Performance Results of The NAS Parallel Benchmarks in SISAL

Hung-Yu Tseng and Jean-Luc Gaudiot

CENG Technical Report 93-42

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-4484

October 1993
Abstract

This report presents the SISAL performance results of a set of benchmarks developed by NASA at Ames Research Center. These benchmarks are derived from large scale computational fluid dynamics applications for performance evaluation of parallel computers. The computers utilized for this experiment are SUN-4, CRAY C90, CRAY YMP, and Sequent Symmetry.
1 Introduction

Competitive performance of SISAL codes with respect to that of FORTRAN codes are reported here. However, it should be noted that most applications used in the experiments are of small sizes. Even though a data structure can be efficient for one isolated module, it may not be so for larger scientific applications such as the CFD applications. Therefore, experiments are still required with more realistic applications.

The NAS parallel benchmarks consist of a set of kernels and three simulated CFD applications. We implemented the benchmarks in SISAL language. In our SISAL implementation, we used the algorithms employed in the FORTRAN codes proposed by the NASA Ames research center in order to compare the performance between the two languages. We conducted the performance evaluation of SISAL using applications with larger datasets, along with an analysis and development of algorithms and data structures particularly suitable for the functional languages.

2 List of benchmarks

The NAS parallel benchmarks[1] include

2.1 The Embarrassingly Parallel Benchmark (EP)

In this benchmark, two dimensionless statistics are accumulated from a large number of Gaussian pseudorandom numbers. It tests the limits for the floating-point performance without much interprocessor communication.

Algorithm:

Produce the pseudorandom floating point \(r_j \) in the interval \((0, 1)\)
\[
a = 5^{13}, r_0 = 271828183, r_{k+1} = a \cdot r_k \mod 2^{46}, \text{ for } 1 \leq j \leq 2n. \\
k = 0 \\
\text{for } j = 1 \text{ to } n \\
x_j = 2r_{2j-1} - 1 \\
y_j = 2r_{2j} - 1 \\
t_j = x_j^2 + y_j^2 \\
\text{if } t_j \leq 1
\]
\[k = k + 1 \]
\[X_k = x_j \sqrt{(-2 \log t_j)/t_j} \]
\[Y_k = y_j \sqrt{(-2 \log t_j)/t_j} \]
end if
end for
Set \(Q_l = 0 \) for \(0 \leq l \leq 9 \)
for \(j = 1 \) to \(k \)
\[p = \text{integer}(\max(|X_j|, |Y_j|)) \]
\[Q_p = Q_p + 1 \]
end for;
Output \(Q_l \), for \(0 \leq l \leq 9 \)
2.2 The Multigrid Benchmark (MG)

In this benchmark, a 3-D Poisson PDE $\nabla^2 u = f$ is solved using the multigrid method.

Grid size

$$\Omega_{2^m} = \{ x_i = i \cdot h, y_j = j \cdot h, z_k = k \cdot h \mid h = \frac{1}{2^m}, i, j, k = 1, \ldots, 2^m - 1 \}$$

Algorithm:

% u,f are 3-D arrays that represent values on the grids.
% The finest grids is Ω_{2^8}
initial f_{2^8}
u$_{2^8} = 0$
repeat 4 times
\[r_{2^8} = f_{2^8} - A(u_{2^8}) \] % evaluate residual
\[u_{2^8} = u_{2^8} + M(r_{2^8}) \] % apply correction
end repeat

% M denotes the V-cycle multigrid operator.
procedure $M(r_{2^k})$
if (k=1)
\[z_{2^1} = S(r_{2^k}) \] % apply smoother
return(z_{2^1})
else
\[r_{2^{k-1}} = P(r_{2^k}) \] % project to coarser grid
\[z_{2^{k-1}} = M(r_{2^{k-1}}) \] % recursive solve
\[z_{2^k} = Q(r_{2^{k-1}}) \] % interpolate to finer grid
\[r_{2^k} = r_{2^k} - A(z_{2^k}) \] % evaluate residual
\[z_{2^k} = z_{2^k} + S(r_{2^k}) \] % apply smoother
return(z_{2^k})
end if

A, S, P, Q are the operators on the grid points.
2.3 The Conjugate Gradient Benchmark (CG)

In this benchmark, the smallest eigenvalue of a matrix is computed using a conjugate gradient method.

