HISS: A Prototype Program for
Hierarachical Storage Synthesis

Pravil Gupta and Alice Parker

CENG Technical Report 93-07

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, California 90089-2562
(213)740-4476

HISS: A Prototype Program for Hlerarchical Storage Synthesis.*

Abstract

While synthesizing memory-intensive ASICs, data path synthesis procedures must
take into account the design of storage hierarchy. The storage architecture is closely
connected to the data path of the system and synthesizing it separately may not result
in an efficient solution. HISS is a prototype program which combines storage hierar-
chy design with data path synthesis. It uses appropriate system parameters in order
to coordinate between the synthesis of different sub-architectures of the system and
schedules data transfers between them. We synthesized some designs using HISS and

have included the results in this paper.

Topic of Interest : 4.4

*This work was supported by the Defense Advanced Research Projects Agency and monitored by the
Federal Bureau of Investigation under Contract No. JFBI90092. The views and conclusions considered
in this document are those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Delense Advanced Research Projects Agency or the U.S.
Government.

1 Introduction

Data paths for application-specific designs may process enormous amounts of real-time data.
Such data must be stored in memory structures which are cost-effective and allow access
to the data as required by the data paths. Although cost of storage per bit is very low,
the total cost of memory can dominate the overall system cost due to the huge memory
requirements of today’s complex systems. The memory synthesis problem is also important
in applications where the data transfer rate is very high (e.g. real-time applications such
as personal communications). Data path synthesis procedures must take into account the
design of the memory hierarchy which is companion to the datapath; the design of the data

paths and memory hierarchies must somehow be coordinated.

In application-specific systems, knowledge of the application makes it practical to
extract the partially-deterministic data access patterns beforehand. We can prefetch the

data as it is required.

HISS is a program which designs such data paths and the required storage architec-

tures for application-specific integrated circuits (ASICs).

2 Problem statement

HISS works as follows: given the behavior of an application-specific system in the form of a
data flow graph, the module library, hardware constraints, memory bandwidth constraints
and input/output timing constraints, HISS produces a data path (processor) operation sched-
ule, reads and writes for the foreground memory viz. cache and intermediate variables, and

the background memory viz. main memory.

We simplify the overall synthesis problem by dividing it into two subproblems: data
path structure synthesis with a partial design of storage structure, which is performed first,

and storage architecture structure synthesis, where we complete the storage structure. We

further classify the storage architecture in a hierarchical manner consisting of (i) cache, (ii)
main memory, and (iii) data path storage. The cache is designed first and then the main-
memory synthesis follows. Finally, data-path-memory synthesis is performed. We ensure
that each step of the stepwise construction of the system provides enough flexibility for
the next step to make its own tradeoffs; at the same time it supports the synthesis of the
next subpart. Various global design parameters, like the memory bandwidth and timing
constraints are appropriately used to construct the partial design in each step to tie the

whole synthesis process together.

Data path design requires scheduling the data flow graph and then binding the op-
erations to the hardware modules, while taking into account cache bandwidth. In order to
satisfy read/write port constraints on the storage architecture, we schedule the data path
operations and the cache reads and writes simultaneously. Unavailability of the data would
result in a processing delay and unnecessary transfers would result in extra bandwidth and
possibly an increase in the cache size requirements. Therefore, we provide the data to the
data path only when it is required. This can be achieved by scheduling an operation in such
a way that the required data is either present in the cache or can be prefetched from the
main memory. This feature helps us in obtaining a schedule which will support the cache

and main memory design to be done in the subsequent steps.

The four steps in HISS include the synthesis of the memory hierarchy. As mentioned
earlier, this part of the system consists of three subparts: (i) cache, (ii) main memory, and
(iii) data path storage. Synthesis of each part involves scheduling the data transfer and
data value bindings to the physical storage modules. In the second step, we first design the
cache as it is, physically and conceptually, closer to the data path than the main memory.
The data path schedule obtained in the first step (data path scheduling) determines the
data transfer between the data path and the cache. The objective in this second step is to
schedule the writes to the cache from the main memory and the writes back into the main
memory from the cache such that the cache size is minimized. While doing so the memory
bandwidth constraints between the cache and the main memory and the timing constraints

on the inputs are checked for violations. In order to minimize the cache size we transfer the

o

data only if it is required and overwrite it whenever possible. The outcome of this step is
a complete data transfer schedule in and out of the cache. The schedule can also help us
in our third step, which is the determination of the physical architecture of the cache. For
example, if the access is sequential we can use a FIFO or if it is random then we may have
to use a register file or a RAM depending on the size. Once the data transfer from main
memory to the cache is known, we have the read schedule for the main memory. If there are
timing constraints on the input data then even the main memory writes of the input data are
scheduled, otherwise we schedule them the way we schedule the cache writes in the fourth
step. The more important issue here is to allocate main memory locations to the incoming
data efficiently. This may require distributed main memory. The final step, local data path

storage design has been researched in the literature quite extensively and is not complete in

HISS.

