
memory to reset its corresponding presence bit. By contrast, an Owner must write back the
data block as well as relinquish ownership by a DOxM command.

Upon receiving messages, the cache controller responds as follows. For each Inv
request, the cache invalidates its local copy and acknowledges by an JAck; additionally, an
Owner must also write back the block of data to the main memory by a DOxM command.
For each UpdM request received, the Owner responds by a DxM command and retains the
block in Shared state. When ownership is acquired, the cache in the WHP state resumes
the pending write and becomes the new Owner. When the data copy arrives for the cache
in RMP (WMP), the cache obtains a Shared copy (becomes a new Owner). Finally, a
Reject notice forces the cache controller to re-send the previous request.

3.2.2 Channel and Memory Processes

The channels for sending and receiving messages merely behave as communica-
tion mediums between caches and the main memory, propagating messages between them.
Several auxiliary functions such as InsertSCH, and GetSCH should be clear and do not

need further explanation.
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The memory process is more complex. The directory entry for a data block is made
of a presence bit vector (presencebit) and of a dirty bit (dirtybir). The directory entry can
be in one of four states: free, XData, XOwn and XOwnC. A free directory indicates that
there is no request in progress. If not free, the directory entry is locked because a request is
pending for the block; locking of the entry is needed to maintain a critical section on each
memory block. States XData and XOwn record a pending request for a Shared copy and
for ownership transfer (ReqO) respectively. (The XOwnC state is similar to XOwn except
that a data copy is sent along with the ownership right.) The identifier of the requesting
cache is kept in variable regc.

The detailed descriptions of memory behavior is given in Figure 2. What is impor-
tant is that there is no explicit acknowledgment by caches to release a locked entry in this
design [7, 22]. Also, when there is no cached Owner copy, the main memory responds
immediately to requests for Shared copies by providing its own data without locking the
directory entry [1, 6, 23]. This aggressive design that allows multiple readers and an
exclusive writer is important in reality for performance reasons, although it certainly
exposes the protocol to the potential danger of race among messages. Ideally, handshake
messages between caches and memory should be reduced to the extent that they guarantee
a correct design, that is, the system should run at full speed and resolve race conditions
when they occur, at the expense of more complex protocol controls. To design such com-
plex protocols, verification techniques at different level of the protocol design are needed.

4 .0 Correctness Issues of the Protocol

4.1 Data Consistency

A cache coherence protocol must enforce consistency between multiple data cop-
ies. In systems where writes are not atomic, data consistency is typically enforced by
allowing one and only one update in progress at any time. As a result, concurrent accesses
can be executed on different data copies but will appear to have executed atomically in
some sequential order. The cache protocol must always return the latest value on each
load. We formulate this condition within the framework of the reachability expansion as
follows [19].

Definition 1. (Data Consistency) With respect to a particular memory location, the
protocol preserves data consistency if and only if the following condition is always true
during the reachability analysis: the family of global states originated from G’, including
G’ itself, consistently observe the value written by a STORE transition T which brings a



global state G to G’ or the value written by STORE transitions after t. That is, states

reached by expanding G’ are not allowed to access the old value defined before 1.

4.2 Unspecified Message Reception

Unspecified message reception is caused by incomplete specification of the proto-
col. This type of flaw is very likely to happen at the early design stages because of unfore-
seen interleaving of memory events. Therefore, it often favors verification methodologies
that help synthesize and verify the protocol incrementally. This also explains why a logic
proof is not suitable: A proof of an incorrect protocol is nothing more an existence evi-
dence than a constructive expostulation. On the other hand, a state machine model is able
to show the path leading to the erroneous state. The detection procedure for unspecified
message reception is simple and is directly tied to the structure of the reachability graph.
An unspecified message reception is detected when a state receives messages that are not
specified in the protocol specification.