Algorithm
Power method
\(x = [1, \ldots, 1] \)
\(\zeta_2 = \zeta_1 = \zeta = it = 0 \)
Do 15 times
\(it \leftarrow +1 \)
\(\text{Solve the system } Az = x; \)
\(\zeta_2 = \zeta_1 \)
\(\zeta_1 = \zeta \)
\(\zeta = \max_j |z_j| \)
\(x = \zeta^{-1} z \)
Apply Aitken extrapolation \(\zeta' = \zeta - \frac{(\zeta - \zeta_1)^2}{\zeta - 2\zeta_1 + \zeta_2} \)
Print \(\zeta' \)
End do

Conjugate gradient method to solve \(Az = x \)
\(z = 0 \)
\(r = x \)
\(\rho = r^T r \)
\(p = r \)
Do 25 times
\(q = Ap \)
\(\alpha = \frac{\rho}{p^T q} \)
\(z = z + \alpha p \)
\(\rho_0 = \rho \)
\(r = r - \alpha q \)
\(\rho = r^T r \)
\(\beta = \frac{\rho}{\rho_0} \)
\(p = r + \beta p \)
End do
2.4 The 3-D FFT PDE Benchmark (FT)

In this benchmark, a 3-D PDE is solved using FFTs.

Algorithm

1. Generate \(2n_1n_2n_3\) pseudorandom floating point values and fill in the complex array \(U_{i,j,k}, 0 \leq i \leq n_1, 0 \leq j \leq n_2, 0 \leq k \leq n_3\)

2. % 3-D DFT
 Perform an \(n_1\)-point 1D FFT on each of the \(n_2n_3\) complex vectors. Then, transpose into \(n_2 \times n_3 \times n_1\) complex array.
 Perform an \(n_2\)-point 1D FFT on each of the \(n_3n_1\) complex vectors. Then, transpose into \(n_3 \times n_1 \times n_2\) complex array.
 Perform an \(n_3\)-point 1D FFT on each of the \(n_1n_2\) complex vectors. Then, transpose into \(n_1 \times n_2 \times n_3\) complex array.

3. \(\alpha = 10^{-6}, t = 1\)
 \(W_{i,j,k} = e^{-\frac{4\alpha\pi^2(i^2+j^2+k^2)t}{ii}, \text{for } 0 \leq i \leq n_1/2;}
 \(\{j - n_1, \text{for } n_1/2 \leq i \leq n_1.}
 jj, kk \text{ are similarly defined with } n_2 \text{ and } n_3.

4. Perform inverse 3-D DFT

5. Compute the checksum \(\sum_{0}^{1023} X_{r,s,p} \text{ where } r = i(mod\ n_1), s = 3i(mod\ n_2), p = 5i\)

6. Repeat above for \(t = 2, 3, 4, 5, 6\)
2.5 The Integer Sort Benchmark (IS)

In this benchmark, a sorting operation is used.

Algorithm

1. Generate N integer keys (K_1, K_2, \ldots, K_N)

2. for $i = 1$ to 10

 $K_i = i$

 $K_{i+10} = (B_{max} - i) \% B_{max}$ is a constant

 end

3. Compute the rank of each key.

4. Verify the result.
2.6 The CFD - lower-upper diagonal Benchmark (LU)

In this benchmark, a CFD computation is represented as a block lower and upper triangular system and is solved using a symmetric successive over-relaxation method.