3 Related Research

There has been very little work done on the automatic design of memory hierarchies, with
the exception of some European and Canadian activity. The bulk of research on memory
hierarchy design in the United States involves theoretical and probabilistic studies for gen-
eral purpose computer design where the memory access pattern varies from application to
application. Therefore, for these machines the memory design is based on probabilistic mod-
els. On the other hand, HISS will be used for systems designed for specific applications.
In our case, the memory access pattern is not only relatively fixed but also known before
hand. This most deterministic access characteristic helps us in being more specific, hence
more efficient in our designs. This also makes it feasible to automate the design process. An
example of the kind of tradeofl study related to our work is the work by Parker and Nagle

[9] which was performed a number of years ago.

Many researchers have talked about the need for fast, large memories for high-
performance systems. Multi-port RAMs can provide high throughput as simultaneous access

is possible. The MIMOLA system is the first system to make tradeoffs in the use of multi-

port memories [8]. Balakrishnan et.al. [2] presented an approach to use multi-port memories
to implement single isolated registers. This approach “packs” these registers into a homoge-

neous group of modules.

Chen [4] [3] explored the design space for multiport memory synthesis. The memory
modules were generated in sequence which resulted in locally optimal solutions and in some
cases failed to generate the globally optimal solution of minimizing the number of multiport
memories [4]. Later on the work was modified and extended to generate a more globally

optimal solution in [3].

Ahmad and Chen (1] use 0-1 integer-linear programming to group intermediate vari-
ables in the data path into a minimum number of multiport memories depending on their

ports and their access pattern.

Grant et al. suggested an approach to group the memory requirements of various
operators such that control and communications may be optimized [5]. They consider single-
port memory modules. To optimize the communication network between the functional units
and memory, simple heuristics are used, which optimize the write-bus network and read-bus
network. They also optimize the controller by optimizing the control bit sequence. In
an earlier study the same group studied a different aspect of memory synthesis, address

generation [6].

Stok [13] optimizes register files during the synthesis process. It is done by splitting
read and write phases of registers and by considering parallel storage and rewrites of values

that have to be read several times.

Recently Lippens et al. from the Philips Research Labs [7], in PHIDEO, described
techniques to perform automatic memory allocation and address allocation for high speed ap-
plications. They synthesize memory after the design of arithmetic units and after scheduling.
They assume a limited number of memory types available to them (1 and 2 port RAMs) and
so their approach is to distribute the data among parallel memories. They do not distinguish

between background and foreground memory.

[n IMEC’s CATHEDRAL-II, efficient storage schemes and memory access techniques
were implemented by De Man et al. [14]. According to them, efficient storage schemes and
memory access are as crucial as allocation and scheduling of data paths in DSP ASIC design.

They compile multi-dimensional data structures into distributed dual-port register files and

single-port SRAMs.

All the above efforts concentrated on separate aspects of memory synthesis. An overall

approach which addresses the full memory hierarchy has not been reported on.

4 Our approach

The storage architecture is closely connected to the data path of the system, and isolating its
synthesis from data path synthesis may not result in an efficient solution. Therefore, HISS

performs a combined data path and storage architecture design.

5 Target system architecture

As mentioned earlier, the target system produced by HISS consists of a data path (processor)

and a hierarchy of storage modules.