4.3 Deadlock and Livelock

The detection of deadiocks and livelocks are the most challenging errors to detect.
Within the framework of reachability analysis, deadlock means that the protocol enters a
state without pessible exits; for example, some processor is permanently blocked from
accessing a given memory block. A livelock is a situation where processes interacting in
the protocol could theoretically make progress but, because of a fortuitous timing of
events they circle around a loop of states without making progress. In directory schemes,
the livelock problem is likely to happen because the directory entry may be locked and
requests must be rejected at times. A careless design may result in the directory locked
permanently, and consequently no access to the given memory block can proceed.

5.0 Symbolic State Model

The state expansion algorithm in this paper is an extension of our earlier work[19].
For the paper to be self-contained, we repeat the needed concepts here, together with
appropriate extensions.

5.1 Protocol Model

Given the architecture and protocol model of Figures 1 and 2, we now formally
define the constituent finite-state machines. Following the conventions in [12, 24], mes-

sage transmission is represented by a negative sign, and message reception by a plus sign.



Definition 2. (Receiving Channel) The receiving channel machine recording received
messages in transit to the cache has structure RCAM=(Q, £, Xm-, 81, Xc+, 82,), where

Q- state symbols,

2 : set of memory-to-cache commands(Table 1),

801, Xm-XQ,—Q, Xm-e€ X, (recording commands sent by memory),
82; QXX —QXXc+, Xc+e 2, (signals to cache controller),

Xm- and Xc+ are the messages issued by the memory and consumed by the cache
respectively.

Definition 3. (Sending Channel) The sending channel recording the messages issued by
the cache and in transit to memory has structure SChM=(Q, X, Xc-, 81, Xm+, 82,), where

Q,: state symbols,
X set of cache-to-memory commands (Table 1),

01; Xc- X Q— Q, Xc-eZ_ ,(recording messages sent by cache),
82; Q. X L o QXXm+, Xm+e X, (signaling memory controller),

Xe- and Xm+ represent the messages issued by the cache and consumed by the memory
respectively.

At each state expansion step, a receiving (sending) channel may record the com-
mand sent by the memory (cache), or may propagate a command to the corresponding
cache (the memory).

Definition 4. (Cache Machine) The state machine characterizing the cache behavior has
structure CM=(Q, X, X, Xc+, 81, Xc-, 82,), where

Q,: cache state symbols,

X, X commands as defined in definitions 2 and 3,

01, Xc+XQ — QX (DuUXc-), Xc+e L,Xc-e X,
d2. QXX —>QXX¢-, Xe-€Z,

Xe+ and Xc- are the messages consumed and produced by the cache respectively.

The behavior of the cache controller is given in definition 4. Upon receiving a mes-
sage, a cache controller may or may not respond by generating outgoing messages accord-
ing to 81, Also, the cache may issue requests, for instance, for a shared copy, which is
described by 82_ Finally, we have the definitions for the main memory and for the global

states as follows.



Definition 5. (Memory-Directory) The main memory machine keeping the directory has

structure MM=(Q,,, Z,, X, Xm+, 8,,, Xm-), where

m
Qm: memaory state symbo[s,

X, X messages as defined in definitions 2 and 3,
O, Xmt X Q, > QX (BUXm), Xm+ce 2,Xm-€ X,

Xm+ and Xm- are the caches-to-memory and memory-to-caches commands respectively.

Definition 6. (Base Machine) The base machine is a composition of the cache machine
and its two corresponding channel machines, that is, BM;=(CM; # RCAM; # SChM).

Definition 7. (Protocol Machine) The protocol machine is defined as a composition of all
base machines and of the memory machine, that is, PM=(BM,; # BM, # ........ # BM, # MM)
for a system with n caches.

The memory controller consumes the messages from the cache and responds
according to the given block state and the message type. A pictorial illustration of the base
machine and the protocol machine is given in Figure 1. Finally, the state of the protocol
machine is also referred to global state in this paper.

5.2 Equivalence Relations and State Pruning

Since all base machines are characterized by the same finite state process, we can
map global states to more abstract states, regardless of the number of base machines in a
particular state by the following set of repetition operators. (For a more detailed justifica-
tion see [19].)2

Definition 8. (Repetition Operator)

1. The Singleton (q] ) states that there is one and only one BM in state q € Q$M3- This

operator can be omitted.