1. Initialization
 Set the boundary values of \(U_{i,j,k} \) for \((i,j,k) \in \partial D_h \)
 \(\partial D_h = \{(\xi_i, \eta_j, \zeta_k) : i \in \{1,N_\xi\} \cup \{(\xi_i, \eta_j, \zeta_k) : j \in \{1,N_\eta\} \cup \{(\xi_i, \eta_j, \zeta_k) : k \in \{1,N_\zeta\} \} \)
 Set the initial values of \(U_{i,j,k}^0 \) for \((i,j,k) \in D_h \)
 \(D_h = \{(\xi_i, \eta_j, \zeta_k) : 2 \leq i \leq (N_\xi - 1), 2 \leq j \leq (N_\eta - 1), 2 \leq k \leq (N_\zeta - 1) \} \)
 The mesh widths
 \(h_\xi = 1/(N_\xi - 1) \); \(h_\eta = 1/(N_\eta - 1) \); \(h_{zeta} = 1/(N_{zeta} - 1) \) with \((N_\xi, N_\eta, N_{zeta}) \in N \) being the number of mesh points.
 Compute the forcing function vector, \(H_{i,j,k} \) for \((i,j,k) \in D_h \)

2. Compute the \([RHS]_{i,j,k}^n \) for \((i,j,k) \in D_h \)
 \[RHS = \{ I - \Delta \rho [\frac{\partial (A)^n}{\partial \xi} + \frac{\partial^2 (N)^n}{\partial \xi^2}] \} \times \{ I - \Delta \rho [\frac{\partial (B)^n}{\partial \eta} + \frac{\partial^2 (Q)^n}{\partial \eta^2}] \} \times \{ I - \Delta \rho [\frac{\partial (C)^n}{\partial \zeta} + \frac{\partial^2 (S)^n}{\partial \zeta^2}] \} \Delta U^n \]

3. Form and solve the following systems of linear equations for \([\Delta U_1]_{i,j,k} \) for \((i,j,k) \in D_h \)
 \[I - \Delta \tau [D_\xi (A)^n + D_\eta^2 (N)^n] \Delta U_1 = RHS \]

4. Form and solve the following systems of linear equations for \([\Delta U_2]_{i,j,k} \) for \((i,j,k) \in D_h \)
 \[I - \Delta \tau [D_\eta (B)^n + D_\eta^2 (Q)^n] \Delta U_2 = \Delta U_1 \]

5. Form and solve the following systems of linear equations for \([\Delta U^n]_{i,j,k} \) for \((i,j,k) \in D_h \)
 \[I - \Delta \tau [D_\xi (C)^n + D_\eta^2 (S)^n] \Delta U^n = \Delta U_2 \]

6. Update the solution
 \[[U^{n+1}]_{i,j,k} = [U^n]_{i,j,k} + [\Delta U^n]_{i,j,k} \) for \((i,j,k) \in D_h \)

7. Repeat steps 2-6 200 times

\(A, B, C, N, Q, S, H \) are functions of the synthetic problems.
Steps 2-6 consist of one time-stepping iteration.
2.7 The CFD - scalar penta-diagonal Benchmark (SP)

In this benchmark, a CFD computation is represented as multiple systems of scalar penta-diagonal equations.

1. Initialization
 Set the boundary values of $U_{i,j,k}$ for $(i, j, k) \in \partial D_h$
 Set the initial values of $U^0_{i,j,k}$ for $(i, j, k) \in D_h$
 Compute the forcing function vector, $H_{i,j,k}$ for $(i, j, k) \in D_h$

2. Compute the $[RHS]_{i,j,k}^n$ for $(i, j, k) \in D_h$

3. Perform the matrix-vector multiplication:
 $[\Delta U_1] = (T_t^{-1})^n[RHS]$.

4. Form and solve the following system of linear equations for ΔU_2:
 $\{I - \Delta \tau[D_{Q}(\Lambda)\rho \nabla] + \Delta \tau[e h^4 D^4_{Q}(I)]\}[\Delta U_2] = [\Delta U_1]$

5. Perform the matrix-vector multiplication:
 $[\Delta U_3] = (N^{-1})[\Delta U_2]$.

6. Form and solve the following system of linear equations for ΔU_4:
 $\{I - \Delta \tau[D_n(\Lambda)\rho \nabla] + \Delta \tau[e h^4 D^4_n(I)]\}[\Delta U_4] = [\Delta U_3]$

7. Perform the matrix-vector multiplication:
 $[\Delta U_5] = (P^{-1})[\Delta U_4]$.

8. Form and solve the following system of linear equations for ΔU_6:
 $\{I - \Delta \tau[D_{Q}(\Lambda)\rho \nabla] + \Delta \tau[e h^4 D^4_{Q}(I)]\}[\Delta U_6] = [\Delta U_5]$.