5.1 Data path

The data path consists of functional hardware to execute the data flow (and control flow)
graph which specifies the behavior. The salient attributes, like bitwidth, area, and execution
time, of these functional units are specified in the module library by the user. In our model,
the data path per se does not have any kind of storage capability. All the intermediate

variables are stored in data path memory, which is described later.

ot

Data - Cache
path Memory
“ 3
Data path Main
Memory Memory

Iy

1/0

Figure 1: Target system architecture

5.2 Storage architecture

Using our definition, the memory in a system includes all the storage modules. Each storage
module interacts with a different part of the system. Based on the function and the part of
the data path requiring storage, the memory architecture can be divided into different sub-
architectures, cache, main memory and data path memory which may have similar structures
but may vary in functionality. The overall architecture of the system may be fixed but each
sub-architecture is determined by HISS and may consist of various storage modules and
devices like registers, register files, and RAMs. HISS designs three major memory sub-
architectures in each design, based on their functionality in the system, as shown in Figure

L,

Though this categorization is quite similar to the one used for general purpose com-
puter architectures, their data path and control architectures are clearly different from
application-specific designs, and hence the memory design problem itself differs due to the

special-purpose nature of the hardware being designed.

6

5.2.1 Cache

A cache is a small, but fast memory that can store a part of the overall memory of the
system. From our point of view, cache is that part of memory which interacts with the
processors directly and makes the appropriate data values available at every step. It has
its own controller. The data is transferred to the cache from the main memory before it is
processed and then the cache provides the required distribution system and ports. Similarly,
after processing, the data is stored in this memory before being transferred to the main
memory. At the beginning of each step the required data is loaded onto the cache output
ports. Cache is also used to store data which will be used in future steps. In cases where the
main memory can interface to the data path directly, the cache is made transparent by using
simple wires to replace modules. As the processor reads data from the cache, the controller
adds data to the cache from the main memory. If the operation reads the main memory

sequentially, access latency will be transparent to the system.
5.2.2 Main memory

The purpose of the main memory is to provide large and cheap storage space, the same as in a
general purpose computer. In our designs, the main memory interacts with the I/O interface
and the cache. If main memory must interact with the data path, in our architectural style
the interaction will be considered to be via cache, even if the cache degenerates into a simple
set of wires, when it is not needed. Main memory has its own address generator and controller

and is interfaced to the system via buses along with bus drivers.

5.2.3 Data path memory

Data path memory consists of all the storage elements which are used to store intermediate
values in the data path. It consists of registers and single or multiport register files and may
even contain RAMs if the storage requirements are huge enough. It is distributed throughout

the data path.

6 Step One: Data Path Scheduling Combined with

Memory Synthesis

In this step, HISS schedules the data path with emphasis on storage architecture synthesis.
During this step we take the storage architecture features into account and make sure that
in the following steps when we are actually doing the memory structure synthesis, the data

path schedule supports the chosen storage architecture.

The function which HISS performs in this step is: given the behavior of an application-
specific system in the form of a data flow graph, the module library with hardware con-
straints, and an optional input data timing constraint, schedule the data path meeting all
the hardware constraints. The hardware constraints include the number of various functional
units, the number of read and write ports on the cache memory and the number of read ports

on the main memory available to us in each step.

HISS inserts read or write nodes appropriately into the data flow graph, whenever
an input is read from outside or an output is produced, and then treats them as functional
operators to perform data transfer. HISS uses freedom-based scheduling in this first step
(10] for the prototype but any other scheduling technique which performs scheduling under
hardware constraints can be used. HISS also takes into account the timing constraints on the
input data values, whenever imposed by the external world. Distribution graphs of the read
(write) operations and the data path operations are used to assign them probabilistically
to the most suitable control step to the operation, as in force-directed scheduling [12]. We
also make sure that before an input is to be consumed, it can be prefetched into the cache
from the main memory. This is done by scheduling the input read in such a way that there
is an available slot to transfer that input to the cache before it is consumed. HISS uses the
information on the number of read ports on the main memory to compute the bandwidth
available for data transfer between the main memory and the cache. The actual data transfer
is scheduled in step two. The detailed flowchart of the implemented algorithm is shown in

Figure 2.

o

"The output of this part of HISS consists of an operation schedule, input read from the

cache and output write to the cache schedule, and read/write information for intermediate

variables from/to the data path memory.

i

7.1

At present the prototype produces non-pipelined designs without conditional branches.

Storage Architecture Synthesis

Storage module library

A brief description of the memory modules HISS has in the module library is given in this

section.

[]

Register or latch: The simplest storage element. It can store only one word at a time.

Its bitwidth is variable.

Single-port register file: A register file is a collection of registers with addressing hard-
ware. The number of words it can store at a time is variable and so is the bitwidth of

these words.