2. The Positive or Plus-operator (g*) indicates that at least one BM is in state q
€ Qpar
3. The Star-operator (q*) extends the plus-operator by including the case of null

g * "
instance. q means that none or some BMs are in state ¢ € Qgay.

2. NOTE TO THE REVIEWER (will be removed from manuscript): Technical report [19] can be accessed
through anonymous ftp from “usc.edu”, directory “pub/CENG”, file “CENG-92-20.ps.Z”.

3. Qgarand Qpqrdenote the set of state symbols for the base machine and the protocol machine, respec-
tively.

14



In a composite system state, base machines in the same state are grouped into a

state class and specified by one of the above repetition operators as follows.

Definition 9. (Composite State) A composite state represents the state of the protocol
machine for a system with an arbitrary number of cache entities. It is constructed over
state classes of the form (g, a7, ..., 4. 4a) » Where n=]Qga is all the possible state that a
base machine can stay, q; € Qgay, r; €10, 1, +, *1* and qppms € Q, IS the memory machine
state.

Repetition operators can be ordered by the possible states they specify. The result-
ing order is 1 <+ < *, and we also write ql <q*< q* where ¢ € Q The null instance can be
ordered with respect to *, i.e., 0 < *. We say that q"* is weaker than ¢'* if r; < r,, where ¢
eQandr;, rpe [1,+ *].

Definition 10. (Containment) We say that composite state S, contains composite state Sy,
orS = SZ, if

r r r Ty
Vg'e S, dq’eS,—>q'<qtier Sryandqamn = dapp
where rl, r2 are repetition operators.

An interesting consequence of containment is that if §; € S5 and if §; is not per-
missible then S, is also not permissible. §; could thus be discarded during the verification
process provided we keep Sy. We will show that the expansion process based on expansion
rules in Section 5.3 is a monotonic operator on the set of composite states S, that is, if §; C
S5, then 1(S;) = T(S5), or T(S;) < S, where the operator T is a memory event. As the expan-
sion process progresses, new composite states are created. A new state is discarded if it is
contained in a visited state. Similarly all visited states contained in a new state are dis-
carded. At the end of the expansion process all visited states are essential states.

Definition 11. (Essential State) Composite state S is essential if and only if there does not
exist a composite state S such that S  S.

The state space at the end of the expansion process is simply decomposed into sev-
eral families of states (which may be overlapping) represented by essential composite

states.

4. The operator 0 means “null instance” and is added for completeness.
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5.3 Rules and Algorithm for the Expansion Process

The set of applicable operations to composite state in the state generation process
is defined as follows, where */” signifies “or” selection.

Ay + 1/+/*
J=q

1. Aggregation: (¢°,¢)=q'.(¢".q)=q . (q.q ,and (¢%, ¢""*")=q", where g
€ Qgap Aggregation rules are equivalence rules between composite states obtained by

merging base machine states.

2. Coincident Transition: ¢;" = qzr , where r €[ 1, +, *] and T is an observed transition.
For instance, the memory directory sends an invalidation signal to each of caches with
a valid copy.

3. One-step Transition: ¢; —' g, and ¢;*"* =" (¢, g3 ), where ¢ is a transition applied to
the base machine in state ¢; such that g; —' g, and ¢ causes all other base machines in
q; to move to state g3.

4. N-steps Transitions: This rule specifies the repetitive application of the same transition
N times, where N is an arbitrary positive integer.

0. a;%) =" (0. a2, 4" ) =" (0. 42 ") ~'. =1 (Q, 42, q1"). Tt states that the same
transition ¢ can be applied infinitely many times as long as there are base machines in
state g7 and gy —' g, Every application of the transition brings down the number of
base machines in state ¢; by one and increases the number of base machines in state g5.

The transition ¢ has no effect on other machines (denoted by Q in the tuple).