9. Perform the matrix-vector multiplication:

10. Update the solution
 $[U^{n+1}]_{i,j,k} = [U^n]_{i,j,k} + [\Delta U^n]_{i,j,k}$ for $(i, j, k) \in D_h$
2.8 The CFD - block tridiagonal Benchmark (BT)

In this benchmark, a CFD computation is represented as multiple systems of block tridiagonal equations.

1. Initialization
 Set the boundary values of $U_{i,j,k}$ for $(i,j,k) \in \partial D_h$
 Set the initial values of $U^0_{i,j,k}$ for $(i,j,k) \in D_h$
 Compute the forcing function vector, $H_{i,j,k}$ for $(i,j,k) \in D_h$

2. Compute the $[RHS]_{i,j,k}$ for $(i,j,k) \in D_h$

3. Form and solve the following regular, sparse, block lower triangular system to get $[\Delta U_1]$:
 $$(D^n + \omega Y^n)[\Delta U_1] = [RHS].$$

4. Form and solve the following regular, sparse, block upper triangular system to get $[\Delta U^n]$:
 $$(I + \omega (D^n)^{-1} Z^n)[\Delta U^n] = [\Delta U_1].$$

5. Update the solution
 $$U^{n+1} = U^n + [1/\omega (2 - \omega)] \Delta U^n$$
3 Preliminary results

Followings are some of the SISAL results.

<table>
<thead>
<tr>
<th>SUN-4</th>
<th>size</th>
<th>f77</th>
<th>f77 -O</th>
<th>sisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarrassing para.</td>
<td>2^{24}</td>
<td>824.25</td>
<td>805.97</td>
<td>775.13</td>
</tr>
<tr>
<td>Multigrid</td>
<td>32^3</td>
<td>45.08</td>
<td>5.47</td>
<td>9.13</td>
</tr>
<tr>
<td>Conjugate gradient</td>
<td>1400</td>
<td>75.93</td>
<td>37.04</td>
<td>36.15</td>
</tr>
<tr>
<td>3D FFT</td>
<td>64^3</td>
<td>398.26</td>
<td>174.25</td>
<td>209.65</td>
</tr>
<tr>
<td>CFD-sp</td>
<td>12^3</td>
<td>202.01</td>
<td>84.40</td>
<td>112.99</td>
</tr>
</tbody>
</table>

$\textit{f77 -O}$: Most optimization.

<table>
<thead>
<tr>
<th>CRAY YMP-C90 (one processor)</th>
<th>size</th>
<th>f77 -Zv</th>
<th>sisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embarrassing para.</td>
<td>2^{21}</td>
<td>27.28</td>
<td>20.97</td>
</tr>
<tr>
<td>Multigrid</td>
<td>32^3</td>
<td>0.18</td>
<td>1.45</td>
</tr>
</tbody>
</table>

$\textit{CF77 -Zv}$: Resulting program has maximum vectorization. Specifies use of dependence analyzer fpp before compiling and loading.

<table>
<thead>
<tr>
<th>CRAY YMP (one processor)</th>
<th>size</th>
<th>f77 -Zv</th>
<th>sisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D FFT</td>
<td>64^3</td>
<td>11.58</td>
<td>48.77</td>
</tr>
<tr>
<td>CFD-sp</td>
<td>12^3</td>
<td>28.24</td>
<td>50.31</td>
</tr>
</tbody>
</table>

Sequent Balance : SISAL on different number of processors

<table>
<thead>
<tr>
<th>size</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD-sp</td>
<td>12^3</td>
<td>867.86</td>
<td>473.57</td>
<td>289.21</td>
<td>213.71</td>
</tr>
<tr>
<td>FFT</td>
<td>32^3</td>
<td>1184.87</td>
<td>613.43</td>
<td>314.50</td>
<td>167.60</td>
</tr>
</tbody>
</table>

4 Future research

We are still pursuing experiments with larger datasets. We expect that the experiments with larger datasets will show more speed-up. Previous experiments tend to show that the SISAL language is ideal for the in programming
and maintaining of applications for parallel machines because of its implicit parallel semantics. Moreover, our experiments show that, even on a single processor, SISAL codes always perform better than a FORTRAN code that is not fully optimized. With the same effort, applications in SISAL will produce better performance on multiprocessor machines, than those in FORTRAN.