Multiport-port register file: Generally, there is only one write port and multiple read
ports. Each read port has an address bus, an output data bus, and a read enable
signal. Similarly, the write port also has an address bus, an input data bus, and a
write enable signal. Simultaneous read from the same location is possible but in case

of multiple write ports, simultaneous write to the same location is prohibited.

FIFO: The FIFO is a first-in, first-out “fall-through” memory. Word and bit dimensions

are user specified.

Single port RAM: RAM modules consider here are assumed to be on-chip. Each module

has a data input bus, address bus, an output enable, and an write enable. The output
P ;

9

Read DFG and module library with functional hardware, storage
hardware and memory bandwidth constraints.

v

Set ASAP and ALAP for the nodes

Y

Insert READ and WRITE nodes.
(READ when an input is read & WRITE when an output is written.)

Any
Node
Unscheduled?

Create a candidate list of unscheduled
nodes based on their freedom.

»*

Select the next most critical
node from the candidate list.

Can input
be
prefetched?

Required
inputs available
in cache?

Is the
node
critical?

Are there
sufficient resources
in allowed steps?

: Increase execution time.
Scheduled the operation Reset ASAP and ALAP.
to the best step.]

Y

Is the
node
critical?

— Reset ASAP and ALAP.
Increase execution time. Adjust exccution time if input Increase ASAP time of the node.
Reset ASAP and ALAP. prefetching is violated. Reset ASAP and ALAP.
l]

I [-
——

Figure 2: Combined data path and memory scheduling algorithm in HISS.

can be standard or tristated. The bitwidth and the number of words per module are

user specified.

e Multi port RAM: Each write port has an address bus, a input data bus, and a write
enable signal. Similarly, each read port has an address bus, data out bus (standard or
tristated), and an output enable bus. Simultaneous reads from the same address are
legal but simultaneous writes to the same address are not allowed. Timing is critical
for the write vs. read operation only when accessing data that is being written in the

current address cycle.

7.2 Memory design tradeoffs

In this section we discuss three different area-time tradeoffs possible in synthesis of each

sub-architecture, including main memory, cache and data path memory.

Time is minimized in HISS by minimizing the number of clock cycles needed for data
management and by scheduling memory accesses so that the processing is not delayed. We
achieve this by allowing the user to provide the appropriate number of ports to HISS and

letting HISS determine the required storage size.

The sizes of the memory modules, the number of ports and the number of cycles

needed for data transfer can be traded off with each other as described below.
7.2.1 Memory size vs. number of memory cycles

Sometimes memory modules cannot accept more data because they are too small. Later
processing may be delayed because the data transfer may not be complete, resulting in extra
clock cycles or time. By allowing more number of clock cycles HISS can often reduce the

size of the memory.

1

7.2.2 Number of ports vs. number of memory cycles

Required data transfers can be achieved by having more words transferred every clock cycle
(more ports) or using more cycles to transfer those words. This is a trivial tradeoff between
space and time multiplexing. The user can increase the number of ports allowed on each

part of the memory hierarchy, and rerun HISS to reduce the number of memory cycles.
7.2.3 Number of ports vs. size of the memory

From the above two tradeoffs one can deduce the tradeoff between the number of ports and
the size of the memory. For example, when a data value is needed again in the future, we
may have to save it for future use but this way we will increase the cache size. On the other
hand, if we have more ports to read (i.e. larger bandwidth) on the main memory we can
access the datum repeatedly whenever we need it thus saving on the size of the memory.
Note that we need to increase the number of ports on the cache as well in order to provide
a larger bandwidth. Again the user can increase the number of ports available and rerun

HISS to reduce the size of the memory.
7.2.4 3-way tradeoff

We have seen that in our problem there are three parameters which vary while making the
cost-performance tradeoff, (i) number of ports, (ii) size of the storage architecture, and (iii)
execution time. To deal with this 3-way tradeofl, we decided to iterate on the number of
ports by repeatedly invoking HISS and for each choice of number of ports let HISS tradeoff
between the size and the execution time. This can be done because the number of ports
is small and does not vary too much in practical designs. Finally, we can choose the most

cost-effective design from these designs.

Given i :
Data Flow Graph Cache Synthesis

\\
Data Transfer Schedule]

Between main memory & cache.