5. Progress Transitions: Two additional dual rules with similar interpretations as N-steps
transitions are required for the progress of the expansion process.

(a). (0, q *) = .. SN0, Q'o*, q 0), if te {Inv, IAck} and q,“"*e Q before any fire of ¢
1 2 1 2
starts and

®). (0, q;7) = ... > (0, 45", q;"), otherwise.

A good way to explain the dual progress rules is by examples. Consider the trivial
case in which a pending write can be resumed only after all other cached copies have been
successfully invalidated. In terms of the expansion process, this means that the number of
base machines with a valid data copy must eventually reach zero so that the expansion
process can make progress. Therefore, we have rule (a). Rule (b) is introduced to guaran-
tee that the expansion process retains the monotonicity property. We also notice that the
final step of rule (a) may result in changes (0) for base machines in Q. This covers, for
example, the case where the memory has received all required /Ack messages and
responds to the cache in the write pending state.
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During the state expansion process, the next state is produced by stimulating the
current state, by exploring all possible cache transactions and by repeatedly applying the

above rules. First, we prove, as promised, the monotonicity of the expansion process.

Lemma 1 The immediate successor Sy originated from state

i+1

_ N ry rioq =1 r r"
S] = (4’13512:---,'9’,'_1JQ; :q;'.,.l:'-':qn:qg[ﬂ[])

is contained by state S, originated from state

_ T I T 1+ Tia Py
S, = (41,47 - 414 s dis 1 o Dn> Daa)

ifrj= Fj for all j#1i, the same event t € (£\UZ) is applied to S; and Sy and qamn = qame

Proof: The proof is direct for the case that the event ¢ is applied to base machines
in state g;, where j # i. We only need to consider the effect of applying ¢ to base machines
in state g; in S; and S». There are three cases.

(a). t € X, indicates that the cache receives a memory-to-cache command. This case is triv-
ial because we know g; < qj””*, provided g; —' g;.
(b). t € X is a request by the cache. Asin case (a), g; < quM* after the transition, provided
q; ' gj.
(c). t € I and the expansion step is taken by the memory that responds to a cache-to-mem-
ory command. The same arguments can be made as above except that a little care is
needed for the case that ¢ is an invalidation acknowledgment because, if machines in class
g; are the last ones with valid copies to prevent the progress of a pending write, the write
will complete after the receptions of JAck from machines in g;. In such a case, we have the
following transition, by applying ¢ to §;:
S;=(01, @i, Game) =" S1=(Q1", 4> Gamer)
and, the following transitions by applying f to S»:
(1). $=(02, 4i» Gamed) =" S2=(02’, 4> damez)
* T ? »
(2). $2=(02, 4", Game) ' Q2,4 - ;" dame) =" S2=(02, @, 4i*, dame2)
* * * _— 3 * ¥
(3). $5=(02, 4 » Gamd) ' Q2. Gi > Gj » damd) = S2=(02, a°. 4 » Ga2)
where Q;, 0 denotes all other irrelevant base machines in the tuples, and Q; < 05 by the
lemma statement. Clearly, (2) and (3) are the results of applying the progress rules and it

may need two expansion steps to end up in a state S, containing S;. Also, needless to say,
Qo Must be equal to gamp’ such that the memory directory is free. Finally, ;" < Q5.

From (a), (b), and (c), we can thus conclude that §; = S;.
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Lemma 2 The claims S; € Sy or S; € S5 hold if S) < S5, that is, rj < 1; for all j and
dama=9damie:

Proof: The result extends the conclusion of lemma 1 and the proof is similar. Let’s
consider that the transition ¢ is applied to base machines in state class g;. Only the special
cases $;=(Q, ¢;*, Gamer) and S2=(Q, ¢;" » Gagmy) dealing with the progress rules need to be
justified. The result of applying the transition ¢ such that g; —' gjis

(1). $;=(0, 4i*, Game) = S1=Q. 4" 4, Gamer), and

). =0, 4", dompe) ="' 5=(0. 4; 4", dape), o

B3). $=(0, 4"+ Gome) —' 5=’ q°, qj*, Gaage )» Dy the progress rule (a).
By (1) and (2), it is clear that §; = S,. By (1) and (3), we know that §; < S, because the
antecedent for applying the progress rule (a) is that qj+/* must exist in Q already, and

therefore, S; < S,. In either case, the successive states obtained by expanding S; will be

contained by states obtained by expanding Ss.