References

5 Appendix

Code examples
Some SISAL codes from the implementation.

- This following code is from the 3-D FFT. It performs the transpose of a vector which is treated as a two dimensional matrix, and executes in parallel.

If x is a n-vectors by C^n, and $n = rc$, then $x_{rx}c$ means the matrix $\in C^{r \times c}$ with row $= r$ and column $= c$, i.e., $[x_{rx}c]_{kj} = x_{jr+k}$.

% Perform the transpose $x_{rx}c$ into $x^T_{rx}c$

function trans(r,c: integer; x: OneD returns OneD)
let
 t2:=
 for j in 0,c-1
 t :=
 for i in 0,r-1
 returns
 array of x[j+i*c]
 end for;
 returns
 value of catenate t
 end for;
in
 array_setl(t2,0)
end let
end function
• It is difficult to express histogram algorithm in parallel using SISAL 1.x. However, partial histogram only for a range can be expressed easily in parallel. For example, the following sisal codes from the EP calculate the partial histogram.

function RamtoL(Ram : DArr returns OneI)
let
 a0,a1,a2,a3,a4,a5,a6,a7:=
 for i in 1, WIDE/2
 :
 elm := (calculation)...
 returns
 value of sum 1 when elm=0
 value of sum 1 when elm=1
 value of sum 1 when elm=2
 value of sum 1 when elm=3
 value of sum 1 when elm=4
 value of sum 1 when elm=5
 value of sum 1 when elm=6
 value of sum 1 when elm>7
end for;
in
 array OneI[1: a0,a1,a2,a3,a4,a5,a6,a7]
end let
end function
The following code is from the CG. It shows that SISAL codes look like the mathematical equations. Also, to write a program in SISAL, it is best to start from the mathematical point of view.

Conjugate gradient method

\[
\begin{align*}
z &= 0 \\
r &= x \\
\rho &= r^T r \\
p &= r \\
\text{Do 25 times} \\
\quad q &= Ap \\
\quad \alpha &= \frac{p^T r}{p^T q} \\
\quad z &= z + \alpha p \\
\quad \rho_0 &= \rho \\
\quad r &= r - \alpha q \\
\quad \rho &= r^T r \\
\quad \beta &= \frac{\rho}{\rho_0} \\
\quad p &= r + \beta p \\
\end{align*}
\]

End do

% a sparse matrix is represented with Ak and Ck.
% Values stores in Ak and the column locations are in Ck.

function cgso1(nit, n: integer; Ak: TwoD; Ck: TwoI; x: OneD
returns OneD, double_real)
for initial
\[
\begin{align*}
z &:= \text{array}_fill(1, n, 0d0) \\
r &:= x \\
\rho &:= \text{ddot}(n, r, r) \\
p &:= x \\
k &:= 1 \\
\end{align*}
\]
while(k \leq nit) repeat
\[
\begin{align*}
k &:= \text{old } k + 1 \\
q &:= \text{matvec}(n, Ak, Ck, \text{old } p) \\
\alpha &:= \text{old } \rho / \text{ddot}(n, \text{old } p, q) \\
z &:= \text{daxpy}(n, \alpha, \text{old } p, \text{old } z) \\
\rho_0 &:= \text{old } \rho \\
\end{align*}
\]

n_alpha := -1d0 * alpha;
r := daxpy(n, n_alpha, q, old r);
rho := ddot(n, r,r);
beta := rho / rho0;
p := daypx(n, beta, r,old p);
returns
value of z
end for
end function

- This code block is to multiply a sparse matrix with a vector.

% matrix × vector

function matvec(n: integer; Ak: TwoD; Ck: TwoI; Xk: OneD returns OneD)
for i in 1, n
 elm :=
 let
 row := Ak[i];
 rowc := Ck[i];
in
 for e in row at k
 s := e*Xk[rowc[k]];
 returns
 value of sum s
 end for
 end let;
returns
array of elm
end for
end function