Scheduling for
a. Data Path Operations,
b. Cache reads/writes, and

c. Data path memory reads/ 1 [Module Allocation

wriles.
N

o ol 2
Data Path Memory Synthesis N{Fam Memory Synthesis

: : D ;
[Data Transte scneamej [Transtee Schedule

Module Allocation

e

Figure 3: Memory synthesis.

8 Data transfer scheduling for the cache memory

To reduce the complexity of the problem HISS synthesizes the above-mentioned different

structures, (i) main memory, (ii) cache memory, and (iii) data path memory, separately.

Like data path synthesis, each part of the memory is synthesized by decomposing the
problem into these two basic steps: data transfer scheduling and module allocation, as other
researchers have suggested for similar problems. HISS makes use of the above mentioned
3 tradeoffs during synthesis of each sub-architecture. In this paper we give the details for
data transfer scheduling for the cache, as an example. The overall synthesis approach and
the order are shown in Figure 3. We assume two-phase clocking for our targeted system.
For the main memory, the data is written in one phase and read in the other phase. For
the cache and data path memory, data is read in the first phase and written in the second
phase. The data path processes the data in the first phase and writes it back into cache
in the second phase. In case the cache is transparent, the data path interacts directly with

the main memory; so instead of writing the data back into cache, it writes it into the main

13

memory in the second phase. A simple example illustrating our approach is shown in Figure

4.

There is a finite interval from the production of a data value to its consumption;
it can be transferred at any time step to the functional module for processing and stored
locally. We also have to store a value after it is produced, and before it is required for further
processing. Both storing a value and making it available for processing require determination

of resources, the storage module size and ports for providing it to the operators.

Our second step is to schedule data accesses from the main memory to the cache
to satisfy the schedule obtained in the previous step in Section 6, with the objective of
minimizing the memory size while meeting timing constraints. The problem is described
as follows: given the number of read and write ports on the cache in each step, the time
interval during which the data is available, and the data requirement as determined in the
data path scheduling step; we determine a complete data transfer schedule to and from main
memory, read time and write time for all the data points, such that the size of the cache is
minimized, and the cache provides the data to the data path as they are required, with the

given number of ports.

The scheduling in HISS is analogous to the scheduling problem in data path synthesis.
HISS uses list scheduling, with a redefinition of the objective function, to schedule cache/main
memory reads and writes. HISS maintains a list of all the data values to be scheduled. An
urgency factor is associated with each value which determines the necessity of that value

transfer to be scheduled in a particular step.

Updating the data list is based on the urgency factor associated with each data value.
We try to delay the transfer as much as possible because we know that keeping the value in
the memory will contribute to the size of the memory. We want to minimize the presence
of data in the buffer and try to write it into the buffer as late as possible. So, unless it is
necessary to transfer the value into the memory transfers we will postpone it. From that

point of view it is a greedy algorithm. For such an approach it is useful to process the

R2 RE2
A (step 1) l ¢ ¢
Step 1
......................... . .
—> Registe
Step2 .~ _ beut 1 .
.............................. W Iy e L
Step3 . WE

e

*wh>

Step 4
....................... o
Step S 3UM - Adder
A partial DEG with_ timing
constraints on inputs. AnRTL implementa Hon.
Step 1 Step 2 Step 3 Step 4
RAM [|Write | Read | Write 'Write | Read
A A C B B
Reg.ISter Write Write | Read | Write
File A B | A&B|SUM
Adder SUM
=A+B

Timing details for each RTL module.

[Figure 4: An example illustrating 2-phase clocking.

15

schedule backwards. We start from the last time step and work backwards to the first step.
The urgency factor for these values will depend on the following factors: (i) the number of
steps remaining to prefetch the data into cache. The smaller this number is, the more urgent
it is to fetch the data. (ii) if the value is going to be required again by the data path then
we can lower its priority because all we need to do is to keep it stored in the buffer. The

flowchart of the algorithm is given in Figure 5.

The output of this program consists of the complete data access schedule for the cache
memory. From the access pattern we compute the size of the cache memory, which is the

maximum number of data values we need to store in any step.