By a recursive induction from lemma 2, we can show that the expansion process

based on the symbolic structure is monotonous.

Corollary 1If S; C S», then for every S; reachable from S there exists S, reachable from
Sz such that E} ;32.

The preceding results suggest a very efficient expansion process to obtain essential
states as shown in Figure 3. Two lists keep track of non-expanded and visited states. At
each step, a new state is produced by expanding the current state, and then a pruning pro-
cess justified by the monotonicity property removes contained states. The final output
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reported in list H is the set of essential states. All possible states are included in the

reported essential states [19].

Algorithm: essential states generation.

W: list of working composite states.
H: list of visited composite states.(output:essential states)

while (W is not empty) do
begin
get current state A from W.
for all cache state classve A
for all applicable operations T on v
ASTA
forany state Pe Wand Qe H
if (A’ CgPor A cyQor A’ crA)
then discard A’.
else begin
remove P from Wif P c, A’
remove Q fromHif Q C#A’.
add A’ to W.
if (A c4#A’) then discard A and terminate
all FOR loops starting a new run.

end
end
end
end
insert A to H if A is fully expanded and is not contained.
end.

FIGURE 3. Algorithm for Generating Essential States.

6 .0 Some Errors Found During Verification

In this section, we describe some representative errors found in the verification
process of the protocol of Figure 2. For the sake of simplifying the description of these
errors, let’s consider a system with three processors, Py, Pp and P3. A illustrative sequence

of expansion steps showing possible flaws is listed in the Appendix.
6.1 Data Inconsistency

The algorithm given in Figure 2 will end up with data inconsistency conditions in
the following case. Initially, P; has a clean shared copy, and the following steps are then
taken.



1. Py evicts its copy and issues a Repl to the memory.

2. At some later time, Py has a read miss to the replaced block and issues a RegSC to the

memory.

3. Both commands Repl and ReqSC are in transit. The memory receives the RegSC

request first and responds by supplying its data copy.

4. Next, the memory receives the Repl and reset the corresponding presence bit for Py.

5. Py receives the data copy in Shared state; however, its presence bit was reset in the
memory directory. As a result, when Py modifies the block, P;’s copy is not invalidated

and an inconsistency can be detected in P;’s cache.

This bug and many other similar bugs found are caused by the simple design that
the memory does not do any check on the presence bits when the ReqSC request is
received as shown in line 58 of Figure 2. As a matter of fact, many other flaws of the same
kind prove that the state of the presence bit defines a very strong antecedent condition for
a cache request being legal. For example, when the memory receives a ReqO request, the
presence bit for the requesting cache must be set. This strong connection between state of
the presence bit and the cache request should be an essential support for a correct design,

but it does not suffice.

6.2 Unspecified Reception

In the cache algorithm’s simplest form, many unspecified message reception flaws

were found as in Table 2.

TABLE 2. Unexpected Receptions.

cmd\state I RMP | WMP | WHP
Inv X X X X
UpdM X X X

Rather than list the sequences leading to them all, a typical example to illustrate
this problem is shown below. Initially, P{, Py and P3 have a shared copy.

1. Py evicts its copy, turns its state to /nvalid, and a Repl to the memory is sent.

2. P53 attempts to modify its copy and a ReqO is sent after its local state has changed to

WHP.

3. When the memory receives the ReqO from P3, invalidations are sent to Py and P5.




4. Py, in the Invalid state, thus receives an invalidation request, which is an unspecified
transition in the algorithm of Figure 2.