9 Experimental results

We applied our approach to two representative examples: an AR lattice filter element
[11], shown in Figure 6 and a second-order differential equation example (Figure 7) [12].
In these examples we assume that the input data is brought into an on-chip RAM (main
memory) and is ready for processing. However, our programs can be given timing constraints
on the inputs imposed by the external world. The results are summarized in Table 1. Figure
8 gives the data path schedule and data transfer schedule for the cache for design 3. The
data path schedule lists the operations and the corresponding step number. The input data
transfer schedule for the cache gives the read/write schedule for the cache. For example, in

step 3 we have,

STEP 3 --> READs (2) --> x dx
Memory Contents -> x dx

WRITEs (1) --> dx

This means that in step 3 one input ‘dx’ is being written into the cache from the
main memory, the cache contents are ‘x’ and ‘dx’, and in this step we read 2 data values -

‘x" and ‘dx’ from the cache for the data path. Note that ‘x’ was discarded after this read

16

gt =

Read timing constraints on the inputs.
Read input access pattern as required by the data path.
Read the number of write ports (P,,) on cache.

Y

step = last_step

N

Add all the data values being read in ‘step’ to the cache list.
(These values should be present in the cache before ‘step’).

Y

Compute the urgency of each data
value in the cache list.

Y

Select the most urgent P, data val-
ues to write into the cache.

Y

Delete these P,, data values from the cache list.
(These values are not stored in the cache now).

Y

step = step - 1

Figure 5: Data transfer scheduling for cache in HISS.

17

md al

a2 gl

ynext xnext

Figure T: Second-order differential equa-
Figure 6: AR 'lattice filter. tion GXaInple_
as it doesn’t appear again in the memory contents in step 4, while ‘dx’ does, implying that

‘dx” was saved for {uture use.

Note that, in examples 2 and 4 the cache sizes are zero. It implies that the data
can be read directly from the main memory in each step and we don’t need to store any
values in the cache at any time. In examples 1 and 3, since the bandwidth between the main
memory and the cache is very restricted, we prefetch the data and store it in cache before
it is demanded by the data path. If the data value is not required again we can overwrite it
with new data and thus reuse the memory location. If it is required again we check if we can
transfer it again to the cache from the main memory. Depending on that we either keep it
stored in the cache or overwrite it with a new value in order to save memory. For example,
in the data transfer schedule for design 3 (shown in Figure 8) const3 is used in steps 2 and
6. It is transferred into the cache from the main memory in step 2 and we could have just
saved it in the cache for step 6. But we transfer it again in step 5, because we realize that
before it is required in step 6, we can rewrite it into the cache in step 5. This way we could

overwrite the memory location used by const3 after step 2.

In these examples we had a very stringent memory bandwidth constraint. The long

18

Input data transfer schedule for cache

STEP 9 --> READs (1) -->y
Memory Contents -> y
WRITEs (1) -->y

STEP 8 --> READs (2) -->dx u
Memory Contents -> u dx
WRITEs (1) -->u

Data path schedule STEP 7 --> READs (1) --> a
(operation - time step) Memory Contents -> a dx
gtl 7 WRITEs (1) --> a
$29 STEP 6 --> READ:s (2) --> y const3
s18 Memory Conlents -> const3 y dx
WRITEs (1)-->y
a29 STEP 5 --> READs (2) --> dx u
al3 Memory Contents -> u const3 dx
mo6 8 WRITEs (1) --> const3
m5 6 STEP 4 --> READs (2) -->dx u
m4 5 Memory Contents -> u dx
m3 6 WRITEs (1) -->u
STEP 3 --> READs (2) --> x dx
m2 2

Memory Contents -> x dx

ml 4 WRITEs (1) --> dx

STEP 2 --> READs (2) --> x const3
Memory Contents -> const3 x
WRITEs (1) --> const3

STEP 1 --> READs (0) -->
Memory Contents -> x
WRITEs (1) --> x

MEMORY SIZE =3

Figure 8: Qutput for design 3.

19

Input Output
Example | Functional | Bandwidth between | Bandwidth between | Number | Cache
hardware | cache & data path | main mem. & cache of size
(No. of R/W ports (No. of R ports control
on cache) on main mem.) steps
AR filter | 2 adders 2 words/cycle 1 word/cycle 29 4
2 mults. 2 words/cycle 2 words/cycle 15 0
1 adder,
Sec. order | 2 mults., 2 words/cycle 1 word/cycle 9 3
diff. eqn. 1 sub.,
1 comp. 2 words/cycle 2 words/cycle 8 0

Table 1: Data path scheduling with cache design.