An intuitive way to resolve this bug is to have P, ignore the invalidation request
because P; can expect that the Rep/ command sent before will serve the same purpose.
Unfortunately, this simple resolution may lead the system to a livelock condition as shown
next.

6.3 Livelock

Following the example of the previous section, assume that a Rep/ command has
been issued by P and is in transit, an invalidation request is heading to P, and the direc-
tory entry is locked by the request from Ps.

Suppose P, receives the invalidation and acknowledges the memory first, the Repl
from P; then arrives some time later. At this stage, no cached copies (except P3) exist, but
the system is livelocked. This bug is caused by the fact that when the memory receives a
replacement request, it only resets the corresponding presence bit as shown in line 91 of
Figure 2. Therefore, if the last cached copy is evicted by a replacement, the system cannot
make progress even though all cached copies are cleaned.

6.4 Difficulties in Obtaining a Correct Design

The major difficulty of making a correct protocol design is the fact that there are
many unforeseen interleaving of memory events. Races among messages make the dis-
covery of random protocol flaws possible. Sometimes, the resolution of one flaw may pro-
duce other problems as we show below.

Initially, both processors P and Py have a shared copy and request ownership
(ReqO) independently. Suppose that the memory receives the request from P, first, sends
an invalidation to Py, and locks the directory entry. Next, processor P; in WHP state
receives the invalidation unexpectedly. If P ignores the invalidation request, the directory
entry will be locked by P, permanently. On the other hand, if P; responds by an JAck, a
race between the JAck and the previously sent ReqO begins. If the JAck message arrives at
the memory first, the memory unlocks the directory entry and resumes the request from
P,. When the ReqO request from P; arrives, the corresponding presence bit for Py has
been reset and the ReqO command is not appropriate any more. This bug can be resolved,
as commented before, by using the presence bit state as an antecedent condition, so that
the memory rejects the request and force P| to make a new request. However, this does not

suffice to a correct design.
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Next, let’s consider an initial configuration such that Py is an owner and P, issues a
ReqOC because of a write miss. When the memory receives the request from P, an inval-
idation is sent to Py. Before the invalidation arrives at Py, which evicts the target block and
a DOxM message is sent to the memory. Henceforth, a problem of ambiguity occurs: the
DOxM command sent to the memory can be a result of owner replacement, or a result of
response to an invalidation request. If the memory treats both cases as the same, the inval-
idation previously sent to Py can cause further problems. Although it is always possible to
introduce more message types to avoid such ambiguities, the protocol structure will get

more and more complex and will increase implementation costs.

7 .0 Conclusion and Prospects

In this paper, we have investigated the application of a new verification technique
to a directory-based cache coherence protocol at a low implementation level. The verifica-
tion technique is very promising. All listed errors are found in a few tens or houndreds
state visits, in a few seconds of computation time. What is important is that the verification
procedure allows us to fix protocol flaws and re-run the procedure quickly. It results in a
fast design process.

The protocol structure is basically simple; however, it does have overwhelming
complexities when the implementation details are taken into account. After we con-
structed a formal model for the cache algorithm, several unexpected flaws were found,
most of them caused by unforeseen interleavings of memory events. Our results suggest
that there should exist a strong antecedent and consequent relation between the presence
bits at the memory directory and the cache requests. Also, we believe that the protocol
should be designed with a minimum number of messages exchanged in order to have good
performance. Mechanisms that synchronize the cache state and the memory state explic-
itly are only required when the protocol control is under the threat of entering an errone-

ous state.

Although there is no further concrete evidence guiding the protocol designers to
design a error-free protocol, it is vital to understand the possible sources of protocol flaws.
We are planning to further apply our methodology to the protocol of Figure 2 to provide

guidelines for designing correct and efficient directory-based protocols in the future.
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Appendix An illustrative sequence of state expansion steps.

In this appendix, we show a path taken by the state expansion process and com-
ment on possibly observed design flaws in the raw design. We use the notation ;‘?CE to rep-
resent the state of base machine including cache state C, states of receiving channel R and
sending channel S. Superscript p denotes the status of corresponding presence bit at main
memory and superscript r is the repetition operator. Then, a global state groups base
machines and the memory state in a tuple as in definition 9. Finally, the owner cache (from
the perspective of main memory) is bold-faced; and the cache with granted request in

progress is ifalicized.

S1: (Initial state) (gl¢ , free) -> glg write miss ->
0* 0 + 0, * «
S2; (¢I¢ . ¢WMPRerC, free) -> ¢I¢ read miss ->

S3: (gl¢, oR chsc’ gWMP;BqOC, free) -> memory receives ReqOC from

+
gw M PRerC 7

S4: (JTy. SRMPh scr pataWMPy, ¢WMPp, o, free) -> memory receives ReqSC

from ORMPchSC
ss: (%, °RMP;, Opmp 'wMP, , ‘WMP, XData) -> memo
' (¢ (04 fb ReqSC’ o] ¢* Data, UpdM 0 O ReqOC? 4

receives ReqOC from gWM PRerC ->

Note that the (presumed owner) cache in WMP state can receive UpdM

request unexpectedly.

0* 0 . 0 1 0 *
Seé: (¢I¢' ¢RMPReqSC’ ¢RMP¢' Data, UdeVVIwP ¢WMPchOC’ Re]ecSWMP

XData) -> Memory receives ReqSC from gRM P;chC ->

S7: (01 ‘RMP;

0 1
ReqSC”? ReJectRMP¢‘ ¢RMP¢’ Dala,UdeWMPlb’ 0\NNIpRr:.qOC’

¢ 0

R cjechMPtb , XData) -> presumed owner in WMP state receives Data ->
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. 0% 0 * 0 *
88: (4ly» RMPy. ccr ReiecRMPy,

0

SWMP, .

1
RMPQ Upd\loé’ WMPRLqOC Reject

XData) -> owner cache performs replacement ->

L0k 0 £ 1 *
S9: (q')IQ) ’ RMPchSC’ chcclRMP¢ ? ¢RMP¢' ? UdeIDO.\‘M g SWMPchOC ’
ReJmWM Pd: , XData) -> memory receive DOxM from Up dMIDOxM ->

The replacement by owner in S8 may result in the case that cache in Invalid

state ( 5 d]\/iIDO'xM) in S9 receives UpdM command unexpectedly.

* 0 = "
S10: (OI ORMPR ORMPQ Data MP&b’ UdeIQ’ gWMPchOC’ Rejcc(:WMPq:’

eqSC * Reject

free) -> memory receives ReqOC from 0WMPchOC ->

. 0 . 0 * 1 0 *
S1L: (¢I¢ 2 ¢RMPchSC ’ RejcclRMP¢ *  Data, IanMP¢ ? UdeI¢’ gWMPRerC ’
REJeC?WMP gWMP¢, XOwnC) -> write miss occurs at Updhgl¢ ->
o 0 o 1 0 o
S12: (¢ b (b MPReqSC’ RejectRMP¢’ Data, IanMP¢ 7 UdeWMPReq0C’ gWMPRerC 3
Rejcc?WMP gWMPéy XOwnC) > p, o IanMP receiving data ->
Note that cache in WMP state can receive UpdM command unexpectedly.
. 0 * 1 *
S13: (¢ (i ORMPReqSC 8 RejeclRMP¢ ’ InvS¢|’ Updl\gWMPRerC’ gWMPRerC ;
Rejeat WMPy , (WMP,, XOWnC) > 8, evicts the block ->
. 0 b 1 *
S14: (gl¢ ) ReqSC . chectRMP¢’ InvIchl’ Updl\-[zWMpchOC ? gWMPchOC :
0
R chMP¢ ¢WM P,, XOwnC)

As described in section 6.3, if the cache in Invalid state (In\]rIRepl) ignores
the invalidation signal and expect the previously sent Repl to serve the
same purpose, the system will enter a livelocked suitation according to the
algorithm in Figure 2.

26