execution times are due to the restriction on the number of reads and writes that can be
performed in each step. These narrow, but more realistic, bandwidths caused a bottleneck
during the execution. A quick analysis of the resc_;urcé utilization shows us that the read
and write ports are heavily active throughout the execution and their scarcity is causing
underutilization of other resources. We can also see that in example 1, one-word bandwidth
between the main memory and the cache further delayed the execution time while in example
3 it did not affect the execution time drastically. The reason is that the number of inputs in
the first example is 26 and we need at least that many steps to fetch all the inputs. In the
third example the number of different inputs is only 6 and their access is interleaved with
the execution of the data flow graph. A more careful study of these schedules shows that
in the case of the second-order differential equation example a larger bandwidth between
the cache and the data path can improve the execution time more effectively. Each of these

examples ran in less than 100 ms. on a SUN-SPARC.

10 Conclusion

In this paper we demonstrated an approach to perform data path synthesis combined with
the required hierarchical storage structures synthesis for ASICs. Our prototype synthesis

package, HISS, takes in a behavioral description of a system along with the module library,

20

hardware and timing constraints and synthesizes a system with storage hierarchies. We

demonstrated the capabilities of HISS by synthesizing two examples with varying design

parameters. We are in the process of interfacing HISS with our ADAM framework and

Cascade Design Automation’s ChipCrafter. That will enable us to layout the whole design

from the behavioral description within an acceptable time limit.

References

1]

(3]

[4]

(6]

[. Ahmad and C. Y. Roger Chen. Post-Processor For Data Path Synthesis Using Mul-
tiport Memories. In Proc. of the International Conference on Computer Aided Design,

pages 276-279, 1991.

M. Balakrishnan, A.K. Majumdar, D.K. Banerji, and J.G. Linders. Allocation of Mul-
tiport Memories in Datapath Synthesis. In Proc. of the International Conference on

Computer Aided Design, pages 266-269, 1987.

C. H. Chen. Allocation of Multiport Memory with Ports of Different Type in Register
Transfer Level Synthesis. In International Conference on Computer Design, pages 418

421, 1991.

C. H. Chen and G. E. Sobelman. Singleport/Multiport Memory Synthesis in Data Path
Design. In Proc. of the IEEE International Symposium on Circuits and Systems, pages
1110-1112, 1990.

D.M. Grant and P.B. Denyer. Memory, Control and Communication Synthesis for
Scheduled Algorithms. In Proc. of the 27th Design Automation Conference, pages 162-
167, June 1990.

D.M. Grant, P.B. Denyer, and I. Finlay. Synthesis of Address Generators. In Proc. of

the International Conference on Compuler Aided Design, pages 116-118, 1989.

[7]

8]

[10]

[11]

[12]

[13]

[14]

P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, and B.T.
McSweeney. Memory Synthesis for High Speed DSP Applications. In Proc. of the IEEE
Custom Integrated Circuits Conference, pages 11.7.1-11.7.4, May 1991.

P. Marwedel. The MIMOLA Design System: Detailed Description of the Software
System. In Proc. of the 16th Design Automation Conference, pages 59-62, 1979.

A. Nagle and A. Parker. Hardware/Software tradeoffs in a Variable Word Width, vari-
able Queue Length Buffer Memory. In Proc. of the 4th Annual Symposium on Comp.
Architecture, pages 159-163, March 1977.

A. Parker, J. Pizarro, and M. Mlinar. MAHA: A Program for Datapath Synthesis.
In Proceedings of the 23rd Design Automation Conference, pages 461-466. IEEE and
ACM, July 1986.

A. C. Parker, Pravil Gupta, and Agha Hussain. The Effects of Physical Design Char-
acteristics on the Area - Performance Tradeoff Curve. In Proc. of the 28th Design

Automation Conference, pages 530-534, June 1991.

P.G. Paulin and J.P. Knight. Force-Directed Scheduling for the Behavioral Synthesis of
ASICs. IEEE Tran. on Computer Aided Design, pages 661-679, June 1989.

L. Stok. Interconnect Optimization during Datapath Synthesis. In Fourth International

Workshop on High-Level Synthesis, pages 1-6, October 1989.

J. Vanhoof, I. Bolsens, and H. De Man. Compiling Multi-dimensional Data Streams into
Distributed DSP ASIC Memory. In Proc. of the International Conference on Computer
Aided Design, pages 272-275, 1991.

o
o

